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Abstract. The abundance of functional observations in scientific en-
deavors has led to a significant development in tools for functional
data analysis (FDA). This kind of data comes with several challenges:
infinite-dimensionality of function spaces, observation noise, and so on.
However, there is another interesting phenomena that creates prob-
lems in FDA. The functional data often comes with lateral displace-
ments/deformations in curves, a phenomenon which is different from
the height or amplitude variability and is termed phase variation. The
presence of phase variability artificially often inflates data variance,
blurs underlying data structures, and distorts principal components.
While the separation and/or removal of phase from amplitude data is
desirable, this is a difficult problem. In particular, a commonly used
alignment procedure, based on minimizing the L

2 norm between func-
tions, does not provide satisfactory results. In this paper we motivate
the importance of dealing with the phase variability and summarize
several current ideas for separating phase and amplitude components.
These approaches differ in the following: (1) the definition and mathe-
matical representation of phase variability, (2) the objective functions
that are used in functional data alignment, and (3) the algorithmic
tools for solving estimation/optimization problems. We use simple ex-
amples to illustrate various approaches and to provide useful contrast
between them.

Key words and phrases: Functional data analysis, registration, warp-
ing, alignment, elastic metric, dynamic time warping, Fisher–Rao met-
ric.
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1. INTRODUCTION

1.1 A First Look at Phase Variation in
Functional Data

Experimental units of data that are distributed
over lines and areas, known as functional data,
are best represented as curves and surfaces, respec-
tively; and we expect that these will vary in height
over any particular point. But we often notice that
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2 MARRON, RAMSAY, SANGALLI AND SRIVASTAVA

Fig. 1. Circles correspond to intensities over an ethanol region of the NMR spectrum for two typical red wines, and asterisks
indicate a white and a rosé. The light solid lines are smooth fits of the data using order 6 B-spline basis functions with a knot
at every sampling and a light penalty (λ= 104) on the fourth derivative. The heavy dashed line is the mean intensity across
31 reds, 7 whites, and 2 rosés. The mean has a far different shape from the quite similar shape of all the data curves, due to
registration issues.

the continuous substrate of the data seems itself to
be transformable, and that these transformations
vary across functional observations.
Figure 1 displays four peaks for each of four sam-

ples of wines in the part of the nuclear magnetic res-
onance (NMR) spectrum corresponding to ethanol.
Two of these wines are red, one is white, and one is
a rosé. We notice that most of the variation across
these four samples is due to the peaks of the white
and rosé wines being displaced to the right relative
to those for the red wines. It is known that the pH
level in a solution has this effect on the location of
the couplets, triplets, and m-tuplets that NMR gen-
erates; and also that red wines have pH’s from 3.3
to 3.5, while white pH’s are in the range 3.0–3.3.
Moreover, the effects of pH and other factors are
known to vary from one location in the spectrum to
another, with displacements in opposing directions
not being unusual.
The functional data analysis (FDA) literature

refers to lateral displacements in curve features as
phase variation, as opposed to amplitude variation

in curve height. As in music, we imagine that time
can be compressed or stretched over different inter-
vals in a single performance. Consequently, we dis-
tinguish between measured clock time and related

but different time scales. Relative to human growth
time, for example, puberty for girls occurs on aver-
age at the age of 11.7 years, but hormonal and other
physiological factors shift this age forward and back-
ward to the variable clock times that parents actu-
ally see.
Few time-varying events are more important than

the weather. Figure 2 allows us to explore phase
variation in Montreal’s daily temperature variation
over three winters, winter being the most dynamic
period in the Canadian climate year. We see here
several important markers of phase variation. There
are two minimum temperatures in most winters, the
first positioned around January 15 and the January
thaw that separates them typically arrives on Jan-
uary 25. We notice, too, the increased volatility in
temperature in the two months in the dead of winter.
The two horizontal lines mark temperatures of great
importance to Canada’s economy. The five degree
Celsius threshold is the point at which cash crops
in the Canadian prairies germinate, and their to-
tal growth depends on, in addition to precipitation,
the total number of degrees above this threshold
prior to harvest. Minus seven degrees is the thresh-
old below which ice has enough structural integrity
to support winter river crossings and year-round ice
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Fig. 2. Temperature variation in Montreal, Canada, over
three winters. The solid curve is a smooth of the daily
min/max averages, which are shown as dots. The dashed line
is a strictly periodic smooth of the data over the years 1960
to 1994. The vertical dotted lines indicate the “orbital” year
boundaries separated by 365.25 days. The upper dashed hori-
zontal line is the temperature at which growth begins for most
crops on the prairies; and the lower dashed line is the tem-
perature below which ice is structurally sound. Note strong
variation from year to year.

dams around tailing ponds for the many mines in the
north. Global warming is altering the dates at which
these thresholds are crossed. The small plateaus in
the spring and fall mark out the arrival and depar-
ture of snow, respectively. We see that winter arrived
in both 1988 and 1989 particularly early, and with
an intense cold snap in 1989, while the 1987 winter
was typical in its timing. Summer phase variation,
by contrast, seems small. Predicting phase variation
is of great importance in weather prediction, crop
management, and far northern transportation.
Once recognized, one sees phase variation every-

where. Parents see children reaching puberty over
a wide range of ages, and perhaps wonder if there
is some connection between the timing of the pu-
bertal growth spurt and adult height. Growth im-
plies positive change, and Figure 3 displays the
growth of ten girls in the Berkeley growth study
(Tuddenham and Snyder, 1954) as the positive first
derivative of height in the top panel, as well as the
acceleration of height or derivative of growth in the
bottom panel. Musicians alter the timing of notes
in subtle ways to create tension and define mood,
achieving in this way their unique auditory signa-
ture as performers. Golfers and baseball players, on
the other hand, tend to find phase variation in their
swings to be an impediment to fine control over am-

Fig. 3. The top panel plots the growth, understood as
the first derivative of height, of ten girls, and the bot-
tom panel contains the corresponding height-acceleration or
growth-derivative curves. The dashed curve in both plots is
the cross-sectional mean. Both these plots indicate both phase
and amplitude variability.

plitude variation, and train to the point where it is
nearly eliminated.

1.2 Clock Time, System Time, and the
Time-Warping Function

We can articulate the concept of phase variation
by distinguishing between clock time s and system

time t. That is, we envisage the spectra of wines,
the weather, and children as evolving over their re-
spective continua at variable rates determined by
processes that we may at least partially understand
and would like to know more about. Consequently,
when large-scale phase variation is compared to the
clock time, defined these days in terms of the num-
ber of oscillations of the cesium atom, we envisage a
functional relationship s = h(t) that can vary from
one wine type to another, over successive winters,
and across children even within the same family.
However, the system times are defined so that all
girls will reach puberty at the same age.
In most cases, we can expect that the mapping

h, often called the time warping function, will be
smooth and strictly increasing, two properties cap-
tured in the term diffeomorphism. In other words,
we require that the inverse function value h−1(s)
exists everywhere in the support of the functional
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data since we need to use t= h−1(s) to align a fea-
ture such as the pubertal growth spurt across mul-
tiple curves. As statisticians, we look for ways to
estimate the h’s associated with different units of
data distributed over the base continuum, as well
as ways of using discrete and continuous covariate
observations to explain and predict them.
Other conditions such as specified boundary be-

havior are added as makes sense for the context at
hand. For example, the time taken to produce a sam-
ple of handwriting will vary from replication to repli-
cation, so that hi may map, say, the interval [0, T0]
into the interval [0, Ti] where T0 is a fixed template
time. But if the observation is also supposed to re-
flect when the handwriting event took place, then
simple shifts, hi(t) = t + δi, will provide a better
model. If the process under study may reasonably
be expected to have one or more derivatives, then
the chain rule requires that h, too, be differentiable
to the same extent. In any case, it seems unlikely
that in many real-world applications the problem
constraints will allow for sharp jumps in h, so that
smoothness can be added to monotonicity as a prop-
erty.
The following single-parameter expression for h

mapping [0, T ] into itself serves as an illustration
and is often useful: for β 6= 0,

h(t|β) = T

[

eβt − 1

eβT − 1

]

and

(1)

h−1(s|β) = 1

β
log

[

s(eβT − 1) + T

T

]

.

The expression converges to the identity warp h(t) =
t as β→ 0. This model, taken from Kneip and Ram-
say (2008), can also be derived from a later equation
[equation (11)] by setting the function W (t) = βt.
Some warping functions corresponding to early

and late growth spurts are shown in Figure 4. The
warping function [of the type given in equation (1)]
in each right panel maps pubertal growth spurt on
the growth (system) time scale into the clock or ob-
served time scale, as indicated by the zero crossing of
the growth derivative function in the left panel, that
is, the peak of the spurt, as shown by a circle. The
early pubertal spurt in the top panel is modeled us-
ing an h which moves quickly through early growth
phases relative to clock time (i.e., curves downward)
so as to produce the early clock time of about nine
years, whereas the bottom panel is better modeled

Fig. 4. The top left panel displays the derivative of growth
for a girl with an early growth spurt, and the bottom left panel
for a girl with a late growth spurt. The top right panel plots
a warping function h that maps the growth time of the puber-
tal growth spurt, indicated by the circle, into the early clock
time in the left panel. The bottom right panel shows the cor-
responding warping function for the late growth spurt. This
shows how phase variation is effectively modeled by warping
functions.

with an upward curving h that reflects slower transi-
tion through early growth phases to reach the clock
time of the late growth spurt of about 14 years.

1.3 The Problems that Come with Ignoring
Phase Variation

The presence of phase variation can play havoc
with classical data analyses that are designed for
data structures without phase changes. The heavy
dashed line in Figure 1 is the average of the ethanol
peaks across forty wine samples, of which 31 are
red. The heights of the mean peaks are lower than
almost all corresponding sample peaks, their widths
are substantially wider, and no sample peak displays
the step in the middle of the down-slope of each
average peak. That is, a statistical analysis as ele-
mentary as averaging takes the data well outside of
their normal modalities of variation, causing it to
fail as an effective data summary. A recent review
of chemometrics (Lavine and Workman, 2013) high-
lights the importance of aligning peaks in spectral
data as a first step, and warns spectroscopists that
getting this step right can be crucial to the quality
of subsequent analyses. In fact, most familiar data
analyses are found to fail in the presence of phase
variation; variances are inflated, fits by regression
models are degraded, and additional principal com-
ponents are required.
This paper began as a follow-up to a workshop on

curve registration at the Mathematical Biosciences
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Institute at the Ohio State University in 2012 [see
Marron et al. (2014) and companion papers]. An ef-
fective workshop raises many more questions than
it answers, and this workshop left us with much to
consider. Is there a clear distinction between ampli-
tude and phase variation, or is there variation that
can be represented either way? Can the transforma-
tion h be considered as a full data object, or does
it just represent nuisance variation to be discarded
once identified? When phase data objects are mean-
ingful, how can we incorporate known covariates,
such as pH in the NMR context, into the estima-
tion? Are “features” in a curve or surface always
things like peaks, points of inflection, and threshold
crossings, or can models define more general prop-
erties that become invisible on the model side of the
equation when phase is properly incorporated and
estimated? Are traditional fitting criteria such as
error sums of squares still useful, or are they only
usable when there is no phase variation? What role
should derivatives play? Can the warping function
h be as complex as is required to align features, or
is it wise to impose some regularity? When is it use-
ful to develop data analyses that reveal aspects of
the joint variation in phase and amplitude? We will
discuss some of these questions in this paper.
Section 2 defines some possible goals for curve and

surface alignment or registration, and discusses ways
of understanding what is amplitude and phase varia-
tion. Section 3 considers various optimization strate-
gies and statistical models that separate phase and
amplitude variations. Section 4 provides some links
for downloading relevant softwares. Section 5 con-
siders what has been learned in working with these
and other data sets, and looks forward to future re-
search and generalizations in this fascinating area.

2. VIEWPOINTS AND GOALS

2.1 The Identification of Phase Variation

In this paper we will use y1, y2, . . . , to denote
the observed functions with both phase and ampli-
tude variability and x1, x2, . . . , to be the underling
functions denoting only the amplitude variability,
that is, after removing phase variability, such that
xi(t) = yi(hi(t)).
An important challenge is identifiability of ampli-

tude and phase variation, since which is which is apt
to depend very much on prior intuitions and knowl-
edge about how each type of variation is caused. For
example, while it may seem obvious that the peaks

after age eight in the top panel of Figure 3 exhibit
phase variation, a close look at the lower panel shows
that a number of the growth-derivative functions
display more than one negative slope episode prior
to the final crossing of zero. What we are tempted to
call early spurts may only be due to the presence of
a single pre-pubertal spurt, and a late spurt may be
due to two or even more pre-pubertal spurts. This
tends to sound more like an amplitude-oriented ex-
planation.
A simple example of this is a data set of lin-

ear functions on R, y1, . . . , yn, having the same
slope, but differing intercepts. Using the notation
x(t) = y[h(t)], that mode of variation could be en-
tirely modeled as linear shifts, hi(t) = ait+ bi con-
structed so that x1 = x2 = · · ·= xn (i.e., all variation
is in the phase variation), or it could equally well be
modeled as hi(t) = t, the identity warp, with all of
the variation in the original data appearing in the
intercepts of the yi, or the variation could be split
between these modes.
We have tied phase variation in the wine data to a

known causal factor, the pH level of the wine, but,
for the weather data, it seems to depend on intu-
ition as to whether spring came late in a particu-
lar year or whether that year was simply unusually
cold. Even an early velocity peak defining the pu-
bertal growth spurt can be seen in part as a year of
strong growth followed by a year of weaker growth.
It is not surprising, as a consequence, that we see
very little attention given to the phase variation in
the evolution of statistical methodology. In partic-
ular, the distinction between phase and amplitude
variation is generally not univocal, but instead de-
pends on both the application under study and the
goals of a particular analysis.

2.2 Types of Phase Variations

We have mentioned the linear shifts earlier, but
there are several possibilities when choosing a class
of warpings to specify phase variation. Depending
on the application context, one may prefer one class
over the others. We enumerate some possibilities be-
low and illustrate an example of each in Figure 5:

• Uniform Scaling : Here the warping of the time
domain simply rescales it by a positive constant
a ∈R+, that is, h(t) = at for all t ∈R+.

• Uniform Shift : In this case the time axis gets
shifted by a constant c ∈R, that is, h(t) = c+ t.
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Fig. 5. Illustrations of different types of warping functions applied to the same function y. The top row shows y(t) (solid
line) and y(h(t)) (dashed line), and the bottom row shows the corresponding warping functions h(t).

• Linear or Affine Transform: A combination of the
previous two leads to a linear or affine transfor-
mation: h(t) = c+ at, a ∈R+ and c ∈R.

• Diffeomorphisms: A general class that includes
domain warpings is given by the set of diffeomor-
phisms of the domain to itself. While it is possi-
ble to define diffeomorphisms on the full real line,
practical considerations make it interesting to re-
strict warpings to compact intervals. The set of
linear transformations is contained in the set of
diffeomorphisms if the domain is defined to be
the full real line.

While these are the main types of warping trans-
formation, one can further enlarge the scope by in-
cluding functions that allow for some flat regions; an
example is shown in the rightmost column of Fig-
ure 5. Please refer to Srivastava et al. (2011a) for
a discussion on the need for such functions and a
rigorous approach to handling them.

2.3 Some Goals for an Amplitude/Phase
Analysis

We can distinguish three motivations for a model
that allows for phase variation. First, amplitude
variation could be the main focus, with phase vari-
ation being a nuisance to be removed and then cast
aside. The wine NMR spectra in Figure 1 illustrate
this nicely, in part because the goal of the analysis
is specifically to model the relative heights of the
clearly visible peaks, the widths of which tend to be

proportional to their height. Prairie crop scientists
tend to focus on the total heat and precipitation
available to plants in the growing season as predic-
tors of crop yield, leaving the issue of when the sea-
son starts and finishes to the producers to wrestle
with. Auxologists, who study human growth, may
be preoccupied by the variation in the shape char-
acteristics of growth curves such as the variation in
their amplitudes, and see the variation in the tim-
ings of the pubertal growth spurt as a nuisance to
be eliminated by lining up the corresponding peaks.
On the other hand, phase variation could instead

contain all of the interesting information, in con-
texts where issues such as timing are more impor-
tant than relative peak heights, such as the locations
of bursts in neuronal spike train data. Crop produc-
ers know that they have little control over heat and
precipitation budgets, but they can look for indi-
cators of when they can sow their seeds and when
certain variants will mature. In this situation, the
time warp functions are the center of attention.
Finally, both amplitude and phase variation, and

in fact the joint variation between these, can be
central issues in the analysis. It turns out, for ex-
ample, that there is a simple relation between the
strength of a pubertal growth spurt and its timing,
namely, that early spurts are stronger and later ones
are weaker, resulting in adult final heights that do
not dependmuch on either factor. That is, it appears
that each child has a wired-in capacity for growth,
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but that the distribution of the expenditure of the
growth energy over time can vary over children with
similar growth capacities.

2.4 The Role of the Model in the
Amplitude/Phase Partition

Assuming the relevance of phase variation, it will
be clear that both its nature and estimation strate-
gies will depend critically on the model being pro-
posed for the data. The cross-sectional mean is of-
ten the model of choice in feature alignment strate-
gies; peaks and threshold crossings are considered
aligned when the mean curve is centrally located
within the registered curves at all points over the in-
terval of observation. More generally, the mean can
be taken as one of many template or gold-standard
curves to be approached as closely as possible in
some sense by the application of phase transforma-
tions. Alternatively, as described in the next section,
one can compute the mean under a different met-
ric and use that as a model for alignment. Finally,
functional linear equations, low-dimensional prin-
cipal component representations, differential equa-
tions, and many other mathematical structures may
provide model spaces for amplitude variation that,
simultaneously, identify what is meant by phase
variation. That is, if a diffeomorphic transformation
of the substrate of the data, possibly within some
predefined class, can improve the fit of the model to
the data, we define it as phase. Models, of course, are
usually chosen to represent a conjecture or hypothe-
sis about what generates the data, and in this sense
the identification of the amplitude/phase dichotomy
is very much centered on the science underlying the
application.

2.5 Amplitude/Phase Separation via
Equivalence Classes

One way to study amplitude and phase vari-
ation is through equivalence classes. The use of
equivalence classes is not new to statistics. In fact,
they form the core idea in statistical shape anal-
ysis (Dryden and Mardia, 1998) and in Grenan-
der’s work on pattern theory (Grenander, 1993), in-
cluding its applications to computational anatomy
(Grenander and Miller, 1998). In Kendall’s shape
analysis the experimental units are configurations
of (landmark) points in an appropriate space, usu-
ally two- or three-dimensional Euclidean space. To
focus the analysis on the shape variation in the
data, nonshape aspects, such as location, rotation,

and perhaps scaling, are incorporated into equiva-
lence classes, where point configurations are identi-
fied with each other (i.e., called equivalent) when
they can be translated, rotated, and scaled into
each other. Then, one compares shapes of objects by
comparing their equivalence classes. While the past
shape approaches were restricted to point sets and
simple transformations (rigid motions and global
scales), the more recent literature has studied con-
tinuous curves with transformations that include
time warpings (more precisely, reparameterizations)
[see Younes et al. (2008) and Srivastava et al.
(2011b), among others].
In an entirely parallel fashion, one can define am-

plitude and phase variability in functional data us-
ing equivalence classes. As laid out in Srivastava
et al. (2011a), the main idea is to understand ampli-
tude variation through a quantity that incorporates
all aspects of phase variation inside it. This is done
by defining an equivalence relation, where curves are
identified or deemed equivalent when they can be
time warped into each other. Figure 6 shows some
elements of an equivalence class—a set of warps of a
single three-peak curve. The equivalence class is ac-
tually much bigger, including all diffeomorphic time
warps of this curve, only some of which are shown
here. These equivalence classes are now taken as rep-
resenting amplitudes because they model the essence
of vertical variation in a simple and natural way.
The phase variation is incorporated within equiva-

lence classes, while the amplitude variation appears
across equivalence classes. Further motivation for
how equivalence classes provide clear definitions for
separation of amplitude and phase is given in Sec-
tion 3.4. (See also Vantini (2012).)
While the origins of these ideas lie in shape theory,

an understanding of these concepts can also be ob-

Fig. 6. Different time warps of a function (left) form an
equivalence class from the perspective of defining its ampli-
tude.
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tained using the terminology of object-oriented data
analysis (OODA), as defined in Wang and Marron
(2007) and more recently discussed in Marron and
Alonso (2014). An important special case of OODA
is FDA, where functions are the data objects. A nat-
ural approach to the decomposition of amplitude
and phase variation is to model each with appro-
priate data objects, with specific goals as laid out
in Section 2.3. In some situations, such as the wine
NMR data in Figure 1, the phase variation can be
viewed as a nuisance, so the data objects of inter-
est are registered curves, that is, time warped to
match their peaks. In other situations, for exam-
ple, the temperature data shown in Figure 2 and
for human growth curve data in Figure 4, interest-
ing data objects can be any of the registered ampli-
tude curves, or the transformations used to achieve
registration (reflecting phase variation), or else the
concatenation of both, for situations where joint
amplitude–phase variation is key. In the same spirit,
the data objects in an equivalence-class approach
are the equivalence classes themselves.

3. SOME CURRENT CURVE REGISTRATION
METHODS

In this section we look at a few curve registra-
tion techniques for estimating warping functions h.
In the first two sections, the focus is on using a tem-
plate function x0 as a target, so that y(s)≈ x0[h(t)]
and, inversely, x0(t) ≈ y[h−1(s)]. We will see that
the sense in which the approximation is defined re-
quires considerable care, with least squares approx-
imations computed in the usual way not being a
viable candidate. The template x0 is often defined
using an objective function whose solution is itera-
tive, starting with the cross-sectional mean and al-
ternating between a registration and a recalculation
of the cross-sectional mean of the registered func-
tions. Typically this process, often referred to as
Procrustes iterations, converges in only a few steps.

3.1 Dynamic Time Warping (DTW)

Before examining current registration methods,
it is worthwhile mentioning dynamic time warping
(DTW), an early registration method applied to dis-
crete sequences of phonemes (a basic unit of lan-
guage). Sakoe and Chiba (1978) devised an inser-
tion/deletion algorithm that is rather like that of
isotonic regression (Barlow et al., 1972). The under-
lying algorithm, which is a dynamic programming

algorithm, is an optimization technique where one
partitions the graph space using a finite grid and the
warping h is restricted to be a piecewise-linear func-
tion passing through the nodes of this grid. Depend-
ing on the context, one may allow it to have vertical
jumps or be horizontal for multiple time-steps. In
the classical DTW, the dynamic programming algo-
rithm is applied to minimize the least-squares cost
function given in equation (2). DTW can be effec-
tive as a feature alignment method, as it provides
a globally optimal solution, albeit on the restricted
search space (piecewise-linear h on a fixed grid). But
the classical DTW has the conceptual problem that
it may not provide smooth differentiable time warps
that many applications require. Also, the compu-
tational algorithm can be greedy, in the sense of
warping regions where no alignment seems called
for. These problems, in general, can be handled by
adding a regularization term to the cost function.

3.2 Landmark Registration

In terms of functional data alignment, we begin
with the easiest situation in which each curve yi(s)
has clearly-defined features, the timings of which
can be used to estimate hi at a series of points
(tℓ, hiℓ). This requires, in turn, a consideration of
what we might mean by “feature.”
In the case of the wine data, there seems to be lit-

tle confusion. In most types of spectra, the presence
of a chemical compound is marked by a single peak,
the location of which is the desired landmark, and
automatic methods for peak detection are relatively
easy to devise. For multi-peak structures such as
the NMR peaks in Figure 1, the average of the peak
locations would serve the purpose. Alternatively, a
template can be set up for a peak shape, and a peak
detector can be devised by computing correlations
with moving windows of the curve shape with the
template pattern.
Let us suppose that there is a gold standard tem-

plate spectrum x0 with L peaks occurring at times
tℓ, ℓ= 0, . . . ,L+ 1, where times t0 and tL+1 are the
endpoints of the observation interval. Then, for the
ith spectrum with peak locations at sℓ, we can es-
timate hi by interpolating in some suitable way the
pairs (sℓ, tℓ). Polygonal lines might serve, or it may
be important to use a smoother interpolant having,
perhaps, a specified number of derivatives. Figure 4
offers an elementary example of landmark registra-
tion, where the timing of a girl’s pubertal growth
spurt is the single landmark ti, shown as a circle in
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Figure 4, and the intervals (3, ti) and (ti,18) for the
ith girl are interpolated by the warping functions
[formed using the expression in equation (1)].
Peak and valley locations can be translated into

crossings of zero in the curve’s first derivative with
negative and positive slopes, respectively. Other
types of crossings may also be important. For ex-
ample, the heavy-duty winter in Figure 2 can be
defined as the average of the first crossing time with
negative slope for −7 deg C and the second crossing
time with positive slope. Prairie farmers would pre-
fer the crossing of germination threshold of 5 deg C
with positive slope, and, in fact, do just that with
daily soil temperature readings in May.
The problem with landmarks, of course, is that

they are not always visible or one may be faced with
other types of feature time ambiguity such as two
or more closely spaced −7 deg C crossings in the
temperature data. Moreover, recording landmarks
by hand is tedious, and fail-safe automatic detectors
are sometimes hard to set up. The choice of land-
mark can itself be open to the kind of debate that
scientists would prefer to avoid. Finally, landmark
registration is only discrete evidence concerning the
intrinsically continuous function hi, and as such ig-
nores what happens in between landmarks, where
there may reside additional information about h.

3.3 Registration Using L
2 Distance and

Correlational Criteria

Now we look at a classical approach to functional
registration that does not require the use of land-
marks. Let hi denote the time warping associated
with the ith data item yi; this hi can be restricted
to be an element of a parametric family, defined
by the value of one or more parameters, or can
be fully nonparametric as in a diffeomorphism. The
one-parameter warps [equation (1)], along with sim-
ple shifts, scale changes, and linear functions of t,
are examples of simple parametric warping fami-
lies, and we will propose more flexible representa-
tions in Section 4. It seems natural to specify a loss
function L that optimizes the congruence of a set
of clock-time functions yi to corresponding warped
versions of a template x0, that is, yi ≈ x0 ◦hi, where
(x0 ◦ hi)(t) = x0(hi(t)).
The choice, however, of standard options such as

L(h;yi, x0) = ‖yi − x0 ◦ hi‖2
(2)

=

∫

[yi(t)− x0(hi(t))]
2
dt

Fig. 7. The upper panels show a Gaussian density func-
tion x0 and its scaled version y, as dot-dashed and dot-
ted curves, respectively. The solid curve in the upper left
panel results from minimizing the squared error criterion∫
[y(t)− (x0 ◦ h)(t)]

2 dt with the optimal warping function h

shown in the lower left panel. The solid curve in the upper
right panel results from minimizing the squared error criterion∫
[(y ◦ h)(s)− x0(s)]

2 ds with the optimal warping function h

shown in the lower right panel.

will quickly prove disappointing if combined with
a flexible class of warping functions, as Figure 7
demonstrates. In the left case, the minimization of
the L

2 norm results in a reduction from 0.500 to
0.024, using a piecewise-linear warping and a spike
that nearly eliminates the area under the registered
curve corresponding to intervals where the y has
larger amplitude than x0. In the registration pro-
cess the amplitude characteristics of y have been
significantly distorted.
This pinching effect can be mitigated by us-

ing warping functions that are constrained to be
smooth, either by the use of a regularization strat-
egy or by the use of a small number of basis func-
tions. The registration procedures proposed in Ram-
say and Silverman (2005), for instance, incorporate
a penalization term that forces the choice of the
warping functions toward functions that do not dif-
fer significantly from the identity (corresponding to
the case of no registration) or from constant func-
tions. Concerning instead the use of simple paramet-
ric families for the class of warping functions, the L2

distance will work just fine for the one-parameter
shift-warp family, h(t) = t + δ. Such a registration
procedure performs perfectly for the example in Fig-
ure 7, where the identity warp is returned since the
two peaked curves are already registered.
It thus appears fundamental to appropriately re-

late the definitions of amplitude variation and of



10 MARRON, RAMSAY, SANGALLI AND SRIVASTAVA

phase variation, that are jointly described by the
loss function to be optimized and the class of warp-
ing functions. This motivates the simultaneous defi-
nition of phase and amplitude to avoid issues such as
the one highlighted in Figure 7. For instance, the loss
function L to be optimized and the class of warping
functions h may be chosen so that for any two func-
tions x1, x2, and any warping function h, L satisfies
the relation

L(x1, x2) = L(x1 ◦ h,x2 ◦ h).(3)

This invariance property guarantees that it is not
possible to obtain a fictitious increment of the simi-
larity between two functional data by simply warp-
ing them simultaneously with the same warping
function, and has been clarified in the context of
different types of warpings in different papers. For
example, Sangalli et al. (2009, 2010) and Vantini
(2012) study this invariance and then specify it in
the context of linear or affine transformations of the
domain, while Srivastava et al. (2011a) study it for
diffeomorphisms.
Moreover, as already highlighted, the concepts

of amplitude variation and of phase variation are
problem-specific and depend on the application
goals. For instance, if two functional data x1 and
x2 may be considered aligned when they are pro-
portional, that is, when x1 = αx2, then it is natural
to use the loss function associated to the semi-norm

∥

∥

∥

∥

x1

‖x1‖
− x2

‖x2‖

∥

∥

∥

∥

,(4)

and the corresponding correlation measure

ρ(x1, x2) =
〈x1, x2〉

√

〈x1, x2〉〈x2, x2〉
.(5)

The class of linear warping functions h(t) = δ + γt

is compatible, in the sense of equation (3), with the
loss function associated to (4) and (5), if these are
computed over the full real line. This definition of
amplitude/phase variation seems, for instance, well
suited for the wine data, where the amplitude vari-
ation is well described by the relative heights of
the peaks, rather than by their absolute heights,
and where linear transformations of the abscissa al-
lows for a good alignment of these peaks. This also
holds for growth curve data, where the emphasis
is on growth velocities, rather than on the height
curves per se, and the children’s biological clocks,
with their pubertal spurts, are aligned by aiming at

proportional growth velocities. Ramsay and Silver-
man (2005) used the size of the minimum eigenvalue
of the order two cross-product matrix

L(h;y,x0)

(6)

=







∫

{x0(t)}2 dt
∫

x0(t)y[h(t)]dt
∫

x0(t)y[h(t)]dt

∫

{y[h(t)]}2 dt






.

The minimum eigenvalue criterion essentially mea-
sures the linearity of the relationship between x0
and y ◦ h−1, and is the same thing as maximizing
the correlation [equation (5)] between the two func-
tions or, correspondingly, minimizing [equation (4)].
In other contexts, two functional data x1 and x2 may
be considered aligned when their first derivatives
are proportional, that is, Dx1 = αDx2 and, equiv-
alently, x1 = αx2 + β. Then it is natural to use the
loss function in equations (4) and (5), but applied to
the first derivative instead. Also, in this case, if the
loss function is computed over the full real line, then
it is compatible in the sense of equation (3) with the
class of linear warping functions h(t) = δ + γt. And
the same can of course be said for the L

2 distance
(2) with the shift-warp family h(t) = δ+ t. Sangalli,
Secchi and Vantini (2014) report other examples of
loss-functions/class of warping functions, that define
concepts of amplitude and phase variations that are
appropriate in different applications. In practice, the
functional data are only available on bounded inter-
vals, that possibly differ from curve to curve. These
loss functions can then be computed over the inter-
section of the domains of the two functional data.
In the case of the L

2 distance, normalizing the dis-
tance by the length of the domain intersection helps
avoiding fictitious decrements of the distance as the
intersection becomes smaller.
It is also possible to consider much more flexible

representations of phase variation and still define
loss functions and class of warping functions satis-
fying the property (3). Section 3.4 is devoted to the
case where the phase variation is described by arbi-
trary diffeomorphic transformations.

3.4 The Square-Root-Velocity Function and the
Fisher–Rao Metric

Standard fitting criteria such as least squares may
also be applied to transformations of the functional
objects, most commonly first and second derivatives
or their combinations. However, one can go even
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further by choosing newer metrics that are com-
patible with the notion of equivalence classes men-
tioned earlier in Section 2.4. Application of the con-
cept of equivalence classes as data objects in FDA
needs some rethinking of important concepts. First
off, the classical notion of metrics on curves needs
to be extended to metrics on equivalence classes.
Some consideration of this point highlights the chal-
lenges faced by classical approaches in analyzing ver-
tical and horizontal curve variation. For example, as
mentioned in the previous section, a common ap-
proach to quantifying the vertical distance between
curves y1 and y2 is through L

2 norm between y1 and
warped y2, that is, infh ‖y1 − y2 ◦ h‖2. From a the-
oretical perspective this quantity has several prob-
lems: it is not symmetric and does not satisfy the
triangle inequality. Moreover, from a conceptual per-
spective, there are problems with this formulation,
as shown in Figure 8 [constructed by Lu and Marron
(2013)]. The top left panel of Figure 8 shows a toy
example, using two single step functions as y1 and
y2. One naive approach to aligning these curves is
to register y2 to y1 using the simple piecewise-linear
warp h2 shown in the top right panel. The result of
this is a reasonable alignment shown in the top cen-
ter panel. But an equally good approach to aligning
these curves is to warp y1 into y2, using the alter-
nate piecewise-linear warp h1 shown in the bottom
center panel. As shown in the bottom left, this also
gives a high quality of alignment. The challenge in
classical approaches is what should be taken as the
vertical distance between y2 between y1? The (ap-
propriately squared, etc.) region between the aligned

curves (representing the L
2 norm) in the top cen-

ter panel is clearly very different from that in the
bottom left panel. Now if we allow warping of both
y1 and y2, then many other appealing registrations
could be found, for example, that in the bottom
right panel, all of which are quite reasonable. A big
payoff of the idea of equivalence classes as data ob-
jects is that it allows a very simple and natural met-
ric, which essentially includes all of these reasonable
alignments in its formulation.
The core idea is to choose a metric that helps

compare equivalence classes, and not just individual
functions, since these classes provide an identifiable
representation of amplitude variability in this set-
ting. This is done in a straightforward way, by start-
ing with a curve metric that is invariant to identical
warping of its two arguments, as in equation (3).
That is, it should satisfy

d(x1, x2) = d(x1 ◦ h,x2 ◦ h),(7)

for all warpings h. This is a particularization of
equation (3) where a general loss function is replaced
by a distance function. Srivastava et al. (2011a) used
the nonparametric form of the Fisher–Rao metric
[see Srivastava, Jermyn and Joshi (2007) for a short
introduction to this metric] for this purpose. In fact,
since the original Fisher–Rao metric was defined
only for positive probability densities, they extended
this notion to include a larger class of functions. The
actual expression for this metric is complicated and
thus is not discussed in detail here, except we note
that the resulting Fisher–Rao distance, denoted by
dFR, satisfies the property stated in equation (7).

Fig. 8. Toy example showing asymmetry of the L
2 norm naively applied to curve registration.
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The key step in this formulation is to define a
square root velocity function (SRVF) transform,

SRVF(x) = sgn(Dx)
√

(|Dx|),(8)

where sgn(u) = +1 if u≥ 0 and −1 if u < 0 and Dx
is the first derivative of x. It should be noted that
SRVF is a one-to-one map up to a translation. That
is, if x(0) is known, then one can calculate x back
uniquely from its SRVF. The SRVF transforms of
the ten growth curves in Figure 3 are shown in Fig-
ure 9. In this particular case, since the x is defined
to be the derivative of growth, SRVF(x) refers to
the acceleration curves shown in the bottom panel
of Figure 3. Consequently, the SRVF curves cross
the zero axis at the same locations, but now with
very steep slope.
The main reason for introducing SRVF is that the

Fisher–Rao distance between any two functions is
given by the L2 distance between their SRVFs, that
is,

dFR(x1, x2) = ‖SRVF(x1)− SRVF(x2)‖.(9)

We refer the reader to Srivastava et al. (2011a) for
the details, but mention in passing that the proof
hinges on the fact that SRVF(x ◦ h) = (q ◦ h)

√
Dh,

where q = SRVF(x).
This nice mathematical structure leads to for-

mal definitions of amplitude and phase in functional
data. For any two functions, x1 and x2, the actual
registration problem is given by

inf
h
‖SRVF(x1)− SRVF(x2 ◦ h)‖

(10)
= inf

h
‖SRVF(x1 ◦ h)− SRVF(x2)‖.

Fig. 9. The signed root velocity transforms of the ten female
growth curves displayed in Figure 3.

This formulation avoids the issue discussed in the
example associated with Figure 8. It is important to
note that SRVF(x ◦ h) 6= (SRVF(x) ◦ h) and, there-
fore, this alignment is NOT simply a least-square
alignment of SRVFs. The infimum value in equation
(10) represents a comparison of the amplitudes of x1
and x2 and is actually a distance between the equiv-
alence classes discussed in Section 2.5. If the optimal
h on the left-hand side is invertible, then its inverse
is also the optimal for the right-hand side of that
equation. This has been called inverse consistency

in the image-processing literature. The optimal h
denotes the (relative) phase between x1 and x2. The
actual optimization over h in equation (10) can be
performed in many ways, depending on the problem.
If h takes a nonparametric form, a diffeomorphism
of the domain, then the dynamic programming al-
gorithm mentioned earlier is applicable. If some ap-
plication calls for smooth phases, then some com-
mon smoothing idea—either restrict to a paramet-
ric family or apply a regularization penalty—can be
applied, both at a loss of some mathematical struc-
ture. We emphasize that while some applications fa-
vor smooth solutions for warpings, some others, such
as activity recognition in computer vision, naturally
favor warping functions that are close to being ver-
tical or horizontal over subdomains.

3.5 Representations of the Warping Function

The nature of warping functions leads to some
interesting representations. The evolution of time,
whether clock or system, is fundamentally a growth
process, and as such, like height, has a positive first
derivative. Two transformations of h play a num-
ber of useful roles in the representation and study
of phase variation. Using the notation Dh for the
derivative of h, the log–derivative transformation

and its inverse

h(t) =C0 +C1

∫ t

0

expW (v)dv, C1 > 0 and

(11)
(logD)h(t)− logC1 =W (t)

allow us to represent any diffeomorphism h in terms
of the unconstrained log–derivative function W . A
natural and effective method of computing h is to
use numerical differential equation solver methods
to approximate the solution of the linear forced
differential equation Ds = exp[W (t)] using the ini-
tial value h0 = C0. Moreover, from the equation
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h−1[h(t)] = t the solution of the complementary non-
linear unforced equation Dt = exp[−W (t)] defines
the inverse of the warping function.
Since the log–derivative W is unconstrained and

defined over a closed interval, it is natural to
use a basis function expansion, with the B-spline
basis being the likely choice. In particular, the
one-parameter model [equation (1)] corresponds to
W (t) = βt. The overall smoothness of h can be con-
trolled either by the number of basis functions used
or by appending a roughness penalty to a fitting
criterion. It is essential that any representation be
expandable to include contributions from one or
more covariates zj known or conjectured to modu-
late phase. For example, it is well known in climate
modeling that proximity to oceans retards the sea-
sons by two to three weeks, so that a model for phase
variation across weather stations would include this
factor. Because of global warming, long-term time
itself is an important modifier of climate variables
such as seasonal temperature and precipitation. Co-
variates can be easily incorporated by extending W
to be a function of a covariate such as W (t + αz)
for W (t, z).
Another mathematical representation for warping

functions comes from the SRVF idea. Since Dh is
assumed to be positive, one can also use the posi-
tive square root ψ(t) =

√

Dh(t) as a representation
of h. Just like W earlier, one can use a basis expan-
sion to express ψ if h is not constrained any further.
However, if h represents a time warping of a fixed in-
terval, for instance, [0,1], to itself, then that imposes
an additional constraint on h. In order to obtain the
boundary conditions h(0) = 0 and h(1) = 1, we re-

quire that
∫ 1

0
ψ(t)2 dt = 1 or the L

2 norm of ψ is
one. This is an interesting geometric structure—the
space of allowed ψ functions is a unit sphere and its
geometry can be exploited in the ensuing analysis.
The spherical geometry of this space of ψ functions
has been used to perform estimation and alignment
of curves in several places, including Veeraraghavan
et al. (2009). This geometry has also been helpful in
developing PCA of warping functions [Tucker, Wu
and Srivastava (2013)] and in alternatives to PCA in
the form of principal nested spheres [Jung, Dryden
and Marron (2012)].

3.6 Registering Curves to Models

So far we have focused on pairwise registration of
functions, but the alignment of multiple functions is
often more of concern in analyzing real data. While

some methods for multiple alignment are simple ex-
tensions of the binary case, the others take a com-
pletely fresh approach and derive models tailored to
such function data objects. The former approach is
generally based on constructing a template of some
kind and then registering individual functions to
this template. This template may be constructed
in an iterative fashion, as recursive improvements
in alignments improve the resulting template, and
vice-versa.
A simple idea for constructing a template is the

cross-sectional mean, as mentioned earlier. At each
iteration, one takes the currently aligned functions
{xi ◦ hi} and computes their cross-sectional mean
to update the template x0 =

1

n

∑

xi ◦hi. (The cross-
sectional mean is, of course, the mean of functional
objects under the L2 metric.) Then, one by one, the
given functions are aligned to this template to up-
date hi’s: hi = argminhL(h;xi, x0). Depending on
the nature of data, the results of this process may
be sensitive to the initial conditions.
The same idea can be generalized to situations

where a metric different from the L
2 metric is used.

In the case where equivalence classes of functions
are data objects, one can compute the average of
the corresponding equivalence classes [x1], . . . , [xn],
using the notion of a Karcher or Fréchet mean. This
can be done under the Fisher–Rao distance men-
tioned in the previous section. The template is then
taken to be the center of the Karcher mean equiva-
lence class, chosen so that the average of the phases
of x1, . . . , xn, with respect to this center, is the iden-
tity hid. For further details of this construction and
an algorithm for computing the center of an orbit,
please refer to Srivastava et al. (2011a).
Shown in Figure 10 is an example of alignment us-

ing the SRVF framework applied to the wine NMR
spectra shown earlier. The top row shows the origi-
nal spectra, the aligned spectra, and the phase func-
tions obtained during the alignment. The bottom
row of Figure 10 shows the same data aligned us-
ing simple shifts and minimizing the loss in (4),
using as a template one of the curves in the sam-
ple, the medoid curve, as detailed, for example, in
Sangalli, Secchi and Vantini (2014). For these data
the amplitude variation is in fact well described by
the relative heights of the peaks and the shifts-warp
family is able to capture very well the phase vari-
ation in the part of the spectra here considered, as
also highlighted by the SRVF framework. The asso-
ciated shifts display a clear clustering in the phase
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Fig. 10. Alignment of a part of 40 wine NMR spectra shown earlier. Top row: using the SRVF framework. Bottom row:
using shifts and minimizing the loss in (4). A zoom of the warping functions, displayed on the bottom right panel, shows a
neat separation in the phase between the red wines (warping functions colored in red) and the white and rosé wines (warping
functions colored in blue).

of the red wines vs the white and rosé wines. Fig-
ure 11 shows the alignment of the growth velocities
of the 54 girls in the Berkeley growth study, in the
time interval 3 to 18 years—the top row displays
the results obtained via the SRVF framework, while
the bottom row displays the results obtained on ad-
ditionally smoothed data using linear warpings and
minimizing the loss in (4). The nonlinear warping
in the SRVF framework allows for a visibly bet-
ter alignment of the growth curves, showing that in
many applicative contexts nonlinear warping is in-
deed necessary. The linear warping, obtained after
additional smoothing of data, is nevertheless able
to unveil some interesting features of the data. For
instance, Sangalli et al. (2010) carry out linear warp-
ing of the growth curves of both the girls and boys
in the study, highlighting a neat separation of boys
and girls in the phase space and other interesting
aspects of the growth dynamics of the two groups.
Instead of using just one template, it is often ben-

eficial to divide data into smaller sets and use dif-
ferent templates for alignment in these subsets. An
instance of this idea is when clustering and align-
ment are performed together. For instance, Sangalli

et al. (2010) propose a k-mean alignment procedure
that jointly performs alignment and (unsupervised)
clustering of functional data. Other proposals in this
context are given by Tang and Müller (2009), Liu
and Yang (2009), Boudaoud, Rix and Meste (2010).
Another set of papers (Tang and Müller (2008), Liu
and Müller (2004), Gervini and Gasser (2004)) takes
the approach where some data points serve as tem-
plates for others, and the individual warping func-
tions are averaged to find ultimate warpings.
Kneip and Ramsay (2008) perform registration

of functional observations to the fits provided by
a K-dimensional principal components analysis. In
other words, the template is constructed individ-
ually for each function using an orthonormal ba-
sis. As an illustration, consider the 15 sections of
mean-centered log-transformed mass-spectrometry
intensities in the top panel of Figure 12. The large
peaks on the right are fairly well registered by a
preliminary landmark registration of the whole se-
quence, but we see substantial phase variation in the
rest of these spectrum sections that obscures im-
portant amplitude variation. Three principal com-
ponents were computed from these data combined
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Fig. 11. Alignment of the growth velocities of the 54 girls in the Berkeley growth study using the SRVF framework (top)
with the original data and the linear alignment (bottom).

with a registration of each section yi to its fit ŷi us-
ing a method currently under development, as well
as a principal components analysis without registra-
tion. The mean squared residuals for unregistered
and registered PCA’s were 0.0052 and 0.0038, re-
spectively, corresponding to a squared multiple cor-
relation 0.47. That means nearly half of the variation
around the unregistered fit can be accommodated
by modeling phase variation. The bottom part of
Figure 12 displays the fits for y1 and y15 in its left
panels, along with the deformations di(t) = hi(t)− t
associated with the registration in the right panels.
The PCA is able to nicely accommodate the am-
plitude variation, and its fits after time warping are
well aligned with all of the peaks. Choice of the num-
ber of components has an important impact on this
type of analysis. Combining registration with model
estimation or using multiple templates further blurs
the distinction between amplitude and phase varia-
tion, suggesting that a successful analysis may de-
pend heavily on prior choices guided by knowledge
and intuitions about which type of variation is the
primary focus.
In some contexts it also makes sense to com-

bine the registration problem with other inferences,

such as a regression problem, for a more compre-
hensive solution. For instance, Hadjipantelis et al.
(2015, 2014) study the problem of regression using
phase and amplitude components of the given func-
tions.

4. AVAILABLE SOFTWARE

Software implementations of many of the methods
illustrated here are available publicly. R and Matlab
code for implementation of the minimum eigenvalue
method of Ramsay and Silverman can be found
at http://www.psych.mcgill.ca/misc/fda/downloads/
FDAfuns/. Matlab software for the extended Fisher–
Rao SRVF approach of Srivastava et al. (2011a) is
available at http://ssamg.stat.fsu.edu/software and
the R package is available from CRAN under fdasrvf.
The R package fdakma (Parodi et al., 2014) imple-
menting the k-mean alignment procedure described
in Sangalli et al. (2010) is available from CRAN.

5. DISCUSSION AND CONCLUSIONS

In this paper we highlight the concept of phase
variability that is present in functional data and the
pitfalls of ignoring it in statistical analysis. After

http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/\
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/\
http://ssamg.stat.fsu.edu/software
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Fig. 12. Top: Fifteen mean-centered log10-transformations of sections of mass spectrometry analyses of blood samples. Bot-
tom left: The fits (dotted curve) to the data (solid curve) for two observations, y1 and y15, produced by three principal
components and registration. Bottom right: The corresponding warping functions display using di(t) = hi(t)− t.

motivating the importance of phase–amplitude sep-
aration, or alignment of functional data, in statisti-
cal analyses we proceed to summarize different ideas
present in the literature for accomplishing this task.
Specifically, we describe the problem of pinching as-
sociated with the classical L2-norm-based matching,
and present several solutions to avoid this problem.
These solutions involve either restricting the amount
of warping or using an alternative metric to perform
matching.

We note that while several methods exist for
phase–amplitude separation, this is not a completely
solved problem and forms an active area of research.
A major challenge comes from the lack of a single
mathematical definition or algorithm that can work
in all, or even most, applications and contexts. For
instance, one can argue that the goals of warping in
weather data will be different from that in wine spec-
tra. Similarly, while in some cases a simple trans-
lation and scaling may be sufficient for alignment
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of curves, the other cases require genuine nonlinear
warpings for proper alignment. In some cases effec-
tive data analysis is done by seeking the best possi-
ble peak/valley alignment, for example, in spectral
data. In those cases the Fisher–Rao method is the
most effective that we have seen so far. However, in
other cases too much peak alignment can be a dis-
traction, for example, the growth curve data. There-
fore, it seems more natural to tailor objective func-
tions and algorithms to the problem area.
Although we have focused on phase–amplitude

separation of real-valued functions in this paper,
this problem is prevalent in several other data ob-
ject contexts. For instance, the problem of registra-
tion of images is considered a central issue in med-
ical image registration. See Sotiras, Davatzikos and
Paragios (2013) for a recent survey of warping-based
techniques in this problem area. The ideas presented
in this paper can be extended to included higher-
dimensional signals such as images.
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