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Abstract

We present a Bayesian framework for registration of real-valued functional data.
At the core of our approach is a series of transformations of the data and functional
parameters, developed under a differential geometric framework. We aim to avoid
discretization of functional objects for as long as possible, thus minimizing the poten-
tial pitfalls associated with high-dimensional Bayesian inference. Approximate draws
from the posterior distribution are obtained using a novel Markov chain Monte Carlo
(MCMC) algorithm which is well suited for estimation of functions. We illustrate our
approach via pairwise and multiple functional data registration, using both simulated
and real data sets.
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1. INTRODUCTION

Registration of functional data refers to the process of matching two (pairwise registration)

or more (multiple registration) functions, usually done as a pre-processing step, followed by

other statistical procedures. Function registration is referred to by many names in various

communities, including matching, amplitude-phase separation, reparameterization, etc. It

has a wide range of applications. For example, in image registration, each function is defined

on a unit square or cube domain, and one is interested in matching pixel or voxel values

across images. In shape registration, the functions are parameterized Euclidean curves, and

one would like to match common geometric features of the curves. In this work, we consider

the classical case of univariate functions defined on a subinterval of the real line; registration

of such functional data aims to match common features (i.e., peaks and valleys) for improved

subsequent statistical inference.

As a motivating example, we consider the growth rate curves from the Berkeley growth

study (Tuddenham and Snyder 1954) available in the R package fda (Ramsay, Wickham,

Graves and Hooker 2014). Figure 1 provides an example of growth rate curves for two girls.

The two functions have very similar structure (number of peaks and valleys) but the timing of

these features is different as seen in the left panel. One can use function registration to align

the timing of features across the two curves such that they are better aligned; this is shown in

the middle panel. This is achieved using a special function called a warping function, which is

displayed in the right panel for this example. The resulting alignment improves comparison

of functions by accounting for the confounding factor of when important features occur on

the two curves. The Berkeley growth study has been used as a motivating example in other

function registration papers including Ramsay and Li (1998), Telesca and Inoue (2008) and

Cheng et al. (2016).

Other application examples that require registration of real-valued functions include

handwriting analysis (Kneip et al. 2000; Ramsay 2000), environmetrics such as the study

of monthly temperature curves (Ramsay and Silverman 2005), time course microarray and

proteomics data analysis (Telesca and Inoue 2008; Koch et al. 2014), spike train analysis in

neuroscience (Wu et al. 2014), biomechanical experiments (Ramsay and Li 1998; Ramsay,

Gribble and Kurtek 2014), medical imaging (Sangalli et al. 2014), and many others. A text-

book explanation of the functional data registration problem, as well as descriptions of many
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Figure 1: Growth rate curves of two girls from the Berkeley growth study dataset. Curves

before and after registration are shown in the left and middle panels, respectively. The right

panel displays the estimated warping function γ (posterior mean). The dotted lines in the

middle and right panel represent 95% credible intervals.

of the aforementioned examples, can be found in Ramsay and Silverman (2002, 2005). The

area of application we focus on in this work is concerned with analyzing biomechanical data

in the form of gait cycles during a walking sequence of test subjects. Five common methods

to perform function registration for gait cycle data are compared in Helwig et al. (2011). We

discuss their drawbacks in detail in Section 5.3.

The main underlying goal in function registration is to separate two types of variation

present in functional data: amplitude or y-axis variation and phase or x-axis variation.

Amplitude refers to the magnitude of functions at different points of interest on the domain,

and is invariant to the timing of these features. Phase variation refers to the difference

in timing of the features across functions (Ramsay and Li 1998), and can be induced via

domain warping. Function registration methods can be categorized by whether or not user-

specified points of interest, called landmarks, are required. For landmark-based registration,

users identify a few marker events usually corresponding to some salient or mathematical

features (e.g., local maxima and minima in temperature functions). Registration is then

performed such that those events occur at the same time (Kneip et al. 2000). Examples

of such methods include Sadeghi et al. (2000) and Piecewise Linear Length Normalization

Helwig et al. (2011). The main disadvantage of these approaches is that landmarks often must

be specified manually, which can be extremely time consuming, especially for large datasets.
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Other methods adopt automatic marker-less registration and align the full target functions.

Many of these methods are variational in nature and include Ramsay and Li (1998), Kneip

et al. (2000), Gervini and Gasser (2004), Liu and Müller (2004), James (2007), Tang and

Müller (2008), Kneip and Ramsay (2008), Srivastava et al. (2011b), Kurtek et al. (2011),

and Raket et al. (2014). The proposed method belongs to the second category and does not

require user-specified markers.

Most classical methods (all mentioned in the previous paragraph) are non-Bayesian in

nature. Bayesian registration of functions is a relatively new concept, see Telesca and Inoue

(2008), Kurtek (2015), and Cheng et al. (2016) for the most recent advances. Main benefits of

a Bayesian approach include a comprehensive exploration of the warping function parameter

space, principled uncertainty analysis via posterior inference (e.g., the discovery of multiple

plausible alignments), and the ability to incorporate prior information into the model (e.g.,

marker locations). Another emerging trend in all functional data analysis is to build models

and algorithms that avoid discretization of functions until the last possible step (Stuart

2010; Cotter et al. 2013). We aim to contribute to the field of functional data registration

by constructing a Bayesian function registration model that avoids discretization of the

infinite-dimensional parameter space (made precise later) until the last step. We utilize

a new Z-mixture preconditioned Crank-Nicolson (pCN) algorithm, modified from the pCN

algorithm presented in Cotter et al. (2013), which allows efficient sampling from the posterior

distribution on the space of warping functions. The proposed method is defined for both

pairwise and multiple function registration.

The rest of this paper is organized as follows. We formally set-up the registration problem

in Section 2, in which we introduce the different function spaces of interest. In Section 3,

we derive a Bayesian model for pairwise registration and present a Metropolis within Gibbs

algorithm to sample from the posterior distribution. Section 4 extends this model to the case

of multiple function registration. Section 5 evaluates the proposed approach using simulated

and real data examples. We focus on an application to a comprehensive gait cycle dataset,

where the need for function registration is clear. We close with a discussion as well as possible

directions for future work in Section 6.
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2. NOTATION AND GENERAL SET-UP

We first consider the case of pairwise registration where we observe two real-valued functions,

denoted by f1 and f2, defined on a common interval [a, b]; without loss of generality, we

restrict our analysis to the interval [0, 1]. We seek a mapping γ : [0, 1] 7→ [0, 1] such that

f1 and f2 ◦ γ are optimally matched, where the optimality criterion is defined later. The

function γ is called a warping function and is an orientation preserving diffeomorphism of

[0, 1]. In this setting, we are aligning f2 to f1. One could also consider aligning f1 to f2,

and, in general, the two problems are not equivalent. We return to this issue in Section

2.1. The role of γ is to warp the domain of the observed function f2 by composition,

f2 ◦ γ. The functional values of f2 are retained, but f2 travels to those values at a different

speed (e.g., f2 and f2 ◦ γ will both reach the same local maxima, but f2 ◦ γ may reach

them faster or slower, depending on γ). In this framework, we regard f1 and f2 as data,

belonging to the observation space F = {f : [0, 1] 7→ R | f is absolutely continuous} .

The warping function γ is viewed as a parameter to be estimated, belonging to the Lie

group Γ = {γ : [0, 1] 7→ [0, 1] | γ(0) = 0, γ(1) = 1, 0 < γ′ < ∞} where the identity

element is γid(t) = t and inverse element γ−1 is the usual inverse. This is also known as the

reparameterization or warping group.

Function registration has traditionally been treated as an optimization problem, com-

monly referred to as Dynamic Time Warping (DTW) (see Wang et al. 1997, Keogh and

Pazzani 2001, Senin 2008, and Clifford et al. 2009). In this setting, the estimate of γ is

γ̂ = arg inf
γ∈Γ

(
d(f1, f2 ◦ γ) + λR(γ)

)
,

where λ is a tuning parameter, R(γ) is a regularization term usually involving the first

derivative of γ, and d is the L2–metric on F (we maintain this notation throughout the

manuscript).

Our aim in this work is to describe a Bayesian model for estimating the warping function

γ given the data f1 and f2. The ingredients we require are (i) a likelihood that measures

the misregistration between two functions, (ii) a prior distribution on the function space

Γ, and (iii) a Markov chain Monte Carlo (MCMC) algorithm for exploring the posterior

distribution. Before describing these three components we require several transformations,

both for the data f1 and f2, and for the parameter γ. These transformations are motivated
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by the geometry of the function spaces described above, and are described in the following

two subsections.

Discretization. At the computer implementation stage, some level of discretization is

always necessary. Throughout this paper, we assume that the functions to be registered (f1

and f2) are observed on a given, finite grid of size N . Following ideas from Stuart (2010) and

Cotter et al. (2013), we describe a sampling algorithm which is scale-free and thus unaffected

by the need to also discretize the function γ. We use h([t]) to denote the values of a general

function h (defined on a continuous interval) at a discrete set of time points [t] = {t1, . . . , tN}.

Similarly,
∫ [t]

0
h(s)ds denotes the N -dimensional vector

{∫ t1
0
h(s)ds, . . . ,

∫ tN
0
h(s)ds

}
.

2.1 Observation Space Transformation

For f1, f2 ∈ F and γ ∈ Γ, one can easily verify that, in general, d(f1, f2) 6= d(f1 ◦ γ, f2 ◦ γ).

It follows that

inf
γ1,γ2∈Γ

d(f1 ◦ γ1, f2 ◦ γ2) 6= inf
γ1∈Γ

d(f1 ◦ γ1, f2) 6= inf
γ2∈Γ

d(f1, f2 ◦ γ2) .

This leads to an undesirable registration asymmetry since it is not always clear if one should

align f1 to f2 or f2 to f1. One could consider a double optimization approach, i.e., search for

a γ1 and γ2 to minimize d(f1 ◦ γ1, f2 ◦ γ2). However, in this case one can find γ1 and γ2 such

that f1 ◦γ1 and f2 ◦γ2 are arbitrarily close, by “pinching” them to have different values only

on an arbitrarily small interval (termed the pinching effect in Marron et al. 2015). From a

geometric perspective, let [f ] = {f ◦ γ | γ ∈ Γ} be the equivalence class of f induced by

Γ. Under the L2–metric d(·, ·), two equivalence classes [f1] and [f2] are “not parallel” (i.e.,

d(f1, f2) 6= d(f1 ◦γ, f2 ◦γ)) and thus can get arbitrarily close to each other (i.e., the pinching

effect). This indicates that d is not an appropriate distance to measure how close f1 and

f2 ◦ γ are to each other. In order to address this, we suggest transforming f1 and f2 to their

square-root velocity functions (SRVFs).

The SRVF framework was originally developed for the purpose of shape analysis in Sri-

vastava et al. (2011a) and later extended to the case of univariate functions in (Srivastava

et al. 2011b). A function f ∈ F is mapped to its SRVF Q(f) ∈ L2([0, 1]) defined as

Q(f) : [0, 1]→ R, Q(f)(t) = sign(f ′(t))
√
|f ′(t)| , (1)
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where f ′ denotes the derivative of f . To simplify notation, let q ≡ Q(f). Note that Q is

a bijective mapping up to a translation. Given any q ∈ L2([0, 1]), the corresponding f is

determined uniquely up to a constant f(0), by the inverse mapping

Q−1(q)(t) = f(0) +

∫ t

0

q(s)|q(s)| ds .

For f ∈ F , the SRVF q = Q(f) is square integrable. Similarly, f ◦ γ ∈ F is mapped to

Q(f ◦ γ)(t) = Q(f) (γ(t))
√
|γ′(t)| ≡ (q, γ) . (2)

One can easily verify that d(q1, q2) = d((q1, γ), (q2, γ)), and thus [q1] and [q2] are “parallel”

under the L2–metric, where [q] = {(q, γ) | γ ∈ Γ} is the equivalence class of q induced by Γ.

The collection of equivalence classes [q] is called a quotient space, denoted by L2([0, 1])/Γ. It

is referred to as the amplitude space, since each [q] corresponds to a collection of functions

in F with the same amplitude. Thus, instead of searching for a warping function γ such

that f1 and f2 ◦ γ are close in the L2–sense, we aim for q1 = Q(f1) and (q2, γ) = Q(f2 ◦ γ)

to be close under the L2–distance. This avoids the aforementioned issues of pinching and

asymmetry of registration solutions.

2.2 Parameter Space Transformation

There are two traditional approaches to selecting a prior distribution over a functional space.

If one is interested in specifying a certain level of smoothness, a Gaussian Process (GP)

prior is more suitable, whereas basis function representations are typically used when one

is interested in capturing certain details. In each case, there is a vast literature, covering

various applications: see, for example, Telesca and Inoue (2008), Claeskens et al. (2010), and

Kurtek (2015). In this application, we require that γ satisfies rather restrictive conditions,

and thus neither of the two solutions above are applicable directly (note that Γ is not a

linear space). In addition, we aim to exploit the Riemannian-geometric structure of Γ when

performing posterior inference. To that end, another transformation is required.

For γ ∈ Γ, let ψ = Q(γ) =
√
γ′ be the corresponding SRVF (note that sign(γ′) = 1).

The resulting SRVF space, denoted by Ψ+ = {Q(γ) | γ ∈ Γ}, is called the space of square-

root densities (SRD). This special case of the SRVF representation was first proposed by

Bhattachayya (1943) to simplify the geometry of the space of probability density functions,
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and has been discussed more recently in Srivastava et al. (2007), Kurtek (2015), and Kurtek

and Bharath (2015). Since γ(0) = 0, this mapping is a bijection and a unique γ can be

reconstructed from a given ψ ∈ Ψ+ as Q−1(ψ)(t) =
∫ t

0
ψ2(s)ds. We also note two properties

of the resulting SRD functions ψ ∈ Ψ+: (1) it is positive, and (2) it has unit L2–norm since

‖ψ‖2 =

∫ 1

0

ψ(t)2dt =

∫ 1

0

γ′(t)dt = γ(1)− γ(0) = 1.

Thus, the SRD space Ψ+ = {ψ : [0, 1] 7→ R+ | ‖ψ‖2 = 1} is the positive orthant of the unit

sphere in the Hilbert space L2([0, 1]) denoted by Ψ = {ψ : [0, 1] 7→ R | ‖ψ‖2 = 1}. On the

space Ψ, we use the arclength distance, which is equivalent to using the Fisher-Rao metric

on the space Γ (see Srivastava et al. 2011b):

dFR(γ1, γ2) = d(ψ1, ψ2) = cos−1(〈ψ1, ψ2〉) = cos−1

(∫ 1

0

ψ1(t)ψ2(t)dt

)
. (3)

In addition, since we have defined a distance on Γ, we can also define the Karcher mean

function γ̄n (Karcher 1977) for a set of warping functions {γ1, . . . , γn} via

γ̄n = argminγ∈Γ

n∑
i=1

dFR(γ, γi)
2. (4)

A gradient-based algorithm to calculate this Karcher mean is provided in Srivastava et al.

(2011b). The Karcher mean provides a way to define, and to conveniently calculate, the

posterior mean function of a collection of warping functions.

Although the SRD representation has simplified the complicated geometry of Γ, the

resulting space Ψ is still nonlinear (for instance, it is clearly not closed under scalar multi-

plication). To simplify this representation further, we map the unit sphere onto a tangent

space (also called “unwrapping”). The identity warping function γid ∈ Γ maps to a constant

function 1 ∈ Ψ, and the tangent space of Ψ at this point is defined as

T1(Ψ) =

{
g : [0, 1] 7→ R | 〈g, 1〉 =

∫ 1

0

g(t)dt = 0

}
. (5)

The tangent space T1(Ψ) is a linear space (closed under point-wise addition and scalar mul-

tiplication with the constant function 0, which is identified with the identity element). Our

goal is to represent warping functions in this tangent space, and to assign a Gaussian process

prior distribution on this space. One way to connect Ψ and T1(Ψ) is via the exponential
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map and its inverse, which are defined as

exp1 : T1(Ψ) 7→ Ψ exp1(g) = cos(‖g‖) +
sin(‖g‖)
‖g‖

g, g ∈ T1(Ψ), (6)

exp−1
1 : Ψ 7→ T1(Ψ) exp−1

1 (ψ) =
θ

sin(θ)
(ψ − cos(θ)) , θ = d(1, ψ), ψ ∈ Ψ. (7)

Additional details on the tangent space and its geometry are given in Srivastava et al. (2007)

and Kurtek et al. (2012).

Our approach is to use T1(Ψ) as the parameter space for inference (recall that when we

map T1(Ψ) back to Ψ, we need to truncate it to Ψ+). The transformations mentioned in

Sections 2.1 and 2.2 are summarized in the following diagram:

f ∈ F
Q

�
Q−1

q ∈ L2,

γ ∈ Γ
Q

�
Q−1

ψ ∈ Ψ+
exp−1

1

�
exp1

g ∈ T1(Ψ).

3. PAIRWISE REGISTRATION

3.1 Bayesian Model Specification

Suppose we want to register two functions, f1 and f2, each observed on a finite grid [t] of

length N . As mentioned before, we use the SRVF representation detailed in Section 2. We

model the difference Q(f1)([t])−Q(f2 ◦γ)([t]), which is a vector of length N , by a zero-mean

multivariate Gaussian distribution. Using the transformations defined in Section 2.2, we

reparameterize the likelihood using g instead of γ and work with

Q(f2 ◦ γ)(t) = Q(f2)

(∫ t

0

exp2
1(g)(s)ds

)
exp1(g)(t). (8)

We restrict the prior distribution on g to a subset A ⊂ T1(Ψ) defined as

g ∈ A ⊂ T1(Ψ) ⇐⇒ exp1(g)>0. (9)

The proposed Bayesian model is fully specified below.

Model 1.

Q(f1)([t])−Q(f2)

(∫ [t]

0

exp2
1(g)(s)ds

)
exp1(g)([t])

∣∣∣ g, σ2
1 ∼ N(0N , σ

2
1IN),

g ∼ Gaussian(0, Cg; IA),
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σ2
1 ∼ IG(shape = a, scale = b),

where Gaussian(·, ·; IA) refers to the Gaussian process restricted to the domain A (Equation

9), Cg is a pre-specified covariance operator, IG(·, ·) refers to the inverse gamma distribution,

and a and b are known constants. A brief discussion on incorporating prior knowledge onto

this model is given in the Supplementary Material.

Note that the prior and posterior distributions of (g, σ2
1) are probability measures on the

product space T1(Ψ)×R+. The prior measure is the product measure µ0 ≡ Gaussian(0, Cg; IA)×

IG(a, b). The posterior measure, denoted by µ, is absolutely continuous with respect to the

prior measure, with the Radon-Nikodym derivative given by the Bayes’ formula

dµ

dµ0

(g, σ2
1) ∝ L(g, σ2

1 | f1, f2). (10)

Here, L(·, · | f1, f2) is the likelihood function given by

L(g, σ2
1 | f1, f2) ∝

(
1

σ2
1

)N/2
exp

{
− 1

2σ2
1

SSE(g)

}
, (11)

where the sum of squared errors (SSE) is defined as

SSE(g) =
N∑
i=1

(
Q(f1)(ti)−Q(f2)

(∫ ti

0

exp2
1(g)(s)ds

)
exp1(g)(ti)

)2

. (12)

The posterior distribution given by (10) is explored using a Metropolis within Gibbs

(MwG) algorithm. At each iteration, the component σ2
1 is updated via a draw from the

conditional distribution

σ2
1 | g, f1, f2 ∼ IG

(
shape =

N

2
+ a, scale =

1

2
SSE(g) + b

)
. (13)

The functional component g is updated using a Metropolis-Hastings (MH) step, following

Cotter et al. (2013). The proposal is a linear combination of the current state g and a new

draw ξ from the prior distribution Gaussian(0, Cg; IA). We use a Z-mixture pCN algorithm,

which is a modification of the pCN (preconditioned Crank-Nicolson) algorithm derived in

Cotter et al. (2013) (the original pCN algorithm is a special case where Z = 1). The

proposal g′ at each iteration is of the form

g′ ∼
Z∑
z=1

pzGaussian(g
√

1− β2
z , β

2
zCg; IA), (14)
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where g is the current state, {βz ∈ (0, 1), z = 1, . . . , Z} are fixed tuning parameters, and

{pz ∈ (0, 1),
∑
pz = 1} are fixed mixture probabilities. In other words, we first draw βz with

probability pz and set g′ = g
√

(1− β2
z ) + βzξ, where ξ is a draw from the prior.

There are two advantages for using the Z-mixture pCN proposal. First, the MH ac-

ceptance ratio simplifies to ρ = 1 ∧ L(g′, σ2
1 | f1, f2)/L(g, σ2

1 | f1, f2), which is independent

of the dimension of the discretized g. The pCN algorithm leads to significant speed-ups

when the parameter is a function evaluated on a fine grid of size du, and is robust to in-

creasing du. Alternatively, one can consider a standard random walk proposal of the form

prop(t) = curr(t) + βξ, where ξ is a draw from the prior. With the random walk proposal,

calculation of the acceptance ratio can be done on a grid, but will become arbitrarily slow

as the grid size increases. For more information on this issue, we refer the reader to Cotter

et al. (2013).

The second advantage of using the Z-mixture proposal, compared to the pCN proposal

with a fixed β, is that it allows proposals that are sometimes close to the current state (for

βz values that are close to 0), and sometimes far from the current state (for βz values that

are close to 1). This provides a flexible way to control the convergence and mixing rate of

the MCMC algorithm. Small values of β result in better discoveries of small, local features

while large values of β lead to faster explorations of all regions of the posterior distribution.

3.2 Sampling from the prior measure

The MCMC algorithm in the previous section requires sampling ξ ∼ Gaussian(0, Cg; IA).

This is done via the Karhunen-Loève expansion. The covariance operator Cg is specified via

its eigenpairs (bi, λ
2
i , i ≥ 1), where {bi(·), i ≥ 1} forms an orthonormal basis for the function

space T1(Ψ) and
∑
λ2
i <∞ . We sample independent variates ξi ∼ N(0, λ2

i ) and set

ξ =
M∑
i=1

ξibi

where the constant M ∈ {1, 2, . . .} is selected apriori. A simple accept-reject step is required

to ensure that g′ ∈ A. In our simulations, we find that setting M ≥ 20 leads to satisfactory

results (see Section 5.1). For the remainder of the paper, the eigenfunctions are taken to be

the Fourier functions

bi(t) ∈
{√

2 sin(2iπt),
√

2 cos(2iπt)
}
, i ≥ 1
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which form an orthonormal basis for the parameter space T1(Ψ). The eigenvalues are set to

λ2
i = σ2

g/i
2, where σ2

g is assumed known. A detailed description of the algorithm to perform

pairwise registration is provided in the Supplementary Material.

4. MULTIPLE FUNCTION REGISTRATION

We can generalize pairwise registration to the case of multiple registration for c > 2 functions.

We observe f1, . . . , fc and register them simultaneously to some unknown template function,

f ∗. Each observed function fi is associated with a warping function γi, i = 1, . . . , c. As in

the pairwise case, we first transform each observed function fi to qi and use q∗ to denote

the template function on the SRVF space. We also represent the warping functions using

g1, . . . , gc ∈ T1(Ψ). Each warping function gi is modeled independently using a Gaussian

process prior with mean function 0 and the same covariance operator Cg. The template q∗

is also assigned a Gaussian process prior, with mean function 0 and covariance operator

Cq. We want to jointly estimate the template q∗ and the individual warping functions that

align q1, . . . , qc to q∗. In contrast, many existing methods either specify a known template

function (e.g., the cross-sectional mean before registration or one of the sample curves)

and only update it once the fi’s are registered (Kneip et al. 2000), or use a Procrustes

fitting process that alternates between estimating the warpings and estimating the template

(Silverman 1995, Ramsay and Li 1998).

Given the parameters g1, . . . , gc and q∗, we model the differences q∗ − (qi, γi) with zero-

mean normal distributions as in the pairwise case. We assume that these distributions are

mutually independent and have the same covariance structure. The full Bayesian model for

multiple function registration is given below.

Model 2.

Q(f1)

(∫ [t]

0

exp2
1(g1)(s)ds

)
exp1(g1)([t])− q∗([t]) | q∗, g1, σ1 ∼ N(0N , σ

2
1IN),

...

Q(fc)

(∫ [t]

0

exp2
1(gc)(s)ds

)
exp1(gc)([t])− q∗([t]) | q∗, gc, σ1 ∼ N(0N , σ

2
1IN),

g1, . . . , gc ∼ (indep) Gaussian(0, Cg; IA),
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q∗ ∼ Gaussian(0, Cq),

σ2
1 ∼ IG(shape = a, scale = b).

Bayesian multiple function registration is also studied in Cheng et al. (2016). The main

difference is that Cheng et al. (2016) put a Dirichlet process prior directly on Γ instead of

using a Gaussian process prior on the tangent space T1(Ψ).

As in the pairwise case, sampling from the posterior distribution of the parameters

{g1, . . . , gc; q
∗;σ2

1} is achieved using a MwG algorithm. At each update, we sample from

the full conditional distribution of each parameter. Specifically, we use a MH algorithm with

the Z-mixture pCN proposal to draw iteratively from the full conditional distributions of

g1, . . . , gc as well as q∗. The acceptance ratios simplify to the likelihood ratios in the same

way as in the pairwise case. The full conditional distribution of σ2
1 is given by

σ2
1 | {qi}, {gi}, q∗ ∼ IG

(
shape =

1

2
cN + a, scale =

1

2

c∑
i=1

SSE(gi, q
∗) + b

)
, (15)

where

SSE(gi, q
∗) =

N∑
j=1

(
qi

(∫ tj

0

exp2
1(gi)(s)ds

)
exp1(gi)(tj)− q∗(tj)

)2

. (16)

As noted in Cheng et al. (2016), since function amplitudes are invariant to a common

warping, the template function q∗ is only identifiable up to an equivalence class of warpings.

To avoid this issue, we “center” γ1, . . . , γc in each iteration such that their Karcher mean

is the identity warping. This standardization is carried out by applying the inverse of the

Karcher mean function, γ̄−1, to each of the γi’s and to the template q∗. This procedure

is justifiable because it does not change the likelihood (shown in Appendix A). A detailed

description of the multiple function registration algorithm is provided in the Supplementary

Material.

5. SIMULATIONS AND REAL DATA APPLICATIONS

5.1 Pairwise Bayesian Registration Simulation Studies

At the implementation stage, we need to pre-specify the following two quantities: (1) number

of basis functions Mg used to estimate g (in pairwise and multiple function registration),

and (2) the number of basis functions Mq∗ used to estimate the template q∗ (in multiple
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function registration). To test the performance of our algorithm with the main interest in

its robustness to the choice of Mg, we carry out simulations for the pairwise registration

case. We randomly generate true warping functions (denoted by γtrue) and see how well

we can estimate them using the proposed method with different pre-specified values of Mg.

We set one of the observed functions f2(t) = sin(4πt2) (Ramsay and Li 1998) and let f1 =

f2 ◦ γtrue. We then register f2 to f1 using the proposed method with six different Mg values:

{5, 10, 20, 30, 40, 50}. Other constants in the prior distribution are specified as σg = 4,

a = 0.1 and b = 0.1. The chain is run for 106 iterations with a burn-in period of 0.5× 106.

We simulate registration problems using the following three methods: (1) randomly gen-

erate g ∈ T1(Ψ) using the first pair of cos and sin functions in the Fourier basis and transform

it back to γtrue (“fourier1 ”), (2) randomly generate g ∈ T1(Ψ) using the first 20 pairs of cos

and sin functions in the Fourier basis and transform it back to γtrue (“fourier20 ”), and (3)

generate a random γtrue directly by smoothing a randomly generated step function without

the use of any basis functions (“random”). For each method and value of Mg, we generate

ten random γtrue functions and estimate them using the proposed method via the posterior

Karcher mean denoted by γest. We then calculate the FR distance (Equation 3) between each

pair of γtrue and γest. The results are plotted in Figure 2. Each panel in Figure 2 corresponds

to a method for randomly generating γtrue and shows the results of 60 independent regis-

tration problems (six values of Mg with ten replicates for each value). For comparison, we

also solve each registration problem using the Dynamic Programming (DP) algorithm (using

the R function optimum.reparam in package fdasrvf, Tucker 2016). This optimization-based

method is described in detail in Srivastava et al. (2011b). We plot the average of the FR

distances between γtrue and γDP as a horizontal blue line in Figure 2.

The results show that our method performs better than DP. For our method, the largest

FR distance between γtrue and γest is less than 0.4. When γtrue is generated without using

basis functions, a choice of Mg ≥ 20 yields sufficiently good estimates (with the largest FR

distance around 0.1). When γtrue is generated using the Fourier basis, a conservative setting

of Mg to a larger number of basis elements than the true number used to generate γtrue

yields FR distances below 0.1. When Mg is underestimated (e.g., we use the first 20 pairs

of the Fourier basis to generate γtrue but set Mg equal to 5 or 10), the FR distances are

larger, as expected. Two examples in the simulation set fourier20 are shown in detail in
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Figure 2: FR distances between a randomly generated true warping function and its posterior

mean estimate for different values of Mg ∈ {5, 10, 20, 30, 40, 50}. The three panels correspond

to the cases when the true warping functions are generated using the first pair of the Fourier

basis functions (left), the first 20 pairs of the Fourier basis functions (middle), and without

the use of basis functions (right). Each boxplot is constructed using FR distances corre-

sponding to ten independent registration problems. The blue dotted lines show the average

FR distance when the warping functions are estimated using Dynamic Programming.

Figure 3. Since γtrue is generated using the first 20 pairs of the Fourier basis, it exhibits

many local features. The estimate obtained by setting Mg = 5 can only capture the general

shape of γtrue (top panel). As a result, γest appears smoother than γtrue. This issue does not

exist when we set Mg = 50 as shown in the example in the bottom panel. In addition, we

have performed preliminary model assessment based on the Deviance Information Criterion

(DIC), which shows that a choice of Mg between 20 and 30 is reasonable.

5.2 Berkeley Growth Data Registration

In the Berkeley growth study (Tuddenham and Snyder 1954), the heights of 54 girls were

recorded from ages 1 to 18, each at 31 different time points. We are interested in comparing

the girls’ growth rates, which are given by the first derivatives of the growth curves. The

main motivation for registering growth rate curves is that each individual reaches different

phases of height growth at different times. We can better compare the girls’ growth rates at

a certain phase, such as the obvious pubertal spurt, after we register all of the curves.
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Figure 3: Two different pairwise registration simulation examples when γtrue is generated

using the first 20 pairs of the Fourier basis. Top: The left panel shows γtrue (red solid curve)

and γest (black dashed curve) obtained using Mg = 5. The middle panel shows f1 (red) and

f2 (blue). The right panel shows f1 (red) and f2 ◦ γest (blue). Bottom: Same as top but with

Mg = 50.

We use the Z-mixture pCN algorithm to register the 54 girls’ growth rate curves simul-

taneously. The first 20 pairs of Fourier basis functions are used to estimate the functions g

and the template function q∗ (i.e., Mg = 20 and Mq∗ = 20). Other constants for the prior

specification are σg = 4, σq∗ = 0.8q95 (q95 is defined as the range of the middle 95% values of

all qi), ασ1 = 0.1 and βσ1 = 0.1. The MCMC chain is run for 105 iterations with a burn-in

period of 0.2 × 105. The results are shown in Figure 4. The top panel of this figure shows

the original 54 observed functions f1, . . . , f54, their registered versions (with the template

and 95% pointwise credible interval in red), the original SRVFs q1, . . . , q54, and the SRVFs

of the registered functions (with the template and 95% pointwise credible interval in red),
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Figure 4: Registration results for the growth rate curves of 54 girls in the Berkeley growth

study. Top row left to right: (1) The original 54 observed growth rate functions, (2) the

registered growth rate functions with the template (red solid line) and 95% credible band

overlayed (red dotted lines), (3) the original SRVFs with the initial value of q∗ (blue), and (4)

the SRVFs of the registered growth rate functions with the final template (red solid line) and

95% credible band overlayed (red dotted lines). Bottom row left to right: (1) Cross-sectional

mean (dotted) and pointwise ±2-standard deviation band for the original 54 observed growth

rate functions, (2) same as (1) but for the registered functions, and (3) comparison of the

pointwise cross-sectional means.

respectively. To plot an estimate of the template after registration f ∗, we set f ∗(0) to be the

average of f1(0), . . . , f54(0) (recall that we can only recover f ∗ from q∗ up to a translation).

For the credible interval of f ∗, we transfer back the upper (lower) bound of q∗ and add

(subtract) 2 times the standard deviation of {fi(0)} to form the upper (lower) bound of f ∗.

The bottom panel shows the cross-sectional mean with a two standard deviation band prior

to registration (left) and after registration (middle). The two mean functions are directly

compared in the bottom right. After registration, we see that the pointwise mean function
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exhibits a higher peak and a lower valley, corresponding to the growth spurt phase during

puberty and a slowing-down phase before puberty. The pointwise standard deviation de-

creases significantly in some regions of the domain. For instance, during the post-puberty

phase, growth rates exhibit much less amplitude variation across individuals, a feature not

shown prior to registration. Thus, the mean function and the ±2-standard deviation band

are better representatives of the overall shape of the individual growth rate functions after

registration.

5.3 Gait Cycle Data

As a commonly studied area of mechanical analysis of human movement, gait cycle analysis

considers functional data that are collected as participants walk over a period of time, possi-

bly under different conditions. Variables of interest include velocity and angles (kinematics)

as well as muscle forces and moments (kinetics) (van den Bogert et al. 2013). Some variables,

such as joint angles and foot floor reaction forces, are directly measurable whereas other vari-

ables, such as moments of force, need to be computed from some model (Kadaba et al. 1989).

Measurements are usually taken by placing makers on test subjects (detailed description of

data acquisition can be found in most of the papers cited here), and data collected vary in

magnitude as well as in timings of within gait cycle events (Helwig et al. 2011). Kadaba

et al. (1989) notes that data can differ in timing simply due to misalignment of markers

when measuring the same subject on a different day.

Many tasks encountered in gait analysis involve comparing and averaging functional data.

We explain three major tasks using the outline given in Duhamel et al. (2004). First, for one

individual, we want to know if all of the gait curves are consistent and, if so, calculate one av-

erage curve as a summary statistic for that individual. Second, for two different populations,

we want to compare their gait properties by comparing, for instance, the population mean

curves. The two populations under investigation can be two independent populations (e.g.,

“pathological” versus “normal”) or one population under different conditions (e.g., braced

versus non-braced conditions in Shorter et al. 2008). Third, combining the above two tasks,

we also want to compare the mean gait curve of one subject to that of a population so that

we can classify a new subject to a given population.

Many existing methods for statistical analysis of gait cycle data compare gait curves by
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superimposing those curves for a simple visual assessment, and by calculating a numeric

value as a measurement of how consistent (or “reliable”) those curves are. Examples of

such numeric summaries include coefficient of variation (Winter 1984), adjusted coefficient of

multiple determination (Kadaba et al. 1989), and intra-class correlation coefficient (Duhamel

et al. 2004). When summarizing multiple curves of one person or of one population, the

mean curve and a confidence band are usually calculated in a pointwise fashion (Duhamel

et al. 2004). Surveys of traditionally used statistical methods can be found in Chau (2001)

and Duhamel et al. (2004). A discussion of how to better use those methods in clinical

problems can be found in Simon (2004). As a result of the need to compare and average

functions, function registration arises naturally as an initial step in the analysis. It allows

one to compare phase variation and amplitude variation separately. It is also necessary if we

want to carry out statistical analysis in a point-by-point fashion as is commonly done in this

community. As one of the earliest papers to use curve registration on gait data, Sadeghi et al.

(2000) shows that curve registration reduces inter-subject variability. We hope to contribute

to the current literature by applying the proposed Bayesian registration technique to gait

cycle data.

Moore et al. (2015) provides a list of available gait cycle datasets. Most of them, however,

only give individual mean curves or group mean curves, possibly due to the large size of the

unaveraged raw data. Data used here are part of the online supplementary material of

van den Bogert et al. (2013). Gait cycle data of 12 healthy individuals (11 males and 1

female, 28.3 ± 3.9 years of age) are reported, which include 44 kinematic variables and 300

kinetic variables. We use one of the variables, Right Knee Flexion (v39), as an illustrative

example. This variable is investigated by many gait cycle studies including Duhamel et al.

(2004) and Helwig et al. (2011). Note that the time axis of each gait cycle is linearly scaled

such that they all have the same length. Data are then expressed as a function of percentage

of one gait cycle. This standardization (called Linear Length Normalization in Helwig et

al. 2011) is used frequently as a preprocessing step in gait analysis since it makes the data

easier to manipulate and to interpret. Each standardized gait curve is a real-valued function

defined on [0, 1], which is well-suited for the function registration set-up in this paper.

We try different values for prior specification; specifically, we use Mg ∈ {5, 20}, σg ∈

{0.5, 4}, Mq∗ ∈ {5, 20}, σq∗ = q95, ασ1 = 0.1, and βσ1 = 0.1. The MCMC chain is run for
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σg,Mg,M
∗
q 0.5, 5, 5 4, 5, 5 0.5, 5, 20 4, 5, 20 0.5, 20, 5 4, 20, 5 0.5, 20, 20 4, 20, 20

Sync 0.6072 0.5996 0.5987 0.5896 0.5963 0.5923 0.5863 0.5853

IPC 0.9828 0.9826 0.9825 0.9823 0.9825 0.9823 0.9822 0.9822

Table 1: Sync and IPC criteria measuring the quality of alignment of the 12 Right Knee

Flexion functions under different prior distribution choices.

5 × 105 updates with a burn-in period of 105. To compare estimation results for different

prior configurations, we use the following two criteria (Cheng et al. 2016).

• The synchronization (Sync) coefficient is given by:

Sync =
1

c

c∑
i=1

‖f̃i − 1
(c−1)

∑
j 6=i f̃j‖2

‖fi − 1
(c−1)

∑
j 6=i fj‖2

; (17)

• The inverse of pairwise correlation (IPC) is given by:

IPC =

∑
i 6=j r(fi, fj)∑
i 6=j r(f̃i, f̃j)

, (18)

where r(·, ·) is the pairwise Pearson’s correlation between functions, c is the number of

functions to be registered (here, c = 12), f denotes the original unregistered functions,

and f̃ denotes the registered functions. For both Sync and IPC, a smaller value indicates

better alignment. A summary of the results is given in Table 1. This comparison shows no

significant difference between different prior configurations, although one might note that

larger Mg and Mq∗ values yield slightly better alignment results as expected. Registration

results for one of the configurations is plotted in Figure 5. For this dataset, the cross-sectional

mean curves do not show much difference after registration (although it is clear that the

functions are better matched overall after registration), but the ±2-standard deviation band

becomes narrower in some regions of the domain, and more accurately reflects the overall

shape of the observed gait cycle functions.

6. DISCUSSION

In this paper, we presented a Bayesian model to perform pairwise and multiple function

registration. We transform the observation space to the SRVF space such that the L2–norm

satisfies desirable properties for the registration problem. We transform the parameter space

20



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

functions f to be registered

percentage of gait cycle

R
K

ne
eF

le
xi

on
 (

ra
d)

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
1.

4

functions f after registration

percentage of gait cycle

R
K

ne
eF

le
xi

on
 (

ra
d)

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

functions q to be registered

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

functions q after registration

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

pointwise 2−sd band before registration

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

pointwise 2−sd band after registration

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

comparison of pointwise mean functions

before registration
after registration

Figure 5: Registration results for Right Knee Flexion functions of 12 individuals. Top row

left to right: (1) The original 12 observed Right Knee Flexion functions, (2) the registered

functions with the template (red solid line) and 95% credible band overlayed (red dotted

lines), (3) the original SRVFs with the initial value of q∗ (blue), and (4) the SRVFs of

the registered Right Knee Flexion functions with the final template (red solid line) and 95%

credible band overlayed (red dotted lines). Bottom row left to right: (1) Cross-sectional mean

(dotted) and pointwise ±2-standard deviation band for the original 12 observed Right Knee

Flexion functions, (2) same as (1) but for the registered functions, and (3) comparison of

the pointwise cross-sectional means.

to a linear space, T1(Ψ), which allows us to assign a Gaussian process prior on the warping

functions, as opposed to the Dirichlet process prior in Cheng et al. (2016). Our model also has

the added benefit of being robust to different discretization choices for the warping function.

We perform inference by drawing from the posterior distribution using a Metropolis within

Gibbs algorithm. We define a novel Z-mixture pCN proposal, which is a generalization of

the pCN proposal in Cotter et al. (2013), to make the Metropolis step more efficient. A

simulation study for pairwise registration shows that our method accurately recovers the
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true warping function. Applying our method to growth rate curves and gait cycle curves

shows that multiple function registration is a useful data analysis step, especially when we

want to analyze the phase and amplitude variations separately.

In our simulations, we find that a grid of 200 time points is sufficiently fine so that approx-

imation errors caused by evaluating the transformations in Section 2 (first order derivatives

and integrals) are negligible. Also, for the centering step, we can calculate γshift = γ ◦ γ̄−1

or equivalently calculate ψshift ≡ φ(γshift) = ψ ◦ γ̄−1
√

(γ̄−1)′. When both are calculated on

a finite grid, we note that calculating ψshift leads to a smaller approximation error. More

details on the grid size and approximation error can be found in the Supplementary Mate-

rial. Note that, as discussed earlier, the warping functions are represented via known basis

functions, so they are actually known at any given point on the domain. A grid is simply

needed for storing the warping functions on the computer.

There are a few directions for future work that are of interest. The algorithms presented in

this paper require pre-specifications of fixed Mg and Mq∗ , the number of basis functions used

to approximate g and the template q∗. Alternatively, we can select prior distributions for Mg

and Mq∗ . In this random truncation case, the prior distributions of g and q∗ are no longer

Gaussian (instead, they are called sieve priors in Cotter et al. 2013). When representing a

non-periodic template q∗ on [0, 1] using the Fourier basis (as in the Berkeley growth study

example), setting the period to equal two works well in practice. Alternatively, one can use

other non-periodic bases such as splines or wavelets. Since the proposed algorithm involves

calculating the sum of Fourier basis functions on a grid, further efficiency can be gained by

incorporating the Fast Fourier Transform (FFT) in this step.

APPENDIX A: DERIVATIONS

We show that applying γ̃ ∈ Γ to (γ1, . . . , γc; q
∗) does not change the likelihood. In the

centering step for multiple function registration in Section 4, this fact is used with γ̃ = γ̄−1.

We first show that SSE remains the same after applying γ̃. Recall that SSE(γ, q∗) ≡ ‖(q, γ)−

q∗‖2, where q is the observed function that we want to register using γ, and ‖ · ‖ refers to

the L2–norm. We want to show that

‖(q, γ)− q∗‖2 = ‖(q, γ ◦ γ̃)− (q∗, γ̃)‖2. (19)
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One can easily verify that (q, γ ◦ γ̃) = ((q, γ), γ̃). Now, Equation 19 is true since it is

equivalent to

‖(q, γ)− q∗‖2 = ‖((q, γ), γ̃)− (q∗, γ̃)‖2, (20)

which is true due to the action of Γ on L2([0, 1]) being an isometry. It then follows directly

that the likelihood

L(g1, . . . , gc, q
∗, σ2

1) ∝ exp

{
c∑
i=1

(
−N log(σ1)− 1

2σ2
1

SSE(gi, q
∗)

)}
(21)

remains the same after applying any γ̃ ∈ Γ to (γ1, . . . , γc; q
∗), where c is the number of

functions to be registered and N is the dimension of the grid on which the functions were

observed.

APPENDIX B: SUPPLEMENTARY MATERIALS

Supplementary Material: The Supplementary Material includes: 1) a detailed descrip-

tions of the MCMC algorithms used for pairwise and multiple function registration,

2) a discussion on the implementation details (estimation error and the choice of grid

size), 3) additional plots, 4) discussion on choices of hyperparameters in the Gaussian

process prior for warping functions. (supplementary.pdf, pdf file)

Code: R code and examples to reproduce results in the paper are available in the zip file.

Details can be found in the readme.txt file included. (code.zip, zip file)
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