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Statistical Modeling of Curves Using Shapes
and Related Features

Sebastian KURTEK, Anuj SRIVASTAVA, Eric KLASSEN, and Zhaohua DING

Motivated by the problems of analyzing protein backbones, diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracts in the human
brain, and other problems involving curves, in this study we present some statistical models of parameterized curves, in R3, in terms of
combinations of features such as shape, location, scale, and orientation. For each combination of interest, we identify a representation
manifold, endow it with a Riemannian metric, and outline tools for computing sample statistics on these manifolds. An important characteristic
of the chosen representations is that the ensuing comparison and modeling of curves is invariant to how the curves are parameterized. The
nuisance variables, including parameterization, are removed by forming quotient spaces under appropriate group actions. In the case of
shape analysis, the resulting spaces are quotient spaces of Hilbert spheres, and we derive certain wrapped truncated normal densities for
capturing variability in observed curves. We demonstrate these models using both artificial data and real data involving DT-MRI fiber tracts
from multiple subjects and protein backbones from the Shape Retrieval Contest of Non-rigid 3D Models (SHREC) 2010 database.

KEY WORDS: DT-MRI fibers; Path-straightening; Protein backbones; Shape analysis; Square-root function; Square-root velocity
function.

1. PROBLEM BACKGROUND

Statistical analysis of image data employs the use of shape as
an important characteristic for understanding objects in images.
The prime examples of such applications come from computer
vision and medical imaging, but these problems also appear
in many other branches of science, including bioinformatics,
geology, anthropology, biometrics, and paleontology. In these
applications, one extracts objects from the data using different
preprocessing techniques and studies the shapes of these objects
using automated tools. While shape itself is important in many
applications, there is also a need to study shape in conjunction
with other features (Dryden and Mardia 1998). For example,
in the studies of biological growth, it seems important to mea-
sure the overall size of the growing objects, in addition to their
changing shapes. Similarly, in certain anatomical structures, it
is important to take their relative locations and orientations into
account while deciding on their normality or abnormality. If we
consider a continuous curve, then all its physical characteristics
can be summarized using shape, scale, location, and orienta-
tion. While it is convenient to work with parameterized curves, a
parameterization is merely for the convenience of analysis and
is not an intrinsic property of a curve, like the previous four
properties. Our goal in this article is to develop a statistical Rie-
mannian framework for analyzing curves that can incorporate
some subset of these properties, depending upon the needs of
an application. This allows for generating meaningful compar-
isons between subjects and populations as well as for performing
classification. Furthermore, it provides tools for computation of
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statistics such as the mean and covariance. To demonstrate these
ideas in a concrete setting, we shall investigate the tasks of com-
paring, clustering, and classifying protein backbones as well as
white-matter fibers in the human brain, obtained from diffusion
tensor magnetic resonance imaging (DT-MRI) data.

1.1 Past Approaches

There is a rich literature on statistical analysis of shapes.
Kendall (1984) defined shape as a characteristic of an object that
is invariant to its rigid motions and global scaling. Since then,
there has been a systematic development of tools, using ideas
from geometry and statistics, to model and analyze shapes; some
treatments of this theory include Dryden and Mardia (1998) and
Small (1996). An important property of this theory was that ob-
jects under study were represented by landmarks, a finite collec-
tion of labeled points. These ordered points represent strategic
locations along objects, most commonly along their boundaries,
that roughly capture their shapes. Using the landmark represen-
tation of objects, different combinations of features have been
studied. For example, Dryden and Mardia (1992) studied the
joint shape and size features of objects. Very often, such as
in medical image analysis, the landmarks are detected by hu-
man experts and the remaining analysis is performed by auto-
mated procedures. However, overabundance of digital data, es-
pecially image data, is prompting the need for a different kind of
shape analysis. If one considers the boundaries of objects in im-
ages (two-dimensional, three-dimensional, or n-dimensional),
these boundaries form curves and surfaces and this requires
tools for shape analysis of curves and surfaces. Since these
objects are infinite-dimensional, a different set of tools is
needed.

There has been an increasing interest in shape analysis of con-
tinuous objects, especially curves. Consequently, there is now a
significant amount of literature on shapes of continuous curves
as elements of infinite-dimensional Riemannian manifolds.
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Zahn and Roskies (1972) represented arc-length parameterized
curves using angle functions and studied the angle functions
using Fourier analysis. Younes (1998) defined shape spaces
of planar curves in a Riemannian framework. Klassen et al.
(2004) restricted to arc-length parameterized planar curves and
derived numerical algorithms for computing geodesics between
closed curves, the first ones to directly do so in the space of
closed curves. Among other things, they applied this framework
to statistical modeling and analysis using large databases of
shapes (Srivastava et al. 2005). Michor and Mumford (2006)
and Sundaramoorthi et al. (2011) studied several choices of
Riemannian metrics in spaces of closed, planar curves for the
purpose of comparing their shapes. Mio, Srivastava, and Joshi
(2007) presented a family of elastic metrics that quantified the
relative amounts of bending and stretching needed to deform
shapes into each other. The difficulty with such an elastic shape
analysis is that these metrics vary from point to point and only
numerical methods are possible. More recently, Joshi et al.
(2007) and Srivastava et al. (2011) presented a special repre-
sentation of curves, called the square-root velocity function
(SRVF), under which a specific element of the elastic family of
metrics becomes an L2 metric and simplifies the shape analysis.
This article elaborates on that idea and combines the shape
feature with some other features to study different aspects of
curves.

The main challenge in performing any analysis of param-
eterized curves is that the shape analysis should be invariant
not only to rigid motions and global scalings, but also to their
parameterizations. A key idea propagated by this body of work
is that the feature analysis of parameterized curves is invariant
to how they are parameterized. The choice of a shape represen-
tation and of a Riemannian metric are critically important for
improved understanding, physical interpretations, and efficient
computing. This article uses particularly convenient representa-
tions that enable simple physical interpretations of the resulting
deformations. These representations are motivated by the
well-known Fisher–Rao metric, used previously in information
geometry, which imposes a Riemannian structure in the space
of probability densities (Rao 1945; Amari 1985). Taking the
positive square root of probability densities results in a simple
Euclidean structure where geodesics, distances, and statistics
are straightforward to compute (Bhattacharya 1943). A similar
idea was introduced by Younes (1998) for curves only in R2

using complex analysis, and later used in Younes et al. (2008)
for studying shapes of planar closed curves under an elastic
metric.

1.2 Our Approach

The main idea in this approach is to use some specific repre-
sentations of curves, termed square-root functions (SRFs) and
square-root velocity functions (SRVFs). These representations
are important for multiple reasons. First, and most important,
a well-known Riemannian metric, called the elastic metric, be-
comes the standard L2 metric under the latter representation,
which greatly simplifies the Riemannian analysis of curves.
Second, under these representations and the L2 metric, any repa-
rameterization of curves does not change the geodesic distance
between them. Along with an optimization step on the repa-

rameterization group, this results in the desired invariance to
reparameterizations of the curves. Last, these representations
are useful because of their versatility. The framework is easily
altered to include other features of the curves, such as scale, ori-
entation, and position, in the analysis. Preliminary results from
this approach were presented in a conference paper (Mani et al.
2010). As a demonstration of these similarity measures, we will
cluster neuronal fiber tracts generated from DT-MRI data based
on different features and classify protein backbones based on
their shape.

Given the ability to compute geodesics between curves us-
ing different features, under the chosen Riemannian metrics,
we are able to define the first two moments, the mean and the
covariance, in the spaces of such curves. This is quite conve-
nient because given the two central moments, one can define a
Gaussian-type distribution in these spaces. The basic idea is to
define a truncated Gaussian distribution in a tangent space of
the manifold and then map it back to the manifold. We provide
a derivation of such distributions under the exponential map
and the stereographic projection, and we use these explicit dis-
tributions for classification of protein backbones. Comparison
and classification of protein structures is an important tool for
understanding the evolutionary relationships between proteins
and for predicting protein functions (Liu, Srivastava, and Zhang
2011). The main contributions of this article include:

(1) building upon previously presented theory on shape anal-
ysis of parameterized curves using the SRVF representa-
tion (Joshi et al. 2007; Srivastava et al. 2011) by incorpo-
rating other features such as scale and orientation in the
analysis;

(2) introduction of the SRF representation for the situation
where position is an important feature, and numerical al-
gorithms for computing geodesics between curves under
this representation; and

(3) derivation of analytical expressions for truncated Gaus-
sian densities in feature spaces under the exponential map
and the stereographic projection.

The rest of this article is organized as follows. In Section 2, we
introduce two mathematical representations of curves: SRF and
SRVF. In Section 3, we present results of computing geodesics
between curves with different combinations of features. In Sec-
tion 4, we present clustering results for DT-MRI brain fiber data.
In Section 5, we discuss mean computations of curves and em-
pirical analysis of curve data in tangent spaces. In Section 6, we
provide explicit density functions in the spaces of curves using
the exponential map and the stereographic projection. In that
section, we also provide protein backbone classification results
obtained using Gaussian-type models. We conclude the article
with a short summary in Section 7.

2. REPRESENTATION OF CURVES

Consider the set of all smooth parameterized curves
in R3. The set of all rigid rotations of these curves is
SO(3), the special orthogonal group given by SO(3) = {O ∈
R3×3|OTO = I, det(O) = +1}. The set of all reparameteriza-
tions of curves is � = {γ : [0, 1] → [0, 1]|γ (0) = 0, γ (1) =
1, γ is a diffeomorphism}, while the sets of all possible scales
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and translations are R+ and R3, respectively. Let β : [0, 1] →
R3 be a parametrized curve, and let ‖β‖ =

√∫ 1
0 |β(t)|2dt be its

L2 norm. Note that the norm in the integrand is the standard
Euclidean norm in R3. The set of such square-integrable curves
will be denoted by L2([0, 1],R3), or simply L2. For any γ ∈ �,
the composition (β ◦ γ )(t) = β(γ (t)) is a reparameterization
of β. If β1 and β2 are two arbitrary elements of L2, then we
can compute the L2 distance between them using ‖β1 − β2‖.
What makes the analysis of curves using their coordinate rep-
resentation difficult is the fact that, in general, ‖β1 − β2‖ �=
‖β1 ◦ γ − β2 ◦ γ ‖. This inequality has deep repercussions, one
of them being that the task of making the analysis invariant to
reparameterizations of curves becomes very difficult. To address
this issue, we propose two representations.

Definition 1.

(1) Square-root function (SRF): Define the SRF to be a
function h : [0, 1] → R3 given by h(t) =

√
|β̇(t)|β(t),

where β is a smooth parameterized curve. If the curve
β is reparameterized by a γ ∈ �, its SRF changes to
h(t) �→ (h, γ )(t) ≡ h(γ (t))

√
γ̇ (t).

(2) Square-root velocity function (SRVF) (Srivastava et al.
2011): Define a continuous mapping: F : R3 → R3 ac-
cording to

F (v) ≡
{
v/

√|v| if |v| �= 0

0 otherwise
.

Then, define SRVF to be a function q : [0, 1] → R3,
where q(t) ≡ F (β̇(t)) = β̇(t)/

√
|β̇(t)|, where β is a

smooth parameterized curve. This representation in-
cludes those curves whose parameterization can become
singular in the analysis. If the curve β is reparameterized
by a γ ∈ �, its SRVF changes to q(t) �→ (q, γ )(t) ≡
q(γ (t))

√
γ̇ (t).

It can be shown that if the curves are smooth, then the space of
SRFs and SRVFs is a subset of L2. Let the action of SO(3) on L2

be given by (O, f )(t) = Of (t) and the action of � be given by
(f, γ )(t) = f (γ (t))

√
γ̇ (t). Note that this action is different from

β(γ (t)) mentioned above. Although we have not yet defined a
metric in the space of SRFs and SRVFs, we will use the L2

metric. The discussion and motivation behind the choice of this
metric are provided in later sections. Then, the following two
results hold.

Lemma 1. The actions of � and SO(3) on L2 commute.

Lemma 2. The actions of � and SO(3) on L2 are by isome-
tries and, therefore, ‖O(f1, γ ) − O(f2, γ )‖ = ‖f1 − f2‖ for all
f1, f2 ∈ L2, γ ∈ �, and O ∈ SO(3).

The proofs of these lemmas can be found in Srivastava et al.
(2011). Depending on the choice of features, we will use either
SRF or SRVF for analyzing curves. It turns out that, for the
purpose of shape analysis of curves, there are several reasons
for choosing the SRVF over SRF. First, by the virtue of using β̇
instead of β, the SRVF q is invariant to translation of β, which is
useful in shape analysis. Second, for every q ∈ L2, there exists
a curve β (unique up to a translation) such that the given q is
the SRVF of that β. In fact, this curve can be obtained using

the equation β(t) = ∫ t
0 q(s)|q(s)|ds. The recovery of the curve

β from its SRF h is not as simple since it requires solving a
higher-order ordinary differential equation. Therefore, we use
h only in situations where the position of curves is to be in-
cluded in the analysis. The geodesic computations using SRVFs
are straightforward and presented in Srivastava et al. (2011),
but not so straightforward when using SRFs. Consequently, we
will introduce a numerical technique to compute geodesic paths
between curves when using the SRF representation.

2.1 Connections With Fisher–Rao Metric

The choice of SRVF as a representation is motivated in part
by the work on the Fisher–Rao metric to form Riemannian
manifolds of probability density functions (pdfs). We briefly il-
lustrate these connections. Let P represent the Banach manifold
of all pdfs on [0, 1]. This is a manifold with a boundary since
any density function whose value is zero for any t ∈ [0, 1] is a
boundary element. For a point p in the interior of P , the tan-
gent space Tp(P) is given by {δp : [0, 1] → R| ∫ 1

0 δp(t)dt = 0}.
For any δp1, δp2 ∈ Tp(P), the Fisher–Rao metric is given

by 〈δp1, δp2〉p = ∫ 1
0 δp1(t)δp2(t)(1/p(t))dt (Rao 1945; Amari

1985; Vos and Kass 1997). An important property of this met-
ric is that a reparameterization of densities does not change
distances between them, that is, the action of reparameteriza-
tion is by isometries (Čencov 1982). On the other hand, it is
relatively difficult to compute geodesic paths under this met-
ric since it differs from point to point. Bhattacharya (1943)
showed that if we define q(t) = +√

p(t), then two things hap-
pen. First, the space of all such representations {q : [0, 1] →
R≥0|

∫ 1
0 |q(t)|2dt = 1} is now an orthant in a unit sphere. Sec-

ond, since δq(t) = (1/(2
√
p(t)))δp(t), the Fisher–Rao metric

becomes the standard L2 metric under this representation. That
is, 〈δq1, δq2〉 = ∫ 1

0 δq1(t)δq2(t)dt . Under the L2 metric on a
unit sphere, it is straightforward to compute geodesic paths and
geodesic distances since they are simply arcs and arc lengths,
respectively.

To see the connection with curves and their SRVF represen-
tations, consider smooth curves in R3, β : [0, 1] → R3. The
velocity vector at any point has two components: speed p(t) =
|β̇(t)| and direction θ (t) = β̇(t)/|β̇(t)|. Note that θ (t) ∈ S2 for
all t. What is the extension of the Fisher–Rao metric to this
higher-dimensional case? Mio, Srivastava, and Joshi (2007) pro-
vided an answer that they called an elastic metric:

〈(δp1, δθ1), (δp2, δθ2)〉(p,θ)

= a

∫ 1

0
δp1(t)δp2(t)(1/p(t))dt

+ b
∫ 1

0
〈δθ1(t), δθ2(t)〉p(t)dt for a, b > 0. (1)

Here, the first term measures the variations in the speed function
(it is identical to the Fisher–Rao metric), while the second term
measures the variations in the direction function. The constants
a and b are positive and provide relative weights to the two
terms. It was shown by Mio, Srivastava, and Joshi (2007) that
this metric is invariant to reparameterizations of curves and
is particularly useful in shape analysis. To make a connection
with SRVFs, we can rewrite q(t) = √

p(t)θ (t) and its variation
δq(t) = (δp(t)/(2

√
p(t)))θ (t) + √

p(t)δθ (t). If we compute the
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L2 metric between such variations, we get

〈δq1, δq2〉(p,θ) = (1/4)
∫ 1

0
δp1(t)δp2(t) 〈θ (t), θ (t)〉 (1/p(t))dt

+
∫ 1

0
〈δθ1(t), δθ2(t)〉p(t)dt , (2)

which is identical to the elastic metric [Equation (1)] for a = 1/4
and b = 1. This analysis shows that the SRVF is analogous to
the square-root representation used by Bhattacharya, for simpli-
fying the Fisher–Rao metric in the space of pdfs, but extended
to handle curves in Rn, and in particular R3.

2.2 Unit Length Curves and Hilbert Hypersphere

So far, we have identified L2 as the representation space
for SRFs and SRVFs. If we impose additional constraints on
the curves, such as unit length, then the representation space
naturally restricts. In the case of SRFs, it is difficult to make
such restrictions explicit, so we continue to use the full space
L2 there. However, in the case of SRVFs, we can gain by
using constraints explicitly. If a curve β is of length 1, then∫ 1

0 |β̇(t)|dt = ∫ 1
0 |q(t)|2dt = 1. In other words, the L2 norm of

q is 1. The set of all such SRVFs is a unit hypersphere in L2:
S∞ = {q : [0, 1] → R3| ∫ 1

0 |q(t)|2dt = 1}; it is also a Hilbert
manifold (Lang 1999).

Since L2 is a vector space, its tangent space Tf (L2) = L2

for all f ∈ L2. The L2 Riemannian metric is given by: for any
v1, v2 ∈ L2, we have 〈v1, v2〉 = ∫ 1

0 〈v1(t), v2(t)〉dt , where the
inner product in the integrand is the Euclidean inner product in
R3. For any f1, f2 ∈ L2, the geodesic path connecting them is
given by a “straight line”:

ψl
τ (f1, f2) = (1 − τ )f1 + τf2 , τ ∈ R . (3)

A geodesic on L2 can also be characterized in terms of a
“shooting direction” v ∈ L2 as ψτ (f1, v) = f1 + τv. For any
v ∈ L2, the exponential map at f1 ∈ L2, exp : L2 �→ L2 is given
by expf1

(v) = f1 + v. Also, for any f2 ∈ L2, the inverse of
the exponential map, denoted by exp−1

f1
: L2 �→ L2, is com-

puted as exp−1
f1

(f2) = f2 − f1. The geodesic distance between
any two points is given by the L2 norm of their difference:
d(f1, f2) = ‖f1 − f2‖.

A Riemmanian structure can be inherited on S∞ in a straight-
forward fashion. For a f ∈ S∞, the tangent space at f is given by
Tf (S∞) = {v ∈ L2|〈v, f 〉 = 0}, that is, the tangents to a sphere
at a point are orthogonal to the direction representing that point.
If we impose the L2 metric in the tangent spaces of S∞, we
get a Riemannian structure. The realization that S∞ is a sphere
is important because the differential geometry of a sphere is
well known and the geodesics can be written analytically. For
any f1, f2 ∈ S∞ (such that f1 and f2 are not antipodal), the
geodesic path between them in S∞, for τ ∈ [0, 1], is given by

ψs
τ (f1, f2) = (1/ sin(θ ))[sin(θ − τθ )f1 + sin(τθ )f2],

θ = cos−1(〈f1, f2〉). (4)

The value θ is actually the geodesic distance between them
under the L2 Riemannian metric. A geodesic on S∞ can also
be characterized in terms of a tangent direction v ∈ Tf1 (S∞)
as ψτ (f1, v) = cos(τ ||v||)f1 + sin(τ ||v||)(v/||v||). For any v ∈
Tf1 (S∞), the exponential map at f1 ∈ S∞, exp : Tf1 (S∞) �→
S∞, is given by expf1

(v) = cos(||v||)f1 + sin(||v||)(v/||v||).
Also, the inverse of the exponential map, denoted by exp−1

f1
:

S∞ �→ Tf1 (S∞), is given by exp−1
f1

(f2) = (θ/ sin(θ ))(f2 −
cos(θ )f1), where θ = cos−1(〈f1, f2〉).

3. GEODESICS ON FEATURE SPACES

Under this setup, we are going to discuss a number of sce-
narios, each corresponding to a certain combination of physical
properties of the curves. We remind the reader that we are inter-
ested in four physical properties of curves: shape, size, location,
and orientation, and all of them are independent of parameter-
ization. By using SRVFs, we are already invariant to locations
and, thus, are focusing on the remaining three properties.

Using the SRVF representation, we can study four feature
spaces: S1 (shape + orientation + scale), S2 (shape + scale),
S3 (shape + orientation), and S4 (shape). The corresponding
spaces and metrics for each of these cases are summarized in
Table 1. For the sake of brevity, we will describe the case of S3

only. The application of this theory to the other cases is similar.
In case we are interested in analyzing the shapes and orien-

tations of curves, the curves are rescaled to have unit length
and thus lie on S∞. To remove the additional variability of

Table 1. Description of different feature spaces for the SRVF representation

Features Shape + orientation + scale Shape + scale

Prespace L2 L2

Equivalence classes [q] = closure{(q, γ )|γ ∈ �} [q] = closure{O(q, γ )|O ∈ SO(3), γ ∈ �}
Feature space S1 = {[q]|q ∈ L2} S2 = {[q]|q ∈ L2}
Distances d1([q1], [q2]) = min

γ∈�
‖q1 − (q2, γ )‖ d2([q1], [q2]) = min

O∈SO(3), γ∈�
‖q1 − O(q2, γ )‖

Geodesics Equation (3) between q1 and q∗
2 Equation (3) between q1 and q∗

2

Features Shape + orientation Shape

Prespace S∞ S∞
Equivalence classes [q] = closure{(q, γ )|γ ∈ �} [q] = closure{O(q, γ )|O ∈ SO(3), γ ∈ �}
Feature space S3 = {[q]|q ∈ S∞} S4 = {[q]|q ∈ S∞}
Distances d3([q1], [q2]) = min

γ∈�
cos−1(〈q1, (q2, γ )〉) d4([q1], [q2]) = min

O∈SO(3), γ∈�
cos−1(〈q1, O(q2, γ )〉)

Geodesics Equation (4) between q1 and q∗
2 Equation (4) between q1 and q∗

2
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Figure 1. An example of geodesic paths in different feature spaces.

reparameterization, we use the notion of equivalence classes.
We would like to form the quotient space as the set of all equiv-
alence classes in the prespace under the action of �. Recall that
this action is given by (q, γ )(t) ≡ q(γ (t))

√
γ̇ (t). The trouble

is that although this group action is by isometries, the orbits
are not closed. The reason for this is that the space of diffeo-
morphisms is not closed with respect to the L2 metric, since a
sequence of diffeomorphisms might approach a map that is not
a diffeomorphism under this metric. To resolve this theoretical
difficulty, we propose that instead of using the orbits, we use
their closures. This issue is described in more detail in Srivas-
tava et al. (2011). The shape + orientation space is defined as
the set of all closed orbits, and we can compute the distance in
that space using a minimization problem over�, which is solved
with the dynamic programming algorithm (the Appendix). We
refer to the optimal reparameterization as γ ∗ and to (q2, γ

∗) as
q∗

2 . Figure 1 presents some examples of geodesics between arti-
ficial helical curves using the SRVF representation and different
feature spaces. The artificial curves, which are used for demon-
stration throughout the article, were formed in the following
manner β = (R cos(2πt ηρ), R sin(2πt ηρ), 2πt)T , t ∈ [0, 1],
where R, η, and ρ control the radius, number, and length of the
spirals, respectively.

When we need to include the position feature in the analysis,
we will use the SRF representation. While this representation
is quite convenient for including position in the feature set, the
main drawback is that it is not straightforward to reconstruct a

curve from its SRF. Thus, the computation of geodesic paths is
not simple as in the SRVF cases. For this purpose, we use a nu-
merical method called path-straightening, which was previously
introduced to compute geodesic paths in the space of closed
curves (Klassen and Srivastava 2006; Srivastava et al. 2011).
In that case, the path-straightening algorithm was derived for
computing geodesics in a complicated space under a standard
metric. In this article, we present this algorithm for computing
geodesics in a vector space under a complicated metric. The
general idea is to endow the space of parameterized curves with
a Riemannian metric, which is the pullback of the L2 metric
from the space of SRFs. Then, it is possible to write down an
energy under this metric, which is used to find geodesic paths
in the space of curves. We present some more details on the
derivation in the Appendix. The space and metric for the SRF
representation are summarized in Table 2.

Next, we show some geodesics between curves under the
SRF representation. First, we show a few examples that verify
that the path-straightening algorithm works correctly. In each of
these examples, we initialize the path, with the endpoints being
the same curve (F (0) = F (1) = β), and interpolate the interior
points. Thus, the geodesic path in each of these cases should
be a constant path (F (t) = β for all t) and the energy of this
path should be zero. We note that the curves here are allowed
to have different shapes, scales, orientations, and positions. The
results are displayed in Figure 2. In both examples, the resulting
geodesic paths are visibly constant.

The next set of examples, displayed in Figure 3, show some
geodesics computed in S5 (shape + orientation + scale +
position). We note that the features are nicely preserved along
these geodesics. This suggests that finding optimal reparam-
eterizations (i.e., removing parameterization variability) plays
an important role in comparisons of curves, and improved
matching between curves yields a more accurate measure of
their differences.

4. CLUSTERING OF DT-MRI BRAIN FIBERS

An important problem in the analysis of curves is their clus-
tering by taking different features under consideration. Since we
have defined geodesic distances between curves under different
feature sets, we can use these distances for clustering. In this
section, we present some clustering results using DT-MRI brain
fiber data.

A DT-MRI scan of a brain generates a field of 3 × 3 ten-
sor matrices that describe the constraints on local Brownian

Table 2. Description of the shape + orientation + scale + position feature space for the SRF
representation

Prespace B
Metric 〈〈p,m〉〉β = 〈dhβ (p), dhβ (m)〉L2

Equivalence classes [β] = closure{β ◦ γ |γ ∈ �}
Feature space S5 = {[β]|β ∈ B}

Distances d5([β1], [β2]) = min
γ∈�

⎛
⎜⎜⎜⎜⎝

min
F :[0,1]→B

(∫ 1

0
〈〈Ft , Ft 〉〉(1/2)

F dt

)

F (0) = β1

F (1) = (β2 ◦ γ )

⎞
⎟⎟⎟⎟⎠

Geodesics Path-straightening
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Kurtek et al.: Statistical Modeling of Curves Using Shapes 1157

Figure 2. Geodesic paths using path-straightening.

motion of water molecules. Tractography is the primary tech-
nique for finding fiber tracts; it uses the principle that the prin-
cipal diffusion directions coincide with the local tangent direc-
tions of fibrous tissues. Integration of the principal diffusion
directions permits entire fiber tracts to be delineated. The brain
fibers used in this article are a part of the human language
circuit that connects Broca’s and Wernicke’s areas in the left
hemisphere. Previous studies have shown that there are two ma-
jor connection routes, ventral and dorsal, respectively, between
these two regions (Morgan et al. 2009). Although these two
routes are widely recognized, connecting patterns between the
two language areas are more complicated. Some studies have
demonstrated that there can be a third connection route, while
others have suggested that these routes can be further partitioned
into finer clusters that connect different subregions of the lan-
guage areas. It should be pointed out that this clustering is solely
data-driven—whether or not it represents the true physiological
structure remain unknown. One way to validate this is to cor-
relate the clustering results with functional magnetic resonance
imaging (fMRI) data, which can be used to study functional
connections between the language areas. While validations with
fMRI appear very appealing due to the unanimously accepted
notion of structure–function coupling, it is certainly beyond the
scope of the current article and thus is not included.

The datasets considered here consist of 388 fibers from four
subjects: subject 1 has 176 total fibers, subject 2 has 68 total
fibers, subject 3 has 48 total fibers, and subject 4 has 88 total
fibers. Since we consider the locations of fibers as an important
feature, we use SRFs (and distance d5) to compute pairwise
distances between them. We use a hierarchical clustering method
with a complete linkage function (the distance between two
clusters corresponds to the maximum distance between cluster
members). As described in the previous paragraph, there are two
or three connection routes between the Broca’s and Wernicke’s
regions. Thus, we began by separating each subject’s set of fibers
into three clusters. The results are shown in Figure 4. We see a
clear separation of clusters based on distances, which take into
account shape, translation, scale, and orientation. To enhance the
display of clusters, we have used the multidimensional scaling

Figure 3. Computation of geodesic paths in the feature space S5.

(MDS) method to obtain two-dimensional coordinates of each
fiber and display them as a scatterplot. The distance matrices
and the MDS plots for all of the subjects indicate that there
are three main fiber clusters present. Visual inspection indicates
that this is in fact the case, and we see that fiber position plays
a very important role in these examples. Looking at the plotted
fibers and distance matrix for subject 1, the separation of two of
the clusters is not very clear. It may be possible to combine the
blue and red clusters in this case. All of the clusters for subject 2
contain curves with very different shapes. In the case of subject
3, the blue and red clusters differ most in shape, while the
green and the red/blue clusters differ a lot in their position. It is
reasonable that the red and blue clusters are very closely related.
In the case of subject 4, the curves in the red and blue clusters
have similar shapes but very different lengths and positions.

5. MEAN COMPUTATION AND DATA ANALYSIS

In this section, we develop tools for statistical analysis of
curve data. In particular, we define and compute means of curves
under different features and study the sample sets on tangent
bundles using principal component analysis (PCA). More am-
bitiously, we are interested in capturing variability associated
with curves within object classes using probability models. This
means that we want to learn the model from a sample or, in the
case of parametric models, to estimate the parameters of the
model from a sample. Because the computation of geodesics
(required for computation of statistics) between SRFs is not a
straightforward task, this section presents derivations and results
for SRVFs only.

5.1 Mean Computation and Examples

We start by defining and estimating the first two central mo-
ments: the Karcher mean q̄ and the covariance in the tangent
space at the Karcher mean in the feature space of interest. Let
{β1, β2, . . . , βn} be a given collection of curves with SRVFs
{q1, q2, . . . , qn}. Considering them as elements of the space L2,
we can compute their extrinsic average as q̄ext = (1/n)

∑n
i=1 qi

and project them into the appropriate prespace, if necessary.
The sample Karcher mean is given by: q̄ =

argmin[q]∈S
∑n

i=1 d([q], [qi])2. Here, d denotes the geodesic
distance in the appropriate quotient space S under the elastic
metric. A gradient-based approach for finding the Karcher
mean is given in several places (Klassen et al. 2004; Le 2001),
and is repeated here for convenience. This iteration is based
on the fact that the gradient of the geodesic distance squared
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Figure 4. Top: cluster of fibers. Middle: d5 distance matrix between fibers. Bottom: two-dimensional MDS plot (different colors denote
different fiber clusters). The online version of this figure is in color.

between any two points, with respect to one of the points, is
the inverse exponential map of the other at the first point. The
exponential and inverse exponential maps for different spaces
are given in Section 2.2.

Algorithm 1 Karcher mean on M.

Let q̄0 be an initial estimate of the Karcher mean. Set j = 0.

1. For each i = 1, . . . , n, compute vi = exp−1
q̄j

(qi).
2. Compute the average direction v̄ = (1/n)

∑n
i=1 vi .

3. If ‖v̄‖ is small, then stop. Else, update using q̄j+1 =
expq̄j (εv̄), ε = 0.3.

4. Set j = j + 1 and return to Step 1

Figure 5 displays some experimental results (helical curves)
from mean computation for artificial data. The intrinsic means
(sample means obtained using the intrinsic method) appear to be
good representatives of the data, since they all have three loops.

In addition, for this artificial example, it is useful to compare our
method with the standard landmark method. Figure 5 also shows
extrinsic means for this set of curves. We note that although the
shape and shape + scale extrinsic means are roughly represen-
tative of the data given, they are not as accurate in describing the
actual variability in the data as the means generated using our
methodology. On the other hand, the shape + orientation and
shape + orientation + scale means are not even representative
of the data. This shows a clear advantage in using our elastic
intrinsic method in statistical modeling of curves.

In Figure 6, we display Karcher mean computation results
for brain fiber data. These data consist of a subset of 46 DT-
MRI fiber curves from the corpus callosum, a region of the
human brain. In clinical applications, it may be of interest to
build mean templates based on fibers in different populations.
Thus, here, we consider computing averages of brain fibers
based on different features. We observe similar results as when
we used artificial data. The shape only (S4) and shape + scale
(S2) means have a very similar shape but very different lengths.

Figure 5. Top: artificial helical curves. Bottom: sample means obtained using the intrinsic method and the extrinsic method via landmark
representation. (Note: scales altered for improved displays.)
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Kurtek et al.: Statistical Modeling of Curves Using Shapes 1159

Figure 6. Mean curves for a cluster of fiber tracts. (Note: scales
altered for improved displays.)

Both of these averages have a horseshoe shape, which is a clear
representative of the fibers in the given data. We caution the
reader that they have been scaled in the figure for an improved
display of their shapes. Also, the shape + orientation (S3) and
shape + orientation + scale (S1) mean curves are very similar
in shape and orientation and only vary in scale.

5.2 Computation of Karcher Covariance

Once the sample Karcher mean has been computed, the
evaluation of the Karcher covariance is as follows. Let vi =
exp−1

q̄ (qi), i = 1, 2, . . . , n, vi ∈ Tq̄(S). Then, the covariance
kernel can be defined as a function Kq : [0, 1] × [0, 1] → R,
given by Kq(ω, τ ) = (1/(n− 1))

∑n
i=1〈vi(ω), vi(τ )〉. Note that

the trace of this covariance function is proportional to the
Karcher variance, that is,

∫ 1
0 Kq(τ, τ )dτ ∝ ∑n

i=1 d(q̄, qi)2. In
practice, since the curves have to be sampled with a finite num-
ber of points, say m, the resulting covariance matrices are finite-
dimensional. Often, the observation size n is much less than
m and, consequently, n controls the degree of variability in the
stochastic model. In the case of learning shape models from the
observations, one can reach an efficient basis for Tq̄(S) using
the traditional PCA as follows. Let V ∈ R3m×n be the observed
tangent data matrix with n observations and m sample points in
R3 on each tangent. Let K ∈ R3m×3m be the Karcher covariance
matrix, and let K = U�UT be its singular value decomposi-
tion (SVD). The submatrix formed by the first r columns of U ,
call it U1, spans the principal subspace of the observed data
and provides the observations of the principal coefficients as
C = UT

1 V ∈ Rr×3m. (The choices of r and m depend on the
application of interest.)

We can visualize the variations in curves along dominant
directions in Tq̄(S3) or Tq̄(S4) by computing straight lines along
these directions and projecting them on S3 or S4 using the
exponential map. We do this for the data displayed in Figures 5

Table 3. Percentage of variation explained by first 10 principal
components for (a) artificial data and (b) brain fiber data

Shape + Shape + orientation +
Shape orientation Shape + scale scale

(a) 83.2 86.2 94.9 91.4
(b) 74.8 79.3 78.5 82.1

and 6. Figure 7 shows the top three directions (displayed along
the rows) by rendering curves along the path expq̄(τv) for τ
from −1 to +1, where v

.= √

iiU i . The middle curve, with

τ = 0, is obviously the mean shape q̄. In Table 3, we report
the percentage of variation that was explained by the first 10
principal components in each case.

6. EXPLICIT MODELS ON SHAPE SPACES

Our next goal is to present some explicit probability models in
spaces of curves for use in future statistical analyses. There are
several types of models that can be developed. One distinction
is between parametric and nonparametric models, an example
of the latter being the kernel density estimators on manifolds
(Pelletier 2005). From a computational point of view, at least
for the purposes of sampling from the distributions and using
Monte Carlo estimators, it seems more efficient to have para-
metric models. A second distinction is between intrinsic and
extrinsic models. The former restricts the analysis completely
to the underlying manifold, while the latter embeds the mani-
fold in a larger vector space and imposes models in the larger
space. We have not used the extrinsic models in our problem
since it is difficult to find appropriate embeddings for the quo-
tient spaces of the kind we are dealing with. Therefore, we are
interested in parametric, intrinsic probability models for curves
that result in analytical expressions for the pdfs. Some exam-
ples of parametric probability models for spherical manifolds
were presented by Mardia and Jupp (2000). Our approach will
be to define densities in principal subspaces of a tangent space
and then map them back to the shape space. In the case of a
finite-dimensional sphere, there are at least two interesting map-
pings from a tangent plane to the sphere: the exponential map
and the stereographic projection, as shown in Figure 8. In this

Figure 7. Principal modes of variation with the Karcher mean in the center.
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Figure 8. Map from Tq̄(S2) to S2 for wrapped densities: exponential (a) and stereographic (b).

article, we explore the use of both of these mappings in inducing
densities on a sphere.

6.1 Wrapped Gaussian Distribution

In case our goal is only to sample from a probability model
and we do not need an explicit density function, we can do so
using the Gaussian density in the tangent space and the exponen-
tial map. Let K = U�UT be the SVD of the sample covariance
matrix, as earlier, where � is a diagonal matrix of singular values
and U is an orthogonal matrix, with each column representing
an eigenvector of K . Then, a multivariate Gaussian model for
the tangent vector rearranged as a long vector v ∈ R3m is given
by v = ∑n

i=1 zi
√

iiU i , where zi ∼ N (0, 1) iid. One can

restructure the elements of v to form a matrix of size R3×m and
approximate an element of Tq̄(S); call it v. This random v can
then be projected in the shape space using the exponential map
v �→ expq̄(v) to obtain a random curve. This provides a tech-
nique for sampling from the wrapped Gaussian models onS3 and
S4. Figure 9 displays sampling results from the wrapped Gaus-
sian distribution on the shape and shape + orientation spaces.
We note that all of the samples seem valid. That is, the computed
models correctly summarize the variability in the given data.

In case we are interested in reaching analytical expressions for
densities in quotient spaces, we need to introduce some changes
in this model. Although our spaces are infinite-dimensional, we
will start with the finite-dimensional sphere, Sk .

6.2 Truncated Gaussian Under the Exponential Map

We start with the exponential map for projecting points in
a tangent space Tq̄(Sk) to Sk as follows: expq̄ : Tq̄(Sk) →
Sk is given by: for any v ∈ Tq̄(Sk), expq̄(v) = cos(‖v‖)q̄ +

(sin(‖v‖)/‖v‖)v. To transfer the density from Tq̄(Sk) to Sk ,
we need an invertible map. To make the exponential map in-
vertible, we need to restrict the density to a subset of Tq̄(Sk)
using truncation. While choosing a sphere of radius π around
the origin will be sufficient for this purpose, this will lead
to a singularity in the resulting density at the point antipo-
dal to the mean. To avoid this, we will truncate the density
at a smaller distance, say π/2, from the origin in the tangent
space. In the case of S4 (shape), it can be shown that the up-
per bound on all distances is π/2, which implies that this is
a natural restriction of the pdf for this feature space. Thus,
expq̄ becomes invertible in this domain and its inverse is given
by: for p ∈ Sk , exp−1

q̄ ( p) = (θ/ sin(θ ))( p − q̄ cos(θ )), where
θ = cos−1(〈 p, q̄〉) and where p and q̄ are viewed as vectors
in Rk+1. To induce the truncated Gaussian density on a sphere,
using the exponential map, we need to compute the determinant
of the Jacobian of this map. As a first step, we will derive the
induced density for k = 2 and then extend it to a general k.

Let q̄ ∈ S2 be the mean of the induced density, and let w1, w2

form an orthonormal basis of Tq̄(S2). The set {q̄,w1,w2}
forms an orthogonal basis for R3. Now, we can identify any
element v of Tq̄(S2) with its coordinates x = (x1, x2) ∈ R2

such that v = x1w1 + x2w2. Define a truncated bivariate nor-
mal density on Tq̄(S2) using its identification with R2: f (x) =
(1/Z2)e(−(1/2)xT K−1 x)1‖x‖≤π/2(x), where Z2 is simply the nor-
malizing constant. Next, we map this density onto S2 using the
exponential map so that the origin of the tangent space coincides
with the mean q̄. For a θ ∈ R, and the point θw1 in Tq̄(S2),
the exponential map equation becomes θw1 �→ expq̄(θw1) ≡
cos(θ )q̄ + sin(θ )w1 . Let this point on S2 be called p. We need
to establish an orthogonal basis for the tangent spaceT p(S2), and

Figure 9. Samples from the wrapped Gaussian distribution.
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Kurtek et al.: Statistical Modeling of Curves Using Shapes 1161

Figure 10. The first two examples (rows) show isotropic densities for small and large values of σ . The third example (row) shows a nonisotropic
density. The online version of this figure is in color.

the vectors b1 = (− sin(θ )q̄ + cos(θ )w1) and b2 = w2 provide
a convenient orthonormal basis. To derive the differential of the
map expq̄ , denoted expq̄∗, we take each of the basis elements
of Tq̄(S2) and map them to T p(S2) under expq̄∗. The resulting
determinant of the Jacobian matrix turns out to be (sin(θ )/θ ).

Now, we can write the expression for the induced density.
For a point r ∈ S2, the local coordinates of the inverse
map in Tq̄(S2) are: for i = 1, 2, xi(r) = 〈wi , exp−1

q̄ (r)〉 =
(θ/ sin(θ ))(〈wi , r〉 − 〈wi , cos(θ )q̄〉) = (θ/ sin(θ ))〈wi , r〉 =
(θ/ sin(θ ))WT r , where θ = cos−1(〈r, q̄〉) and W = [w1 w2] ∈
R3×2. Then, the induced truncated normal density on S2 is
given by

f (r; q̄, K )

= (1/Z2)(θ/ sin(θ )) exp
{ − (1/2)(θ/ sin(θ ))2

× (
rT K−1

w r
)}

1θ≤π/2, (5)

where K−1
w = W K−1WT . Three examples of a general f are

shown in Figure 10(a). In each case, we show the original density
in R2 (left column), the graph of f on S2, and the level curves
of f on S2.

This framework can be extended to Sk in a straight-
forward manner. Once again, let the mean q̄ be identified
with the north pole of Sk , and let w1, w2 . . . ,wk ∈ Rk+1

form an orthonormal basis of Tq̄(Sk). Then, we can asso-
ciate with any v ∈ Tq̄(Sk) its coordinates x = (x1, x2, . . . , xk),
where xi = 〈v,wi 〉. A truncated multivariate normal density
in Tq̄(Sk), in terms of the local coordinates, is given by
f (x) = (1/Zk)e(−(1/2)xT K−1 x)1‖x‖≤π/2(x), where K is a k × k

covariance matrix and Zk is the normalizing constant. Without
loss of generality, we can write an arbitrary point v ∈ Tq̄(Sk)
as θw1, with θ ∈ R (since we can always rotate wi s so that
w1 aligns with v). The corresponding point on Sk under the
exponential map is given by p ≡ cos(θ )q̄ + sin(θ )w1. A conve-
nient orthogonal basis for the tangent space T p(Sk) is given by
b1 = (− sin(θ )q̄ + cos(θ )w1), b2 = w2, . . ., bk = wk. To derive
the differential of the map expq̄ , denoted expq̄∗, we take each
of the basis elements of Tq̄(Sk) and map them to T p(Sk) un-
der expq̄∗. The resulting determinant of the Jacobian matrix is
(sin(θ )/θ )k−1. For the derivation of expq̄∗, refer to the Appendix.

Therefore, we can write the induced density on Sk for a point
r , in terms of its local coordinates, as

f (r; q̄, K )

= (1/Zk) (θ/ sin(θ ))(k−1) exp
{( − (1/2)

× (θ/ sin(θ ))2rT K−1
w r

)}
1θ≤π/2, (6)

where θ = cos−1(〈r, q̄〉), K−1
w = W K−1WT , and W =

[w1 w2 · · · wk] ∈ Rk+1×k .

6.2.1 Shape Space S4. Our goal is to develop explicit prob-
ability models in shape spaces of curves. We will take S4

as an example; it is a quotient space of a Hilbert sphere.
To make the connection with Sk , we need to find a relevant
submanifold of S4 that can be identified with Sk , for some
k, and apply the previous steps. We accomplish this as fol-
lows. Take a q̄ ∈ S∞ and restrict to the subspace M, which
is the orthogonal complement of Tq̄([q̄]) in Tq̄(S∞). Then,
find a k-dimensional subspace Mk of M, using PCA or some
other dimension reduction technique. Identify q̄ with the point
n = (1, 0, . . . , 0) (the origin of this subspace). Then, the ex-
ponential map can be used to project elements of Mk into the
desired sphere Sk . Let w1, w2, . . . ,wk denote an orthonormal
basis of a subspaceMk (of Tq̄(S∞)) of interest. We can represent
any point v ∈ Mk as an element of Rk using v = ∑k

i=1 xiwi .
It can be shown that u

.= expn(v) = c(x)n + s(x)
∑k

i=1 xiwi ,
where c(x) = cos(‖x‖) and s(x) = sin(‖x‖)/‖x‖. Such a point
u ∈ S∞ can alternatively be expressed using the vector r =
(c(x), s(x)x1, . . . , s(x)xk) ∈ Sk , which provides a way to iden-
tify a subset of S∞ with Sk . Consequently, we can write a prob-
ability density on Sk ⊂ S∞ for any u ∈ S∞ as

f (u) = (1/Zk)(θ/ sin(θ ))(k−1)e−(1/2)x(u)T K−1 x(u), (7)

where θ = cos−1(〈r, n〉) = ‖x‖ and xi(u) = (θ/ sin(θ ))
〈wi , r〉.

Figure 11 (top row) displays random samples from the trun-
cated Gaussian distribution under the exponential map on the
shape and shape + orientation spaces. Also note that these sam-
ples reflect the properties of interest. When only shape is con-
sidered, with invariance to position, orientation, scale, and pa-
rameterization, the samples vary in shape only. The rest of the
properties are exactly the same for each of the curves gener-
ated by the model. When shape and orientation are of interest,
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Figure 11. Samples from truncated Gaussian distribution under the exponential map (top row) and the stereographic projection (bottom row).

the generated curves vary in those properties only—that is, the
scales and positions of the curves are fixed. It is important to
note that in the original artificial data, all of the curves have
three helices. This is evident in all of the generated curves as
well. The samples based on the brain fiber data also provide
valid observations under our model.

6.3 Truncated Gaussian Under the Stereographic
Projection

Another possibility to map a pdf from Rk to Sk is by using
the stereographic projection. Once a point q̄ ∈ Sk is identified
with the origin in Rk , a stereographic projection is specified
as follows. Imagine a plane Rk intersecting the sphere across
the equator and the point s being the diametrically opposite
point of q̄ on Sk . Then, for any point v in Rk , draw a straight
line from s to v; the intersection of this line with Sk is called
the stereographic projection of v. This is depicted pictorially in
Figure 8(b). For the sake of brevity, we will only provide the
final expression for the truncated Gaussian distribution on Sk:

f (x) = (1/(Zk(1 + x1)k)) exp{−(1/2)xT K−1x}1‖x‖≤π/2(x).

(8)

This has been accomplished earlier by Dortet-Bernadet (2008).
Figure 10(b) displays some illustrations of truncated Gaus-

sian distributions under the stereographic projection for S2. We

see that, in general, the truncated Gaussian distribution maps
nicely. Nonetheless, we note that if the greatest eigenvalue of
the covariance matrix becomes large, a unimodal density in the
tangent space may map to a bimodal density on the sphere due
to the nature of the Jacobian term.

Figure 11 (bottom row) displays random samples from the
truncated Gaussian distribution under the stereographic projec-
tion on the shape and shape + orientation spaces. Once again,
we see valid samples based on the given data.

6.4 Classification Using Gaussian Models on S4

To demonstrate the use of Gaussian-type distributions on S4

(shape only), we present classification results for a subset of
the SHREC (Shape Retrieval Contest of Non-rigid 3D Models)
2010 protein dataset (Mavridis et al. 2010). Given a sample of
l shapes in the training data for n classes, to perform classi-
fication, our approach is to first compute the sample Karcher
mean of each class, q̄i , i = 1, . . . , n, in a leave-one-out man-
ner and estimate the corresponding shooting vectors for each
shape in the given data v

j

i , i = 1, . . . , n, j = 1, . . . , l. To clas-
sify each shape, we first remove its shooting vector from the
set and train the covariance, K i , i = 1, . . . , n, for each of the
classes. As discussed earlier, we perform PCA using the SVD of
K i = U i�iUT

i . We restrict to a small number of principal com-
ponents (k = 8) to keep the modeling efficient, and project each

Figure 12. Top: sample proteins. Bottom: distance matrices for protein data.
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Table 4. Leave-one-out nearest-neighbor classification results for
protein data

Distance d4 dmean dcov Procrustes

Class. performance 87.1% 68.6% 88.6% 77.5%

shooting vector onto the orthonormal basis generated by them
using v

j

i,proj = ∑k
m=1 c

j,m

i Um
i , where cj,mi = 〈vji ,Um

i 〉. Then,
to classify the removed shape, we compute a log-likelihood
of each class as Dj

i = (1/2)cji �
−1
i cjTi + (‖vji − v

j

i,proj‖/ε) +
(1/2) log(|�i |), where ε > 0 is small (although this can be
treated as a parameter in the analysis, we simply choose a value
of 0.1). From now on, we will refer to this quantity as dcov.
We compare the classification results obtained using dcov with
those obtained using all pairwise shape distances (d4 introduced
in Section 3), a simple distance to the mean (dmean = d4 between
each curve and the class means computed in a leave-one-out
framework), and all pairwise Procrustes distances.

We consider the problem of classifying shapes of protein
backbones selected from the SHREC 2010 database. The data
consist of the first seven training classes, with 10 proteins
in each. Two examples from each class are displayed in the
top part of Figure 12. It is important to note that the protein
shape classification problem is not a simple one, and that it
is hard to separate the different classes in these data even
through visual inspection. In the bottom part of Figure 12, we
show the three distance matrices obtained using the different
distance measures. The distance matrix obtained using dmean

and all pairwise distances (d4) show little structure. The
distance matrix generated using the log-likelihood method dcov

(computed in a leave-one-out manner) shows better separation
of the seven classes. We compare all of the above performance
measures with a leave-one-out nearest-neighbor classification
rate based on a distance computed using rigid alignment only
(Procrustes analysis, function procrustes.m in MATLAB).
The leave-one-out nearest-neighbor classification performance
results are summarized in Table 4. The log-likelihood method
provides the highest classification rate for this protein dataset (in
bold in Table 4). Furthermore, elastic shape analysis performs
better than standard Procrustes analysis, which is an indication
of improved feature (α helices, β sheets, etc.) matching through
optimization over the reparameterization group.

7. CONCLUSION

We have proposed a methodology for the analysis of three-
dimensional curves that allows for inclusion of any combination
of shape, scale, orientation, and position in the analysis. The
SRVF and SRF representations allow for invariance under the
action of the reparameterization group, thus making deforma-
tions of curves elastic. This is an important feature because it
allows us to generate more natural and smooth geodesic paths
and more representative statistical models. In addition, we have
presented a derivation of Gaussian models in shape spaces of
curves under the exponential map and the stereographic pro-
jection. There are many applications of such a framework and
we present ones from medical imaging in clustering of DT-

MRI brain fibers and bioinformatics for classification of protein
backbones based on Gaussian log-likelihoods.

APPENDIX

A.1 Path-Straightening for SRF Representation

For a given parameterized curve β, its corresponding SRF is defined
as hβ (s) =

√
|β̇(s)|β(s). As stated in Section 2, the space of all SRFs

is a subset of L2, and the actions of the reparameterization and rotation
groups in this space under the L2 metric are by isometries. Thus, we
will use the pullback of this metric from the space of SRFs to define
geodesics in the space of parameterized curves (we will refer to this
space as B). It is important to note that � acts on B on the right by com-
position, β ◦ γ . The differential of the mapping h at β, denoted by dhβ ,
given a vector fieldp ∈ Tβ (B) and a scalar r ∈ R, is given by dhβ (p) =
d/dr|r=0h(β + rp) = (1/2

√
|β̇|)(β̇ · ṗ)β +

√
|β̇|p. We use this differ-

ential function to define a Riemannian metric on Tβ (B) as follows.

Definition A.1. For a β ∈ B and p,m ∈ Tβ (B), define the inner
product:

〈p,m〉β ≡ 〈
dhβ (p), dhβ (m)

〉
L2 , (A.1)

where the inner product on the right side is the standard inner product
in L2, as indicated.

With this metric, B becomes a Riemannian manifold and we want
to compute a geodesic path between two points, say β1 and β2, in B.
Substituting the expression for dhβ in Equation (A.1), we obtain:

〈p,m〉β = 〈dhβ (p), dhβ (m)〉L2

= 〈(1/(2|β̇|3/2))(β̇ · ṗ)β

+
√

|β̇|p, (1/(2|β̇|3/2))(β̇ · ṁ)β +
√

|β̇|m〉
= 〈(1/(4|β̇|3))(β̇ · ṗ)(β̇ · ṁ)β, β〉 + 〈(1/(2|β̇|))[(β̇ · ṁ)p

+ (β̇ · ṗ)m], β〉 + 〈|β̇|p,m〉.
This is the detailed form of the Riemannian metric imposed on B for
forming geodesic paths.

Let F : [0, 1] → B denote a path in B indexed by t such that F (0) =
β1 and F (1) = β2. For example, we can initialize F using a straight
line between β1 and β2 in B under the L2 metric. The energy of this
path is

E[F ] =
∫ 1

0
〈Ft , Ft 〉F dt =

∫ 1

0
〈dhF (Ft ), dhF (Ft )〉L2dt

=
∫ 1

0
(〈(1/(4|Ḟ |3))(Ḟ · Ḟt )2F,F 〉L2 + 〈(1/|Ḟ |)(Ḟ · Ḟt )Ft , F 〉L2

+ 〈|Ḟ |Ft , Ft 〉L2 )dt

=
∫ 1

0

∫ 1

0
((1/(4|Ḟ |3))(Ḟ · Ḟt )2(F · F ) + (1/|Ḟ |)(Ḟ · Ḟt )(Ft · F )

+ |Ḟ |(Ft · Ft ))dsdt,
where we have used Equation (A.1) to reach the second equality. In
this expression, we have suppressed the argument t for all quanti-
ties. Also, Ḟ denotes the partial derivative with respect to s (curve
parameterization), and Ft denotes the partial derivative with respect
to t (path parameterization). To “straighten” F, we are going to use
the gradient of E. It is well known that a critical point of E is a
geodesic path. Let G ∈ G be a direction of perturbation of the path
F. Here, G is the space of all such perturbations. Then, the direc-
tional derivative of E in the direction G is given by, for ε ∈ R,
∇EF (G) = (d/dε)E(F + εG)|ε=0. The energy of the perturbed path
isE[F + εG] = ∫ 1

0 〈dhF+εG(Ft + εGt ), dhF+εG(Ft + εGt )〉L2dt. For
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the sake of brevity, we only provide the final expression of the direc-
tional derivative of the energy, rather than its full derivation:

∇EF (G) =
∫ 1

0

∫ 1

0
(((−3(Ḟ · Ġ))/(4|Ḟ |5))(Ḟ · Ḟt )2(F · F )

+ (1/(2|Ḟ |3))(Ḟ · Ḟt )(Ḟ · Ġt + Ḟt · Ġ)(F · F )

+ (1/(2|Ḟ |3))(Ḟ · Ḟt )2(F ·G)

+ (−(Ḟ · Ġ)/|Ḟ |3)(Ḟ · Ḟt )(Ft · F ) + (1/|Ḟ |)(Ḟ · Ġt

+ Ḟt · Ġ)(Ft · F ) + (1/|Ḟ |)(Ḟ · Ḟt )(Ft ·G
+F ·Gt ) + ((Ḟ · Ġ)/|Ḟ |)(Ft · Ft ) + 2|Ḟ |(Ft ·Gt ))dsdt.

To approximate the gradient of the path-straightening energy, we will
use an orthonormal basis of G, p = {pi |i = 1, 2, . . .} and set ∇EF =∑∞

i=1(∇EF (pi))pi . The basis p is formed using products of a modified
Fourier basis, where the vector fields at t = 0 and t = 1 are zero. This
modification is necessary because we do not want to change the starting
and end points of the paths.

A.2 Optimization Over Nuisance Groups

In several of the representations mentioned in the article, one needs
an optimization over certain shape-preserving transformation groups.
The scale and translation can be easily removed in the representation
process, by using rescaled SRVFs, but the process is different for re-
moving the rotation and reparameterization groups. These are removed
by solving optimization problems on these respective groups. In this
section, we describe these two optimizations.

If we fix the parameterizations of curves, then their rotation align-
ment is straightforward, using Procrustes analysis. The solution to
the problem O∗ = argminO∈SO(3) ‖q1 − Oq2‖ is given by O∗ = U V T ,

where U SV T is the SVD of the 3 × 3 matrix A = ∫ 1
0 q1(t)q2(t)T dt . If

the determinant of A is negative, one needs to modify V by changing
the sign of its last column before multiplying by U to obtain the optimal
rotation O∗.

Here, given a fixed rotation, we need to solve the optimization prob-
lem γ ∗ = argminγ∈� ‖q1 − √

γ̇ (q2 ◦ γ )‖ . Since there is no analytical
solution to this problem in general, we discuss a computational so-
lution, called the dynamic programming algorithm. In this approach,
the parameter domain [0, 1] is discretized using a finite partition, for
example, using k equally spaced points. This leads to a k × k grid on
the square [0, 1]2.� is actually a set of paths that start at the bottom-left
corner of [0, 1]2 and reach the top-right corner in such a way that the
instantaneous directions are always strictly between 0 and π/2. In the
approximate problem, one restricts to only piecewise linear paths that
pass through the nodes of the k × k grid and the slopes are always
strictly between 0 and ∞. Since the cost function is defined by the
L2 distance and, thus, is additive over the path (t, γ (t)), the dynamic
programming algorithm applies here. The interested readers can refer
to a textbook, for example, Bertsekas (1995).

A.3 Differential of the Exponential Map

Case of S2: The mapping of w1, expn∗(w1), is given by

∂/∂t |t=0 expn(θw1 + tw1) = ∂/∂t |t=0 (cos(θ + t)n + sin(θ + t)w1)

= − sin(θ )n + cos(θ )w1 = 1b1 + 0b2 .

The mapping of w2, expn∗(w2), is given by

∂/∂t |t=0 expn(θw1 + tw2)

= ∂/∂t |t=0(cos(
√
θ 2 + t2)n + sin(

√
θ 2 + t2)

× ((θw1 + tw2)/
√
θ2 + t2)) = (− sin(

√
θ 2 + t2)(t/

√
θ 2 + t2)n

+ cos(
√
θ 2 + t2)(t/

√
θ 2 + t2)((θw1 + tw2)/(

√
θ2 + t2))

+ sin(
√
θ2 + t2)(w2/

√
θ 2 + t2) − sin(

√
θ2 + t2)

× (θw1 + tw2)(t/(θ2 + t2)3/2))|t=0 = (sin(θ )/θ )w2

= 0b1 + (sin(θ )/θ )b2 .

Case of Sk: The mapping of w1, expn∗(w1), is given by

∂

∂t

∣∣∣∣∣
t=0

expn(θw1 + tw1) = ∂

∂t

∣∣∣∣∣
t=0

(
cos(θ + t)n + sin(θ + t)w1

)
= − sin(θ )n + cos(θ )w1 = 1b1 .

The mapping of wi , i > 1, expn∗(wi ), is given by

∂/∂t |t=0 expn(θw1 + twi )

= ∂/∂t |t=0(cos(
√
θ2 + t2)n + sin(

√
θ2 + t2)

× ((θw1 + twi )/
√
θ2 + t2)) = sin(θ )

θ
wi = sin(θ )

θ
bi .

[Received February 2011. Revised April 2012.]
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