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1. Introduction

In [6] and other related papers, Srivastava et al introduced a new method for
analyzing the shapes of absolutely continuous functions [0, 1] → RN . By “shape”
we mean that under this analysis, two such functions are considered equivalent if
they only differ by a reparametrization, i.e., by composition with a diffeomorphism
[0, 1] → [0, 1]. The method is based on producing a bijection between the set of
absolutely continuous functions (starting at the origin) and L2(I,RN ), and then
transferring the L2 metric back to the set of absolutely continuous functions. The
L2 function corresponding to a given absolutely continuous function is called its
square root velocity function (SRVF), and the general method is referred to by the
same name. The result is a complete metric on the space of absolutely continuous
functions starting at the origin. Furthermore, with respect to this metric, the group
of diffeomorphisms acts by isometries. This makes it possible to mod out L2(I,RN )
by an appropriate group of reparametrizations, resulting in a quotient space that
is also a complete metric space.

The SRVF metric and the corresponding quotient construction have proved quite
useful for analyzing shapes of functions and curves for several reasons:

• The metric has a compelling geometric interpretation as an elastic metric
(see [6]), under which optimal deformations minimize a combination of
bending and stretching.

• It provides a very effective solution to the classical problem of aligning two
functions R→ R by warping their domains. (See Tucker et al [9].)

• It can easily be adapted to a method of comparing closed curves, which
comprise a complete subspace of the metric space of all curves. These
closed curves are especially important because they occur as outlines of
images. (See [6].)

• With some modifications, it can effectively be adapted to the analysis of
curves up to affine transformation. (See Bryner et al [2].)

A fundamental problem that arises in the implementation of this method is the
“optimal matching” problem: Given two functions I → RN , determine reparametriza-
tions of these functions that achieve the infimum of the distance between the two
corresponding orbits under the reparametrization group. Finding such an opti-
mal matching is important not only because it results in a precise computation
of the distance between two orbits, but also because it allows one to find shortest
geodesics in the quotient space. In theory, we do not know whether such a pair
of optimal reparametrizations always exists! In most previous implementations, a
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solution to this optimal matching problem has been approximated using a dynamic
programming algorithm (once again, see [6]) .

The current paper has two primary goals: (1) to establish the theoretical under-
pinnings of the SRVF method, especially the delicate quotient construction referred
to above and (2) to exhibit an algorithm that provides a precise solution to the
optimal matching problem for continuous piecewise linear functions. The set of
piecewise linear functions is very useful because it is the simplest way of interpo-
lating functions for which we have only a finite set of data points, and because it
is dense in the space of absolutely continuous functions with respect to the SRVF
metric.

There is considerable literature on similar methods for analyzing curves. For
example in Younes et al [11] a representation of planar curves is used that is similar
to SRVF, but involves the complex square root of the velocity (as opposed to the
SRVF method, which only takes the square root of the magnitude of the velocity).
This method results in a beautiful way of handling closed curves, but does not
generalize easily to curves in RN . Also, in [11], only smooth curves are considered,
which means that the resulting quotient space is not a complete metric space.
Sundaramoorthi et al consider a similar metric on the space of smooth planar
curves in [8].

In Bauer et al [1], a whole family of metrics on planar curves is considered, which
includes both the SRVF metric and the metric in [11] as special cases. However,
this paper also does not generalize to curves in RN .

In Daniel Robinson’s unpublished doctoral dissertation [4], a precise matching
algorithm is introduced for PL functions I → R, but it does not easily generalize
to PL functions I → RN . Some of the theoretical material from Section 2 is also
adapted from [4].

The main advances in the current paper are as follows:

• A rigorous development of the SRVF metric.
• A careful development of the quotient of L2(I,RN ) by the group of reparametriza-

tions; this includes a characterization of the closed orbits involved in the
construction.
• A description and inplementation of an algorithm that gives a precise solu-

tion to the matching problem for PL curves, a class of curves that is dense
in the space of all absolutely continuous curves.

One issue that this paper does not address, is the action of the group of rotations,
O(N,R), on the space of absolutely continuous curves. This part of the theory is
easier because it involves a linear action by a compact finite dimensional Lie group,
and there are straightforward analytic methods for handling it (see Srivastava et al
[6] for details on how to do this).

The contents of this paper are as follows: In Section 2, we define the square
root velocity function (SRVF) of an absolutely continuous function I → RN , and

we define the group Γ of reparametrizations; we also define a semigroup Γ̃ that
contains Γ. In Sections 3 and 4 we prove that the closure of each orbit under Γ can
be expressed as an orbit under Γ̃. This is important since, if we wish our quotient
space to inherit a metric, the orbits must be closed sets. (In Section 3, this theorem
is proved for functions I → R, while in Section 4 it is generalized to functions
I → RN .) In Section 5, we begin to focus on piecewise linear functions, which
comprise a dense subset of the set of all absolutely continuous functions with respect
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to the SRVF metric. In particular, we prove that if we are given two orbits [q1]

and [q2] under the action of Γ̃, and if at least one of these orbits contains the SRVF
of a piecewise linear function, then there exist orbit representatives that realize
the minimum distance between these orbits. (Such a pair of orbit representatives
is called an optimal matching of the two orbits.) We also prove that if both of
these orbits contain the SRVFs of PL functions, then this optimal pair of orbit
representatives can be chosen to be the SRVFs of PL functions. In Section 6, we
begin our discussion of how to produce an optimal matching between PL functions,
setting up some basic terminology. In Section 7, we prove a theorem establishing
certain properties that an optimal matching between PL functions must have. In
Section 8, we give a precise algorithm for producing an optimal matching between
two PL functions, based on the theorem proved in Section 7. Section 9 gives a few
examples of optimal matchings produced by the algorithm described in Section 8.

We thank our colleague Dan Oberlin for several helpful conversations.

2. Basic Quotient Construction for Curves in RN

In this paper, we consider absolutely continuous functions I → RN , where I =
[0, 1]. A function f : [a, b] → R is absolutely continuous if and only if it has
a derivative f ′ almost everywhere, f ′ is Lebesgue integrable, and for all t ∈ I,

f(t) = f(0) +
∫ t

0
f ′(u) du. (This is not the usual definition of absolute continuity,

but it is well known to be equivalent to the usual definition; see, for example,
Theorems 11, p. 125 and Theorem 14, p. 126 of [5].) Let AC0(I,RN ) denote the
set of absolutely continuous functions I → RN with the property that f(0) = 0. We
want to compare these functions up to reparameterization. In other words, given
f and g in AC0(I,RN ), we want to consider them as equivalent if there exists a
“nice” homeomorphism γ : I → I such that f ◦γ = g. If they are not equivalent, we
would like a quantitative measure of how far from being equivalent they are. Let Γ
denote the group of functions γ : I → I which have the following three properties:
(1) γ is absolutely continuous, (2) γ(0) = 0 and γ(1) = 1, and (3) γ′(t) > 0 almost
everywhere. Γ is a group under composition. Clearly, Γ acts on AC0(I,RN ) from
the right by composition. We would like to make the quotient set AC0(I,RN )/Γ
into a metric space in a reasonable way. There are two important issues to overcome
here. The first is that to get a reasonable metric on a quotient space, it helps if the
group acts by isometries. The second is that the orbits should be closed sets. We
tackle these one at a time.

Before we turn to these two issues, it will be helpful to define a semigroup
containing Γ. Let Γ̃ be the set of functions γ : I → I satisfying (1) γ is absolutely
continuous, (2) γ(0) = 0 and γ(1) = 1, and (3) γ′(t) ≥ 0 almost everywhere. Note

that Γ̃ is a semigroup, and also acts on AC0(I,RN ) from the right by composition.

We now describe a way to understand the action of Γ̃ (and, therefore, Γ) as an
action by isometries. To do this, begin by defining a function V : RN → RN by

V (x) =

{
x√
|x|

for x 6= 0

0 for x = 0

Denote by L2(I,RN ) the space of square integrable functions I → RN , with
standard L2 inner product denoted by 〈q1, q2〉 and distance function defined by

d(q1, q2) =
√
〈q1 − q2, q1 − q2〉. Define a function Q : AC0(I,RN ) → L2(I,RN ) by
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Q(f) = V ◦ f ′. It’s easy to see that Q is bijective (this is proved in [4]); in fact

given a function q ∈ L2(I), we can define f(t) =
∫ t

0
q(u)|q(u)| du, and then verify

that Q(f) = q.

Since Γ̃ acts on AC0(I,RN ) and Q : AC0(I,RN ) → L2(I,RN ) is bijective, we

can define an action of Γ̃ on L2(I,RN ) in a unique way to make Q equivariant. In

fact, it is easy to verify that the corresponding right action of Γ̃ on L2(I,RN ) is

given by (q ∗ γ)(t) = q(γ(t))
√
γ′(t). Furthermore, this action of Γ̃ on L2(I,RN ) is

by isometries since

〈q1 ∗ γ, q2 ∗ γ〉 =

∫ 1

0

q1(γ(t))
√
γ′(t)q2(γ(t))

√
γ′(t) dt

=

∫ 1

0

q1(γ(t))q2(γ(t))γ′(t) dt =

∫ 1

0

q1(u)q2(u) du = 〈q1, q2〉.

Note that for the second to last equality, we relied on integration by substitution,
which is valid because γ is absolutely continuous. This is one important reason for
insisting that our reparameterization functions are absolutely continuous. Thus, we
replace our study of the action of Γ̃ on AC0(I,RN ) by the study of the corresponding

action of Γ̃ on L2(I,RN ), which is an action by linear isometries. In what follows

we will be interested both in the action of Γ̃, and in the restricted action of Γ. Note
to the reader: Our definition of “action by isometries” is simply that for all γ ∈ Γ̃
and for all q1, q2 ∈ L2(I,RN ), 〈q1 ∗ γ, q2 ∗ γ〉 = 〈q1, q2〉. While this equation implies
that the map L2(I,RN ) → L2(I,RN ) induced by each γ is injective, it does not

imply that it is surjective. For example, suppose that γ ∈ Γ̃ is constant on some
subinterval of I. Then for all q ∈ L2(I,RN ), q ∗ γ = 0 on this same subinterval. Of
course, for γ ∈ Γ, the induced map is bijective, since Γ is a group.

Denote by U(I,RN ) the unit sphere {q ∈ L2(I,RN ) :
∫ 1

0
|q(t)|2 dt = 1}. This

corresponds to the set of functions in AC0(I,RN ) having arc length 1, since if
Q(f) = q, it follows that |f ′(t)| = |q(t)|2, and the arclength of f can be written as∫ 1

0
|f ′(t)| dt. U(I,RN ) is an invariant subset of L2(I,RN ) under the action of Γ̃, as

is the sphere of any radius centered at 0 in L2(I,RN ). If we wish to compare two
curves in a way that is invariant to rescaling, a natural way to do this is to rescale
both of them to have unit length before comparing them. Hence, we sometimes
concentrate on the action of Γ̃ on U(I,RN ).
U(I,RN ) is an infinite dimensional submanifold of L2(I,RN ). If we think of it

as a Riemannian manifold, using the L2-inner product as a Riemannian metric,
then the geodesics are the arcs of great circles, where by “great circle” we mean
the intersection of U(I,RN ) with any 2-dimensional linear subspace of L2(I,RN ).
The corresponding (geodesic) distance function between any q1 and q2 in U(I,RN )

is given by cos−1(〈q1, q2〉). Note that Γ and Γ̃ act on U(I,RN ) by isometries.
We now return our attention to the action of Γ on L2(I,RN ). Given q ∈

L2(I,RN ), let qΓ denote the orbit of q under Γ, and let L2(I,RN )/Γ denote the
set of all these orbits. Define a function ρ : (L2(I,RN )/Γ) × (L2(I,RN )/Γ) → R
by ρ(q1Γ, q2Γ) = inf(γ1,γ2)∈Γ×Γ d(q1 ∗ γ1, q2 ∗ γ2) = infγ∈Γ d(q1, q2 ∗ γ). The last
equality follows from the fact that Γ acts by isometries. As usual, it’s easy to show
that ρ is symmetric, satisfies the triangle inequality and is non-negative. However,
it’s also easy to find examples where q1Γ 6= q2Γ, but ρ(q1Γ, q2Γ) = 0. The reason
for this is that the orbits are not closed sets, so all you have to do is choose q2 to
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be in the L2-closure of q1Γ, but not in the orbit itself, in order to create such an
example.

For example, define γ̃ ∈ Γ̃ by

γ̃(t) =

{
2t for t < .5

1 for t ≥ .5

While γ̃ /∈ Γ, we now construct a sequence {γn} in Γ such that {
√
γ′n} approaches√

γ̃′ in the L2 sense. To do this, let

γn(t) =

{
(2− 1

n )t for 0 ≤ t ≤ .5
(1− 1

n ) + 1
n t for .5 < t ≤ 1

Now, let q0(t) ≡ c denote a constant function, where c ∈ RN is any nonzero

vector. For each γ ∈ Γ, (q0 ∗γ)(t) =
√
γ′(t)c. Then

√
γ̃′c /∈ q0Γ, but

√
γ̃′c is a limit

point of q0Γ because each
√
γ′nc is in the orbit q0Γ, and clearly

√
γ′nc→

√
γ̃′c with

respect to the L2 norm. Hence q0 ∗ γ̃ 6∈ q0Γ, but q0 ∗ γ̃ is in the closure of q0Γ.

Lemma 1. Assume q1 and q2 are elements of L2(I,RN ). Then ρ(q1Γ, q2Γ) = 0 if
and only if q1Γ and q2Γ have the same closure in L2(I,RN ).

Proof. Suppose ρ(q1Γ, q2Γ) = 0. Then there exist sequences {γn} and {γ̃n} in Γ
such that limn→∞ d(q1 ∗ γn, q2 ∗ γ̃n) = 0. Because Γ acts by isometries, it follows
that limn→∞ d(q1, q2 ∗ γ̃nγ−1

n ) = 0, proving q1 is in the closure of q2Γ. Since there
was nothing special about the orbit representatives we chose, and the argument is
symmetric, if follows that each orbit is in the closure of the other; hence, q1Γ and
q2Γ have the same closure. The other direction is obvious and we omit it. �

Because of this lemma, the closure of an orbit is a union of orbits; if we define a bi-
nary relation on L2(I,RN ) by stipulating that q1 ∼ q2 means that q1Γ and q2Γ have
the same closure, then ∼ is an equivalence relation. Let S(I,RN ) = L2(I,RN )/ ∼.
Henceforth, we will use the symbol [q] to denote the point in S(I,RN ) correspond-
ing to the closure of the orbit qΓ. We will loosely refer to this as the “orbit” of q,
even though it is actually a closed-up orbit. It is easily verified that our distance
function d on L2(I,RN ) induces a metric, which we also call d, on S(I,RN ), defined
by

d([q1], [q2]) = inf
w1∈[q1],w2∈[q2]

d(w1, w2)

and this metric induces the quotient topology.
We now prove a theorem giving a general form for elements of L2(I,RN ).

Theorem 1. Let q ∈ L2(I,RN ). Then q can be written in a unique way as q = w∗γ
where γ ∈ Γ̃ and w ∈ L2(I,RN ) has the property that |w(t)| is constant a.e. for
t ∈ I.

Proof. By Theorem 4.1 of [7], every absolutely continuous function on a closed in-
terval is rectifiable, and by Theorem 4.3 of the same book, every rectifiable function
has a constant speed parametrization, with the reparametrizing function being ab-
solutely continuous. Since for every q ∈ L2(I,RN ), there is an absolutely continuous
function f such that q = Q(f), our lemma follows immediately. �

We now wish to focus on a particular subset of S(I,RN ). We define a function
q : I → RN to be a step function if we can express I as a finite disjoint union of
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subintervals on each of which q is constant. Since we will only use this concept
for L2 functions, we don’t care what happens at the endpoints of each subinterval.
It is a well-known fact (Prop. 10, p.151 of [5]) that the step functions are dense
in L2(I,RN ). We define S(I,RN )st ⊂ S(I,RN ) to be the set of all equivalence
classes that contain at least one step function. We see immediately that S(I,RN )st
is dense in S(I,RN ). Furthermore, under our bijection Q between AC0 and L2,
the step functions in L2 correspond to the piecewise linear functions (with finitely
many pieces) in AC0.

Later in this paper, we will prove that given two elements [q] and [w] of S(I,RN ),
if at least one of them is in S(I,RN )st, then there exist elements q̃ ∈ [q] and w̃ ∈ [w]
such that d(q̃, w̃) = d([q], [w]). We will also prove that if both [q] and [w] are in
S(I,RN )st, then q̃ and w̃ can both be chosen to be step functions. As a result, it
will follow that S(I,RN )st is a geodesically convex subset of S(I,RN ), in the sense
that given [q] and [w] in S(I,RN )st, there exists a minimal geodesic in S(I,RN )
joining [q] to [w] that lies entirely in S(I,RN )st.

3. Orbit Structure in S(I,R)

In this section, we will specialize to the case N = 1, so all of our functions are
scalar valued instead of vector valued. In this case, Γ ⊂ AC0(I,R), and Q(Γ) ⊂
U(I,R). In fact, Q(Γ) = {q ∈ U(I,R) : q(t) > 0 a.e.}. To see this, we refer to
Exercise 3.21 on page 82 of [3], which states that a continuous, strictly increasing
function u : [a, b]→ R has an absolutely continuous inverse if and only if the set on
which its derivative vanishes has measure 0. It is then immediate that the closure
of Q(Γ) in U(I,R) is {q ∈ U(I,R) : q(t) ≥ 0 a.e.}. Note that this last set is equal

to Q(Γ̃). Hence, the closure of Q(Γ) in U(I,R) is Q(Γ̃).
We begin by examining the simplest orbit in U(I,R). Let q0 ≡ 1 denote the

constant function. What can we say about the orbit [q0]?

Lemma 2. [q0] = Cl(Q(Γ)) = {g ∈ U(I,R) : for all t ∈ I, g(t) ≥ 0 a.e.} = Q(Γ̃).

Proof. Given γ ∈ Γ, it’s immediate that (q0∗γ)(t) =
√
γ′(t) = Q(γ)(t). The lemma

then follows immediately from the previous paragraph. �

Corollary 1. Given any g1 ∈ U(I,R) and g2 ∈ U(I,R) satisfying g1(t) ≥ 0 a.e.
and g2(t) ≥ 0 a.e., there is a sequence {γn} in Γ such that g1 ∗ γn → g2 in the L2

metric.

Proof. Since g1 and g2 are both elements of Cl(Q(Γ)) = [q0], it follows that [g1] =
[g2] = [q0]. The corollary follows immediately. �

Let us think of q0 ≡ 1 as the “north pole” of U(I,R), and −q0 ≡ −1 as the

“south pole”. Then the “upper hemisphere” is {g ∈ U(I,R) :
∫ 1

0
g(t) dt ≥ 0}, the

“lower hemisphere” is {g ∈ U(I,R) :
∫ 1

0
g(t) dt ≤ 0}, and the “equatorial sphere”

is {g ∈ U(I,R) :
∫ 1

0
g(t) dt = 0}.

We next note that [q0] is completely contained in the upper hemisphere, and in

fact does not intersect the equatorial sphere. That’s because if
∫ 1

0
g(t)2 dt = 1 but∫ 1

0
g(t) dt ≤ 0, then it is clear that there must be a set of measure greater than zero

on which g(t) < 0.
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We now observe that even though [q0] does not intersect the equatorial sphere,
it does contain points arbitrarily close to the equatorial sphere! To see this, let
0 < ε < 1, and define gε ∈ U(I,R) by

gε(t) =

{
1/
√
ε for t < ε

0 for t ≥ ε

and define vε ∈ U(I,R) by

vε(t) =


√

1−ε
ε for t < ε

−
√

ε
1−ε for t ≥ ε.

Clearly, gε ∈ [q0], vε is in the equatorial sphere, and d(gε, vε) =
√

2− 2
√

1− ε,
which can be made as small as desired by taking ε small.

The next lemma will calculate the distance between two specific orbits, and will
provide actual orbit representatives that realize this distance.

Remark 1. Since Γ and Γ̃ act by isometries on L2(I,RN ), it follows that min-
imizing the distance between orbit representatives of [q] and [w] is equivalent to
maximizing their L2 inner products.

Lemma 3. Suppose the unit interval is expressed as a disjoint union of measurable
sets, I = A ∪ B, where A is assumed to have measure a. (For purposes of visual-
ization, the reader may want to keep in mind the case in which A and B are simply
subintervals of I.) Define

w(t) =

{
1 for t ∈ A
−1 for t ∈ B.

Then d([q0], [w]) =
√

2− 2
√
a, and this distance is realized by the orbit representa-

tives w ∈ [w] and qA ∈ [q0], where we define

qA(t) =

{
1/
√
a for t ∈ A

0 for t ∈ B.

Proof. First, it’s easily verified that
∫ 1

0
w(t)q(t) dt =

√
a (implying d(q, w) =

√
2− 2

√
a).

So we just need to prove that this is the maximum over all representatives of [q0]. In
what follows, the key step will be the Cauchy Schwarz inequality, which states that

for arbitrary f and g in L2(A), |
∫
A
f(t)g(t) dt| ≤

(∫
A
f(t)2 dt

)1/2 (∫
A
g(t)2 dt

)1/2
.

Continuing with the proof, choose an arbitrary q ∈ [q0]. Then calculate∫ 1

0

q(t)w(t) dt =

∫
A

q(t)w(t) dt+

∫
B

q(t)w(t) dt.

Clearly
∫
B
q(t)w(t) dt ≤ 0 since q(t) ≥ 0 and w(t) ≤ 0 on B. By Cauchy Schwarz,∫

A
q(t)w(t) dt ≤ 1 ·

√
a. These two bounds imply that

∫ 1

0
q(t)w(t) dt ≤

√
a. �

We remark that since geodesics in L2(I,RN ) are straight lies, it is easy to write
down a specific shortest geodesic from qA to w in the lemma above. It’s also easy
to verify that the image of this geodesic in S(I,R) is a geodesic (in fact, a shortest
geodesic) in this quotient space, according to the usual definition of geodesic used
in metric spaces:
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Definition: A geodesic in S(I,R) is a continuous function α : [0, L] → S(I,R)
with the property that there exists a positive number K such that for all s ∈ [0, L],
there exists ε > 0 such that for all t1, t2 ∈ (s − ε, s + ε) ∩ [0, L], d(α(t1), α(t2)) =
K|t2 − t1|.

Some fundamental problems regarding geodesics in S(I,R) are: (1) Given any
two points in S(I,R) is there a geodesic joining them? Is there a shortest geodesic?
Can we find this geodesic in some reasonable way, for some reasonable set of points
in S(I,R)? In Lemma 3, we found a precise description of the shortest geodesic
between the particular orbit [q0] ∈ S(I,R), and any orbit of the form [w], where w
has the form

w(t) =

{
1 for t ∈ A
−1 for t ∈ B.

However, in Theorem 1, we proved that every element of U(I,R) can be uniquely

expressed as w ∗ γ, where w is of the form described above and γ ∈ Γ̃. (In fact, we
proved a more general version of this for U(I,RN )). Hence, we now know that for
every orbit [q] ∈ U(I,R), there is a unique shortest geodesic in S(I,R) joining [q]
to the particular orbit [q0], and in fact we have given a precise description of that
geodesic.

Lemma 4. Let 0 ≤ a < b ≤ 1 and suppose q and w are two elements of U(I,R)
with the following three properties:

(1) For all t ∈ (a, b), q(t) ≥ 0 and w(t) ≥ 0.

(2)
∫ b
a
q(t)2dt =

∫ b
a
w(t)2dt

(3) For all t 6∈ (a, b), q(t) = w(t).

Then [q] = [w].

Remark 2. We may replace condition (1) by the assumption that for all t ∈ (a, b),
q(t) ≤ 0 and w(t) ≤ 0, and the Lemma still holds, with the same proof.

Proof. By Corollary 1, there is a sequence {λn} of absolutely continuous homeo-
morphisms [a, b] → [a, b] with the property that λ−1

n (0) has measure 0, such that
in L2([a, b]), q ∗ λn → w. (Note that in the proof of Corollary 1 it makes no dif-
ference that we have changed the interval from I to [a, b] and changed the value of∫ b
a
q(t)2dt =

∫ b
a
w(t)2dt from 1 to whatever it is.) Then for each n, extend λn to

γn ∈ Γ, by extending it as the identity outside [a, b]. It is then clear that in L2(I),
q ∗ γn → w. �

Lemma 5. Let q ∈ L2(I,R). Then [q] ∈ S(I,R)st if and only if there is a finite
sequence 0 = t0 < t1 < · · · < tn = 1 such that for each j, either q(t) ≥ 0 for all
t ∈ [tj−1, tj ] (a.e.), or q(t) ≤ 0 for all t ∈ [tj−1, tj ] (a.e.).

Proof. First, suppose there exists a finite sequence 0 = t0 < t1 < · · · < tn = 1 such
that for each j, either q(t) ≥ 0 for all t ∈ [tj−1, tj ], or q(t) ≤ 0 for all t ∈ [tj−1, tj ].
Then, by successive applications of Lemma 4 we can find a new function in [q] that
is constant on each [tj−1, tj ]. It follows that [q] ∈ S(I,R)st.

On the other hand, suppose [q] ∈ S(I,R)st. Let w be a step function in [q].
It follows that there exists a sequence {γi} in Γ such that w ∗ γi → q in U(I,R)
with respect to the L2 metric. Because of this convergence in L2, we may choose
a subsequence of {γi} such that w ∗ γi → q a.e. Since w is a step function, we
can find a sequence 0 = t0 < t1 < · · · < tn = 1 such that w is constant on each
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interval (tj−1, tj). For each j ∈ {1, . . . , n− 1} and i = 1, 2, 3, . . . , let tj,i = γ−1
i (tj).

By compactness of I, we can replace the sequence {γi} by a subsequence with the
property that for each fixed j0, the sequence {tj0,i} converges to a number t̃j0 ∈ I,
as i → ∞. Now, fix j ∈ {1, . . . , n}. We will show that either q(t) ≥ 0 a.e. or
q(t) ≤ 0 a.e. for t ∈ (t̃j−1, t̃j). WLG, assume that w(t) ≥ 0 on (tj−1, tj). Let
t̃ ∈ (t̃j−1, t̃j). By definition of the action of Γ, we know that w ∗ γi(t) ≥ 0 for all
t ∈ (tj−1,i, tj,i). Choose an ε > 0 such that there exists an N such that for all
i > N , (t̃ − ε, t̃ + ε) ⊂ (tj−1,i, tj,i). It follows that for all i > N , w ∗ γi(t) ≥ 0 on
(t̃ − ε, t̃ + ε). Since w ∗ γi → q a.e., it follows that q(t) ≥ 0 almost everywhere in
(t̃j−1− ε, t̃j + ε). Thus, we have shown that every t̃ ∈ (t̃j−1, t̃j) has a neighborhood
on which q(t) ≥ 0 a.e. Since a countable number of these neighborhoods cover
(t̃j−1, t̃j), it follows that q(t) ≥ 0 a.e. in (t̃j−1, t̃j). Thus, we have produced a finite
sequence {t̃j} such that on each (t̃j−1, t̃j), either q(t) ≥ 0 a.e. or q(t) ≤ 0 a.e. �

Lemma 6. Let q1, q2 ∈ L2(I,R), and assume that [q1], [q2] ∈ S(I,R)st. Then there
exist step functions w1 ∈ [q1] and w2 ∈ [q2] such that d(w1, w2) ≤ d(q1, q2).

Proof. It suffices to find step functions w1 ∈ [q1] and w2 ∈ [q2] such that 〈w1, w2〉 ≥
〈q1, q2〉. By applying Lemma 5 to q1 and q2 and then taking the union of our finite
ti-sequences, we obtain a single finite sequence 0 = t0 < · · · < tn = 1 such that
for each i = 1, . . . , n, both q1 and q2 have constant sign on [ti−1, ti]. By “constant
sign”, we mean that on this interval either q1(t) ≥ 0 a.e. or q1(t) ≤ 0 a.e., and
either q2(t) ≥ 0 a.e. or q2(t) ≤ 0 a.e. We now alter q1 and q2 on each of these
subintervals in the following way.

(1) If q1 and q2 have the same sign on [ti−1, ti], then on this interval simply
replace q1 by the constant function which has the same sign and square
integral as q1. Do the same for q2.

(2) If q1 and q2 have different signs on [ti−1, ti], then replace q1 on this interval
by a function that is constant on the first half of the interval, zero on the
second half of the interval, and has the same sign and square integral on
[ti−1, ti] as q1 does. Replace q2 on this interval by a function that is zero
on the first half of the interval, constant on the second half, and has the
same sign and square integral as q2 has on [ti−1, ti].

Call the resulting functions w1 and w2. By performing these replacements
one subinterval at a time, we see by Lemma 4 that [w1] = [q1] and [w2] = [q2].
Furthermore, by the Cauchy Schwarz inequality, we see that on each subinterval

[ti−1, ti] where we performed alteration (1),
∫ ti
ti−1

w1(t)w2(t)dt ≥
∫ ti
ti−1

q1(t)q2(t)dt.

For each interval where we performed alteration (2), the same inequality holds,

since
∫ ti
ti−1

w1(t)w2(t)dt = 0, while
∫ ti
ti−1

q1(t)q2(t)dt ≤ 0. This completes the proof

of the lemma. �

Lemma 7. Suppose for each n, fn : I → R is an L2 function, and f : I → R is also
L2. Suppose that fn → f in the L2 norm. Assume that for each n, we are given
an an in I such that

∫ an
0

(fn)2 = 1 for all n. Furthermore, suppose that an → a in

I. Then
∫ a

0
f2 = 1.

Proof. By passing to a subsequence, we can assume that fn → f a.e. in I. Next,
recall a variant of the dominated convergence theorem: if |kn| ≤ hn, kn → k a.e.,

hn → h a.e., and
∫ 1

0
hn →

∫ 1

0
h < ∞, then

∫ 1

0
kn →

∫ 1

0
k. Since |‖fn‖2 − ‖f‖2| ≤
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‖fn − f‖2, it follows that
∫ 1

0
f2
n →

∫ 1

0
f2. Taking kn =

∣∣f2
n − f2

∣∣, k = 0, hn =

f2
n + f2, and h = 2f2, it follows that

∫ 1

0

∣∣f2
n − f2

∣∣→ 0.
We now compute∣∣∣∣∫ an

0

f2
n −

∫ a

0

f2

∣∣∣∣ =

∣∣∣∣∫ an

0

(f2
n − f2)−

∫ a

an

f2

∣∣∣∣ ≤ ∫ 1

0

|f2
n − f2|+

∫ a

an

f2.

The first of these terms was proved to approach 0 at the end of the last paragraph;
the second approaches 0 by the absolute continuity of the integral, since an → a. �

Lemma 8. Suppose q and w are elements of L2(I,R), and assume that 0 = t0 <
t1 < · · · < tn = 1 is a sequence such that for each i both of the following statements
are true:

• either q(t) ≥ 0 for t ∈ [ti−1, ti] a.e. or q(t) ≤ 0 for t ∈ [ti−1, ti] a.e. and

•
∫ ti
ti−1

q(t)2dt > 0.

Then w ∈ [q] if and only if there exists a sequence 0 = t̃0 < t̃1 < · · · < t̃n = 1 such
that for each i, both of the following statements are true:

• either q(t) ≥ 0 for t ∈ [ti−1, ti] a.e. and w(t) ≥ 0 for t ∈ [t̃i−1, t̃i] a.e. or
q(t) ≤ 0 for t ∈ [ti−1, ti] a.e. and w(t) ≤ 0 for t ∈ [t̃i−1, t̃i] a.e. and

•
∫ t̃i
t̃i−1

w(t)2dt =
∫ ti
ti−1

q(t)2dt.

Proof. We omit the proof; it is basically the same as the proof of Lemma 5, but
uses Lemma 7 to keep track of the square integrals. �

Lemma 9. Let q ∈ L2(I,R). Then qΓ̃ ⊂ [q].

Proof. We will prove this first for step functions, and then extend by density to
all of S, so we start by assuming that q is a step function, and let γ̃ ∈ Γ̃. Let
0 = t0 < t1 < · · · < tn = 1 be the finite set of points at which q(t) changes values.
For each i, choose t̃i ∈ I such that γ̃(t̃i) = ti. Letting w(t) = q∗ γ̃(t), it follows from
integration by substitution that the hypotheses of Lemma 8 are satisfied. Hence,
w ∈ [q], which completes the proof for q a step function.

Now, let q ∈ L2(I,R) be arbitrary, and let γ̃ ∈ Γ̃. Let ε > 0 be given. By
density, choose a step function v ∈ U(I,R) such that d(q, v) < ε/3. By the previous
paragraph, we know that v ∗ γ̃ ∈ [v]; this means we can choose γ ∈ Γ such that

d(v∗γ, v∗γ̃) < ε/3. By the triangle inequality, and the fact the Γ̃ acts by isometries,
we then conclude that

d(q ∗ γ̃, q ∗ γ) ≤ d(q ∗ γ̃, v ∗ γ̃) + d(v ∗ γ̃, v ∗ γ) + d(v ∗ γ, q ∗ γ) < ε,

which completes the proof of the current lemma. �

Define a function w ∈ U(I,R) to be in standard form if it is of the form described
in Lemma 3, i.e.,

w(t) =

{
1 for t ∈ A
−1 for t ∈ B

where I = A ∪B is a partition of I into two disjoint measurable sets.

Lemma 10. Suppose q and w are both in standard form, and q 6= w in L2 (i.e.,
the set {t ∈ I : q(t) 6= w(t)} has measure greater than 0). Then w 6∈ [q].
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Proof. First we make a simple calculation. Let 0 < a < U , and define p : [0, U ]→ R
by p(t) =

√
ta+

√
(U − t)(U − a). Then p(t) has a unique maximum at p(a) = U ;

in fact p′(t) > 0 for t < a and p′(t) < 0 for t > a. This is an easy Calc I exercise!
Since q and w are both in standard form, we have two partitions I = A∪B and

I = C ∪D such that

q(t) =

{
1 for t ∈ A
−1 for t ∈ B

and

w(t) =

{
1 for t ∈ C
−1 for t ∈ D.

Let µ denote Lebesgue measure. The remainder of the proof will consist of consid-
ering the two cases µ(A) 6= µ(C) and µ(A) = µ(C).

Case 1: Assume µ(A) 6= µ(C). Suppose γ ∈ Γ, and let Ã = γ−1(A) and

B̃ = γ−1(B). Using integration by substitution, we see that
∫
Ã

(q ∗ γ(t))2dt =∫
A

(q(t))2dt = µ(A) and
∫
B̃

(q ∗ γ(t))2dt =
∫
B

(q(t))2dt = µ(B). Now compute:∫ 1

0

q∗γ(t)w(t)dt =

∫
Ã∩C

q∗γ(t)w(t)dt+

∫
Ã∩D

q∗γ(t)w(t)dt+

∫
B̃∩C

q∗γ(t)w(t)dt+

∫
B̃∩D

q∗γ(t)w(t)dt

≤
∫
Ã∩C

q ∗ γ(t)w(t)dt+

∫
B̃∩D

q ∗ γ(t)w(t)dt

since on Ã∩D and B̃∩C, q ∗γ and w have opposite signs, so these two terms make
a negative contribution to the integral. However, by the Cauchy Scharz inequality,∫

Ã∩C
q ∗ γ(t)w(t)dt ≤

√∫
Ã∩C

(q ∗ γ(t))2dt

√∫
Ã∩C

(w(t))2dt

≤

√∫
Ã

(q ∗ γ(t))2dt

√∫
C

(w(t))2dt =
√
µ(A)µ(C).

Similarly, ∫
B̃∩D

q ∗ γ(t)w(t)dt ≤
√
µ(B)µ(D).

Combining these with the last inequality gives∫ 1

0

q∗γ(t)w(t)dt ≤
√
µ(A)µ(C)+

√
µ(B)µ(D) =

√
µ(A)µ(C)+

√
(1− µ(A))(1− µ(C))

Since we are assuming here that µ(A) 6= µ(C), it follows from the calculation we
made at the beginning of this proof that this upper bound is strictly less than 1.
Also, this upper bound is independent of which element γ ∈ Γ we chose. Since
〈q ∗ γ,w〉 has an upper bound that is strictly less than 1 on the orbit qΓ, it follows
that d(q ∗ γ,w) has a lower bound that is greater than zero on this orbit. This
finishes the proof in Case 1; we have shown that if µ(A) 6= µ(C), then w 6∈ [q].

Case 2: Assume µ(A) = µ(C) = U (so µ(B) = µ(D) = 1− U).
Let f, g ∈ AC0 be the absolutely continuous functions satisfying Q(f) = q and

Q(g) = w. Since Q is a bijection, f 6= g, so there exists z ∈ I such that f(z) 6= g(z).
By definition of Q, f(z) = µ(A ∩ [0, z]) − µ(B ∩ [0, z]) and g(z) = µ(C ∩ [0, z]) −
µ(D ∩ [0, z]). Since z = µ(A ∩ [0, z]) + µ(B ∩ [0, z]) = µ(C ∩ [0, z]) + µ(D ∩ [0, z]),
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we may conclude that µ(A ∩ [0, z]) 6= µ(C ∩ [0, z]); without loss of generality, let’s
assume µ(A ∩ [0, z]) < µ(C ∩ [0, z]) and hence µ(B ∩ [0, z]) > µ(D ∩ [0, z]).

Let γ ∈ Γ be arbitrary.
Compute:

〈q ∗ γ,w〉 =

∫ 1

0

q ∗ γ(t)w(t)dt =

∫ z

0

q ∗ γ(t)w(t)dt+

∫ 1

z

q ∗ γ(t)w(t)dt

≤
∫

[0,z]∩(Ã∩C)

q ∗ γ(t)w(t)dt+

∫
[0,z]∩(B̃∩D)

q ∗ γ(t)w(t)dt

+

∫
[z,1]∩(Ã∩C)

q ∗ γ(t)w(t)dt+

∫
[z,1]∩(B̃∩D)

q ∗ γ(t)w(t)dt

where this inequality follows because on the parts of the interval we left out, the
contribution of the integrand is negative. Continuing by the Cauchy Schwarz in-
equality:

≤
√∫

[0,z]∩(Ã∩C)

(q ∗ γ(t))2dt

√∫
[0,z]∩(Ã∩C)

w(t)2dt+

√∫
[0,z]∩(B̃∩D)

(q ∗ γ(t))2dt

√∫
[0,z]∩(B̃∩D)

w(t)2dt

+

√∫
[z,1]∩(Ã∩C)

(q ∗ γ(t))2dt

√∫
[z,1]∩(Ã∩C)

w(t)2dt+

√∫
[z,1]∩(B̃∩D)

(q ∗ γ(t))2dt

√∫
[z,1]∩(B̃∩D)

w(t)2dt

≤
√∫

[0,z]∩Ã
(q ∗ γ(t))2dt

√∫
[0,z]∩C

w(t)2dt+

√∫
[0,z]∩B̃)

(q ∗ γ(t))2dt

√∫
[0,z]∩D

w(t)2dt

+

√∫
[z,1]∩Ã

(q ∗ γ(t))2dt

√∫
[z,1]∩C

w(t)2dt+

√∫
[z,1]∩B̃

(q ∗ γ(t))2dt

√∫
[z,1]∩D

w(t)2dt

=

√∫
[0,γ(z)]∩A

q(t)2dt

√∫
[0,z]∩C

w(t)2dt+

√∫
[0,γ(z)]∩B)

q(t)2dt

√∫
[0,z]∩D

w(t)2dt

+

√∫
[γ(z),1]∩A

q(t)2dt

√∫
[z,1]∩C

w(t)2dt+

√∫
[γ(z),1]∩B

q(t)2dt

√∫
[z,1]∩D

w(t)2dt

=
√
µ([0, γ(z)] ∩A)µ([0, z] ∩ C) +

√
µ([0, γ(z)] ∩B)µ([0, z] ∩D)

+
√
µ([γ(z), 1] ∩A)µ([z, 1] ∩ C) +

√
µ([γ(z), 1] ∩B)µ([z, 1] ∩D)

=
√
µ([0, γ(z)] ∩A)µ([0, z] ∩ C) +

√
µ([0, γ(z)] ∩B)µ([0, z] ∩D)

+
√

(U − µ([0, γ(z)] ∩A))(U − µ([0, z] ∩ C))+
√

(1− U − µ([0, γ(z)] ∩B))(1− U − µ([0, z] ∩D)).

Reversing the order of the middle two terms gives

(1) =
√
µ([0, γ(z)] ∩A)µ([0, z] ∩ C)+

√
(U − µ([0, γ(z)] ∩A))(U − µ([0, z] ∩ C))

+
√
µ([0, γ(z)] ∩B)µ([0, z] ∩D)+

√
(1− U − µ([0, γ(z)] ∩B))(1− U − µ([0, z] ∩D)).

Now there are two possibilities to consider: Either γ(z) ≤ z or γ(z) ≥ z.
Case (i): Assume γ(z) ≤ z. In this case µ([0, γ(z)] ∩ A) ≤ µ([0, z] ∩ A) <

µ([0, z] ∩ C).
By the observations about p(t) and p′(t) made in the first paragraph of this proof,

we conclude that the sum of the first two summands of expression 1 is bounded
above by√

µ([0, z] ∩A)µ([0, z] ∩ C) +
√

(U − µ([0, z] ∩A))(U − µ([0, z] ∩ C))
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and that this bound is strictly less than U . Also, by the first paragraph of this
proof, the sum of the third and fourth summands of expression 1 is bounded above
by 1 − U . As a result, in Case (i), we have an upper bound for 〈q ∗ γ,w〉 which
is strictly less than 1, and is independent of γ ∈ Γ (except for the condition that
γ(z) ≤ z).

Case (ii): Assume γ(z) ≥ z. In that case, µ([0, γ(z)] ∩ B) ≥ µ([0, z] ∩ B) >
µ([0, z] ∩ D). Then, by the observations about p(t) and p′(t) made in the first
paragraph of this proof, we conclude that the sum of the third and fourth summands
of expression 1 is bounded above by√

µ([0, z] ∩B)µ([0, z] ∩D) +
√

(1− U − µ([0, z] ∩B))(1− U − µ([0, z] ∩D)).

and that this bound is strictly less than 1−U . Also, by the first paragraph of this
proof, the sum of the first two summands of expression 1 is bounded above by U .
Hence, in Case (ii), we also have an upper bound for 〈q ∗ γ,w〉 which is strictly less
than 1, and is independent of γ ∈ Γ (except for the condition that γ(z) ≥ z).

Taking the greater of these two upper bounds, we have an upper bound for
〈q ∗ γ,w〉 that is strictly less than 1 and is completely independent of the choice of
γ ∈ Γ. As a result, we have a lower bound for d(q∗γ,w) that is strictly greater than
0 and is completely independent of γ ∈ Γ. This proves that w 6∈ [q], and completes
the proof of Lemma 10. �

Let SF (I,R) = {q ∈ U(I,R) : q is in standard form.} By the unique arclength
parametrization theorem quoted earlier (Theorem 1), we can express U(I,R) as a
disjoint union as follows:

U(I,R) =
∐
w∈SF

wΓ̃

By Lemma 9, qΓ̃ ∈ [q] for each q ∈ SF . By Lemma 10, if q, w ∈ SF and q 6= w,

then q 6∈ [w]. It follows that [q] ∩ [w] = ∅ and therefore qΓ̃ ∩ [w] = ∅. By the

disjoint union above, since [w]∩ qΓ̃ = ∅ for all q ∈ SF where q 6= w, it follows that

[w] ⊂ wΓ̃. Combined with Lemma 9, this proves the following theorem.

Theorem 2. For all w ∈ SF , [w] = wΓ̃.

Corollary 2. If q ∈ L2(I,R), and q−1(0) has measure 0, then [q] = qΓ̃.

Proof. First, assume that q ∈ U(I,R). By Theorem 1, we can write q = w ∗ γ =

(w ◦ γ)
√
γ′, where γ ∈ Γ̃ and |w(t)| = 1 for almost all t ∈ I. Since q−1(0) has

measure 0, it follows that {t ∈ I : γ′(t) = 0} has measure 0, so γ ∈ Γ. Hence, we

can write w = q∗γ−1 and, therefore, [q] = [w] = wΓ̃ = qγ−1Γ̃ = qΓ̃, since γ−1Γ̃ = Γ̃.
For q 6∈ U(I,R), the result also follows, since multiplication by a constant nonzero

scalar is a homeomorphism that commutes with the action of Γ̃.
�

4. Orbit Structure in S(I,RN )

In this section, we will extend Theorem 2 and Corollary 2 from L2(I,R) to
L2(I,RN ). This has a few more technical difficulties than one might expect; hence
it gets its own section. Just as in the case of N = 1, we define w ∈ U(I,RN ) to
be in standard form if |w(t)| = 1 for t ∈ I a.e. Let SF (I,RN ) be the subset of
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U(I,RN ) consisting of functions in standard form. By Theorem 1, we can express
U(I,RN ) as the disjoint union

(2) U(I,RN ) =
∐

w∈SF (I,RN )

wΓ̃.

We define q ∈ L2(I,RN ) to be a step function if we can express I as a finite union
of disjoint sub-intervals in such a way that q is constant on each of these subintervals.
Again, we don’t care what happens at the endpoints of the subintervals since q is
only well-defined almost everywhere.

Lemma 11. For all q ∈ L2(I,RN ), qΓ̃ ⊂ [q].

Proof. The proof follows the same lines as Lemma 9, with some minor adjust-
ments. We first prove the lemma for step functions, then extend by density to all
of U(I,RN ).

Let q ∈ U(I,RN ) be a step function, and let γ ∈ Γ̃. Choose 0 = t0 < t1 <
· · · < tn = 1 such that q is constant on each interval (tk, tk+1). Choose 0 =
s0 < s1 < · · · < sn = 1 so that γ(sk) = tk for each k = 0, 1, . . . , n. For each

k, define γk = γ|[sk−1,sk]. Clearly, for each k, the function
√
γ′k is an element of

the sphere of radius
√
tk − tk−1 centered at 0 in L2[sk−1, sk]. Another element

of this sphere is the constant function wk(t) =
√

(tk − tk−1)/(sk − sk−1). For
j = 1, 2, 3, . . . , let {wk,j} be any sequence of functions along the geodesic arc

from wk to
√
γ′k in this sphere such that limj→∞ wk,j =

√
γ′k in L2[sk−1, sk].

Note that for each j, wk,j(s) > 0 for all s ∈ [sk−1, sk]. Finally, define γk,j(s) =
tk−1 +

∫ s
sk−1

(wk,j(u))2 du for all s ∈ [sk−1, sk]. Clearly, for all k and j, γk,j is

an absolutely continuous, monotone homeomorphism from [sk−1, sk] to [tk−1, tk].
For each j, define γj : I → I by setting γj(s) = γk,j(s) for all s ∈ [sk−1, sk].
Clearly, γj ∈ Γ for all j. Assuming that q(t) = ck on [tk−1, tk], it follows that

on [sk−1, sk], q ∗ γj(s) =
√
γ′k,j(s)ck = wk,j(s)ck. By definition of wk,j , it follows

that in L2[sk−1, sk], limj→∞ q ∗ γk,j = limj→∞ wk,jck =
√
γ′kck = q ∗ γ. Since this

limit holds in each subinterval separately, it must hold in L2(I). Thus, we have
produced a sequence γj in Γ such that q ∗ γj → q ∗ γ, which proves the lemma for
step functions. The extension from step functions to general elements of L2(I,RN )
is exactly the same as in the proof of Lemma 9, so we omit it. �

Next, we want to prove that for all functions w ∈ U(I,RN ) that are in standard

form, [w] ∈ wΓ̃. Such a function w can vanish only on a set of measure zero;
however, each component function of w may vanish on a set of measure greater
than zero. In order to make our proof run more smoothly, it is helpful to prove
that given such a w, we can rotate it (using a matrix in O(n,R)) to obtain a new
function in U(I,RN ) with the property that all of its component functions vanish
only on a set of measure zero. The next few lemmas prove that such a rotation
exists.

Lemma 12. Let q : I → RN (where n ≥ 1) be an L2 function with the property that
q−1(0) has measure 0. Then there exist N pairwise orthogonal (N −1)-dimensional
linear subspaces of RN , which we denote by H1, . . . ,HN , with the property that
q−1(Hk) has measure zero for k = 1, . . . , N .
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Proof. First, we note that there exist at most countably many lines l through the
origin in RN with the property that q−1(l) has nonzero measure. To see this,
note that as l varies over all lines through the origin of RN , the sets q−1(l − {0})
are disjoint from each other. But it follows that for all but a countable set of
these lines, the set q−1(l − {0}) has measure 0. This is because I cannot contain
an uncountable collection of pairwise disjoint subsets, all with measure greater
than 0. (The proof of this is easy: Let C denote a collection of pairwise disjoint
measurable subsets of I. For each integer n > 0, define the subcollection Cn ⊂ C
by Cn = {C ∈ C : µ(C) > 1

n}. Clearly, the cardinality of Cn is at most n. The
subcollection of C consisting of all sets of measure greater than 0 is just the union
of these sets Cn, which is countable.) It follows that for all but a countable set of
lines l through the origin in RN , µ(q−1(l)) = µ(q−1(l − {0})) = 0. Note that this
last equation used the fact that µ(q−1(0)) = 0.

We now construct a sequence 0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ PN−1 of linear subspaces of
RN , such that for each k, Pk has dimension k and µ(q−1(Pk)) = 0. We construct
this sequence inductively. In the first paragraph of this proof, we showed that there
exists a line l through the origin such that q−1(l) has measure 0. Let P1 be any
such l. For the inductive step, assume we have already constructed 0 ⊂ P1 ⊂
· · · ⊂ Pk satisfying the conditions, where k < N − 1. Choose an orthonormal basis
{u1, . . . , uk} of Pk. Let u and v be any orthogonal pair of unit vectors, both in the
orthogonal complement of Pk in RN . For each real number θ ∈ [0, π), let Sθ to
be the linear span of {u1, . . . , uk, (cos θ)u+ (sin θ)v}. Clearly the subsets of RN in
the collection {Sθ − Pk}θ∈[0,π) are pairwise disjoint, and hence the subsets of I in

the collection {q−1(Sθ−Pk)}θ∈[0,π) are also pairwise disjoint. It follows that for all

but a countable set of θ ∈ [0, π), µ(q−1(Sθ − Pk)) = 0. But since µ(q−1(Pk)) = 0,
we know that µ(q−1(Sθ)) = µ(q−1(Sθ − Pk)) = 0 for all but a countable set of θ.
Choosing one of these θ, we then set Pk+1 = Sθ, completing the inductive step of
the construction of our sequence 0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ PN−1.

We now prove Lemma 12 by induction. It is trivially true for N = 1. Assume
the lemma has been proved for functions I → RN−1, and now suppose we are
given an L2 function q : I → RN such that q−1(0) has measure 0. Using the last
paragraph, construct a sequence 0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ PN−1 of linear subspaces
of RN , such that for each k, Pk has dimension k and µ(q−1(Pk)) = 0. We are
now going to make an adjustment to PN−1. Let {u, v} be an orthonormal basis
of the orthogonal complement of PN−2 in RN . For each θ ∈ [0, π), let Bθ be the
hyperplane spanned by PN−2 and the vector (cos θ)u + (sin θ)v, and let lθ be the
orthogonal complement of Bθ in RN . Since we know that q−1(PN−2) has measure
zero, we can argue just as in the last paragraph to show that for all but a countable
set of θ ∈ [0, π), q−1(Bθ) has measure zero. Similarly, for all but a countable set
of θ, q−1(lθ) has measure 0. Since the union of two countable sets is countable,
it follows that we can choose a θ0 ∈ [0, π) such that both q−1(Bθ0) and q−1(lθ0)
have measure 0. Set HN = Bθ0 and set l = lθ0 . Define q̃ : I → HN by q̃ = Π ◦ q,
where Π denotes orthogonal projection RN → HN . Clearly, q̃−1(0) = q−1(l) has
measure 0. Also, since projection decreases norms, q̃ is still L2. By the induction
hypothesis, we can find a pairwise orthogonal set of N − 1 subspaces of HN , which
we will denote by H̃1, . . . , H̃N−1, each of dimension n − 2, such that q̃−1(H̃k) has

measure 0 for k = 1, . . . , N − 1. Now define Hk = H̃k ⊕ l for each k = 1, . . . , N − 1.
Clearly, H1, . . . ,HN comprise a set of N pairwise orthogonal (N − 1)-dimensional
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subspaces of RN . Also, for k = 1, . . . , N − 1, q−1(Hk) = q̃−1(H̃k) has measure 0.
Since we already know that q−1(HN ) has measure 0, this completes the proof of
Lemma 12. �

Let us think of the elements of RN as column vectors, so if q ∈ L2(I,RN ), we
can write q(t) = (q1(t), . . . , qN (t))′, where the “prime” denotes the matrix trans-
pose. Then the group of orthogonal matrices O(N,R) acts on RN , AC0(I,RN ),
L2(I,RN ) and U(I,RN ) from the left in the obvious way. Furthermore, this action
on L2(I,RN ) preserves the L2 inner product, and hence takes U(I,RN ) to itself.
It also commutes with the bijection Q : AC0(I,RN )→ L2(I,RN ) defined earlier in
this paper. In addition, the left actions of O(N,R) on AC0(I,RN ), L2(I,RN ) and

U(I,RN ) commute with the right actions of Γ and Γ̃ on all three of these spaces.

Lemma 13. Suppose q ∈ L2(I,RN ), where we write q(t) = (q1(t), . . . , qN (t))′, and
assume that q−1(0) has measure zero. Then there exists a matrix A ∈ O(N,R),
such that if we define q̃(t) = (q̃1(t), . . . , q̃N (t))′ by q̃(t) = Aq(t), then q̃−1

k (0) has
measure 0 for all k = 1, . . . , N .

Proof. By Lemma 12, we can choose N pairwise orthogonal (N − 1)-dimensional
linear subspaces of RN , which we denote by H1, . . . ,HN , with the property that
q−1(Hk) has measure zero for k = 1, . . . , N . For each k, let uk ∈ RN be a unit
vector orthogonal to Hk. Clearly, {u1, . . . , uN} forms an orthonormal basis for
RN . Let {e1, . . . , eN} denote the standard basis for RN . Let A ∈ O(N,R) be
the unique matrix satisfying Auk = ek for all k. Define q̃(t) = (q̃1(t), . . . , q̃N (t))′

by q̃(t) = Aq(t). By definition of A, it is immediate that q̃−1
k (0) = q̃−1(e⊥k ) =

q−1(u⊥k ) = q−1(Hk) has measure zero. �

Lemma 14. Suppose q ∈ L2(I,R) satisfies µ(q−1(0)) = 0. Also, assume that {τk}
is a sequence in Γ̃, and τ ∈ Γ̃. If limk→∞ q ∗ τk = q ∗ τ (with respect to the L2

metric), then for all t ∈ I, limk→∞ τk(t) = τ(t).

Proof. First, we observe that it suffices to prove the lemma under the additional
assumption that |q(t)| = 1 for almost all t ∈ I. For, suppose we have already
completed the proof under this extra assumption. By Theorem 1, we know that we
can write q = w ∗ γ where |w(t)| is constant for almost all t ∈ I and γ ∈ Γ̃. Since
we are assuming that µ(q−1(0)) = 0, it follows that γ ∈ Γ, since γ̇(t) = 0 only for
t in a set of measure 0. Now, since we are assuming that limk→∞ q ∗ τk = q ∗ τ , it
follows that limk→∞ w∗(γτk) = w∗(γτ) in L2. By the version of the lemma that we
are assuming to be proved, it follows that for all t ∈ I, limk→∞ γ(τk(t)) = γ(τ(t)).
Since γ ∈ Γ is continuous and bijective, so is γ−1, hence we conclude that for all
t ∈ I, limk→∞ τk(t) = τ(t).

So we now prove the lemma with the assumption that |q(t)| = 1 for almost all
t ∈ I. Assume that limk→∞ q∗τk = q∗τ with respect to the L2 metric. We proceed
by contrapositive. Suppose there exists a t0 for which limk→∞ τk(t0) 6= τ(t0). (This
includes the possibility that limk→∞ τk(t0) does not exist.) Therefore, there exists
ε > 0 such that for all M > 0, there exists a k > M with |τk(t0) − τ(t0)| > ε.
Consider a τk such that |τk(t0)− τ(t0)| > ε. There are two cases.

Case 1: Suppose τk(t0) < τ(t0)− ε. Compute 〈q ∗ τk, q ∗ τ〉 =∫ 1

0

(q ∗ τk)(t)(q ∗ τ)(t)dt =

∫ t0

0

(q ∗ τk)(t)(q ∗ τ)(t)dt+

∫ 1

t0

(q ∗ τk)(t)(q ∗ τ)(t)dt
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≤

√∫ t0

0

(q ∗ τk)(t)2dt

√∫ t0

0

(q ∗ τ)(t)2dt+

√∫ 1

t0

(q ∗ τk)(t)2dt

√∫ 1

t0

(q ∗ τ)(t)2dt

(by Cauchy Schwarz)

=

√∫ τk(t0)

0

q(t)2dt

√∫ τ(t0)

0

q(t)2dt+

√∫ 1

τk(t0)

q(t)2dt

√∫ 1

τ(t0)

q(t)2dt

(integrating by substitution)

=
√
τk(t0)

√
τ(t0) +

√
1− τk(t0)

√
1− τ(t0)

(using |q(t)| = 1 for almost all t ∈ I).
By the calculation at the beginning of the proof of Lemma 10, this last quantity

is less than √
τ(t0)− ε

√
τ(t0) +

√
1− (τ(t0)− ε)

√
1− τ(t0)

which, in turn, is less than 1. DefineMε =
√
τ(t0)− ε

√
τ(t0)+

√
1− (τ(t0)− ε)

√
1− τ(t0).

So in Case 1, we have shown that 〈q ∗ τk, q ∗ τ〉 < Mε < 1.
Case 2: Suppose τk(t0) > τ(t0) + ε. We skip the very similar details; the

end result is that we produce an mε such that 〈q ∗ τk, q ∗ τ〉 < mε < 1. Letting
θε = min{

√
2− 2Mε,

√
2− 2mε} > 0, we see that d(q ∗ τk, q ∗ τ) > θε > 0. It follows

that q ∗ τk 6→ q ∗ τ in the L2 metric, which proves the contrapositive and completes
the proof of the lemma. �

Theorem 3. Let q : I → RN be any L2 function such that |q(t)| = 1 for almost all

t ∈ I. Then [q] = qΓ̃.

Proof. By Lemma 11, we only need to prove that [q] ⊂ qΓ̃.
Since O(N,R) acts on L2(I,RN ) by isometries and this action commutes with

the action of Γ̃, we may assume by Lemma 13 that for each i = 1, . . . , N , q−1
i (0)

has measure 0. Suppose v ∈ [q]; then there exists a sequence {γk} in Γ such
that limk→∞ q ∗ γk = v (with respect to the L2 metric). It follows that for each

i = 1, . . . , N , limk→∞ qi∗γk = vi. For each i, we can write qi = wi∗σi, where σi ∈ Γ̃
and wi(t) = ±1 for almost all t, by Theorem 1. Then for each i, limk→∞ wi∗(σiγk) =

vi. Since wiΓ̃ = [wi] is a closed set, it follows that there exists γ̃i ∈ Γ̃ such that
vi = wi ∗ γ̃i. Now, since qi(t) = (wi ∗ σi)(t) vanishes only on a set of measure 0,
it follows that σ̇i(t) also vanishes on a set of measure 0. Hence, σi ∈ Γ. Hence,
we may write wi = qi ∗ σ−1

i , where σ−1
i ∈ Γ. Therefore, vi = qi ∗ (σ−1

i γ̃i), where

σ−1
i γ̃i ∈ Γ̃. Letting τi = σ−1

i γ̃i, we have now proven that if v ∈ [q], then for each

i, we can write vi = qi ∗ τi, where each τi ∈ Γ̃. All that is left to prove is that
τ1 = · · · = τn; it will then follow that v = q ∗ τ where τ = τ1 = · · · = τN . However
Lemma 14 implies immediately that for each t ∈ I, τi(t) = limk→∞ γk(t), which
implies that τ = τ1 = · · · = τn. This completes the proof of the theorem. �

Corollary 3. If q ∈ L2(I,RN ), and q−1(0) has measure 0, then [q] = qΓ̃.

The proof is the same as that of Corollary 2, so we omit it.

Corollary 4. If q1, q2 ∈ U(I,RN ), then d([q1], [q2]) ≤
√

2.
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Proof. Define two elements γ1, γ2 ∈ Γ̃ as follows:

γ1(t) =

{
0 for 0 ≤ t ≤ .5
2t− 1 for .5 < t ≤ 1

γ2(t) =

{
2t for 0 ≤ t ≤ .5
1 for .5 < t ≤ 1

Then an easy computation shows that 〈q1∗γ1, q2∗γ2〉 = 0, so d(q1∗γ1, q2∗γ2) =
√

2.
The corollary follows. �

For U(I,R), it’s interesting to note that this maximum distance is actually
achieved by [q1] and [q2], where q1(t) ≡ 1 and q2(t) ≡ −1. It is also true that
these are the only two points in the image of U(I,R) in S(I,R) that achieve this
maximum distance! This follows from the material in Sections 7 and 8 for step
functions, and then for arbitrary functions by the fact that the step functions are
dense.

5. Optimal Matching for Step Functions I → RN

Given two elements [w1] and [w2] of S(I,RN ), it is a basic problem to calculate
the distance between them and to find a minimal geodesic joining them, if such
a geodesic exists. The most straightforward way to do this is to find elements
q1 ∈ [w1] and q2 ∈ [w2] such that d(q1, q2) = d([w1], [w2]). In this section, we
will prove that if [w1] and [w2] are elements of S(I,RN ), and at least one of them
is an element of Sst(I,RN ), then there exist q1 ∈ [w1] and q2 ∈ [w2] such that
d(q1, q2) = d([w1], [w2]). We will also prove that if both [w1] and [w2] are elements
of Sst(I,RN ), then these representatives q1 and q2 can both be taken to be step
functions. We begin with a lemma.

Lemma 15. Let q ∈ L2(I,RN ), and let w : I → RN be a constant map, w(t) = w0.
Express I as a disjoint union of two measurable sets, I = A ∪ B, where A = {t ∈
I : q(t) · w0 ≥ 0} and B = {t ∈ I : q(t) · w0 < 0}.

Then

sup
q̃∈[q],w̃∈[w]

〈q̃, w̃〉 =

√∫
A

(q(t) · w0)2dt.

If q(t) ·w0 = 0 almost everywhere on I, then this supremum is 0, and is realized by
any q̃ ∈ [q] and w̃ ∈ [w]. If it is not true that q(t) · w0 = 0 almost everywhere on

I, then this supremum is realized by q̃ = q and w̃ = w ∗ γ, where γ(t) =
∫ t

0
F (u)du,

and F (u) is defined by

F (u) =

{
0 for u ∈ B

(q(u)·w0)2∫
A

(q(u)·w0)2du
for u ∈ A

Proof. Since qΓ is dense in [q] and wΓ is dense in [w] and the group Γ acts by
isometries, it follows that

sup
q̃∈[q],w̃∈[w]

〈q̃, w̃〉 = sup
λ∈Γ,γ∈Γ

〈q ∗ λ,w ∗ γ〉 = sup
γ∈Γ
〈q, w ∗ γ〉 = sup

γ∈Γ̃

〈q, w ∗ γ〉.
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Let γ ∈ Γ be arbitrary. Then

〈q, w∗γ〉 =

∫
I

q·(w∗γ) =

∫
I

(q(t)·w0)
√
γ′(t)dt =

∫
A

(q(t)·w0)
√
γ′(t)+

∫
B

(q(t)·w0)
√
γ′(t)

The integral over B is clearly bounded above by 0, since q(t) · w0 ≤ 0 for t ∈ B.
The integral over A can be bounded using the Cauchy Schwarz inequality to yield:

≤

√∫
A

(q(t) · w0)2dt

√∫
A

γ′(t)dt ≤

√∫
I

(q(t) · w0)2dt,

where the last step uses the fact that
∫
A
γ′(t)dt ≤

∫
I
γ′(t)dt = 1. A straightforward

calculation shows that the upper bound is actually achieved by the γ defined in the
statement of the lemma.

�

We will need a slightly altered form of Lemma 15. We state it as a corollary.

Corollary 5. Suppose H, J , and K are finite closed intervals in R; denote by
L(J) the length of J . Let q ∈ L2(H,RN ), and let w : J → RN be a constant map,
w(t) = w0. Then

sup
λ,γ
〈q ∗ λ,w ∗ γ〉 =

√∫
A

(q(t) · w0)2dt
√
L(J)

where the supremum is taken over all λ : K → H and γ : K → J such that λ and
γ are absolutely continuous, onto, and weakly increasing, and A is the subset of
H on which the function q(t) · w0 is non-negative. Furthermore, this supremum is
actually realized by an appropriate choice of λ and γ.

Proof. We omit the details of this routine proof. The idea is just to transform each
of the three intervals into I using linear bijections, and then use integration by
substitution and apply Lemma 15.

�

Theorem 4. Let [q] ∈ S(I,RN ) and [w] ∈ Sst(I,RN ). Then there exist q̃ ∈ [q] and
w̃ ∈ [w] such that d(q̃, w̃) = d([q], [w]).

Proof. Assume our orbit representatives q and w correspond to unit speed parametrized
curves, so that |q(t)| and |w(t)| are constant (a.e.) in I. (These representatives
exist by Theorem 1.) It follows from this that w is a step function. This is
because, since [w] ∈ Sst(I,RN ), w can only assume a finite sequence of differ-
ent directions. Since its magnitude is constrained to be constant everywhere, it
follows that w assumes only a finite sequence of different values. Hence, there
exists a finite sequence of real numbers 0 = s0 < s1 < · · · < sk = 1 and
corresponding finite sequence w1, w2, . . . , wk of vectors in RN such that for all
j ∈ {1, . . . , k}, w(t) = wj for all t ∈ (sj−1, sj). Define a set T ∈ Rk+1 by
T = {(t0, . . . , tk) : 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk = 1}. Clearly T is compact.
Now define a function M : T → R by

M(t0, . . . , tk) =

k∑
j=1

√∫ tj

tj−1

(q(t) · wj)2dt
√
sj − sj−1.
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This function is obviously continuous as a function of (t0, . . . , tk); since T is com-

pact, M attains a maximum at some element (t̃0, . . . , t̃k) ∈ T . Let M̃ = M(t̃0, . . . , t̃k).

We will show first that there exists q̃ ∈ [q] and w̃ ∈ [w] such that M̃ = 〈q̃, w̃〉; we
will then show that it is the maximum possible value of all such inner products.
This will complete the proof of the theorem.

Fix j ∈ {1, . . . , k}. In order to apply Corollary 5, let H = [t̃j−1, t̃j ], J =

[sj−1, sj ], and K = [ j−1
k , jk ]. Then Corollary 5 tells us that there exist λj : K → H

and γj : K → J (where λj and γj are onto and absolutely continuous) such that∫
K

((q|H) ∗ λj)(u) · ((w|J) ∗ γj)(u)du =

√∫ tj

tj−1

(q(t) · wj)2dt
√
sj − sj−1,

and that this integral is the maximum possible over all such λj and γj . Since for

each j, λj(
j−1
k ) = λj−1( j−1

k ) and γj(
j−1
k ) = γj−1( j−1

k ), it follows that we can glue

together the λj ’s to form a single λ̃ : I → I and can also glue together the γj ’s to

form a single γ̃ : I → I such that 〈q ∗ λ̃, w ∗ γ̃〉 = M̃ . This shows that M̃ is realized
as an inner product of a pair of orbit representatives.

We now show that M̃ gives the maximum value of the inner product, for all orbit
representatives. Suppose q̃ ∈ [q] and w̃ ∈ [w]. By Corollary 3, there exist λ ∈ Γ̃ and

γ ∈ Γ̃ such that q̃ = q ∗ λ and w̃ = w ∗ γ. Since γ is onto, for each j we can choose
uj ∈ γ−1(sj), and let tj = λ(uj). It follows that for each j, λ([uj−1, uj ]) = [tj−1, tj ],
and γ([uj−1, uj ]) = [sj−1, sj ]. By Corollary 5, we may conclude that∫ uj

uj−1

((q|[tj−1, tj ])∗λ)(u)·((w|[sj−1, sj ])∗γ)(u)du ≤

√∫ tj

tj−1

(q(t) · wj)2dt
√
sj − sj−1.

Summing over all j then gives∫ 1

0

(q ∗ λ)(u) · (w ∗ γ)(u)du ≤M(t0, . . . , tk) ≤ M̃.

Since maximizing the L2 inner product is the same as minimizing the distance, this
completes the proof of the theorem.

�

Theorem 5. If q, w ∈ L2(I,RN ) are both step functions, then there exist piecewise

linear functions λ, γ ∈ Γ̃ such that

〈q ∗ λ,w ∗ γ〉 = sup
q̃∈[q],w̃∈[w]

〈q̃, w̃〉.

Proof. In the statement of Lemma 15, note that if q is a step function, then the
function we integrate to get γ is also a step function. It follows that γ is piecewise
linear. In Corollary 5 (still assuming that q is a step function), the reparametriz-
ing functions are obtained from the ones in Lemma 15 by composing with linear
functions; hence the reparametrizing functions are still piecewise linear. Finally,
in Theorem 4, the optimal reparametrizing functions are obtained by gluing to-
gether reparametrizing functions of the type formed in Corollary 5; gluing together
piecewise linear functions results in more piecewise linear functions.

�
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6. Preliminaries on Finding a Precise Optimal Matching For
Piecewise Linear Functions

Let f1 and f2 be two continuous, piecewise linear functions I → RN and let
q1, q2 ∈ L2(I,RN ) be their SRVFs. We will develop an algorithm which will produce
a pair of optimal representatives for [q1] and [q2], i.e., L2 functions q̃1 ∈ [q1] and
q̃2 ∈ [q2] such that d(q̃1, q̃2) = d([q1], [q2]). Assume that q1 and q2 have the property
that the set on which each of them vanishes has measure 0. (If this is not true,
than we can replace them by elements of [q1] and [q2] that have this property, using
Theorem 1.) According to Theorem 3, these optimal representatives will be of the

form q̃1 = q1 ∗ γ1 and q̃2 = q2 ∗ γ2, where γ1, γ2 ∈ Γ̃. We call such a pair (γ1, γ2) an
optimal matching for f1, f2 (or for q1, q2).

Since f1 and f2 are piecewise linear, we know that there are subdivisions 0 =
s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 such that f1 is linear on each
subinterval [si−1, si] and f2 is linear on each subinterval [tj−1, tj ]. As a result, we
know that q1 is constant on each open interval (si−1, si) and q2 is constant on each
(tj−1, tj). In general, q1 and q2 are not defined on the endpoints of these intervals,
since f1 and f2 are not differentiable at these endpoints. For each i = 1, . . . ,m, let
ui = q1((si−1, si)) and for each j = 1, . . . , n, let vj = q2((tj−1, tj)). We then define
an n×m matrix W , called the weight matrix, by Wij = ui · vj . (The dot product
here is the ordinary inner product in RN .)

A matching of f1 and f2 is any pair of reparametrizations γ1, γ2 ∈ Γ̃. Such a
pair represents a matching in the sense that for each z ∈ I, the point f1(γ1(z))
on the curve parametrized by f1 is “matched” to the point f2(γ2(z)) on the curve
parametrized by f2. Note that because γ1 and γ2 are only weakly increasing,
this matching does not give a 1-1 correspondence between the points on these two
curves. We can assemble γ1 and γ2 into a single function γ : I → I × I defined
by γ(z) = (γ1(z), γ2(z)). This function can be thought of as a parametrized curve
in I × I that starts at (0, 0) and ends at (1, 1). Because γ1 and γ2 are weakly
increasing, this curve can only move vertically upward, horizontally to the right,
or in some diagonal direction towards the upper right. We define a vertex of I × I
to be a point of the form (si, tj), a horizontal gridline to be a line of the form
t = tj (i = 0, 1, . . . , n), and a vertical gridline to be a line of the form s = si
(j = 0, 1, . . . ,m). We define the ij-block, Gij , by Gij = [si−1, si] × [tj−1, tj ].
Because of the weakly increasing nature of γ1 and γ2, it is clear that γ−1(Gij) is
always a closed subinterval of I. If γ is linear and non-constant on an interval [a, b],
we define the slope of γ on this interval to be the value of γ′2/γ

′
1. On any such

interval, this slope will be 0, positive, or ∞.
Given a matching γ, we define a segment of γ to be the restriction of γ to some

closed subinterval of I. We now define two specific types of segment.
Definition of P-segment: (Note that this is a long definition! It includes all the

statements up until the definition of an N-segment.) A P-segment is a restriction
of γ to an interval [a, b] ⊂ I, which has the following properties:

(1) γ|[a,b] is piecewise linear and injective.
(2) γ(a) = (si0−1, tj0−1) and γ(b) = (si1 , tj1) are vertices, with i0 ≤ i1 and

j0 ≤ j1, but for all z ∈ (a, b), γ(z) is not a vertex. Furthermore, Wi0,j0 > 0
and Wi1,j1 > 0.
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Figure 1. The grid

(3) For all blocks Gij such that γ−1(Gij) ⊂ [a, b], the restriction of γ to
γ−1(Gij) is linear. We define Hi,j to be the slope of the segment as it
passes through Gi,j .

(4) Suppose γ−1(Gij) = [c, d] ⊂ [a, b], where c < d. If Wij ≤ 0, then either
Hi,j = 0 or Hi,j = ∞. Visually, this says that the parametrized path γ is
either vertical or horizontal as it traverses Gij . More precisely, if γ enters
such a Gi,j through the left hand vertical edge, then Hij = 0, while if γ
enters such a Gij through the lower horizontal edge, then Hij = ∞. If
Wij > 0, then Hi,j is not equal to either 0 or ∞.

To understand the remaining properties required of a P-segment, note that it
begins at the vertex (si0−1, tj0−1) and passes through the block Gi0,j0 in a linear
fashion with slope Hi0,j0 , which is equal neither to 0 nor to∞ by the previous items.
Up to reparametrization, the remaining portion of the P-segment is completely
determined by the initial vertex (si0−1, tj0−1), and the initial slope as the segment
passes through Gi0,j0 . To understand this determination we will describe how the
slope Hi,j is required to change as the P-segment passes through a gridline from
one block to another. First, suppose the segment passes through a vertical gridline
from Gi,j to Gi+1,j . There are then three cases to consider:

(1) Both Wi,j and Wi+1,j are greater than 0. Then the slopes are related as
follows:

(3)
Hi+1,j

Hi,j
=

(
Wi+1,j

Wi,j

)2

(2) Wi+1,j ≤ 0. Then Hi+1,j = 0.
(3) Wi,j ≤ 0 while Wi+1,j > 0. By one of the above conditions, we know that

Hi,j = 0. To determine Hi+1,j , we must find the largest value of k ≤ i for
which for which Wk,j > 0. (This corresponds to the last block Gk,j that
the segment passed through with non-zero slope.) Using this value of k,
Hi+1,j must then satisfy

(4)
Hi+1,j

Hk,j
=

(
Wi+1,j

Wk,j

)2

.

Now, suppose the segment passes through a horizontal gridline from Gi,j to Gi,j+1.
The three cases are completely analogous to the cases of the vertical gridline:
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(1) Both Wi,j and Wi,j+1 are greater than 0. Then the slopes are related as
follows:

(5)
Hi,j+1

Hi,j
=

(
Wi,j

Wi,j+1

)2

(2) Wi,j+1 ≤ 0. Then Hi,j+1 =∞.
(3) Wi,j ≤ 0 while Wi,j+1 > 0. By one of the above conditions, we know that

Hi,j = ∞. To determine Hi,j+1, we must find the largest value of k ≤ j
for which for which Wi,k > 0. (This corresponds to the last block Gi,k that
the segment passed through with non-infinite slope.) Using this value of k,
Hi,j+1 must then satisfy

(6)
Hi,j+1

Hi,k
=

(
Wi,k

Wi,j+1

)2

.

This concludes the definition of a P-segment!

Figure 2. Left: P-segment. Right: N-segment(in red).

Definition of N-segment: An N-segment is a restriction of γ to an interval
[a, b] ⊂ I, which has the following three properties:

(1) γ(a) = (si0 , tj0) and γ(b) = (si1 , tj1) are both vertices, with i0 ≤ i1 and
j0 ≤ j1.

(2) The restriction of γ to
[
a, a+b

2

]
is linear and runs horizontally from (si0 , tj0)

to (si1 , tj0), while the restriction of γ to
[
a+b

2 , b
]

is also linear and runs
vertically from (si1 , tj0) to (si1 , tj1). For the special cases in which i0 = i1
or j0 = j1, the entire N-segment is either vertical or horizontal, respectively.

(3) For γ|[a,b] to be an N-segment, there are also the following requirements
on certain weights: if i ∈ {i0 + 1, . . . , i1} and j ∈ {j0, . . . , j1 + 1}, then
Wi,j ≤ 0. Also, if i ∈ {i0, . . . , i1 +1} and j ∈ {j0 +1 . . . , j1}, then Wi,j ≤ 0.

7. Statement and Proof of Main Theorem

In this section, we state and prove our main result on a canonical form for optimal
matchings between piecewise linear curves.

Theorem 6. Let f1 and f2 be piecewise linear functions I → RN . Then there
exists an optimal matching γ = (γ1, γ2) that has the following properties:

(1) γ is a sequence of P-segments and N-segments; i.e., there exists a partition
{0 = u0 < u1 < · · · < uk = 1} such that for each i = 1, . . . , k, γ|[ui−1,ui] is
either a P-segment or an N-segment.
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(2) γ does not contain two consecutive N-segments.
(3) Suppose that γ|[u1,u2] and γ|[u3,u4] are both P-segments, and suppose that

either u2 = u3 or γ|[u2,u3] is an N-segment. Define (i1, j1) and (i2, j2) by
(si1 , tj1) = γ(u2) and (si2 , tj2) = γ(u3) . Then the final slope of γ|[u1,u2]

and the initial slope of γ|[u3,u4] must be related as follows. Let A = Wi1,j1 ,
B = Wi2+1,j2+1, C = Wi1,j2+1, and D = Wi2+1,j1 . Then Hi2+1,j2+1 =
µ2Hi1,j1 where

(4)

µ ∈



[
D2

AB ,
AB
C2

]
, if C > 0, D > 0[

0, ABC2

]
, if D ≤ 0, C > 0[

D2

AB ,∞
]

, if D > 0, C ≤ 0

[0,∞] , if D ≤ 0, C ≤ 0

(7)

Note that the prescribed µ-interval is empty if CD > AB. In that case, there
cannot be an optimal matching with one P-segment ending at (si1 , tj1) and
the next P-segment beginning at (si2 , tj2)

Proof. We know by Theorem 5 that there exists a piecewise linear optimal matching
between f1 and f2. Choose such an optimal matching and call it γ = (γ1, γ2) : I →
I × I. We may assume that γ is injective by replacing it by a constant speed
reparametrization. Let V0, V1, . . . , VM be an ordered list of all the vertices through
which γ passes, starting with V0 = (0, 0) and ending with VM = (1, 1). From this
list, choose an arbitrary vertex Vi (with i 6∈ {0,M}). If either the portion of γ
from Vi−1 to Vi, or the portion of γ from Vi to Vi+1 passes through a point in
the interior of some block Gk,l with weight Wk,l > 0, then retain Vi in the list. If
neither of these portions of γ pass through such a point, then drop Vi from the list.
Continue this elimination process until no more vertices can be dropped. Renumber
the remaining vertices and revise the number M to reflect the number of vertices
remaining in the list. The remaining vertices now have the property that for each
i = 1, . . . ,M − 1, either the segment of γ from Vi−1 to Vi, or the segment from Vi
to Vi+1 passes through at least one point in the interior of some block Gk,l with
weight Wk,l > 0.

For each i = 0, . . . ,M − 1, consider the segment of γ from Vi to Vi+1. There are
two possibilities:

(1) Type I: If this segment of γ passes through a point in the interior of some
block Gk,l with weight Wk,l > 0, we will prove that it can be replaced by a
P-segment without affecting the optimality, i.e., without affecting the value

of
∫ 1

0
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du.

(2) Type II: If this segment of γ does not pass through such a point, then we
will prove that it can be replaced by an N-segment, without affecting the

optimality, i.e., without affecting the value of
∫ 1

0
(q1 ∗γ1)(u) · (q2 ∗γ2)(u)du.

Lemma 16. Let v, w ∈ RN be two vectors, and define two constant functions
q1 : [a, b] → RN and q2 : [c, d] → RN by q1(s) = v and q2(t) = w. Let α < β;
define γ1 : [α, β] → [a, b] to be the unique linear function such that γ1(α) = a and
γ1(β) = b and define γ2 : [α, β] → [c, d] to be the unique linear function such that

γ2(α) = c and γ2(β) = d. Then
∫ β
α

(q1∗γ1)(u)·(q2∗γ2)(u)du = (v ·w)
√
b− a

√
d− c.
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Proof. This is an easy calculation since (q1 ∗ γ1)(u) = v
√

(b− a)/(β − α) and (q2 ∗
γ2)(u) = w

√
(d− c)/(β − α) are constant functions! �

Lemma 17. Let v, w ∈ RN be two vectors satisfying v · w > 0 and define two
constant functions q1 : [a, b]→ RN and q2 : [c, d]→ RN by q1(s) = v and q2(t) = w.
Let γ1 : [α, β] → [a, b] and γ2 : [α, β] → [c, d] be surjective absolutely continuous
functions with both γ′1(u) > 0 and γ′2(u) > 0 almost everywhere for u ∈ [α, β].
Let γ̃1 and γ̃2 be the unique linear bijections [α, β] → [a, b] and [α, β] → [c, d],
respectively.

Then∫ β

α

(q1∗γ1)(u)·(q2∗γ2)(u)du ≤
∫ β

α

(q1∗γ̃1)(u)·(q2∗γ̃2)(u)du = (v ·w)
√
b− a

√
d− c.

Proof. The main tool here is the Cauchy-Schwarz inequality. Note that for u ∈
[α, β], (q1 ∗ γ1)(u) =

√
γ′1(u)v and (q2 ∗ γ2)(u) =

√
γ′2(u)w. We then compute:∫ β

α

(q1∗γ1)(u)·(q2∗γ2)(u)du =

∫ β

α

v·w
√
γ′1(u)

√
γ′2(u)du = v·w

∫ β

α

√
γ′1(u)

√
γ′2(u)du

≤ v · w

√∫ β

α

γ′1(u)du

√∫ β

α

γ′2(u)du = v · w
√
γ1(β)− γ1(α)

√
γ2(β)− γ2(α)

= v · w
√
b− a

√
d− c

where the inequality is just the Cauchy-Schwarz inequality. Finally, note that if we
replace each γi by γ̃i for i = 1, 2, then since each γ̃′i is a positive constant function,
the Cauchy-Schwarz inequality is actually an equality. �

Lemma 18. Suppose γ passes through a point in the interior of Gk,l for which
Wk,l > 0. It follows that γ−1(Gk,l) = [α, β], where α < β. If we replace γ|[α,β] by
the unique linear map γ̃ : [α, β]→ Gk,l that agrees with γ at α and β, then∫ β

α

(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du ≥
∫ β

α

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du.

Since we are assuming that γ is optimal, it follows that this inequality is actually
an equality, so we can replace γ|[α,β] by the linear map γ̃ without affecting its
optimality.

Proof. Let a = γ1(α), b = γ1(β), c = γ2(α), and d = γ2(β). Since γ([α, β]) ⊂ Gk,l,
it follows that q1 = v is constant on [a, b] and q2 = w is constant on [c, d]. Also, since
Wk,l > 0, we know that v · w > 0. Then, from Theorem 17 it follows immediately
that ∫ β

α

(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du ≥
∫ β

α

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du.

The rest of the Lemma follows from this.
There is one other small point to consider here; in our proof, we tacitly assumed

that q1 and q2 are defined on all of γ1([α, β]) and γ2([α, β]), respectively. However,
in our case either q1 or q2 will fail to be defined at points along the boundary of
the block. As a result, one should consider separately the possibility of a γ that
stays along the edge of Gk,l for either an initial portion or a final portion of [α, β].
However it is not possible for such an γ to achieve a higher value for the integral
in question. The reason is that the contribution of the integral along the edge of
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Gk,l will always be zero (since in these regions either γ′1 or γ′2 will vanish). And in
the remainder of the integral corresponding to such a γ, the value of b− a and/or
the value of d − c will have to be reduced, which will result in a reduction of the
maximum value of the integral as given in Lemma 16.

�

Lemma 19. Suppose γ passes through a point in the interior of Gk,l for which
Wk,l ≤ 0. It follows that γ−1(Gk,l) = [α, β], where α < β. If we replace γ|[α,β] by
a continuous piecewise linear γ̃ that agrees with γ on α and β but is made up of
a finite sequence of vertical (upwards) and horizontal (to the right) segments, then
the resulting γ will still be optimal.

Proof. Because γ([α, β]) ⊂ Gk,l, it follows that∫ β

α

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du =

∫ β

α

(vk) · (wl)
√
γ′1(u)

√
γ′2(u)du ≤ 0,

since we are assuming that (vk) · (wl) = Wk,l ≤ 0. However, note that∫ β

α

(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du = 0,

since for all u ∈ [α, β], either γ′1(u) = 0 or γ′2(u) = 0. Since γ is assumed to be

optimal, it follows that
∫ β
α

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0, and this contribution
doesn’t change if we replace γ|[α,β] by γ̃.

�

Now, suppose we have an optimal matching γ, and within that γ we have chosen a
segment, γ|[a,b], of Type I. We have proved that we can replace this segment of γ
with an equally optimal segment that is linear each time it passes through a block
Gk,l for which Wk,l > 0, and that is a finite sequence of horizontal and vertical
segments each time it passes through a block Gk,l for which Wk,l ≤ 0. So assume
γ|[a,b] has these properties. We claim that there is at least one Gk,l, with Wk,l > 0,
that our segment passes through with positive, non-infinite slope. To prove this

claim, note that if no such Wj,k exists, then
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0.
But then, replacing γ|[a,b] by a path that uses a sequence of horizontal and vertical
segments to get from γ(a) to (sj−1, tk−1), then a diagonal line from (sj−1, tk−1)
to (sj , tk), and then a sequence of horizontal and vertical segments to get from
(sj , tk) to γ(b), would result in a positive integral over this segment, contradicting
optimality.

Thus, choose a block Gk,l, with Wk,l > 0, that our segment passes through with
positive, non-infinite slope. If our entire segment γ|[a,b] passes from the lower left
vertex of this block to the upper right vertex, then γ|[a,b] is a diagonal line joining
these vertices, proving it is a P-segment. So, assume γ|[a,b] either enters or exits
Gk,l through a point on an edge that is not a vertex. Just to be specific, assume
that γ|[a,b] exits Gk,l through a point on its right edge, which would be of the form
(sk, t

∗), where tl−1 < t∗ < tl. Our next task to to examine what happens to γ|[a,b]
as it passes through the next block to the right, Gk+1,l. First, consider the case
in which Wk+1,l > 0. In that case, by Lemma 18, we know γ is linear as it passes
through Gk+1,l. The following Lemma tells us the relationship between the slopes
Hk,l and Hk+1,l as γ passes through these blocks.
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Lemma 20. (1) Assume that the adjacent blocks Gk,l and Gk+1,l both have
positive weights, and suppose that an optimal γ passes from Gk,l to Gk+1,l

at the point (sk, t
∗), where tl−1 < t∗ < tl. Furthermore, assume that γ has

positive and non-infinite slope in at least one of these two adjacent blocks.
Then the slope of γ in the other block is also positive and non-infinite, and
these two slopes are related by

(8)
Hk+1,l

Hk,l
=

(
Wk+1,l

Wk,l

)2

(2) Assume that the adjacent blocks Gk,l and Gk,l+1 both have positive weights,
and suppose that an optimal γ passes from Gk,l to Gk,l+1 at the point
(s∗, tl), where sk−1 < s∗ < sk. Furthermore, assume that γ has positive
and non-infinite slope in at least one of these two adjacent blocks. Then
the slope of γ in the other block is also positive and non-infinite, and these
two slopes are related by

(9)
Hk,l+1

Hk,l
=

(
Wk,l

Wk,l+1

)2

Proof. We assume that the adjacent blocks Gk,l and Gk+1,l both have positive
weights, and that γ passes from Gk,l to Gk+1,l at the point (sk, t

∗), where tl−1 <
t∗ < tl. Furthermore, we assume that γ has positive and nonzero slope in Gk,l.
First, we will show that γ must pass through an interior point of Gk+1,l. If it
doesn’t, then it would have to follow a vertical path in the left edge of Gk+1,l,
which is the same as the right edge of Gk,l; but this would violate the fact that is
it linear while in Gk,l. So choose α and β such that γ(α) = (σ1, τ1) is an interior
point of Gk,l and γ(β) = (σ2, τ2) is an interior point of Gk+1,l. It follows that∫ β

α

(q1∗γ1)(u)·(q2∗γ2)(u)du = Wk,l

√
(sk − σ1)(t∗ − τ1)+Wk+1,l

√
(σ2 − sk)(τ2 − t∗)

by Lemma 16. If we view the above formula as a function of a single variable t∗, it
is an easy Calc I problem to show that the value of the integral is maximized when
we choose t∗ so that

(τ2 − t∗)
(σ2 − sk)

=

(
Wk+1,l

Wk,l

)2
(t∗ − τ1)

(sk − σ1)
.

Since we are assuming that γ is optimal, it follows that this slope relationship must
hold. The other cases of the Lemma follow by analogous arguments. �

Given a Type I matching, we have shown that it must pass through an interior
point of a block Gk,l, of positive weight, with a slope that is neither zero nor infinity.
As we follow this segment in either direction, Lemma 20 tells us how the slope of γ
must change, as long as it enters new blocks of positive weight through non-vertex
edge points. (Of course, if it meets a vertex, that terminates our Type I segment.)
We now address the question of what happens when a matching passes from a block
of positive weight (which it traverses a slope that is neither zero nor infinity) to a
block with non-positive weight.

Lemma 21. (1) Suppose an optimal matching γ passes from a block Gk,l with
to a block Gk+1,l at a point (sk, t

∗), where tl−1 < t∗ < tl. Assume that one
of these blocks has positive weight, and the other has non-positive weight.
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Also, assume that the slope of γ in the block with positive weight is non-
zero and non-infinite. Then the slope of γ in the block with non-positive
weight is zero; hence, γ traverses the block with non-positive weight along
the horizontal line segment t = t∗.

(2) Suppose an optimal matching γ passes from a block Gk,l to a block Gk,l+1 at
a point (s∗, tl), where sk−1 < s∗ < sk. Assume that one of these blocks has
positive weight, and the other has non-positive weight. Also, assume that
the slope of γ in the block with positive weight is non-zero and non-infinite.
Then the slope of γ in the block with non-positive weight is infinite; hence, γ
traverses the block with non-positive weight along the vertical line segment
s = s∗.

Proof. Suppose we are in the first case. Also, to be definite, assume that Wk,l > 0
while Wk+1,l ≤ 0 and that the slope of γ in Gk,l is non-zero and non-infinite. We
proceed by contradiction; suppose that γ exits Gk+1,l at a point other than (sk, t

∗).
In that case, the exit point must be of the form (s̃, t̃), where s̃ > sk and t̃ > t∗.

By Lemma 19, we know that the portion of γ passing through Gk+1,l will con-

tribute 0 to
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du. Consider what happens if we replace
the portion of γ passing through these two blocks by a segment that enters Gk,l
at the same entry point as γ, passes linearly through Gk,l to the point (sk, t̃), and
then proceeds through Gk+1,l by the horizontal segment from (sk, t̃) to (s̃, t̃). This

replacement will increase the integral
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du, since it will
increase the contribution of the portion of γ in Gk,l (by Lemma 16), while not
changing the contribution of the portion in Gk+1,l, which will still be zero. Thus
we contradict the optimality of the original γ, and the proof of Case (1) of the
Lemma is complete. The proof of Case (2) is analogous and we omit it.

�

Thus, given a Type I segment, we know it passes through an interior point of a
blockGk,l, of positive weight, with a slope that is neither zero nor infinity. Following
this segment in both directions, we know precisely what happens to this segment
as if it encounters a block of positive weight or a block of negative weight. What
happens if it encounters several blocks of non-positive weight in a row?

Lemma 22. (1) Suppose Gk,l and Gp,l are blocks of positive weight, where
k < p, and suppose that the intervening blocks Gk+1,l, Gk+2,l, . . . , Gp−1,l

all have non-positive weights. If γ passes through Gk,l with non-zero and
non-infinite slope, and meets the boundary of Gk,l at the point (sk, t

∗),
where tl−1 < t∗ < tl, then γ proceeds through all the intervening blocks
Gk+1,l, Gk+2,l, . . . , Gp−1,l with slope 0 (along the horizontal line t = t∗),
and then passes through the block Gp,l with slope related to the slope in Gk,l
by the formula

(10)
Hp,l

Hk,l
=

(
Wp,l

Wk,l

)2

If instead of assuming γ passes through Gk,l with positive, non-infinite slope,
we assume that it passes through Gp,l with positive, non-infinite slope, then
we can again conclude that it passes through the intervening blocks with
slope 0 and passes through Gk,l with positive, non-infinite slope, and that
these slopes are related by the same equation.
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(2) Suppose Gk,l and Gk,p are blocks of positive weight, where l < p, and
suppose that the intervening blocks Gk,l+1, Gk,l+2, . . . , Gk,p−1 all have non-
positive weights. If γ passes through Gk,l with non-zero and non-infinite
slope, and meets the boundary of Gk,l at the point (s∗, tl), where sk−1 <
s∗ < sk, then γ proceeds through all the intervening blocks Gk,l+1, Gk,l+2, . . . , Gk,p−1

with slope ∞ (along the vertical line s = s∗), and then passes through the
block Gk,p with slope related to the slope in Gk,l by the formula

(11)
Hk,p

Hk,l
=

(
Wk,l

Wk,p

)2

If instead of assuming γ passes through Gk,l with positive, non-infinite slope,
we assume that it passes through Gk,p with positive, non-infinite slope, then
we can again conclude that it passes through the intervening blocks with
slope ∞ and passes through Gk,l with positive, non-infinite slope, and that
these slopes are related by the same equation.

Note that this Lemma contains Lemma 20 as the special case in which the number
of intervening blocks (with non-positive slopes) is zero.

Proof. For definiteness, assume we are in Case (1) of the lemma. The proof that γ
continues with slope 0 through all the intervening blocks with non-positive weights
is the same as the proof of Lemma 21; if not, we could replace γ by a matching
would violate the optimality of the γ. Now that we know that γ has zero slope
through the intervening blocks, the proof of the relationship between the slopes in
Gk,l and Gp,l is identical to the proof of the relationship in Lemma 20, the only
modification being that we let t∗ represent that height of the horizontal line instead
of just the height of the transition point. Case (2) is completely analogous and we
omit its proof. �

If we are given a Type I segment, we have shown it passes through an interior
point of a block Gk,l, of positive weight, with a slope that is neither zero nor infinity.
Following the segment from this block in each direction, we have now proved that
until it encounters a vertex, it must follow the definition of a P-segment. Of course
when it encounters a vertex in either direction, that will be the end of the Type I
segment. Thus, we have proved that each Type I segment is a P-segment.

We now turn to the proof that each Type II segment can be replaced by an
N-segment without altering its optimality. We start with an optimal matching γ.
Assume that our Type II segment is γ[a,b]. Recall from the definition of a Type II
segment, that it starts at a vertex, ends at a vertex, and never passes through an
interior point of a block with positive weight. Also, we know that we cannot have
two consecutive Type II segments, so if it is preceded by a segment, that segment
is now known to be a P-segment, and if it is followed by a segment, that segment is
known to be a P-segment. Let γ(a) = (sp−1, tq−1) and let γ(b) = (sk, tl). Because
γ[a,b] does not pass through an interior point of any block with positive weight, we

know that
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du ≤ 0 (since the integrand is non-positive
almost everywhere). However, if we replaced γ[a,b] by a horizontal segment from
(si−1, tj−1) to (sk, tj−1) followed by a vertical segment from (sp, tq−1) to (sk, tl),

then
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0; by the optimality of γ, it follows that for
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our Type II segment,
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0, and we may make this
replacement without affecting the optimality.

Lemma 23. If γ is optimal and γ[a,b] is a Type II segment from the vertex (sp−1, tq−1)
to the vertex (sk, tl) then Wi,j ≤ 0 for all i, j satisfying p ≤ i ≤ k and q ≤ j ≤ l.

Proof. Suppose not; choose (i, j) such that p ≤ i ≤ k and q ≤ j ≤ l but Wi,j > 0.
Then, if we replace γ|[a,b] by a segment that starts at (sp−1, tq−1), then proceeds
by first a horizontal segment and then a vertical segment to (si−1, tj−1), then by a
linear segment from (si−1, tj−1) to (si, tj), and then by first a horizontal segment
and then a vertical segment to (sk, tl), we will increase the value of this integral
from 0 to a positive number. This contradicts the optimality of γ, and proves the
Lemma. �

To satisfy the definition of N-segment, we need to prove a few more weights are
≤ 0.

Lemma 24. If γ is optimal and γ[a,b] is a Type II segment from the vertex (sp−1, tq−1)
to the vertex (sk, tl) then Wi,j ≤ 0 for all i, j satisfying any one of the following
conditions:

• p ≤ i ≤ k and j = q − 1
• p ≤ i ≤ k and j = l + 1
• i = p− 1 and q ≤ j ≤ l
• i = k + 1 and q ≤ j ≤ l

Note that in some cases one or more of these conditions may be vacuous; for
example, if q = 0, then there is no block Gi,j satisfying j = q − 1.

Proof. The proof is the same for all four conditions, so consider the first one.
Proceed by contradiction; suppose that Wi,j > 0, where p ≤ i ≤ k and j = q − 1.
Assume that γ|[a,b] takes the form of a horizontal segment from (sp−1, tq−1) to
(sk, tq−1), and then a vertical segment from (sk, tq−1) to (sk, tl). (We know that by

Lemma 23,
∫ b
a

(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du ≤ 0; since the segment described makes
the integral equal to zero, it is an optimal one.) Since q − 1 > 0 (so q > 1) in
this case, we know that our current Type II segment has a segment preceding it,
and we have proved that this preceding segment is a P-segment. We know that
Gp−1,q−1 is the last block that this preceding P-segment passed through, and we
also know that because it was a P-segment, Wp−1,q−1 > 0, and Hp−1,q−1 is positive
and finite. Let α < a be the lowest parameter value for which γ(α) ∈ Gp−1,q−1. Let
(s̃, t̃) = γ(α). Since the slope of γ in Gp−1,q−1 is positive, we know that t̃ < tq−1.
Now, focus attention on the segment of γ from (s̃, t̃) to (si, tq−1). This segment
consists of a straight line segment (of positive slope) from(s̃, t̃) to (sp−1, tq−1),
followed by a horizontal line segment from (sp−1, tq−1) to (si, tq−1). For any h
satisfying t̃ ≤ h ≤ tq−1, define a segment γh consisting of a straight line from (s̃, t̃)
to (sp−1, h), followed by a horizontal line from (sp−1, h) to (si−1, h), followed by a
straight line from (si−1, h) to (si, tq−1).

By Lemma 16, the contribution of the segment γh to the integral in question is

C(h) = Wp−1,q−1

√
sp−1 − s̃

√
h− t̃+Wi,q−1

√
si − si−1

√
tq−1 − h.

Note the contribution of the horizontal segment is zero and, by our assumptions,
Wp−1,q−1 and Wi,q−1 are both greater than zero. Clearly C(h) is continuous for
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t̃ ≤ h ≤ tq−1, and is differentiable except at the endpoints of this h-interval. When
h = tq−1, the segment γh coincides with the segment of γ under consideration.
Clearly, as h → tq−1, C ′(h) → −∞, since the derivative of f(x) =

√
x approaches

∞ as x → 0. This implies that for values of h within some some small interval
(tq−1 − ε, tq−1], C(h) is a decreasing function of h, and so for h ∈ (tq−1 − ε, tq−1),
C(h) > C(tq−1). This contradicts the optimality of our original γ, and completes
the proof of the Lemma.

�

The lemmas we have proved show that a segment of Type I is always a P-segment
and a segment of Type II is always an N-segment, establishing Statements (1) and
(2) of Theorem 6. What remains is to prove Statement (3) of Theorem 6, which
gives a relationship between the final slope of a P-segment, and the initial slope of
the next P-segment (whether or not there is an N-segment between them).

First consider the case in which one P-segment of our optimal matching γ ends
at the vertex (si, tj), and the next one begins at the same point. Since these
are P-segments, we already know that their slopes Hi,j in Gi,j and Hi+1,j+1 in

Gi+1,j+1 are both positive. Let µ =
√

Hi+1,j+1

Hi,j
. We need to prove that µ satisfies

the appropriate inequalities given in Statement (3) of Theorem 6. Note that these
inequalities depend on the sign of C and D. (Because we are dealing with P-
segments, A and B must both be positive, by definition.) This argument proceeds
by contradiction; we show that if µ is outside the prescribed intervals, then γ is not
optimal.

We begin by assuming that D > 0. In either of the two cases where this holds,
the lower end of the prescribed interval for µ is D2/AB. So, suppose that µ <
D2/AB. Choose a point on γ in the interior of Gi,j . This point will be of the form
(si − p, tj − q), where p, q > 0. Likewise, choose a point on γ in the interior of
Gi+1,j+1. This point will be of the form (si + u, tj + v), where u, v > 0. Now, for
arbitrary x ∈ [0, u] and y ∈ [0, q], consider a path γx,y = (γx,y1 , γx,y2 ), composed of
the following three pieces: first, the line segment from (si− p, tj − q) to (si, tj − y);
second, the line segment from (si, tj−y) to (si+x, tj); third, the line segment from
(si + x, tj) to (si + u, tj + v). Assume that the portion of γ from (si − p, tj − q)
to (si + u, tj + v) corresponds to the parameter interval z ∈ [α, β]. Parameterize
γx,y using this same parameter interval, and assume that it is linear on each of the
three segments. Define

E(x, y) =

∫ β

α

(q1 ∗ γx,y1 )(z) · (q2 ∗ γx,y2 )(z)dz.

By applying Lemma 16 to the three linear pieces of γx,y, we obtain

E(x, y) = A
√
p
√
q − y +D

√
x
√
y +B

√
v
√
u− x

where we are in the case of A,B,D > 0. It is an easy exercise in two-variable
calculus that the function E(x, y) has a unique absolute maximum on the domain
(x, y) ∈ [0,∞)× [0,∞), and that this maximum occurs at the point

x0 = u

(
D4q −B2A2

(
pv
u

)
D4q +D2B2v

)



32 SAYANI LAHIRI, DANIEL ROBINSON, AND ERIC KLASSEN

y0 = q

D4u−B2A2
(
pv
q

)
D4u+D2A2p


We now observe that this maximum (x0, y0) lies in (0, u)× (0, q), as follows. First,
note that every individual variable occurring in the expressions for x0 and y0 has

a positive value. Furthermore, recall that µ =
√

Hi+1,j+1

Hi,j
=
√

v/u
q/p . Since we

are assuming that µ < D2/AB, it follows immediately that the numerators in
the formulae for both x0 and y0 are positive and therefore x0, y0 > 0. Since the
numerator in the fraction for x0 is less than D4q, while the denominator is greater
than D4q, it follows that x0 < u and, similarly, that y0 < q. Hence we have shown
that (x0, y0) lies in (0, u) × (0, q). Since E has an absolute maximum at (x0, y0),
it follows that E(x0, y0) > E(0, 0). But this contradicts the optimality of γ, since
γ0,0 corresponds exactly to our original γ!

Similarly, under the assumption that C > 0, we show that µ > AB/C2 leads to
a contradiction. This proves Statement (3) for two adjacent P-segments.

The case of two P-segments separated by a single N-segment is similar. Suppose
one P-segment ends at a vertex (si, tj) and the next one starts at (sk, tl), and there
is an N-segment from (si, tj) to (sk, tl). Once, again, we will assume we are in the
case D > 0, and suppose that µ < D2/AB. Choose a point on γ in the interior of
Gi,j . This point will be of the form (si−p, tj − q), where p, q > 0. Likewise, choose
a point on γ in the interior of Gk+1,l+1. This point will be of the form (sk+u, tl+v),
where u, v > 0. Note that the portion of γ from (si − p, tj − q) to (sk + u, tl + v)
consists of four line segments: first from (si−p, tj−q) to (si, tj), second from (si, tj)
to (sk, tj), third from (sk, tj) to (sk, tl), and fourth from (sk, tl) to (sk + u, tl + v).
Now, for arbitrary x ∈ [0, u] and y ∈ [0, q], consider a path γx,y = (γx,y1 , γx,y2 ),
composed of the following five line segments: first from (si−p, tj−q) to (si, tj−y),
second from (si, tj − y) to (sk, tj − y), third from (sk, tj − y) to (sk + x, tj), fourth
from (sk + x, tj) to (sk + x, tl), and fifth from (sk + x, tl) to (sk + u, tl + v). The
rest of the argument proceeds just as before; the contribution of the integral over
the segment γx,y is again given by the formula

E(x, y) = A
√
p
√
q − y +D

√
x
√
y +B

√
v
√
u− x

since the horizontal and vertical segments have no contributions. By finding that
the maximum value of E(x, y) does not occur at (x, y) = (0, 0), we contradict the
assumption that γ was optimal.

This completes the proof of Theorem 6.
�

8. Algorithm for Producing a Precise Optimal Matching of PL
Curves

In Theorem 6, we proved that given PL curves f1 and f2, there exists an optimal
matching γ = (γ1, γ2) that is a union of P-segments and N-segments. We now
outline our algorithm for producing such an optimal matching. Throughout this
section, we continue using the notation developed in the previous section for our
curves f1 and f2 and their SRVF’s q1 and q2. We assume that the q′is are step
functions that do not take the value zero on any of their subintervals.



PRECISE MATCHING OF PL CURVES IN RN IN THE SQUARE ROOT VELOCITY FRAMEWORK33

The algorithm examines each vertex (si, tj), one row at at time, in the order

(s0, t0), (s1, t0), (s2, t0), . . . , (s0, t1), (s1, t1), (s2, t1), . . . , (sm−1, tn), (sm, tn)

When it arrives at a vertex (si, tj), it checks whether an optimal segment has been
found from (s0, t0) to (si, tj). If no such optimal segment has been found, it skips
to the next vertex.

However, if such an optimal segment has been found, it implements a “search-
light” procedure, looking for segments starting from (si, tj), as follows:

• If Wi+1,j+1 ≤ 0, the algorithm finds all possible N-segments beginning at
(si, tj). Suppose such an N-segment ends at (sk, tl). The algorithm checks
whether the value of the optimal segment from (s0, t0) to (si, tj) is higher
than the value of the best segment found so far from (s0, t0) to (sk, tl). If it
is, then the union of these two segments yields a new best possible segment
from (s0, t0) to (sk, tl), and this segment is recorded as such. If it is not,
then this N-segment is simply ignored.

• If Wi+1,j+1 > 0, then the algorithm examines P-segments beginning at
(si, tj). It does not have to examine all such P-segments, because of the
slope restriction imposed by the last clause of Theorem 6. To be more
precise, by considering the final slope of the last P-segment occurring in
the optimal path from (s0, t0) to (si, tj) and the value of four relevant
weights, the last clause of Theorem 6 specifies an allowable range of slopes
for the next P-segment. Our searchlight procedure examines all P-segments
beginning at (si, tj) whose initial slopes are within this range. (We will soon
give some more details on how we accomplish the enumeration of these
P-segments.) Suppose such a P-segment ends at (sk, tl). The algorithm
checks whether the sum of the values of this new P-segment and the optimal
segment from (s0, t0) to (si, tj) is greater than the value of the best segment
found so far from (s0, t0) to (sk, tl). If it is greater, the union of these two
segments yields a new candidate for best possible segment from (s0, t0) to
(sk, tl), and this segment is recorded as such. If it is not, then this new
P-segment is ignored.

During the application of this algorithm, by the time we are examining a vertex
(si, tj), we have already determined whether or not there exists a segment from
(s0, t0) to (si, tj) that follows the rules of Theorem 6.

Thus when we arrive at the final vertex (sm, tn), we will have determined the
best possible segment from (s0, t0) to (sm, tn).

We now make some further comments on the searchlight procedure alluded to
above. In the first case, we are searching for all possible N-segments starting at
(si, tj). This can be accomplished by a relatively simple combinatorial procedure,
searching for vertices above and to the right of (si, tj) which will be the endpoint
of an allowable N-segment.

However, the searchlight procedure has more subtlety in the second case, where
we are searching for all possible P-segments, with starting slope within a given
interval, say [h1, h2]. Because of this subtlety, we give some more details about how
this is accomplished. In order to make sure we don’t miss any allowable P-segments
due to round-off error, we begin by choosing an initial slope h1− ε, where ε denotes
some convenient small positive number. Then, we construct a segment beginning
at the vertex (si, tj) and following the slope-change rules from the definition of
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P-segment whenever we cross from one block to the next. There is essentially a
zero probability that this segment will meet a vertex, so the segment ends when it
arrives at either the vertical line s = 1 or the horizontal line t = 1. Technically,
this segment is not a P-segment, because its final point is not a vertex. The idea
of the searchlight algorithm is that we want to find the next initial slope above
(h1− ε) that will result in a P-segment that actually terminates at a vertex. There
is a nice trick for accomplishing this. Note that the slope of this segment changes
each time it passes from one block to the next, because of the change in the weights
as we pass from one block to the next. However, it is very easy to perform a PL
reparameterization of the original curves, that will result in all the blocks that this
path passes through having the same weight! For example, consider the case in
which the first edge-crossing of our segment takes it from Gi+1,j+1 to Gi+2,j+1. By
choosing a linear reparameterization γ : [si+1, s̃i+2] → [si+1, si+2], we can change
the value of the q-function of f1 on this portion of the curve to any multiple of its
original value ui+2 that we desire. Therefore, we can change the weight Wi+2,j+1 to
make it equal to the weight Wi+1,j+1 by such a reparameterization. (Of course, we
must translate the values of sk for all k > i+ 2 in order to accommodate the new
value of s̃i+2.). Since the weights of these two blocks are now equal, it follows from
the slope transition formula that the slope of the segment will now remain the same
as our segment basses from Gi+1,j+1 to Gi+2,j+1. We proceed along our segment,
making a similar reparametrization of either f1 or f2 each time the segment passes
from one block to the next. The result of this procedure will be that our entire
segment has the same slope (equal to its initial slope in Gi+1,j+1). Note that the
total parameter intervals will no longer be the unit intervals that they were to start
with, but that doesn’t matter. Also, note that the coordinates of several of the
vertices will have been changed by these reparameterizations.

We need to find the lowest slope above h1 − ε for which the segment encounters
a vertex. But, because the slopes are all the same along the segment, this becomes
easy. Let S denote the set of vertices that are either the upper end of a vertical
edge crossed by our segment, or the left end of a horizontal edge crossed by our
segment. For each of the vertices (sk, tl) in S, compute the ratio tl/sk; the lowest
value of this ratio will obviously be the lowest initial slope above h1 − ε for which
our segment encounters a vertex. Call this new slope h̃1. Going back to our original
parameterizations, we have our first P-segment, starting at (si, tj), with initial slope

h̃1.
To find the next P-segment, we begin by constructing a segment starting at

(si, tj), with slope h̃1 + ε for a very small ε, that follows the slope-change rules
whenever it passes from one block to another. There is a zero probability that this
segment will encounter a vertex, so it will end when it arrives at either the vertical
line s = 1 or the horizontal line t = 1. To find the next slope above h̃1 + ε that will
yield a P-segment, we use exactly the same path straightening procedure that we
just described. We proceed in this manner until we arrive at a slope above h2. This
gives us all the P-segments starting at (si, tj) with initial slopes in the required
range. Note that for each P-segment we construct, we just need to construct one
“test” segment to find it.
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9. Examples

In the following pages, we present the results produced by implementing the
aforementioned algorithm on different pairs of 1D, 2D and 3D-curves. In case
of 1D-curves, A shows the original curves as graphs, B shows the aligned curves
and C shows the optimal matching on I × I grid. In case of 2D and 3D-curves,
the alignment of the curves is shown in figure A, the geodesic is shown in B and
C represents the optimal matching on the I × I grid for the pair of curves. The
following table shows the list of the pairs of curves.

EX DESCRIPTION OF THE PAIRS OF CURVES

1(1D) f1(t) = f(t), f2(t) = g(t), t ∈
{
n
5

}5

n=0
, taken from a random data set

2(1D) f1(t) = f(t), f2(t) = g(t), t ∈
{
n

100

}100

n=0
, taken from a simulated data set

3(2D) f1(t) = (t, f(t)), f2(t) = (t, g(t)), t ∈
{
n
45

}45

n=0
, taken from the female growth data set [10]

4(2D) f1(t) = (2πt, 2πt) and f2(t) = (2πt, sin(6πt)), t ∈
{
n
45

}45

n=0

5(2D) f1(t) = (1 + cos(2π(1− t)), sin(2π(1− t))), f2(t) = (−1 + cos(−2πt), sin(2πt)) , t ∈
{
n
45

}45

n=0

6(2D) f1(t) = (1 + cos(2π(1− t)), sin(2π(1− t))), f2(t) = (−1 + cos(−2πt), sin(2πt)) , t ∈
{
n
3

}3

n=0

7(2D) f1(t) = (2πt, sin(6πt)), f2(t) = (2πt, sin(4πt)) , t ∈
{
n
45

}45

n=0

8(3D) f1(t) = (cos 4πt, sin 4πt, t), f2(t) = (cos 8πt, sin 8πt, t) , t ∈
{
n
50

}50

n=0

9(3D) f1(t) = (4πt cos(4πt), 4πt sin(4πt), (4πt)2), f2(t) = (4πt cos(4πt),−4πt sin(4πt), (4πt)2) , t ∈
{
n
50

}50

n=0
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Figure 3. Example 1(1D). Distance before alignment is 1.4815.
Distance after alignment is 0.5071.

Figure 4. Example 2(1D). Distance before alignment is 1.4312.
Distance after alignment is 0.1195.
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Figure 5. Example 3(2D). Distance before alignment is 7.0108.
Distance after alignment is 4.0721.

Figure 6. Example 4(2D). Distance before alignment is 3.9107.
Distance after alignment is 2.8418.
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Figure 7. Example 5(2D). Distance before alignment is 2.5064.
Distance after alignment is 2.0683.

Figure 8. Example 6(2D). Distance before alignment is 2.4495.
Distance after alignment is 2.
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Figure 9. Example 7(2D). Distance before alignment is 4.1655.
Distance after alignment is 1.7899.

Figure 10. Example 8(3D). Distance before alignment is 6.1114.
Distance after alignment is 3.2117.
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Figure 11. Example 9(3D). Distance before alignment is 8.5302.
Distance after alignment is 8.5253.

Figure 12. Comparing results from the Dynamic programming
(top row) with the algorithm (bottom row). Distance before align-
ment is 1.57. Distance after alignment : 1.5239 (using DP) ; 1.2457
(using our algorithm).
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