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Abstract. In this paper we define a new methodology for shape anal-
ysis of parameterized surfaces, where the main issues are: (1) choice of
metric for shape comparisons and (2) invariance to reparameterization.
We begin by defining a general elastic metric on the space of parameter-
ized surfaces. The main advantages of this metric are twofold. First, it
provides a natural interpretation of elastic shape deformations that are
being quantified. Second, this metric is invariant under the action of the
reparameterization group. We also introduce a novel representation of
surfaces termed square root normal fields or SRNFs. This representation
is convenient for shape analysis because, under this representation, a
reduced version of the general elastic metric becomes the simple L

2 met-
ric. Thus, this transformation greatly simplifies the implementation of
our framework. We validate our approach using multiple shape analysis
examples for quadrilateral and spherical surfaces. We also compare the
current results with those of Kurtek et al. [1]. We show that the proposed
method results in more natural shape matchings, and furthermore, has
some theoretical advantages over previous methods.

1 Introduction

Shape analysis plays a very important role in image analysis and computer vi-
sion, with applications in medical diagnostics, bioinformatics, graphics, robotics,
target recognition, and many more. There has been an increasing interest in us-
ing a Riemannian framework for shape analysis of objects due to the breadth of
tools that it offers. First, it allows us to remove all shape-preserving transforma-
tions from the representation space, using the notion of quotient spaces. Second,
it provides ideas and algorithms for computing statistics (sample means, covari-
ances, etc.) of shapes. However, most of this work is limited to shape analysis of
curves [2, 3]. To the best of our knowledge, there are very few papers that study
shapes of continuous 2D surfaces in a similar fashion.

There have been many different representations used to study shapes of 3D
objects. Several groups have proposed methods based on deformable templates
where the surfaces are embedded in 3D domains [4]. While these methods are
both prominent and pioneering in medical image analysis, they are typically com-
putationally expensive since the registration is performed on the full volumes.
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An alternative approach is based on manually-generated landmarks under the
Kendall shape theory [5]. Others study 3D shape variabilities using level sets
[6], curvature flows [7], or point cloud matching via the iterative closest point
algorithm [8]. Also, there has been remarkable success in the use of medial rep-
resentations for shape analysis, especially in medical image analysis [9, 10].

However, the most natural representation for studying shapes of 3D objects
seems to be based on their continuous boundaries, but the parameterization vari-
ability makes it difficult. Some papers use SPHARM or SPHARM-PDM [11, 12]
to tackle this problem by choosing a fixed arc-length type parameterization. This
is a major restriction and does not result in elastic shape analysis of surfaces.
A large set of papers in the literature treat the parameterization (or registra-
tion) and comparison steps in a disjoint manner [13–15]. In other words, they
take a set of surfaces and use some energy function, such as the entropy or the
minimum description length to register points across surfaces. Once the surfaces
are registered, they are compared using standard procedures. Because these two
steps are often performed under different metrics, the resulting registrations and
shape comparisons tend to be suboptimal.

A recent paper by Fuchs et al. [16] considers both the curves and their interi-
ors, but falls short of studying 3D objects. Windheuser et al. [17] solve a dense
registration problem but use a linear interpolation between registered pairs of
points in R

3 to compute geodesic paths. Another paper by Kilian et al. [18]
represents parameterized surfaces by discrete triangulated meshes, assumes a
Riemannian metric on the space of such meshes, and computes geodesic paths
between given meshes. It has a limitation in that it assumes the correspondence
between points across meshes. That is, we need to know beforehand which point
on one mesh matches with which point on the second mesh. In contrast, we
would like to remove the reparameterization variability (akin to performing reg-
istration of surfaces) so that different surfaces with the same shape but different
parameterizations have zero distance between them.

In order to tackle this problem, it is helpful to first look at how these goals were
achieved in shape analysis of parameterized curves. In many papers the authors
define a new representation of curves such that under the standard L

2 metric the
reparameterization of curves preserves distances. Let β1, β2 : [0, 1] → R

n be two
parameterized curves, and let Γ be the reparameterization group (the set of all
diffeomorphisms of [0, 1]). Then, it is easy to see that ‖β1−β2‖ �= ‖β1◦γ−β2◦γ‖
for γ ∈ Γ in general. Srivastava et al. [3] define a function q(t) = β̇(t)/|β̇(t)| 12 that
is used to represent a curve β, with the following desirable properties. First, since
the q-function for a re-parameterized curve β◦γ is given by (q, γ) = (q◦γ)

√
γ̇, we

have that ‖q1 − q2‖ = ‖(q1, γ) − (q2, γ)‖ for all γ ∈ Γ . In this way, one can
remove the reparameterization group and define a distance between shapes of
curves as infγ∈Γ ‖q1−(q2, γ)‖. Second, this L2 metric is in fact a specific instance
of a family of elastic metrics on the space of curves. This relationship provides
useful interpretations of the types of deformations measured by the metric, and
justifies its use. Third, while for n = 2 there is a one-parameter family of such
functions, for n > 2, q is unique.
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Kurtek et al. [1, 19–21] presented a similar framework for shape analysis of
parameterized surfaces. They define a new representation of surfaces termed a
q-map such that the L

2 distance between two q-maps is preserved under the
action of the same γ. They are further able to define geodesics and statistics
on the shape space of parameterized surfaces. Although this work is a very
important step in the right direction, the main drawback of this method is that
the q-map representation of surfaces does not have a clear relationship to an
underlying elastic metric. The representation was solely devised for convenience
of being able to compare the shapes of parameterized surfaces using the L

2

metric. Another flaw of the q-map representation is that translating two shapes
equally does not preserve the distance between them, which can cause major
problems for shape analysis.

In this paper we present a representation of surfaces fully analogous to the
q-representation of curves. It allows invariant shape analysis of surfaces, and the
L
2 metric in this representation is a special case of a general elastic metric on

surfaces. Thus, the main contributions of this paper are the following:

1. The definition of a general elastic metric on the space of parameterized
surfaces.

2. The introduction of a novel representation for shape analysis of surfaces
based on this metric.

The rest of the paper is as follows. Section 2 introduces the new, elastic metric
and representation, and shows how to compute distances between shapes in
this metric. Section 3 illustrates the ideas using toy examples as well as more
complicated surfaces. We also provide results for image matching using surface
graphs. Section 4 concludes.

2 Mathematical Framework

Let F be the space of all smooth embeddings f : D → R
3, where D will be the

square or the sphere. Each such embedding defines a surface f(D) ⊂ R
3. Let Γ

be the set of all diffeomorphisms of D. It acts naturally on F by composition:
(f, γ) �→ f ◦γ. The map from embeddings to surfaces is not injective: two em-
beddings related by the action of Γ correspond to the same surface, so that the
space of surfaces can be thought of as the quotient F/Γ .

The tangent space at f ∈ F , Tf (F), can be identified with F . Given a fixed
measure ds onD, we can define a Riemannian structure on F : for v1, v2 ∈ Tf(F),
the inner product 〈v1, v2〉 =

∫
D
〈v1(s), v2(s)〉 ds. The resulting L

2 distance be-

tween f1, f2 ∈ F is
(∫

D
|f1(s)− f2(s)|2ds

) 1
2 . While simple, this metric has a

critical defect, just as in the case of curves: the action of Γ does not preserve
distances. We have

d2(f1◦γ, f2◦γ) =

∫

D

|f1(γ(s))− f2(γ(s))|2ds =
∫

D

|f1(s̃)− f2(s̃)|2Jγ(s̃)−1ds̃

where Jγ is the Jacobian of γ. This is not equal to d2(f1, f2) in general because
the pushforward measure, J−1

γ ds, is not equal to ds. This lack of isometry means
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that the space of surfaces F/Γ does not inherit the structure of a Riemannian
manifold from F , thereby making this metric difficult to use for analyzing the
shapes of surfaces. One solution is to restrict attention to diffeomorphisms that
preserve ds [22], but there is no reason in general to impose this restriction on
matchings between surfaces. Another solution, proposed by Kurtek et al. [1], is
to develop a new representation of surfaces such that the action of Γ preserves L2

distances. Although convenient, the representation defined in that work suffered
from some fundamental issues described in the previous section. We suggest an
alternative approach based on a new elastic Riemannian metric and a convenient
representation of surfaces.

2.1 The Elastic Metric for Surfaces

Let n(s) ∈ R
3 denote the normal vector to the surface at the point s ∈ D. Let

(u, v) : D → R
2 be coordinates on (a chart of) D; then n(s) = ∂f

∂u (s)× ∂f
∂v (s). The

area measure induced on D by f at s is given by r(s) = |n(s)|, so the normalized

normal vector is ñ(s) = n(s)
r(s) . We will represent the embedding f using the pair

(r, ñ). Let (δr1, δñ1) and (δr2, δñ2) be two tangent vectors to the representation
space at (r, ñ). The new metric is then

〈(δr1, δñ1), (δr2, δñ2)〉(r,ñ) =
1

4

∫
D

δr1(s)δr2(s)

r(s)
ds+

∫
D

〈δñ1(s), δñ2(s)〉 r(s)ds. (1)

To understand this metric, consider the effect of a small change in f on an
infinitesimal patch in the surface around the point f(s). The effect can be de-
composed into a change in the normal direction ñ(s) of the patch and a change
in its geometry. The latter can be further decomposed into a change in the area
of the patch (i.e. in r(s)), and an area-preserving change in its shape [23, 24].
The above metric measures the first two types of changes, but does not ‘notice’
changes in f that change the shape of the patch while preserving its area and
normal direction.

Eqn. (1) is in fact a special case of a general elastic metric for surfaces that
measures all three types of change. Instead of mapping a surface f to its unit
normal field and area factor, we can map it to its unit normal field and its full
pullback metric, g = f∗h, where h is the metric on R

3. The metric g contains
more ‘information’ than r, because r is just |g| 12 (where |·| indicates determinant).
The general elastic metric for surfaces is then

〈(δg1, δñ1), (δg2, δñ2)〉(g,ñ) =∫
D

ds|g| 12
{[

tr(g−1δg1g
−1δg2) +

λ

2
tr(g−1δg1)tr(g

−1δg2)
]
+ c 〈δñ1, δñ2〉

}
, (2)

where, for positivity, λ > −2
n and c ∈ R+. Let us say a few words about this

metric:

– Unlike the (r, ñ) representation, the (g, ñ) representation is injective (up to
isometries of R3) [25]. Like the (r, ñ) representation, it is not surjective.
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– The first two terms form the unique family of ultralocal metrics on the
space of Riemannian metrics [23]. The λ = 0 case of this metric is studied
in e.g. [24, 26, 27].

– The term multiplied by λ can be written as
∫

D

ds|g| 12 tr(g−1δg1)tr(g
−1δg2) = 4

∫

D

ds|g|− 1
2 δ1(|g| 12 )δ2(|g| 12 ). (3)

Since r = |g| 12 , this is the same as the first term in Eqn. (1), while the third
term in Eqn. (2) is the same as the second term in Eqn. (1). Thus Eqn. (1)
is a special case of Eqn. (2).

The first two terms of Eqn. (2) measure general ‘stretching’ of the surface, i.e.
changes in both the area and the shape of local patches, while the third term
measures changes in the normal direction, that is, ‘bending’. Thus this metric is
fully analogous to the elastic metric for curves.

2.2 Surface Representation

Why, in this paper, do we focus on the metric in Eqn. (1) rather than the more
general Eqn. (2)? The reason is that despite its appearance, the metric in Eqn. (1)
is Euclidean: we can find ‘coordinates’ such that this metric takes on the simple
L
2 form. This means that global distances can be found without solving geodesic

equations, as simple L
2 norms of differences, thereby dramatically simplifying

shape analysis. We call this new, convenient representation of surfaces the square
root normal field (SRNF):

Definition 1. The square root normal field (SRNF) q : D → R
3 is defined as

q(s) =
√
r(s)ñ(s) =

n(s)
√
r(s)

=
n(s)

|n(s)| 12 . (4)

Since |q|2 = r, the L2 norm of q is just the area of the surface. Thus the space of
SRNFs is a subset of L2(D,R3), henceforth abbreviated to L

2. The map F → L
2

will be denoted ϕ, with Q = ϕ(F).
We will now see that the L2 metric in the SRNF representation is Eqn. (1). A

tangent vector to an SRNF is given by δq(s) = 1

2
√

r(s)
δr(s)ñ(s) +

√
r(s)δñ(s).

Taking the L
2 inner product between two such vectors, we obtain 〈δq1, δq2〉 =

1
4

∫
D δr1(s)δr2(s)

1
r(s)ds+

∫
D r(s) 〈δñ1(s), δñ2(s)〉 ds, since 〈ñ(s), δñi(s)〉 = 0.

Our approach to shape analysis of surfaces will thus be to represent surfaces
using their SRNFs, and use the L

2 metric to compare their shapes.

2.3 Group Actions, Shape Invariances, and Distance

Our goal is to define a distance between shapes, i.e. surfaces modulo translation,
rotations, and scaling. To do this, we have to define a distance, not between
elements of F , but between equivalence classes defined by the action, on F , of
Γ and the similarity group of R3. If the SRNF is to be useful, these groups must
also act in a consistent way on L

2. The following facts are easily checked:
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– The SRNF is invariant to translations since it involves only derivatives of f .
– Scaling the surface f �→ af sends q �→ √

aq.
– Rotating the surface f �→ Of sends q �→ Oq.
– The action of Γ sends q �→ (q, γ) =

√
Jγ(q◦γ). We extend this to all L2.

– The actions of SO(3) and Γ commute on both F and L
2, meaning that there

is a well-defined action of the product group G = SO(3) × Γ on both these
spaces. Let S = F/G and R = L

2/G.
– The map ϕ is equivariant with respect to the action of G on F and L

2. Thus
there exists a well-defined map [ϕ] : S → R.

– The action of G on L
2 is by isometries: ‖q1 − q2‖ = ‖(Oq1, γ)− (Oq2, γ)‖.

The first point guarantees that shape analysis will be invariant to translations.
To produce invariance to scaling, we scale all surfaces to unit area. Note that
this amounts to restricting attention to the unit sphere in L

2. We then define a
distance on R by minimizing over the equivalence classes of G:
Definition 2

d([q1], [q2]) = inf
(O,γ)∈G

‖q1 − (Oq2, γ)‖ . (5)

We can now define a distance between shapes [f1] and [f2] by dS([f1], [f2]) =
d([ϕ]([f1]), [ϕ]([f2])). Note that d is an extrinsic metric, in two senses. First,
because unit-area surfaces live on the unit sphere in L

2, and the above is a
chordal distance. Second, because it is not clear that there will always be a path
in R between [q1] and [q2] with length d([q1], [q2]) that lies entirely in the image
[ϕ](S) of [ϕ]. Note too that because ϕ is not injective, dS is a pseudometric on
S. We discuss this point further in section 4.

2.4 Gradient over Reparameterization Group

The computation of d in Eqn. (5) requires solving the joint optimization problem
on G = SO(3)× Γ . For a fixed γ ∈ Γ , the minimization over SO(3) can be per-
formed directly using Procrustes analysis. Let q̃2 denote (q2, γ); then, the optimal
value ofO is obtained as follows. Compute the 3×3 matrixA =

∫
D
q1(s)q̃2(s)

T ds.
Using singular value decomposition A = UΣV T , we can define the optimal ro-
tation as O∗ = UV T (if the determinant of A is negative, the last column
of V changes sign). Thus if we can optimize over Γ for fixed O, then we can
alternate between minimizing over SO(3) and Γ , and thereby converge to a
solution.

To optimize over Γ , we use a gradient descent approach. This is very similar
to the approach presented in [1, 19], because the action of Γ is the same in
the two cases. Nonetheless, we sketch out an outline of this procedure here for
convenience.

At the current iteration, let the parameterization of the second surface result
in q2 ∈ [q2]. Let Tq2([q2]) be the space of tangents to the Γ orbit [q2] at q2
and set v = q1−q2

|q1−q2| in Tq2([q2]). Actually v is the gradient of the cost function

E ≡ ‖q1 − q2‖, given in Eqn. (5), with respect to q2. If the projection of v along
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the orbit [q2] is zero, then the straight line from q1 to q2 is perpendicular to
the orbit [q2], and indeed all other orbits; this is the extrinsic geodesic distance
between the elements of [q1] and [q2]. Otherwise, we update q2 in the direc-
tion of this projection. An integral step here is to compute the projection of v
on Tq2([q2]). This step is performed numerically: we determine an orthonormal
basis of a finite-dimensional subspace of Tq2([q2]) and use those basis elements
to approximate the projection of v. These basis elements, in turn, are first de-
rived in the space Tγid

(Γ ) and then transferred to Tq2([q2]) using an appropriate
mapping.

3 Experimental Results

In this section, we present various surface shape comparison results in order to
validate the proposed method. We provide examples for both quadrilateral and
spherical surfaces. In some cases, we compare the proposed method to the one
described in [1]. We also consider the problem of matching and classifying images
represented using surface graphs.

3.1 Quadrilateral and Spherical Surface Comparisons

Next, we display examples of matching and comparing quadrilateral and closed
surfaces. In each example we display the surfaces with their given parameteri-
zations as f1 and f2. We also provide the optimally registered second surface as
O∗(f2◦γ∗), the optimal parameterization of the second surface γ∗ and the energy
at each iteration. The matching of points across surfaces is displayed by map-
ping the color scheme on surface f1 to the corresponding points on the second
surface. Thus, similar features on both surfaces should be shaded with the same
colors. In each example, we also evaluate the obtained registration of surfaces
by considering a linear interpolation between them. Note that this interpola-
tion is computed in F and thus does not represent a geodesic under our met-
ric. Improved registration corresponds to better preservation of features along
this path.

Ex. 1 (Fig. 1): Here, we consider an example where the two given surfaces are
within a reparameterization of each other. That is, f2 = f1◦γ. Thus, we expect
the resulting energy to be very close to zero and the linear interpolation between
f1 and f2◦γ∗ to be a constant path. This is in fact the case.

Ex. 2 (Fig. 1): In this example, we are interested in comparing a surface with
one peak to a surface with one high peak and one low peak. We note that,
as given, the two surfaces are very misaligned, which can be seen in the linear
interpolation between them. After applying the proposed method, we note that
the two high peaks match well and that the linear interpolation between the
registered surfaces is more natural.
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f1 f2 O∗(f2◦γ∗) γ∗ E

Example 1

200 400 600 800

0.2

0.4

0.6

Linear Interpolation between f1 and f2

Linear Interpolation between f1 and O∗(f2◦γ∗): E = 0.0309

Example 2

20 40 60

0.65

0.7

0.75

0.8

Linear Interpolation between f1 and f2

Linear Interpolation between f1 and O∗(f2◦γ∗)

Fig. 1. Comparisons of quadrilateral surfaces. Top: Example for surfaces of revolution
where f2 = f1◦γ. We expect the linear interpolation to be a constant path and the
distance to be close to zero. Bottom: Example for two toy surfaces.

Ex. 3 and 4 (Fig. 2): We present similar results for toy spherical surfaces.
Again, we first consider the case where f2 = f1◦γ. We note that the proposed
method recovers the correct parameterization of the second surface, which is
reflected in an energy close to zero and a constant linear interpolation between
the surfaces. In Ex. 4, we consider two surfaces with different numbers of peaks.
With the given parameterizations, the peaks on the surfaces do not match well,
and the surfaces along the linear interpolation have distorted features. But, after
applying the proposed method this matching is improved, which again results in
a much more natural path between the two surfaces.
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f1 f2 O∗(f2◦γ∗) γ∗ E

Example 3

100 200 300

0.2

0.4

0.6

Linear Interpolation between f1 and f2

Linear Interpolation between f1 and O∗(f2◦γ∗): E = 0.0582

Example 4

50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

Linear Interpolation between f1 and f2

Linear Interpolation between f1 and O∗(f2◦γ∗)

Fig. 2. Comparisons of spherical surfaces. Top: Example where f2 = f1◦γ. We expect
the linear interpolation to be a constant path and the distance to be close zero. Bottom:
Example for two toy surfaces.

Ex. 5 (Fig. 3): Next, we compare the surface matching based on the proposed
method to that presented by Kurtek et al. [1]. In this example, the proposed
method performs very well at matching the three peaks across the two given
quadrilateral surfaces. The latter method attempts to match all of the peaks on
f1 to the largest peak on f2, which results in a less natural linear path between
the two surfaces.

Ex. 6 (Fig. 4): In this example, we consider two spherical models of a hand.
Again, we compare the results obtained using the proposed method and the
method presented in [1]. The proposed method yields a much better matching of
features across surfaces in this case. Using the registration based on the proposed
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f1 f2 O∗(f2◦γ∗) (PM) O∗(f2◦γ∗) [1]
Example 5

Linear Interpolation between f1 and f2

Linear Interpolation between f1 and O∗(f2◦γ∗) (PM)

Linear Interpolation between f1 and O∗(f2◦γ∗) [1]

Fig. 3. Surface comparisons based on surfaces of revolution. PM=proposed method.

method the missing finger nicely grows along the linear interpolation. The other
method does not provide such an intuitive result.

Ex. 7-12 (Fig. 5): Here, we present more examples of matching some compli-
cated spherical surfaces using the proposed method. We note that the resulting
registration provides a natural deformation between the surfaces.

3.2 Image Registration and Classification Using Surface Graphs

In this section, we present registration and classification results for digit images
by viewing them as quadrilateral surface graphs. This data is a subset of 100
images (ten for each digit) obtained from the MNIST database.

We begin by showing three examples of matching images with different digits
(Fig. 6): two zeros, a one and a zero, and a three and an eight. Again, we compare
our method to the one proposed by Kurtek et al. [1]. In each example, we provide
the two original images (I1 and I2), the optimally warped second image (I2◦γ∗),
and the absolute difference image. We note that in the first example the two
methods produce similar results. In the second and third examples, the two
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f1 f2 O∗(f2◦γ∗) (PM) O∗(f2◦γ∗) [1]
Example 6

Linear Interpolation between f1 and f2

Linear Interpolation between f1 and O∗(f2◦γ∗) (PM)

Linear Interpolation between f1 and O∗(f2◦γ∗) [1]

Fig. 4. Surface comparisons based on spherical surfaces

methods provide very different results. The proposed method provides smaller
absolute differences between registered images, which is especially evident in the
third example.

In order to evaluate the overall quality of this method compared to the one
proposed by Kurtek et al., we performed a classification experiment on the 100
digit images (ten zeros, ten ones,...,ten nines). We began by computing the full
pair-wise distance matrices based on the two methods. Using these distance ma-
trices we computed the cluster purity measure and the one, three, and five nearest
neighbor classification rates. The results, along with the distance matrices, are
reported in Fig. 7. We note that the distance matrix based on the proposed
method provides a better separation of classes. This is reflected in a significantly
higher cluster purity measure and nearest neighbor classification rates. Further-
more, the proposed method provides more stable classification rates with respect
to the number of nearest neighbors considered.
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Ex. f1 f2 O∗(f2◦γ∗) Lin. Interp.

7

8

9

10

11

12

Fig. 5. More shape matching examples of spherical surfaces

I1 I2 I2◦γ∗ (PM) |I1 − I2◦γ∗| (PM) I2◦γ∗ [1] |I1 − I2◦γ∗| [1]

Fig. 6. Image registration using surface graphs. Top: Two zero digits. Middle: A zero
and a one. Bottom: A three and an eight.
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PM [1]

CP = 0.80 CP = 0.53

1NN CR = 0.91 1NN CR = 0.81

3NN CR = 0.90 3NN CR = 0.75

5NN CR = 0.89 5NN CR = 0.63

Fig. 7.Digit image classification based on the proposed method and the method defined
by Kurtek et al. [1]. CP = cluster purity, NN CR = nearest neighbor classification rate.

4 Summary

We have defined a new elastic metric for shape comparisons of parameterized
surfaces. In order to compute distances under this metric, we have introduced a
novel representation of surfaces termed square root normal fields. The advantage
of using this representation is that the complicated elastic metric simplifies to
the standard L

2 metric. We have included a number of results that validate our
methodology.

Many questions remain unanswered. The SRNF representation is not faithful,
so that many embeddings correspond to the same SRNF. What is the nature
of this freedom? Is it useful? Alternatively, we could move to the full elastic
metric, Eqn. (2) and the faithful metric/normal field representation. Can we find
simplifying coordinates for this metric, analogous to the SRNF? The answers to
these questions would further advance the statistical modeling of 3D shape.
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