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We consider the statistical analysis of trajectories on Riemannian mani-
folds that are observed under arbitrary temporal evolutions. Past methods rely
on cross-sectional analysis, with the given temporal registration, and con-
sequently may lose the mean structure and artificially inflate observed vari-
ances. We introduce a quantity that provides both a cost function for temporal
registration and a proper distance for comparison of trajectories. This distance
is used to define statistical summaries, such as sample means and covari-
ances, of synchronized trajectories and “Gaussian-type” models to capture
their variability at discrete times. It is invariant to identical time-warpings (or
temporal reparameterizations) of trajectories. This is based on a novel math-
ematical representation of trajectories, termed transported square-root vector
field (TSRVF), and the L

2 norm on the space of TSRVFs. We illustrate this
framework using three representative manifolds—S

2, SE(2) and shape space
of planar contours—involving both simulated and real data. In particular, we
demonstrate: (1) improvements in mean structures and significant reductions
in cross-sectional variances using real data sets, (2) statistical modeling for
capturing variability in aligned trajectories, and (3) evaluating random tra-
jectories under these models. Experimental results concern bird migration,
hurricane tracking and video surveillance.

1. Introduction. The need to summarize and model trajectories arises in
many statistical procedures. An important issue in this context is that trajectories
are often observed at random times. If this temporal variability is not accounted
for in the analysis, then the resulting statistical summaries will not be precise. The
mean trajectory may not be representative of individual trajectories and the cross-
sectional variance will be artificially inflated. This, in turn, will greatly reduce the
effectiveness of any subsequent modeling or analysis based on the estimated mean
and covariance. As a simple example consider the trajectory on S

2 shown in the
top panel of Figure 1(a). We simulate a set of random, discrete observation times
and generate observations of this trajectory at these random times. These simu-
lated trajectories are identical in terms of the points traversed but their evolutions,
or parameterizations, are quite different. If we compute the cross-sectional mean
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FIG. 1. Summary of trajectories on S
2: (a) a simulated example; (b) bird migration paths; (c) hurri-

cane tracks; (d) cross-sectional mean of two trajectories without (top) and with (bottom) registration.

and variance, the results are shown in the bottom panel. We draw the sample mean
trajectory in black and the sample variance at discrete times using tangential el-
lipses. Not only is the mean fairly different from the original curve, the variance
is purely due to randomness in observation times and is somewhat artificial. If we
have observed the trajectory at fixed, synchronized times, this problem would not
exist.

To motivate further, consider the phenomenon of bird migration which is the
regular seasonal journey undertaken by many species of birds. There are variabili-
ties in migration trajectories, even within the same species, including the variabil-
ity in their rates of travels. In other words, either birds can travel along different
paths or, even if they travel the same path, different birds (or subgroups) may fly
at different speed patterns along the path. This results in variability in observa-
tion times of migration paths for different birds and artificially inflates the cross-
sectional variance in the data. Another issue is that such trajectories are naturally
studied as paths on a unit sphere which is a nonlinear manifold. We will study
the migration data for Swainson’s Hawk, with some example paths shown in the
top panel of Figure 1(b). Swainson’s Hawk inhabits North America mainly in the
spring and summer, and winters in South America. It shows perhaps the longest
migration of any North American raptor, with durations in excess of two months.
Owen and Moore (2008) discovered that Swainson’s Hawk in migratory disposi-
tion exhibits reduced immune system functions. Therefore, it becomes important
to investigate and summarize such travels. The bottom panel in Figure 1(b) shows
the cross-sectional sample mean and variance of the trajectories.

Another motivating application comes from hurricane tracking, where one is in-
terested in studying the shapes of hurricane tracks in certain geographical regions.
The statistical summaries and models of hurricane tracks can prove very useful
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for monitoring and issuing warnings. Hurricanes potentially evolve at variable dy-
namical rates and any statistical analysis to these tracks should be invariant of the
evolution rates. As in the previous application, the hurricane tracks also are natu-
rally treated as trajectories on a unit sphere. The top panel of Figure 1(c) shows a
set of hurricane tracks originating from the Atlantic region. The sample mean and
variance of these trajectories are adversely affected by phase variability, as shown
in the bottom row of Figure 1(c).

As the last motivating example, consider two synthetic trajectories, drawn in
red and blue in the top of Figure 1(d). These two trajectories have the same shape,
that is, two bumps each, and a curve representing their mean is also expected to
have two bumps. A simple cross-sectional mean, shown by the black trajectory in
the same picture, has three bumps. If we solve for the optimal temporal alignment,
then such inconsistencies are avoided and the black trajectory in the bottom panel
shows the mean obtained using the method proposed in this paper, which accounts
for the time-warping variability.

Although there has been progress in the removal of temporal variability, of-
ten termed phase variability, in Euclidean spaces including Trouvé and Younes
(2000), Kneip and Ramsay (2008), Srivastava et al. (2011a) and Tucker, Wu and
Srivastava (2013), there has not been any treatment of trajectories on Riemannian
manifolds. There are many other applications involving analysis of trajectories
on Riemannian manifolds. For example, human activity recognition has attracted
tremendous interest in recent years because of its potential in applications such as
surveillance, security and human body animation. There are several survey articles,
for example, Aggarwal and Cai (1999) and Gavrila (1999), that provide a detailed
review of research in this area. Here each observed activity is represented by a
sequence of silhouettes in video frames, each silhouette being an element of the
shape space of planar contours. The shape sequences have also been called shape
curves or curves on shape spaces [Kenobi, Dryden and Le (2010), Le (2003)].
Since activities can be performed at different execution rates, their corresponding
shape curves will exhibit distinct evolution rates. Veeraraghavan et al. (2009) ac-
counted for the time-warping variability but their method has some fundamental
problems, as explained later. [Briefly, the method is based on equation (2) which
is not a proper distance. In fact, it is not even symmetric.] Another motivating
application is in pattern analysis of vehicle trajectories at a traffic intersection us-
ing surveillance videos, where the instantaneous motion of a vehicle is denoted
by the position and orientation on the road. The movements of vehicles typically
fall into predictable categories—left turn, right turn, U turn, straight line—but the
instantaneous speeds can vary depending on the traffic. In order to classify these
movements, one has to temporally align the trajectories, thus removing the effects
of travel speeds, and then compare them.

Now we describe the problem in mathematical terms. Let α : [0,1] → M , where
M is a Riemannian manifold, be a differentiable map; it denotes a trajectory on M .
We will study such trajectories as elements of an appropriate subset of M [0,1].
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Rather than observing a trajectory α directly, say, in the form of time observa-
tions α(t1), α(t2), . . . , we instead observe the time-warped trajectory α(γ (t1)),
α(γ (t2)), . . . , where γ : [0,1] → [0,1] is an unknown time-warping function
(a function with certain constraints described later) that governs the rate of evo-
lution. The mean and variance of {α1(t), α2(t), . . . , αn(t)} for any t , where n is the
number of observed trajectories, are termed the cross-sectional mean and variance
at that t . If we use the observed samples {αi(γi(t)), i = 1,2, . . . , n} for analysis,
the cross-sectional variance is inflated due to random γi . Our hypothesis is that
this problem can be mitigated by temporally registering the trajectories. Thus, we
are interested in the following four tasks:

1. Temporal registration: This is a process of establishing a one-to-one correspon-
dence between points along multiple trajectories. That is, given any n trajec-
tories, say, α1, α2, . . . , αn, we are interested in finding functions γ1, γ2, . . . , γn

such that the points αi(γi(t)) are matched optimally for all t .
2. Metric-based comparisons: We want to develop a metric that is invariant to dif-

ferent evolution rates of trajectories. Specifically, we want to define a distance
d(·, ·) such that for arbitrary evolution functions γ1, γ2 and arbitrary trajectories
α1 and α2, we have d(α1, α2) = d(α1 ◦ γ1, α2 ◦ γ2).

3. Statistical summary: The main use of this metric will be in defining and
computing a (Karcher) mean trajectory μ(t) and a cross-sectional variance
function ρ̂(t), associated with any given set of trajectories. The reason for
performing registration is to reduce the cross-sectional variance that is artifi-
cially introduced in the data due to random observation times. The reduction in
variance is quantified using ρ̂.

4. Statistical modeling and evaluation: We will use the estimated mean and co-
variance of registered trajectories to define a “Gaussian-type” model on random
trajectories. This model will then be used to evaluate p-values associated with
new trajectories. Here the p-value implies the proportion of trajectories with
smaller density than the current trajectory under the given model.

For performing comparison and summarization of trajectories, we need a metric
and, at first, we consider a more conventional solution. Since M is a Riemannian
manifold, we have a natural distance dm between points on M . Using dm, one can
compare any two trajectories: α1, α2 : [0,1] → M , as

dx(α1, α2) =
∫ 1

0
dm

(
α1(t), α2(t)

)
dt.(1)

Although this quantity represents a natural extension of dm from M to M [0,1],
it suffers from the problem that dx(α1, α2) �= dx(α1 ◦ γ1, α2 ◦ γ2) in general.
It is not preserved even when the same γ is applied to both trajectories, that is,
dx(α1, α2) �= dx(α1 ◦ γ,α2 ◦ γ ) in general. If we have equality in the last case, for
all γ , then we can develop a fully invariant distance and use it to properly register
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trajectories, as described later. So, the failure to have this equality is a key issue
that forces us to look for other solutions in situations where trajectories are ob-
served at random temporal evolutions. When a trajectory α is observed as α ◦ γ ,
for an arbitrary temporal re-parameterization γ , we call this perturbation compo-
sitional noise. In these terms, dx is not useful in comparing trajectories observed
under compositional noise.

Our goal is to take time-warping into account, derive a warping-invariant met-
ric, and generate statistical summaries (sample mean, covariance, etc.) for trajec-
tories on a set M . The fact that M is a Riemannian manifold presents a formidable
challenge in developing a comprehensive framework. But this is not the only chal-
lenge. To clarify, how has this registration and analysis problem been handled for
trajectories in Euclidean spaces? In case M = R, that is, if one is interested in
registration and modeling of real-valued functions under random time-warpings,
the problem has been studied by many authors, including Srivastava et al. (2011a),
Liu and Müller (2004), Kneip and Ramsay (2008) and Tucker, Wu and Srivastava
(2013). In case M = R

2, where the problem involves registration and shape anal-
ysis of planar curves, the solution is discussed in Michor and Mumford (2007),
Younes et al. (2008), Shah (2008) and Sundaramoorthi et al. (2011). Srivastava
et al. (2011b) proposed a solution that applies to curves in arbitrary R

n. One can
also draw solutions from problems in image registration where 2D and 3D images
are registered to each other using a spatial warping instead of a temporal warp-
ing [see, e.g., LDDMM technique, Beg et al. (2005)]. A majority of the existing
methods in Euclidean spaces formulate an objective function of the type

min
γ

(∫ 1

0

∣∣α1(t) − α2
(
γ (t)

)∣∣2 dt + λR(γ )

)
,

where | · | is the Euclidean norm, R is a regularization term on the warping func-
tion γ , and λ > 0 is a constant. In the case of a Riemannian manifold, one can
modify the first term to obtain

min
γ

(∫ 1

0
dm

(
α1(t), α2

(
γ (t)

))2
dt + λR(γ )

)
,(2)

where dm(·, ·) is the geodesic distance on the manifold. The main problem with
this procedure is that (a) it is not symmetric, that is, the registration of α1 to α2 is
not the same as that of α2 to α1, as pointed out by Christensen and Johnson (2001),
among others, and (b) the minimum value is not a proper distance, so it cannot be
used to compare trajectories. This sums up the fundamental dilemma in trajectory
analysis—equation (1) provides a metric between trajectories but does not perform
registration, while equation (2) performs registration but is not a metric.

Another potential approach is to map trajectories onto a vector space, for ex-
ample, the tangent space at a point, using the inverse exponential map, and then
compare the mapped trajectories using the Euclidean solutions in the vector space.
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While this idea is feasible, the results may not be consistent since the inverse ex-
ponential map is a local and highly nonlinear operator. For example, on a sphere,
under stereographic map two points near the south pole will map to two distant
points in the tangent space at the north pole, and their distance will be highly dis-
torted. In contrast, the solution proposed here transports vector fields associated
with trajectories, rather than trajectories themselves, into a standard tangent space
and this provides a more stable alternative.

We would like an objective function for alignment that (a) is a proper dis-
tance, that is, it is symmetric, positive definite and satisfies the triangle inequality,
(b) is invariant to simultaneous warping of two trajectories by the same warping
function, and (c) leads to minimal cross-sectional variance for sample trajectories.
For real-valued functions, a Riemannian framework has already been presented in
Kurtek, Wu and Srivastava (2011) and Srivastava et al. (2011a), but to our knowl-
edge this framework has not been generalized to manifolds.

In this paper we develop a framework for automated registration of multiple
trajectories and obtain improvements in statistical summaries of time-warped tra-
jectories on Riemannian manifolds. This framework is based on a novel mathemat-
ical representation called the transported square-root vector field (TSRVF) and the
L

2 norm between TSRVFs. The setup satisfies the invariance property mentioned
earlier, that is, an identical time-warping of TSRVFs representing two trajectories
preserves the L

2 norm of their difference and, therefore, this difference is used
to define a warping-invariant distance between trajectories. The resulting distance
is found useful in registration, comparison and summarization of trajectories on
manifolds. To illustrate these ideas, we take three manifolds, S2, SE(2) and the
shape space of planar closed curves, and provide simulated and real examples.
Our paper can also be viewed as an extension, albeit not a trivial one, of the work
of Kurtek, Wu and Srivastava (2011) and Srivastava et al. (2011a) from M = R to
Riemannian manifolds.

The paper is organized as follows. In Section 2 we introduce a general math-
ematical framework for analyzing trajectories on Riemannian manifolds and
demonstrate the use of this framework in registration, comparison, summarization,
modeling and evaluation. We also provide algorithms for performing these tasks.
In Section 3 we specialize this framework to S

2 and consider two applications. In
Section 4 we apply it to pattern analysis of vehicle trajectories on SE(2). In Sec-
tion 5 we provide details for time-warping invariant analysis of trajectories on the
shape space of planar closed curves, with applications to activity recognition.

2. Mathematical framework. Let α denote a smooth trajectory on a Rieman-
nian manifold M endowed with a Riemannian metric 〈·, ·〉. Let M denote the set
of all such trajectories: M = {α : [0,1] → M|α is smooth}. Also, define � to be
the set of all orientation preserving diffeomorphisms of [0,1] :� = {γ : [0,1] →
[0,1]|γ (0) = 0, γ (1) = 1, γ is a diffeomorphism}. Note that � forms a group un-
der the composition operation. If α is a trajectory on M , then α ◦ γ is a trajectory
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that follows the same sequence of points as α but at the evolution rate governed
by γ . More technically, the group � acts on M according to (α, γ ) = α ◦ γ .

Given two smooth trajectories α1, α2 ∈ M, we want to register points along
the trajectories and compute a time-warping invariant distance between them. As
mentioned earlier, the quantity given in equation (2) would be a natural choice
for this purpose, but it fails for several reasons, including the fact that it is not
symmetric. Fundamentally, this and other quantities used in previous literature are
not appropriate for solving the registration problem because they are not measuring
registration in the first place. To highlight this issue, take the registration of points
between the pair (α1, α2) and the pair (α1 ◦γ,α2 ◦γ ), for any γ ∈ �. It can be seen
that the pairs (α1, α2) and (α1 ◦ γ,α2 ◦ γ ) have exactly the same registration of
points. In fact, any identical time-warping of two trajectories does not change the
registration of points between them. But the quantities given in equations (1) and
(2) provide different values for these pairs, despite the same registration. Hence,
they are not good measures of registration. We emphasize that the invariance under
identical time-warping is a key property needed in the desired framework.

We introduce a new representation of trajectories that will be used to compare
and register them. We assume that for any two points p,q ∈ M , we have an ex-
pression for parallel transporting any vector v ∈ Tp(M) along the shortest geodesic
from p to q , denoted by (v)p→q . As long as p and q do not fall in the cut loci of
each other, the geodesic between them is unique and the parallel transport is well
defined. The measure of the set of cut locus on the manifolds of our interest is
typically zero. So, the practical implications of this limitation are negligible. Let
c be a point in M that we designate as a reference point. We assume that none
of the observed trajectories pass through the cut locus of c to avoid the problem
mentioned above.

DEFINITION 1. For any smooth trajectory α ∈ M, the transported square-root
vector field (TSRVF) is a parallel transport of a scaled velocity vector field of α to
a reference point c ∈ M according to

hα(t) = α̇(t)α(t)→c√|α̇(t)| ∈ Tc(M),

where | · | denotes the norm related to the Riemannian metric on M .

Since α is smooth, so is the vector field hα . Let H ⊂ Tc(M)[0,1] be the set of
smooth curves in Tc(M) obtained as TSRVFs of trajectories in M , H = {hα|α ∈
M}. If M = R

n with the Euclidean metric, then h is exactly the square-root veloc-
ity function defined in Srivastava et al. (2011b).

The choice of the reference point c used in Definition 1 is important and can
affect the results. The choice typically depends on the application, the data and the
manifold under study. In case all the trajectories pass through a point or pass close
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to a point, then that point is a natural candidate for c. This would be true, for exam-
ple, in the case of hurricane tracks, if we are focused on all hurricanes starting from
the same region. Another remark is that instead of parallel transporting of scaled
velocity vectors along geodesics, one can transport them along trajectories them-
selves, as was done by Jupp and Kent (1987), but that requires c to be a common
point of all trajectories. While the choice of c can, in principle, affect distances, our
experiments suggest that the results of registration, distance-based clustering and
classification are quite stable with respect to this choice. An example is presented
later in Figure 2.

We represent a trajectory α ∈ M with the pair (α(0), hα) ∈ M × H. Given
this representation, we can reconstruct the path, an element of M, as follows.
For any time t , let Vt be a time-varying tangent vector-field on M obtained by
parallel transporting hα(t) over M [except for the cut locus of α(t)], that is, for
any p ∈ M , Vp(t) = (hα(t))c→p . Then, define an integral curve β such that β̇(t) =
|Vβ(t)(t)|Vβ(t)(t) with the starting point β(0) = α(0) ∈ M . This resulting curve β

will be exactly the same as the original curve α.
The starting points of different curves can be compared using the Riemannian

distance dm on M . However, these points do not play an important role in the
alignment of trajectories since they are already assumed to be matched to each
other. Therefore, the main focus of analysis, in terms of alignment and comparison,
is on TSRVFs. Since a TSRVF is a path in Tc(M), one can use the L

2 norm to
compare such paths.

DEFINITION 2. Let α1 and α2 be two smooth trajectories on M and let hα1

and hα2 be the corresponding TSRVFs. The distance between them is

dh(hα1, hα2) =
(∫ 1

0

∣∣hα1(t) − hα2(t)
∣∣2 dt

)1/2

.

The distance dh, being the standard L
2 norm, satisfies symmetry, positive def-

initeness and triangle inequality. Also, due to the invertibility of the mapping
from M to M ×H, one can use dh (along with dm) to define a distance on M. The
main motivation of this setup—TSRVF representation and L

2 norm—comes from
the following fact. If a trajectory α is warped by γ , to result in α ◦ γ , the TSRVF
of α ◦ γ is given by

hα◦γ (t) = (α̇(γ (t))γ̇ (t))α(γ (t))→c√|α̇(γ (t))γ̇ (t)| = (α̇(γ (t)))α(γ (t))→c

√
γ̇ (t)√|α̇(γ (t))|

= hα

(
γ (t)

)√
γ̇ (t),

which is also denoted as (hα, γ )(t). We will often write (hα, γ ) to denote hα◦γ .
As stated earlier, we need a distance for registration that is invariant to identical
time-warpings of trajectories. Next, we show that dh satisfies this property.
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THEOREM 1. For any α1, α2 ∈ M and γ ∈ �, the distance dh satisfies
dh(hα1◦γ , hα2◦γ ) = dh(hα1, hα2). In geometric terms, this implies that the action
of � on H under the L

2 metric is by isometries.

The proof is given below:

dh(hα1◦γ , hα2◦γ ) =
(∫ 1

0

∣∣hα1

(
γ (t)

)√
γ̇ (t) − hα2

(
γ (t)

)√
γ̇ (t)

∣∣2 dt

)1/2

=
(∫ 1

0

∣∣hα1(s) − hα2(s)
∣∣2 ds

)1/2

= dh(hα1, hα2),

where s = γ (t).
Next we define a quantity that can be used as a distance between trajectories

while being invariant to their temporal variability. To set up this definition, we first
introduce an equivalence relation between trajectories. For any two trajectories
α1 and α2, we define them to be equivalent, α1 ∼ α2, when:

1. α1(0) = α2(0), and
2. there exists a sequence {γk} ∈ � such that limk→∞ h(α1◦γk) = hα2 under the L

2

metric.

In other words, any two trajectories are equivalent if they have the same starting
point and the TSRVF of one can be time-warped into the TSRVF of the other using
a sequence of warpings. It can be easily checked that ∼ forms an equivalence
relation on H (and, correspondingly, M).

Since we want our distance to be invariant to time-warpings of trajectories, we
wish to compare trajectories by comparing their equivalence classes. Thus, our
next step is to inherit the distance dh to the set of such equivalence classes. Toward
this goal, we introduce the set �̃ as the set of all nondecreasing, absolutely contin-
uous functions γ : [0,1] → [0,1] such that γ (0) = 0 and γ (1) = 1. This set �̃ is a
semigroup with the composition operation (it is not a group because the elements
do not have inverses). The group � is a subset of �̃. The elements of �̃ warp the
time axis of trajectories in M in the same way as elements of �, except they allow
certain singularities. For a TSRVF hα ∈ H, its equivalence class, or orbit under �̃,
is given by [hα] = {(hα, γ )|hα ∈ H, γ ∈ �̃}.

It can be shown that the orbits under �̃ are exactly the same as the closures of
the orbits of �, defined as [hα]0 = {(hα, γ )|γ ∈ �}, as long as α has nonvanishing
derivatives almost everywhere. (The last condition is not restrictive since we can
always re-parameterize α by the arc-length.) The closure is with respect to the L

2

metric on H. Please refer to Robinson (2012) for a detailed description of a similar
construction for trajectories in R.

Now we define the quantity that will serve both as the cost function for registra-
tion and distance for comparison. This quantity is essentially dh measured between
equivalence classes.
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DEFINITION 3. The distance ds on H/ ∼ (or M/ ∼) is the shortest dh dis-
tance between equivalence classes in H, given as

ds

([hα1], [hα2]
)

= inf
γ1,γ2∈�̃

dh

(
(hα1, γ1), (hα2, γ2)

)
(3)

= inf
γ1,γ2∈�̃

(∫ 1

0

∣∣hα1

(
γ1(t)

)√
γ̇1(t) − hα2

(
γ2(t)

)√
γ̇2(t)

∣∣2 dt

)1/2

.

THEOREM 2. The distance ds is a proper distance on H/ ∼.

PROOF. The symmetry of ds comes directly from the symmetry of dh. For
positive definiteness, we need to show that ds([hα1], [hα2]) = 0 ⇒ [hα1] = [hα2].
Suppose that ds([hα1], [hα2]) = 0, by definition, it then follows immediately that
for all ε > 0, there exists a γ ∈ � such that dh(hα1, (hα2, γ )) < ε. From this, it
follows that hα1 is in the orbit hα2 . Since we are assuming that orbits are closed, it
follows that hα1 ∈ [hα2], so [hα1] = [hα2].

To establish the triangle inequality, we need to prove

ds

([hα1], [hα3]
) ≤ ds

([hα1], [hα2]
) + ds

([hα2], [hα3]
)

for any hα1, hα2, hα3 ∈ H. For a contradiction, suppose

ds

([hα1], [hα3]
)
> ds

([hα1], [hα2]
) + d̃

([hα2], [hα3]
)
.

Let

ε = 1
3

(
ds

([hα1], [hα3]
) − ds

([hα1], [hα2]
) − ds

([hα2], [hα3]
))

.

By our supposition, ε > 0. From the definition of ε, it follows that

ds

([hα1], [hα3]
) = ds

([hα1], [hα2]
) + ds

([hα2], [hα3]
) + 3ε.

By the definition of ds , we can choose γ1, γ2 ∈ �, such that

dh

(
(hα1, γ1), hα2

) ≤ ds

([hα1], [hα2]
) + ε

and

dh

(
hα2, (hα3, γ2)

) ≤ ds

([hα2], [hα3]
) + ε.

Now, by the triangle inequality for dh, we know that

dh

(
(hα1, γ1), (hα3, γ2)

) ≤ dh

(
(hα1, γ1), hα2

) + dh

(
hα2, (hα3, γ2)

)
≤ ds

([hα1], [hα2]
) + ds

([hα2], [hα3]
) + 2ε.

It follows that

ds

([hα1], [hα3]
) ≤ ds

([hα1], [hα2]
) + ds

([hα2], [hα3]
) + 2ε.
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But this contradicts the fact that

ds

([hα1], [hα3]
) = ds

([hα1], [hα1]
) + ds

([hα2], [hα3]
) + 3ε.

Hence, our supposition that

ds

([hα1], [hα3]
)
> ds

([hα1], [hα2]
) + ds

([hα2], [hα3]
)

must be false. The triangle inequality follows. �

Now, since � is dense in �̃, for any δ > 0, there exists a γ ∗ such that∣∣dh(hα1, hα2◦γ ∗) − ds

([hα1], [hα2]
)∣∣ < δ.(4)

This γ ∗ may not be unique but any such γ ∗ is sufficient for our purpose. Fur-
thermore, since γ ∗ ∈ �, it has an inverse that can be used in further analysis. The
minimization over � in equation (4) is performed in practice using the dynamic
programming (DP) algorithm [Bertsekas (2007)]. Here one samples the interval
[0,1] using T discrete points and then restricts to only piecewise linear γ ’s that
pass through that T × T grid. The search for the optimal trajectory on this grid is
accomplished in O(T 2) steps.

2.1. Metric-based comparison of trajectories. Our goal of warping-invariant
comparison of trajectories is achieved using ds . For any γ1, γ2 ∈ � and α1,
α2 ∈ M, we have

[hα1◦γ1] = [hα1], [hα2◦γ2] = [hα2]
and, therefore, we get ds([hα1◦γ1], [hα2◦γ2]) = ds([hα1], [hα2]). Examples of this
metric are presented later.

2.2. Pairwise temporal registration of trajectories. The next goal is to per-
form registration of points along trajectories. Let our approximation to the optimal
warping be as defined in equation (4). This allows for the registration between α1
and α2, in that the point α1(t) on the first trajectory is optimally matched to the
point α2(γ

∗(t)) on the second trajectory.
If we compare equation (3) with equation (2), we see the advantages of the

proposed framework. Both equations present a registration problem between
α1 and α2, but only the minimum value resulting from equation (3) is a proper
distance. Also, in equation (2) we have two separate terms for matching and regu-
larization, with an arbitrary weight λ, but in equation (3) the two terms have been
merged into a single natural form. Recall that the change in TSRVF h due to the
time-warping of α by γ is given by (h, γ ) = (h ◦ γ )

√
γ̇ , and the distance ds is

based on these warped TSRVFs. The term
√

γ̇ provides an intrinsic regulariza-
tion on γ in the matching process. It provides an elastic penalty against excessive
warping since γ̇ becomes large at those places. Lastly, the optimal registration in
equation (3) remains the same if we change the order of the input functions. That
is, the registration process is inverse consistent.
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2.3. Summarization and registration of multiple trajectories. An additional
advantage of this framework is that one can compute an average of several tra-
jectories and use it as a template for future classification. Furthermore, this tem-
plate can be used for registering multiple trajectories. We use the notion of the
Karcher mean to define and compute average trajectories. Given a set of sample
trajectories α1, . . . , αn on M , we represent them using the corresponding pairs
(α1(0), hα1), (α2(0), hα2), . . . , (αn(0), hαn). We compute the Karcher means of
each component in their respective spaces: (1) the Karcher mean of αi(0) is com-
puted with respect to dm in M , and (2) the Karcher mean of hαi

with respect to ds

in H/ ∼. The latter Karcher mean is defined as

hμ = argmin
[hα]∈H/∼

n∑
i=1

ds

([hα], [hαi
])2

.

Note that [hμ] is an equivalence class of trajectories and one can select any element
of this mean class to help in the alignment of multiple trajectories. The standard al-
gorithm to compute the Karcher mean proposed by Le and Kume (2000) is adapted
to this problem as follows:

ALGORITHM 1 (Karcher mean of multiple trajectories). Compute the Karcher
mean of {αi(0)} and set it to be μ(0).

1. Initialization step: select μ to be one of the original trajectories and compute
its TSRVF hμ.

2. Align each hαi
, i = 1, . . . , n, to hμ according to equation (4). That is, solve

for γ ∗
i using the DP algorithm and set α̃i = αi ◦ γ ∗

i .
3. Compute TSRVFs of the warped trajectories, hα̃i

, i = 1,2, . . . , n, and update
hμ as a curve in Tc(M) according to hμ(t) = 1

n

∑n
i=1 hα̃i

(t).
4. Define μ to be the integral curve associated with a time-varying vector field

on M generated using hμ, that is, dμ(t)
dt

= |hμ(t)|(hμ)(t)c→μ(t), and the initial
condition μ(0).

5. Compute E = ∑n
i=1 ds([hμ], [hαi

])2 = ∑n
i=1 dh(hμ,hα̃i

)2 and check for con-
vergence. If not converged, return to step 2.

It can be shown that the cost function decreases iteratively and, as zero is a
natural lower bound,

∑n
i=1 ds([hμ], [hαi

])2 will always converge. This algorithm
provides two sets of outputs: an average trajectory denoted by the final μ and
the set of aligned trajectories α̃i . Therefore, this solves the problem of aligning
multiple trajectories too.

For computing and analyzing the second and higher moments of a sample trajec-
tory, the tangent space Tμ(t)(M), for t ∈ [0,1], is used. This is convenient because
it is a vector space and one can apply more traditional methods here. First, for
each aligned trajectory α̃i(t) at time t , the vector vi(t) ∈ Tμ(t)(M) is computed
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such that a geodesic that goes from μ(t) to α̃i(t) in unit time has the initial veloc-
ity vi(t). This is also called the shooting vector from μ(t) to α̃i(t). Let K̂(t) be
the sample covariance matrix of all shooting vectors from μ(t)’s to α̃i(t)’s. The
sample Karcher covariance at time t is given by K̂(t) = 1

n−1
∑n

i=1 vi(t)vi(t)
T ,

with the trace ρ̂(t) = trace(K̂(t)). This ρ̂(t) represents a quantification of the
cross-sectional variance, as a function of t , and can be used to study the level
of alignment of trajectories. Also, for capturing the essential variability in the
data, one can perform Principal Component Analysis (PCA) of the shooting vec-
tors. The basic idea is to compute the Singular Value Decomposition (SVD)
K̂(t) = U(t)
(t)UT (t), where U(t) is an orthogonal matrix and 
(t) is the di-
agonal matrix of singular values. Assuming that the entries along the diagonal in

(t) are organized in a nonincreasing order, the functions U1(t),U2(t), . . . repre-
sent the dominant directions of variability in the data.

2.4. Modeling and evaluation of trajectories. An important use of means and
covariances of trajectories is in devising probability models for capturing the ob-
served statistical variability, and for using these models in evaluating p-values
of future observations. By p-values we mean the proportion of random trajecto-
ries that will have lower probability density under a given model when compared
to the test trajectory. Several models are possible in this situation, but since our
main focus is on temporal registration of trajectories, we will choose a simple
model to demonstrate our ideas. After the registration, we treat a trajectory α as
a discrete-time process, composed of m points as {α(t1), α(t2), . . . , α(tm)}, for a
fixed partition {0 = t1, t2, . . . , tm = 1} of [0,1]. Given the mean and the covari-
ance at each tj , we model the points α(tj ) ∈ M,j = 1,2, . . . ,m independently,
and obtain the joint density by taking the product. The difficulty in this step comes
from the fact that M is a nonlinear manifold but one can use the tangent space
Tμ(tj )(M), instead, to impose a probability model since this is a vector space. We

impose a multivariate normal density on the tangent vector v(tj ) = exp−1
μ(tj )(α(tj )),

with mean zero and variance given by K̂(tj ) (as defined above). It is analo-
gous to the model of additive white Gaussian noise when M = R. Then, for
any trajectory α, one can compute a joint probability of the full trajectory as
P(α) = ∏m

j=1 f (α(tj )) ≡ ∏m
j=1 N(v(tj );0, K̂(tj )). This model is potentially use-

ful for many situations: (1) It can be used to simulate new trajectories via random
sampling. Given {(μ(tj ), K̂(tj ))|t ∈ [0,1]}, we can simulate the tangent vectors
and compute the corresponding trajectory points α(tj ), for the desired tj . (2) Given
a trajectory, we evaluate its p-value under the imposed model. This measures how
likely is the occurrence of the trajectory by chance assuming the null hypothe-
sis H0, where H0 represents that imposed model.

Since we are interested in studying the effects of temporal registration, we
demonstrate these ideas with the following experiment. We compute p-values of
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trajectories using the parametric bootstrap under two situations: without registra-
tion and with registration. In each situation, we first take a set of trajectories as the
training set and estimate the mean and covariance at each discrete time, and then
impose a “Gaussian-type” model on the tangent spaces of M at the mean values
at those times. This becomes the imposed model H0. The evaluation of p-values
requires Monte Carlo sampling. We generate a large number, say, N = 10,000,
of trajectories from the model, denoted as Xi, i = 1,2, . . . ,N . Then we com-
pute the proportion that are less likely than our test trajectory and denote it as
p(α) = 1

N

∑N
i=1 1[P(Xi)<P (α)].

In the following sections we consider three examples of M and present experi-
mental results to validate our framework.

3. Trajectories on S
2. Statistical methods for unit vectors in three-dimensio-

nal space have been studied extensively in directional statistics [Mardia and Jupp
(2000)]. In the landmark-based shape analysis of objects, including Dryden and
Mardia (1998), Jupp and Kent (1987) and Kume, Dryden and Le (2007), where 2D
objects are represented by configurations of salient points or landmarks, the set of
all such configurations after removing translation and scale is a real sphere S

2n−3

(for configurations with n landmarks). To illustrate this framework, in a simple
setting, we start with M = S

2, with the standard Euclidean Riemannian metric. For
any two points p,q ∈ S

2 (p �= −q) and a tangent vector v ∈ Tp(S2), the parallel
transport (v)p→q along the shortest geodesic (i.e., great circle) from p to q is given
by v − 2〈v,q〉

|p+q|2 (p + q).

Registration of trajectories: As mentioned earlier, for any two trajectories on S
2,

we use their TSRVFs and DP algorithm in equation (4) to find the optimal regis-
tration between them. In Figure 2 we show one example of registering such tra-
jectories. The parameterization of trajectories is displayed using colors. In the
top row, the left column shows the trajectories α1 and α2, the middle column
shows α1 and α2 ◦ γ ∗ and the right column shows γ ∗ using c = [0,0,1]. The
correspondences between the two trajectories are depicted by black lines con-
necting points along them. Due to the optimization of γ in equation (4), the
dh value between them reduces from 1.67 to 0.36 and the correspondences be-
come more natural after the alignment. We also consider different choices of c

(c = [0,0,−1], [−1,0,0], [0,1,0]). In all cases the registration results are very
close, as shown in the bottom row.

In the following, we consider two specific applications, bird migration and hur-
ricane tracks, and show how the cross-sectional variance of the mean trajectories
is reduced by registration. For both applications, we use the mean of the starting
points of the trajectories as the reference point c in Definition 1.

Bird migration data: This data set has 35 migration trajectories of Swainson’s
Hawk, observed during the period 1995 to 1997, each having geographic coor-
dinates measured at some random times. Several sample paths are shown at the
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FIG. 2. Registration of trajectories on S
2.

top row in Figure 3(a). In the bottom panel of Figure 3(a), we show the optimal
warping functions {γ ∗

i } used in aligning them and this clearly highlights a signif-
icant temporal variation present in the data. In Figure 3(b) and (c), we show the

FIG. 3. Swainson’s Hawk migration: (a) {αi} (top) and {γ ∗
i } (bottom); (b) μ and ρ̂ without regis-

tration; (c) μ and ρ̂ with registration.
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FIG. 4. ρ̂ (1st row) and p-values (2nd row) for each trajectory without (red) and with (blue) regis-
tration.

Karcher mean μ and the cross-sectional variance ρ̂ without and with registration,
respectively. In the top row, μ is displayed using colors, where red areas corre-
spond to higher ρ̂ value. In the bottom row, the principal modes of variation are
displayed by ellipses on tangent spaces. We use the first and second principal tan-
gential directions as the major and minor axes of ellipses, and the corresponding
singular values as their sizes. We observe that (1) the mean after registration better
preserves the shapes of trajectories, and (2) the variance ellipses before registra-
tion have their major axes along the trajectory while the ellipses after registration
exhibit a smaller, actual variability in the data. Most of the variability after regis-
tration is limited to the top end where the original trajectories indeed have differ-
ences. The top row of Figure 4(a) shows a decrease in the function ρ̂ due to the
registration.

Next we construct a “Gaussian-type” model for these trajectories using esti-
mated summaries for two cases (with and without temporal registration), as de-
scribed previously, and compute p-values of individual trajectories using Monte
Carlo simulation. The results are shown in the bottom of Figure 4(a), where we
note a general increase in the p-values for the original trajectories after the align-
ment. This is attributed to a reduced variance in the model due to temporal align-
ment and the resulting movement of individual samples closer to the mean values.

Hurricane tracks: We choose two subsets of Atlantic Tracks File 1851-2011,
available on the National Hurricane Center website.1 The first subset has 10 tracks

1http://www.nhc.noaa.gov/pastall.shtml.

http://www.nhc.noaa.gov/pastall.shtml
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FIG. 5. Summary of hurricane tracks without and with temporal registration.

and another has 7 tracks, with observations at six-hour separation. In Figure 5
we show the data, their Karcher mean and variance without and with registra-
tion for each subset. The decrease in the value of ρ̂ is shown in the top of Fig-
ure 4(b) and (c). Although the decrease here is not as large as the previous example,
we observe about 20% reduction in ρ̂ on average due to registration. In the bottom
plots of Figure 4(b) and (c), it is also seen that there is a general increase of the
p-values after registration, although they decreased in a few cases. This is because
those trajectories are closer to the mean without registration.

4. Vehicle trajectories on SE(2). Here we study the problem of classify-
ing vehicle trajectories into broad motion patterns using data obtained from traf-
fic videos. While the general motion of a vehicle at a traffic intersection is
predicable—left turn, right turn, U turn or straight line—the travel speeds of ve-
hicles may be different in distinct instances due to traffic variations. Since we
are interested in tracking position and orientation of a vehicle, we consider indi-
vidual tracks as parameterized trajectories on SE(2), which is a semidirect prod-
uct of SO(2) and R

2, that is, SE(2) = SO(2) � R
2. For the rotation component

O ∈ SO(2) and tangent vectors X1,X2 ∈ TO(SO(2)), the standard Riemannian
metric is given by 〈X1,X2〉 = trace(XT

1 X2), while we use the Euclidean metric
for R2. We choose the rotation component of c as the identity matrix and the trans-
lation component as [0,0]. We found that the results of registration, clustering and
classification are quite stable with respect to different choices of c. For a tangent
vector W ∈ TO(SO(2)), the parallel transport of W from O to I2×2 is OT W . The
formulae for the R

2 component are standard.
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FIG. 6. (a): Real trajectories in SE(2) obtained from a traffic video. (b): Trajectories used for
clustering.

Registration of trajectories: The data for this experiment comes from traffic
videos available at the Image Sequence Server website.2 In Figure 6(a) we show
an example trajectory for each of the three classes: right turn (first panel), left turn
(second panel), and straight line (third panel). In this small experiment, the total
data includes 14 trajectories with 5 trajectories corresponding to right turn indexed
from 1 to 5, 5 trajectories of straight line indexed from 6 to 10, and 4 trajectories
of left turn indexed from 11 to 14.

Next, in Figure 7 we show two examples of temporally aligning trajectories
described above. In Example 1 we first choose a trajectory as α1, apply to it a
simulated γ and consider this time-warped trajectory as α2. The right plot of γ −1

(dashed) and γ ∗ shows that we are able to recover the simulated time-warping
using the proposed framework. In Example 2 we show alignment results for tra-
jectories coming from different classes. In this case the distance dh between the

FIG. 7. Registration of trajectories on SE(2).

2http://i21www.ira.uka.de/image_sequences/.

http://i21www.ira.uka.de/image_sequences/
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FIG. 8. Clustering without and with alignment.

trajectories is large, since they are from different classes, but it decreases from
14.2 to 10.8 after registration. Furthermore, the registration result is quite intuitive
since it matches as much of the common features (straight line part) as possible.

Clustering and classification: Here we study the effects of temporal alignment
on clustering and classification. In the first example, we introduce simple speed
variations in the vehicle motions; these variations represent either fast-slow or
slow-fast movements of a vehicle and apply them randomly to the 14 given tra-
jectories, shown in Figure 6(b). In Figure 8 we display the resulting pairwise dis-
tance matrices, multidimensional scaling (MDS) plots and dendrograms computed
with and without temporal alignment. The temporal alignment helps in revealing
the underlying patterns of the data. Also, it greatly improves the clustering perfor-
mance.

In the second experiment, we introduce more drastic, random speed variations,
corresponding to multiple stop-and-go patterns of a vehicle. We again apply them
to the given trajectories and compute the distance matrices with and without tem-
poral alignment. In Table 1 we report the classification performances based on

TABLE 1
Classification rates without and with alignment

Classification rate 1-NN 3-NN 5-NN

Without alignment 64.3% 64.3% 50%
With alignment 100% 100% 93%
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1-, 3- and 5-nearest neighbor (NN) classifiers. The method described in this paper
produces superior classification of driving patterns. In particular, we can achieve
a 100% classification rate using the 1-NN classifier.

5. Shape space of planar contours. Motivated by the problem of analyzing
human activities using video data, we are interested in alignment, comparison and
averaging of trajectories on the shape space of planar, closed curves. There are
several mathematical representations available for this analysis, and we use the
representation of Srivastava et al. (2011b). The benefits of using this representation
over other methods are discussed there. We provide a very brief description and
refer the reader to the original paper for details. Let β :S1 �→ R

2 denote a planar
closed curve. Its corresponding q-function is defined as

q(s) = β̇(s)√
|β̇(s)|

, s ∈ S
1.

A major advantage of using q-functions to represent shapes of curves is that the
translation variability is automatically removed (q only depends on β̇). To re-
move the scaling variability, we re-scale all curves to be of unit length. This
restriction translates to the following condition for q-functions:

∫
S1 |β̇(s)|ds =∫

S1 |q(s)|2 ds = 1. Therefore, the q-functions associated with unit length curves
are elements of a unit hypersphere in the Hilbert space L

2(S1,R2). In order to
study shapes of closed curves, we impose an additional condition, which en-
sures that the curve starts and ends at the same point. This condition is given by∫
S1 q(s)|q(s)|ds = 0. Using these two conditions and the q-function representa-

tion, we can define the pre-shape space of unit length, closed curves as

C =
{
q ∈ L

2(
S

1,R2)∣∣∣∣
∫
S1

∣∣q(s)
∣∣2 ds = 1,

∫
S1

q(s)
∣∣q(s)

∣∣ds = 0
}
.

The shape space of these curves is obtained by removing the re-parameterization
group � , the set of diffeomorphisms from S

1 to itself, and rotation, that is,
S = C/(� × SO(2)). A unit circle is used as the standard shape and c in Def-
inition 1 is given by its q-representation. For algorithms on computing parallel
transports of tangent vectors along geodesic trajectories in the shape space S , we
refer the reader to Srivastava et al. (2011b).

To illustrate our framework, we apply it to real sequences in the UMD common
activities data set. We use a subset of 8 classes from this data set with 10 instances
in each class. Each instance consists of 80 consecutive planar closed curves. As
a first step, we down-sample each of these trajectories to 17 contours.

Registration: An example of registering two trajectories of planar closed curves
from the same class is shown in Figure 9. The distance dh between the two trajec-
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FIG. 9. Registration of two trajectories on the shape space of planar contours.

tories decreases from 4.27 to 3.26. The optimal γ ∗ for this registration is shown in
the right panel.

Statistical summaries: We give an example of averaging and registration of mul-
tiple trajectories using Algorithm 1 in Figure 10. The aligned sample trajectories
within the same class are much closer to each other than before temporal align-
ment. The energy when computing the Karcher mean converges quickly, as shown
at the left bottom corner in Figure 10. The right bottom plot shows that the cross-
sectional variance ρ̂ is significantly reduced after temporal registration.

Classification: For this activity data set we computed the full pairwise distance
matrix for trajectories, using dh (without registration) and ds (with registration).

FIG. 10. Registration and summary of multiple trajectories.
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The leave-one-out nearest neighbor classification rate (1-NN as described earlier)
for ds is 95% as compared to only 87.5% when using dh.

6. Conclusion. Statistical analysis of trajectories on nonlinear manifolds is
important in many areas, including medical imaging and computer vision. In this
paper we have provided a framework for registering, comparing, summarizing and
modeling trajectories on S

2, SE(2) and shape space of planar contours under in-
variance to time-warping. Specifically, we have defined a proper metric, which
allows us to register trajectories and compute their sample means and covariances.
For future work, we would like to extend the framework to other applications with
other underlying manifolds. In addition, we encourage further efforts on the statis-
tical modeling of such trajectories.
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