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Abstract In this paper we consider symmetric games where a large number of play-
ers can be in any one of d states. We derive a limiting mean field model and charac-
terize its main properties. This mean field limit is a system of coupled ordinary dif-
ferential equations with initial-terminal data. For this mean field problem we prove a
trend to equilibrium theorem, that is convergence, in an appropriate limit, to station-
ary solutions. Then we study an N + 1-player problem, which the mean field model
attempts to approximate. Our main result is the convergence as N → ∞ of the mean
field model and an estimate of the rate of convergence. We end the paper with some
further examples for potential mean field games.
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1 Introduction

Mean field games is a recent area of research started by Peter Caines and his co-
workers [11, 12], and independently by Pierre Louis Lions and Jean Michel Lasry
[18–21] which attempts to understand the limiting behavior of systems involving
very large numbers of rational agents which play dynamic games under partial in-
formation and symmetry assumptions. Inspired by ideas in statistical physics, in this
class of models the individual player’s contributions are encoded into a mean field
that contains all relevant statistical properties about the ensemble.

The literature on mean field games and its applications is growing fast. For recent
surveys see [23] or [4], and reference therein. Mean field games arise in the study of
growth theory in economics [22, 24], production of exhaustible resources [23], or en-
vironmental policy [3], for instance, and it is likely that in the future they will play an
important role in economics and population models. There is also a growing interest
in numerical methods for these problems [1, 3]. A related concept, called oblivious
equilibrium, corresponds to the case where players are assumed to make decisions
based only on its own state and knowledge of the long-run average industry state and
stationary equilibrium models were introduced and studied in detail in, respectively,
[31] and [2]. Mean field models correspond to the limit of N player games under sym-
metry assumptions. The Markov perfect equilibria notion for these games has been
studied (mostly in discrete time or stationary setting) in [17, 25, 27, 29], and refer-
ences therein. In [26, 28] symmetric Markov perfect equilibria are also considered,
and in the last paper the case with an infinite number of players is studied. In [14] the
passage from discrete time to continuous time is considered for N players in a war
of attrition problem. The techniques in the present paper are, however, substantially
different from the above references.

In this paper we begin by presenting a mean field model for a continuous time
dynamic game between a large number of rational agents, which we call players.
These players are allowed to switch among a finite number of states, looking forward
to optimizing certain functionals, which depend on the statistical distribution of the
other players. We discuss the concept of Nash equilibrium, which allow us to derive
a system of ordinary differential equations for the distribution of the players, as well
their value function. After, we consider the N +1-player game, which corresponds to
the previous problem before taking the mean field limit. In the N + 1-player games
each player knows only the state but not the identity of the remaining players. We
are particularly interested in understanding the limit of the N + 1-player game as the
number of players increases to infinity.

In discrete time, finite number of states mean field models were studied in [5].
In his PhD thesis, [8], O. Guéant considered a problem with two states, modeling
a labor market. In this work he considered a continuum of individuals and a labor
market consisting of 2 sectors. Each individual has to decide on which sector he or
she is going to work. This model consists in a coupled system of ordinary differential
equations of the type that will be derived in Sect. 2. More recently in [9, 10] several
discrete state problems have been also studied in detail, namely its connection with
systems of conservation laws. Further models with discrete state spaces were also
considered in [13, 30]. In these models, each individual in a large population interacts
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with randomly selected players. This interaction determines the instantaneous payoff
for all involved players. In particular these authors establish several very interesting
limit results. We should note, however that these last works do not study mean field
games in the sense of this paper, namely they lack the forward-backward structure of
the equilibrium as in the works by Caines, Lions-Lasry, among others.

We start in Sect. 2 by describing the mean field game. We derive a mean field
model for the optimal switching policy of a reference player given the fraction
θ(t) ∈ [0,1]d of players in each of d states. Then we introduce the concept of Nash
equilibrium. This equilibrium turns out to be determined by a coupled system of or-
dinary differential equations, where one equation governs the evolution of θ , and is
subjected to initial conditions, whereas the other equation models the evolution of a
value function and has terminal data. We call this problem the initial-terminal value
problem. These models are similar to the ones in [9, 10]. Initial terminal value prob-
lems are in fact a general feature in many mean field game problems, see for instance
[18–20], though not very common in ODE problems. In fact, existence and unique-
ness of solutions are not immediate from the general ODE theory but, adapting the
methods of Lions and Lasry we are successful in establishing both. We also study a
class of contractive mean field games for which a-priori bounds on suitable norms
can be established. In particular under this condition one can prove existence of sta-
tionary solutions. The main result of this section is a trend to equilibrium theorem, in
the spirit of the results in [5]. The proof relies on a reverse Gronwall inequality (i.e.
when an integral of a function is controlled by the function at the endpoints).

In Sect. 3 we consider the Nash equilibrium problem before taking a mean field
limit, i.e. with a finite number, N + 1, of players. As before we suppose that all
players are identical and so the game is symmetric with respect to permutation of
the players. We adopt the point of view of a reference player, which could be chosen
as any one of the players. A reference player in an N + 1 symmetric game is also
called a tagged particle in the area of statistical physics. We assume that the reference
player (as any other) has access to the same information, namely, his/her own state
at time t , given by it ∈ {1,2,3, . . . , d}, and the number nt ∈ N

d of remaining players
that are in the other states. The objective of the reference player is to minimize, by
controlling the process it , and given the process nt , the expected value of the integral
of a running cost function added to a terminal cost. We assume that both it and nt

are controlled non-time homogeneous coupled Markov chains. More precisely, we
suppose that N of the players have a fixed Markov switching strategy β , known by
the reference player, which then chooses a switching strategy α(β). This is a well
know Markov decision problem. The Nash equilibrium corresponds to α(β) = β ,
which can be characterized by a system of ordinary differential equations. In this
setting the equilibrium is characterized by a system of ordinary differential equations
with a terminal condition. This system, as explained in Sect. 5, can be seen as a
discretized version of a partial differential equation (introduced by Lions in his course
in College de France and further studied by Gueant [9, 10]) for the value function that
can be derived for the mean field model, as an alternative to the initial-terminal value
problem formulation. In addition to this characterization we prove various bounds,
uniformly on N , which then allow to address the passage to the limit problem, in
Sect. 4.
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In Sect. 4 we prove the main result of the paper, Theorem 7, which is the conver-
gence as the number of players N → ∞ in L2 of the N +1-player model to the mean
field model of Sect. 2. In a different setting, convergence to a MFG model (with a
rate of the order 1/N , even for large time, but in weak topology) was established by
[15] using very interesting techniques from non-linear Markov processes. We should
note that the techniques in that paper do not apply to the problem we consider, as our
problem has a different structure. Our convergence result, gives, for small T , a rate of
convergence of the order 1√

N
. For the proof we not need monotonicity assumptions.

In particular this implies uniqueness of solution to the mean field problem for small
time. Our proof uses a double Gronwall-type inequality where part of the integrand
can be estimated forward in time, whereas other part can only be estimated backwards
in time.

In Sect. 5 we end this paper with an important class of examples, namely potential
mean field games. These have been studied in detail by Pierre Louis Lions (College
de France course) and also in [9, 10]. For these mean field games several connections
with Hamiltonian and Lagrangian dynamics can be derived which have interesting
applications to planning problems. We also discuss a variational formulation in anal-
ogy to the results in [7] and [6], as well as some connections with partial differential
equations, numerical methods and Hamilton-Jacobi equations.

2 A Mean Field Model

In this section we derive a mean field model which, as we will show later, corresponds
to the limit as the number of players tends to infinity of symmetric dynamic games
with a finite number of players.

We consider a continuous time dynamic game where a large number of players can
be in any of d states. The players can switch from state to state and their decisions
depend on certain optimality criteria which we will describe in the following. We
suppose that all players are identical and so the game is symmetric with respect to
permutation of the players. Players only know its own position and the fraction of
players in each of the d states. Each player can control the transition rate from one
state to another and incurs in both a running cost and a terminal cost which depend on
its own state, on the state of the other players (through its distribution among states
but not on individual player’s states) as well as on the controls the player chooses.

We will fix one of the players which will be called the reference player. Because
the game is symmetric, the identity of this player is not important, and all other play-
ers have access to similar information. We further assume the mean field hypothesis,
that is, since the number of players is very large, the only information available to the
reference player is the distribution of players given by a probability vector θ ∈ S d ,
where S d is the probability simplex

{
θ1 + · · · + θd = 1,

θ i ≥ 0 ∀i, 1 ≤ i ≤ d.

Under the mean field hypothesis, the evolution of the vector θ can be approximated
by an ordinary differential equation as discussed in Sect. 2.1.
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2.1 Continuous Time Markov Processes and the Kolmogorov Equation

We suppose that the players distribution among states is given by a probability vector
θ(t) ∈ S d . Let β(t) ∈ R

d×d represent a transition rate matrix depending on the time t ,
where βij (t) ≥ 0 if i 	= j , and βii ≡ −∑

j 	=i βij . We assume that the players switch
from state to state according to a continuous time (inhomogeneous) Markov process
with transition rate matrix β , which for now we suppose it is known. In the mean
field limit, the fraction of players in each state θ satisfies the Kolmogorov equation

dθi

dt
=

∑
j

θjβji . (1)

The previous equation is complemented by an initial condition θ(0) = θ0 ∈ S d from
which the evolution of the distribution of players θβ : [0, T ] → S d is completely
determined. For convenience, controls are also identified with a vector β(i) ∈ R

d

with the convention that βj (i) = βij , where βj (i) denotes the j th coordinate of β(i).

2.2 Running and Terminal Costs

We fix now a reference player and consider the optimization problem according to
his/her point of view. We assume that the state of this player is driven by a continuous
time discrete state optimal control problem in which he/she controls the switching
rates from state to state. These switching rates are chosen in order to minimize a
certain cost which is the sum of a running cost and a terminal cost. The running cost
depends on the player’s state, the switching rate, and the fraction of players in each
state. The terminal cost depends on the player’s terminal state as well as the terminal
distribution of players among states.

Let Id = {1,2,3, . . . , d}. The running cost of the reference player whose state is i

is given by a cost c : Id × S d ×(R+
0 )d → R, c(i, θ,α), where θ ∈ S d is the probability

distribution of players among states, and αj is the transition rate the reference player
uses to change from state i to state j . We suppose c is Lipschitz continuous in θ , with
the Lipschitz constant (with respect to θ ) bounded independently of α. We suppose c

is differentiable with respect to α, and that ∂c
∂α

(i, θ,α), is Lipschitz with respect to θ ,
uniformly in α.

We also suppose that c(i, θ,α) does not depend on αi , is uniformly convex (on the
remaining coordinates), that is, for any i ∈ Id , θ ∈ S d , α,α′ ∈ (R+

0 )d , with αj 	= α′
j ,

for some j 	= i,

c
(
i, θ,α′) − c(i, θ,α) ≥ ∇αc(i, θ,α) · (α′ − α

) + γ ‖α′ − α‖2. (2)

We suppose that c is superlinear on αj , j 	= i, that is,

lim
αj →∞

c(i, θ,α)

‖α‖ → ∞.

The reference player has a terminal cost denoted by ψ : Id × S d → R, ψi(θ). We
suppose ψ is Lipschitz continuous in θ .



104 Appl Math Optim (2013) 68:99–143

2.3 Single Player Control Problem: The Value Function

Let T > 0 be the time duration of the game. Suppose the players are distributed
among the d states according to the distribution probability θ : [0, T ] → S d , which
for now we assume to be known by the reference player. Let

ui
θ (t, α) = E

α
it=i

[∫ T

t

c
(
is , θ(s), α(s)

)
ds + ψ iT

(
θ(T )

)]
.

We define the value function associated to θ , denoted by uθ : Id × [0, T ] → R, as

ui
θ (t) = min

α
ui

θ (t, α), (3)

where is is a continuous time Markov chain controlled by α which corresponds to
the state of the reference player at time s, and E

α
it=i

is the expectation conditioned on
the event it = i, given the transition rate α. Here the minimization is performed over
Markovian controls α(s) = α(is , s). More precisely

P[is+h = j |is] = αj (s)h + o(h)

where limh→0
o(h)
h

= 0. In Sect. 2.5 existence of optimal Markovian controls will be
proved.

2.4 Definitions and Preliminary Results

Let �i : R
d → R

d be the difference operator on i, given by

�iz = (
z1 − zi, . . . , zd − zi

)
.

The infinitesimal generator of a finite state continuous time Markov chain, with tran-
sition rate νij , acting on a function ϕ : Id → R, is given by

Aν
i (ϕ) =

∑
j

νij

(
ϕj − ϕi

) = νi· · �iϕ.

We define the generalized Legendre transform of the function c(i, θ, ·), as

h(z, θ, i) = min
μ∈(R+

0 )d
c(i, θ,μ) +

∑
j

μj

(
zj − zi

)

= min
μ∈(R+

0 )d
c(i, θ,μ) + μ · �iz. (4)

Because of the superlinearity and uniform convexity of c the function

α∗(z, θ, i) = argmin
μ∈(R+

0 )d

c(i, θ,μ) + μ · �iz (5)
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is well defined, except for its ith coordinate, since (�iz)
i = 0. We will denote the j th

entry of the vector α∗(z, θ, i) as α∗
j (z, θ, i), and for convenience and definitness we

set

α∗
i (z, θ, i) ≡ −

∑
j 	=i

α∗
j (z, θ, i). (6)

The definition (6) is consistent because c(i, θ,α) does not depend on the ith entry of
the vector α, and for that reason (5) does not define α∗

i (z, θ, i). The uniform convexity
of c(i, θ, ·) shows that α∗ is well defined. We will write h(�iz, θ, i) and α∗(�iz, θ, i)

to stress the fact that h and α∗ depend only on �iz. Because

h(�iz, θ, i) = h(z, θ, i)

there is no ambiguity of this notation.
The following Proposition is proved in the Appendix.

Proposition 1 We have

(a) If h is differentiable, for j 	= i

α∗
j (�iz, θ, i) = ∂h(�iz, θ, i)

∂zj
,

furthermore, in general, for all z and v

h(z + v, θ, i) − h(z, θ, i) ≤
∑
j

α∗
j (z, θ, i)vj , (7)

i.e. α∗
j (z, θ, i) ∈ ∂+

z h(z, θ, i), where ∂+ denotes the superdiferential.

(b) The function α∗ is Lipschitz in p and in θ . The Lipschitz constants are uniform.
More precisely,

∥∥α∗(p′, θ, i
) − α∗(p, θ, i)

∥∥ ≤ 1

γ
‖p′ − p‖, ∀p,p′, θ, i,

and
∥∥α∗(p, θ, i) − α∗(p, θ ′, i

)∥∥ ≤ Kc

γ
‖θ − θ ′‖, ∀p, θ, θ ′, i,

where γ is the constant given by (2) and Kc is the Lipschitz constant of ∇αc.
(c) The function h is locally Lipschitz in p and in θ . The Lipschitz constants are

uniform if �z is bounded.

2.5 Hamilton-Jacobi Equation and a Verification Theorem

We continue to assume that θ : [0, T ] → S d is given. As in classical optimal control
we introduce now the Hamilton-Jacobi ODE:⎧⎪⎨

⎪⎩
−dui

dt
= h(�iu, θ, i),

ui(T ) = ψi(θ(T )).

(8)
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This is a terminal value problem (TVP) consisting of a system of d coupled ODEs
with a terminal condition given by ψ . It turns out, as Theorem 1 states, that the
solution to this ODE is the value function. Before proving Theorem 1 we begin by
proving a maximum principle for (8), which will be also used to prove existence and
uniqueness.

Proposition 2 If u is a solution to the HJ equation (8), and M = max(i,θ)∈Id×S d |h(0,

θ, i)|. Then for all 0 ≤ t ≤ T we have

‖u(t)‖ ≤ ‖u(T )‖ + 2M(T − t),

where ‖u(t)‖ = maxi∈Id
{|ui(t)|}.

Proof Let u be a solution to (8). Let ũ = u + ρ(T − t). Then

−dũi

dt
= h(�iũ, θ, i) + ρ.

Let (i, t) be a minimum point of ũ on Id × [0, T ]. We have ũj (t) − ũi (t) ≥ 0 hence
�iũ = (ũ1(t) − ũi (t), . . . , ũd (t) − ũi (t)) ≥ 0. Therefore

−dũi

dt
(t) = h(�iũ, θ, i) + ρ ≥ h(0, θ, i) + ρ,

because if �ip ≥ 0 we have

h(�ip, θ, i) ≥ h(0, θ, i),

since α∗ ≥ 0. Furthermore, if we take M < ρ < 2M we get

−dũi

dt
(t) > 0.

This shows that the minimum of ũ is achieved at T hence

ui(t) ≥ −‖u(T )‖ − 2M(T − t).

Similarly, let (i, t) be a maximum point of ũ on Id × [0, T ]. In this case we have
�iũ ≤ 0. Hence

−dũi

dt
(t) = h(�iũ, θ, i) + ρ ≤ h(0, θ, i) + ρ.

Furthermore, if we take −2M < ρ < −M we get

−dũi

dt
(t) < 0.

This shows that the maximum of ũ is achieved at T hence

ui(t) ≤ ‖u(T )‖ + 2M(T − t). �
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As a consequence of the last Proposition (and also using that h is Lipschitz), Picard
Theorem allows us to state

Proposition 3 The terminal value problem (TVP) given by (8) has a unique solution.

Now we prove a verification Theorem:

Theorem 1 Suppose u : Id × [0, T ] → R is a solution to the Hamilton-Jacobi termi-
nal value problem (8). Then u is the value function associated to the distribution θ ,
and

α̃(i, s) ≡ α∗(�iu(s), θ(s), i
)

is an optimal Markovian control.

Proof The main tool for proving Theorem 1 is the Dynkin Formula (see [16], for in-
stance): suppose α is a Markovian control continuous in time. Define the infinitesimal
generator of the process is by

(
Aαϕ

)i
(s) =

∑
j

αij (s)
[
ϕj (s) − ϕi(s)

]
. (9)

We have that, for any function ϕ : Id × [0,+∞) → R, C1 in the last variable, and
any t < T ,

E
α
it=i

[
ϕiT (T ) − ϕi(t)

] = E
α
it=i

[∫ T

t

dϕis

dt
(s) + (

Aαϕ
)is (s)ds

]
, (10)

where the superscript α means that is is driven by the control α, while the subscript
it = i means we are considering the expectation conditioned on it = i. We call (10)
the Dynkin’s formula in analogy to the Dynkin’s formula in stochastic calculus.

Now to prove the Theorem we make ϕ = u in (10). Using the terminal condition
ui(T ) = ψi(θ(T )) we have that, for any control α,

E
α
it=i

[
ψ iT

(
θ(T )

) − ui(t)
] = E

α
it=i

[∫ T

t

duis

dt
(s) + (

Aαu
)is (s)ds

]
. (11)

Now let α be any control. In the next steps we will use the definition of ui
θ (t, α),

given in (3), and then (11), (9), and (4) to have

ui
θ (t, α) = E

α
it=i

[
ψ iT

(
θ(T )

) +
∫ T

t

c
(
is , θ(s), α(s)

)
ds

]

= ui(t) + E
α
it=i

[∫ T

t

duis

dt
(s) + (

Aαu
)is (s) + c

(
is , θ(s), α(s)

)
ds

]

≥ ui(t) + E
α
it=i

[∫ T

t

duis

dt
(s) + min

μ∈(R+
0 )d

∑
j

μj

[
uj (s) − uis (s)

]
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+ c
(
is , θ(s),μ

)]

= ui(t) + E
α
it=i

[∫ T

t

duis

dt
(s) + h

(
�is u(s), θ(s), is

)
ds

]

= ui(t),

where the last equation holds because u is a solution to the Hamilton-Jacobi equa-
tion (8). Note that in the particular case where α is given by the specific control
α̃(i, s) = α∗(�ius, θs, i), we have equality in the all the steps above, and therefore
we have ui

θ (t, α̃) = ui(t) which show us that α̃ is the optimal control and that the
objective function ui

θ (t) is indeed given by ui(t). �

2.6 Mean Field Nash Equilibria

The mean field Nash equilibrium occurs when the background players are using a
strategy β for which the best response of the reference player is β itself, more pre-
cisely when the transition rate from j to i at time s is given by

βji(s) = α∗
i

(
�ju(s), θ(s), j

)
.

The Nash equilibrium is then characterized by the system of Kolmogorov and
Hamilton-Jacobi equations

⎧⎪⎪⎨
⎪⎪⎩

d

dt
θ i =

∑
j

θjα∗
i (�ju, θ, j)

− d

dt
ui = h(�iu, θ, i),

(12)

together with the initial-terminal conditions

θ(0) = θ0 ui(T ) = ψi
(
θ(T )

)
. (13)

Note that from the ODE point of view this problem is somewhat non-standard as
some of the variables have initial conditions whereas other variables have prescribed
terminal data. We call this problem the initial-terminal value problem (ITVP) for the
mean field game, and a solution of such ITVP is what we call a solution to the MFG
given by T , θ0, c,ψ .

2.7 Existence of Nash Equilibria in the MFG

We now address the existence of solutions to (12) satisfying the initial-terminal con-
ditions (13). The proof of existence will be based upon a fixed point argument.

Proposition 4 There exists a solution to (12) satisfying the initial-terminal condi-
tions (13).
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Proof Let F be the set of continuous functions defined on [0, T ] and taking values
in S d , with the C0 norm. Consider the function ξ : F → F that is obtained in the
following way: given θ ∈ F , let uθ be the solution of terminal value problem given
by the Hamilton-Jacobi equations (8)

⎧⎪⎨
⎪⎩

−dui

dt
= h(�iu, θ, i),

ui(T ) = ψi (θ(T )) .

(14)

We know uθ depends continuously on the parameters θ .
Now get the optimal control βθ given by the Verification Theorem (Theorem 1):

βθ (i, t) = argmin
μ∈(R+

0 )d

c(i, θ,μ) + μ · �iuθ = α∗(�iuθ , θ, i). (15)

We use Proposition 1 to conclude that βθ is a continuous function of uθ , and
therefore of θ .

Finally, then let ξ(θ) be the solution to the Kolmogorov equation (1) given by the
initial value problem:

dθi

dt
=

∑
j

θjβθ
ji; θ(0) = θ0. (16)

Such solution ξ(θ) depends continuously on the parameters βθ , and therefore on θ .
Therefore, using standard ODE theory we just proved that ξ is a continuous func-

tion from F to F .
Now, using Proposition 2, we see from (15) that β is bounded, with bounds that

do not depend on θ , and therefore from (16) we have that ξ(θ) is Lipschitz, with
Lipschitz constant Λ independent of θ .

Now consider the set C of all Lipschitz continuous function in F with Lipschitz
constant bounded by Λ. This is a set of uniformly bounded and equicontinuous func-
tions. Thus, by Arzela-Ascoli, it is a relatively compact set. It is also clear that it is a
convex set. Hence, by Brouwer fixed point Theorem, ξ has a fixed point in C . �

2.8 The Monotonicity Hypothesis

In order to prove the uniqueness of the MFG (Sect. 2.10), and also consider the con-
vergence of solutions of MFG to stationary solutions (when T → ∞—see Sect. 2.13)
we need to introduce several monotonicity hypothesis as in the original works by Li-
ons and Lasry. We start with a definition:

Definition 1 Let v ∈ R
d , and set 1 = (1, . . . ,1) ∈ R

d . In R
d/R we define the norm

‖v‖� = inf
λ∈R

‖v + λ1‖.

Observe that

�iu = �iv ∀1 ≤ i ≤ d ⇔ ∃c ∈ R such that u = v + c1 ⇔ ‖u − v‖� = 0.
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Furthermore we have

‖u‖� = maxi (u
i) − mini (u

i)

2
.

Assumption 1 We suppose the following monotonicity hypothesis on ψ :

∑
i

(
θi − θ̃ i

)(
ψi(θ) − ψi(θ̃)

) ≥ 0. (17)

The previous assumption holds, for instance, if ψ is the gradient of a convex func-
tion.

Assumption 2 We suppose that for every M , on the set ‖z‖� ≤ M the function
�iz → h(�iz) is uniformly concave in the non-degenerate directions, i.e., there ex-
ists γi > 0 such that

h(�iz, θ, i) − h(�iw, θ, i) − α∗(�iw, θ, i) · (�iz − �iw) ≤ −γi‖�iz − �iw‖2.

(18)

Assumption 3 We also suppose that h satisfies the following monotonicity property:

θ · (h(z, θ̃ ) − h(z, θ)
) + θ̃ · (h(z̃, θ) − h(z̃, θ̃ )

) ≤ −γ ‖θ − θ̃‖2, (19)

where h(z, θ) := (h(�1z, θ,1), . . . , h(�dz, θ, d)), and γ > 0.

The last three hypothesis will be satisfied if h can be written as

h(�iz, θ, i) = h̃(�iz, i) + f i(θ),

with h̃ (locally) uniformly concave in the sense of (18) and f satisfying the mono-
tonicity hypothesis

(
f (θ̃) − f (θ)

) · (θ − θ̃ ) ≤ −γ |θ − θ̃ |2.

The previous property holds, for instance, if f is the gradient of a convex function
f (θ) = ∇Φ(θ).

2.9 A Key Estimate

The monotonicity hypothesis from the previous section can be used to establish both
uniqueness of equilibrium solutions, Sect. 2.10, and a trend to equilibrium type re-
sult Sect. 2.13. For convenience, rather than considering the initial terminal value
problem with initial values for θ at t = 0 we consider the problem with initial values
at t = −T . This will be convenient when studying the trend to equilibrium, which
corresponds to send T → ∞ and analyzing the behavior of (θ0, u0).
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Lemma 1 Fix T > 0 and suppose that (θ, u) and (θ̃ , ũ) are solutions of (12) with
initial-terminal conditions θ(−T ) = θ−T , ui(T ) = ψi(θ(T )) and θ̃ (−T ) = θ̃−T ,
ũi (T ) = ψi(θ̃(T )). Assume further that ‖u‖�,‖ũ‖� ≤ C. Then there exists a constant
C independent of T such that, for all 0 < M < T , we have

∫ M

−M

∥∥(θ − θ̃ )(s)
∥∥2 + ∥∥(u − ũ)(s)

∥∥2
�
ds ≤ C

(∥∥(θ − θ̃ )(M)
∥∥2 + ∥∥(u − ũ)(M)

∥∥2
�

+ ∥∥(θ − θ̃ )(−M)
∥∥2 + ∥∥(u − ũ)(−M)

∥∥2
�

)
.

Proof Observe that

d

dt

[
(θ − θ̃ ) · (u − ũ)

] =
d∑

i=1

[(
θ̇ i − ˙̃

θi
)(

ui − ũi
) + (

θi − θ̃ i
)(

u̇i − ˙̃ui
)]

=
d∑

i=1

[(
ui − ũi

)(∑
j

θjα∗
i (�ju, θ, j)

−
∑
j

θ̃ j α∗
i (�j ũ, θ̃ , j)

)

+ (
θi − θ̃ i

)(
h(�iũ, θ̃ , i) − h(�iu, θ, i)

)]
.

In order to use the hypothesis (18) and (19) we sum and subtract some terms and we
change the names of the variables in the double sums.

d

dt

[
(θ − θ̃ ) · (u − ũ)

] =
d∑

i=1

θi
[
h(�iũ, θ̃ , i) − h(�iũ, θ, i)

]

+ θ̃ i
[
h(�iu, θ, i) − h(�iu, θ̃ , i)

]

+
d∑

i=1

θi
[
h(�iũ, θ, i) − h(�iu, θ, i)

]

+
d∑

j=1

d∑
i=1

θiα∗
j (�iu, θ, i)

(
uj − ũj

)

+
d∑

i=1

θ̃ i
[
h(�iu, θ̃ , i) − h(�iũ, θ̃ , i)

]

+
d∑

j=1

d∑
i=1

θ̃ iα∗
j (�iũ, θ̃ , i)

(
ũj − uj

)
.
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Now using that (ũi −ui)
∑

j α∗
j (�iu, θ, i) = 0 and remembering that

∑d
j=1 α∗

j (�iu,

θ, i)(uj − ũj ) = α∗(�iu, θ, i) · (ũ − u), we have

d

dt

[
(θ − θ̃ ) · (u − ũ)

] =
d∑

i=1

θi
[
h(�iu, θ̃ , i) − h(�iu, θ, i)

]

+ θ̃ i
[
h(�iũ, θ, i) − h(�iũ, θ̃ , i)

]

+
d∑

i=1

θi
[
h(�iũ, θ, i) − h(�iu, θ, i)

− α∗(�iu, θ, i) · (�iũ − �iu)
]

+
d∑

i=1

θ̃ i
[
h(�iu, θ̃ , i) − h(�iũ, θ̃ , i)

− α∗(�iũ, θ̃ , i) · (�iu − �iũ)
]
.

Now we can use (18) and (19) to get the following estimate

d

dt

[
(θ − θ̃ ) · (u − ũ)

] ≤ −γ ‖(θ − θ̃ )(t)‖2 −
d∑

i=1

γi

(
θi + θ̃ i

)
(t)‖(�iu − �iũ)(t)‖2.

(20)
Integrating (20) between −M and M , for 0 < M < T , we obtain

(θ − θ̃ ) · (u − ũ)(M) − (θ − θ̃ ) · (u − ũ)(−M)

≤
∫ M

−M

(
−γ ‖θ − θ̃‖2 −

d∑
i=1

γi

(
θi + θ̃ i

)‖�iu − �iũ‖2

)
ds.

Note that (θ − θ̃ ) · c1 = 0. Also for each t there exists ct ∈ R such that ‖(u − ũ)(t) +
ct1‖ = ‖(u − ũ)(t)‖�. Hence

∫ M

−M

(
γ ‖θ − θ̃‖2 +

d∑
i=1

γi

(
θi + θ̃ i

)‖�iu − �iũ‖2

)
ds

≤ (
(θ − θ̃ ) · (u − ũ + c−M1)

)
(−M) + (

(θ − θ̃ ) · (ũ − u + cM1)
)
(M)

≤ 1

2
‖(θ − θ̃ )(M)‖2 + 1

2
‖(u − ũ)(M)‖2

� + 1

2
‖(θ − θ̃ )(−M)‖2

+ 1

2
‖(u − ũ)(−M)‖2

� .
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Using that ‖�iu − �iũ‖ = ‖u − ũ − (ui − ũi )1‖ ≥ infλ ‖u − ũ + λ1‖ = ‖u − ũ‖�

and denoting by γ̄ = ∑d
i=1 γi(θ

i − θ̃ i ), we have

∫ M

−M

γ ‖(θ − θ̃ )(s)‖2 + γ̄ ‖(u − ũ)(s)‖2
�ds

≤
∫ M

−M

(
γ ‖θ − θ̃‖2 +

d∑
i=1

γi

(
θi + θ̃ i

)‖�iu − �iũ‖2

)
ds

≤ 1

2

(‖(θ − θ̃ )(M)‖2 + ‖(u − ũ)(M)‖2
� + ‖(θ − θ̃ )(−M)‖2 + ‖(u − ũ)(−M)‖2

�

)
.

Therefore we have proved

∫ M

−M

‖(θ − θ̃ )(s)‖2 + ‖(u − ũ)(s)‖2
�ds ≤ 1

2γ̃

(‖(θ − θ̃ )(M)‖2 + ‖(u − ũ)(M)‖2
�

+ ‖(θ − θ̃ )(−M)‖2 + ‖(u − ũ)(−M)‖2
�

)
,

(21)

where γ̃ = max{γ, γ̄ }. �

Lemma 2 Fix T > 0. Suppose that (θ, u) and (θ̃ , ũ) are solutions of (12) with initial-
terminal conditions θ(−T ) = θ0, u

i(T ) = ψi(θ(T )) and θ̃ (−T ) = θ̃0, ũ
i (T ) =

ψ̃ i(θ̃ (T )). Then

∫ T

−T

‖(θ − θ̃ )(s)‖2 + ‖(u − ũ)(s)‖2
�ds ≤ KT 3 + 4T . (22)

Proof Note that ‖(θ − θ̃ )(s)‖ ≤ 2. Let K0 = ‖ψ − ψ̃‖C0 . For each −T < s < T , by
the definition of u and ũ we have

ui(s) = min
α

E
α
is=i

[∫ T

s

c(it , θt , αt )dt + ψ iT (θT )

]

= E
ᾱ
is=i

[∫ T

s

c(it , θt , ᾱt )dt + ψ iT (θT )

]

and

ũi (s) ≤ E
ᾱ
is=i

[∫ T

s

c(it , θ̃t , ᾱt )dt + ψ̃ iT (θ̃T )

]
.

Hence

ũi (s) − ui(s) ≤ E
ᾱ
is=i

[∫ T

s

(
c(it , θ̃t , ᾱt ) − c(it , θt , ᾱt )

)
dt + (

ψ̃ iT (θ̃T ) − ψ iT (θT )
)]

.
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By the Lipschitz continuity of c and ψ in θ (remember that the Lipschitz continuity
of c is uniform in α), we have

ũi (s) − ui(s) ≤ 2T K1 + K0.

Changing the roles of u and ũ we get

‖ũ(s) − u(s)‖2
� ≤ KT 2 + K.

Thus ∫ T

−T

‖(θ − θ̃ )(s)‖2 + ‖(u − ũ)(s)‖2
�ds ≤ KT 3 + (4 + 2K)T . �

2.10 Uniqueness of Equilibria for the Initial-Terminal Value Problem

The first consequence of the monotonicity hypothesis is the uniqueness of equilib-
rium solutions for the initial-terminal value problem, which is a simple application of
Lions-Lasry monotonicity method.

Theorem 2 Suppose the monotonicity Assumptions 1, 2 and 3 hold. Then the system
(12) and (13) has a unique solution (θ, u).

Proof Suppose (θ, u) and (θ̃ , ũ) are solutions of (12) and (13). At the initial point
t = 0 we have that (θ − θ̃ ) · (u − ũ) = 0, because θ0 = θ̃0.

Integrating (20) between 0 and T , and using the terminal conditions, we have that

(
θ(T ) − θ̃ (T )

) · (ψ(
θ(T )

) − ψ
(
θ̃ (T )

))

≤
∫ T

0
−γ ‖θ − θ̃‖2 −

d∑
i=1

(
θi + θ̃ i

)
γi‖�iu − �iũ‖2,

now, by Assumption 1 we get

0 ≤
∫ T

0
−γ ‖θ − θ̃‖2 −

d∑
i=1

(
θi + θ̃ i

)
γi‖�iu − �iũ‖2,

which implies that θ(s) = θ̃ (s) for all s ∈ [0, T ]. Therefore, we have the uniqueness
for θ . Then, once θ is known to be unique, we obtain by a standard ODE argument
that u = ũ. �

2.11 Contractive Mean Field Games

We now introduce a condition that allow us to establish existence of stationary solu-
tions as well as a-priori bounds for the initial-terminal value problem.
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Definition 2 Let 〈u〉 = 1
d

∑
j uj . We say that h : R

d × S d × Id → R is contractive if
there exists M > 0 such that, ∀θ , ∀i, if ‖u‖� > M , then

(�iu)j ≤ 0 ∀j implies h(�iu, θ, i) − 〈
h(u, θ, ·)〉 < 0, (23)

and

(�iu)j ≥ 0 ∀j implies h(�iu, θ, i) − 〈
h(u, θ, ·)〉 > 0. (24)

Conditions (23) and (24) are natural if one observes that

(�i1u)j ≤ 0 ∀j and (�i2u)j ≥ 0 ∀j

implies

2‖u‖� = ui1 − ui2 .

So, if u is a smooth solution to (12) and ‖u(t)‖� is differentiable with ‖u(t)‖� > M

then
d

dt
‖u‖� > 0,

which implies the flow is backwards contractive with respect to the ‖ · ‖� norm of the
u component.

The contractivity condition can be verified explicitly in many examples as we will
illustrate in what follows. Consider the particular case

c(i, θ,α) =
∑
j

α2
j

2
+ f i(θ), (25)

where f i(θ) is continuous on θ ∈ S d . We have in this case that

h(�iu, θ, i) = f i(θ) − 1

2

∑
j

[(
ui − uj

)+]2
. (26)

We will show now that h is contractive. Suppose first (�iu)j ≤ 0 ∀j . As all other
cases are similar we assume i = 1 and

u1 ≥ u2 ≥ · · · ≥ ud. (27)

Therefore

h(�1u, θ,1) − 〈
h(u, θ, ·)〉

= d − 1

d

[
−1

2

∑
j>1

(
u1 − uj

)2
]

+ 1

2d

(∑
j>2

(
u2 − uj

)2

+
∑
j>3

(
u3 − uj

)2 + · · · + (
ud−1 − ud

)2
)

+ F1(θ)
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where F1(θ) is a bounded function of θ , namely

|F1(θ)| =
∣∣∣∣d − 1

d
f 1(θ) − 1

d

∑
j>1

f j (θ)

∣∣∣∣ ≤ 2 max
θ,i

f i(θ). (28)

Now we multiply by −2d to have

− 2d
(
h(�1u, θ,1) − 〈

h(u, θ, ·)〉)

= (d − 1)

[∑
j>1

(
u1 − uj

)2
]

−
(∑

j>2

(
u2 − uj

)2 +
∑
j>3

(
u3 − uj

)2 + · · ·

+ (
ud−1 − ud

)2
)

− 2dF1(θ).

Reordering we have

−2d
(
h(�1u, θ,1) − 〈

h(u, θ, ·)〉)

=
∑
j>1

(
u1 − uj

)2 +
(∑

j>1

(
u1 − uj

)2 −
∑
j>2

(
u2 − uj

)2
)

+
(∑

j>1

(
u1 − uj

)2 −
∑
j>3

(
u3 − uj

)2
)

+ · · ·

+
(∑

j>1

(
u1 − uj

)2 − (
ud−1 − ud

)2
)

− 2dF1(θ).

Now using (27) we have an inequality

− 2d
(
h(�1u, θ,1) − 〈

h(u, θ, ·)〉)

≥
∑
j>1

(
u1 − uj

)2 +
(∑

j>1

(
u1 − uj

)2 −
∑
j>2

(
u1 − uj

)2
)

+
(∑

j>1

(
u1 − uj

)2 −
∑
j>3

(
u1 − uj

)2
)

+ · · ·

+
(∑

j>1

(
u1 − uj

)2 − (
u1 − ud

)2
)

− 2dF1(θ),

which implies

− 2d
(
h(�1u, θ,1) − 〈

h(u, θ, ·)〉) ≥
∑
j>1

(
u1 − uj

)2 + ((
u1 − u2)2)

+ ((
u1 − u2)2 + (

u1 − u3)2) + · · · +
(

d−1∑
j=1

(
u1 − uj

)2

)
− 2dF1(θ),
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and the last inequality implies that h(�1u, θ,1) − 〈h(u, θ, ·)〉 < 0 whenever ‖u‖� is
large enough.

For the case (�iu)j ≥ 0 ∀j it suffices, as before, to assume i = 1 and

u1 ≤ u2 ≤ · · · ≤ ud.

Then

h(�1u, θ,1) − 〈
h(u, θ, ·)〉

= 1

2d

(∑
j<2

(
u2 − uj

)2 +
∑
j<3

(
u3 − uj

)2 + · · · +
∑
j<d

(
ud − uj

)2
)

+ F1(θ).

This implies

h(�1u, θ,1) − 〈
h(u, θ, ·)〉 > 0,

whenever ‖u‖� is large enough.

2.12 Stationary Solutions

We now discuss stationary solutions to (12). It is clear, if, for instance h > 0 (12)
cannot admit stationary solutions in the sense that d

dt
u = d

dt
θ = 0. Therefore we need

to consider stationary solutions to (12) modulo addition of a constant:

Definition 3 A triplet (θ̄ , ū, κ) ∈ S d × R
d × R is called a stationary solution of (12)

if
⎧⎨
⎩

∑
j

θ̄ j α∗
i (�j ū, θ̄ , j) = 0,

h(�iū, θ̄ , i) = κ.

(29)

If (θ̄ , ū, κ) is a stationary solution for the MFG equations, then (θ̄ , ū − κt1) solves
(12).

Proposition 5 Suppose h : R
d × S d × Id → R given by (4) is contractive.

(a) For M large enough, the set {u ∈ R
d,‖u‖� < M} × S d is invariant backwards in

time by the flow of (12).
(b) There exist a stationary solution of (12).

Proof The first item is a direct consequence of Definition 2 and the observations
thereafter. The second item is a consequence of Brower fixed point theorem for flows
that leave invariant compact and convex sets. �

2.13 Uniqueness of Stationary Solutions and Trend to Equilibrium

We now discuss two important consequences of the monotonicity and contractivity
properties: the uniqueness of solutions and the trend to equilibrium.
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Theorem 3 Suppose that the monotonicity Assumptions 2, 3, and contractivity hold.

(a) Suppose ‖u(T )‖� ≤ M , where u is a solution to (12), and M is large enough.
Then ‖u(t)‖� ≤ M ∀t ∈ [0, T ].

(b) The stationary solution (θ̄ , ū, κ) is unique (up to the addition of a constant to ū).
(c) Given T > 0, a vector θ0, and a terminal condition ψ , let (θT , uT ) be the solution

of (12) with initial-terminal conditions θT (−T ) = θ0 and uT,i(T ) = ψi(θT (T )).
We have, when T → ∞

θT (0) → θ̄ , ‖uT (0) − ū‖� → 0,

where (θ̄ , ū) is the unique stationary solution for the MFG equations.

Proof Item (a) is again a direct consequence of Definition 2 and the observations
thereafter.

In order to prove items (b) and (c), fix two probability distributions θ0 and θ̃0
in S d , and two terminal conditions ψ and ψ̃ . For each T > 0, let (θT , uT ) and
(θ̃T , ũT ) be the solutions of (12) with initial-terminal conditions θT (−T ) = θ0,
uT,i(T ) = ψi(θT (T )) and θ̃ T (−T ) = θ̃0, ũT ,i (T ) = ψ̃ i(θ̃T (T )), respectively. By the
contractivity hypothesis, ‖u(t)‖� and ‖ũ(t)‖� are uniformly bounded.

We define

fT (s) := ∥∥(
θT − θ̃ T

)
(s)

∥∥2 + ∥∥(
uT − ũT

)
(s)

∥∥2
�
,

and, for 0 < τ < T ,

FT (τ) :=
∫ τ

−τ

fT (s)ds.

By (21), we have

FT (τ) ≤ 1

γ̃

(
fT (τ) + fT (−τ)

)
.

Note that ḞT (τ ) = fT (τ) + fT (−τ), hence

FT (τ) ≤ 1

γ̃
ḞT (τ ).

This implies d
dt

lnFT (τ) ≥ γ̃ , therefore

lnFT (τ) − lnFT (1) ≥ (τ − 1)γ̃ ,

for all 0 < τ < T . From this we get
∫ 1

−1
fT (s)ds = FT (1) ≤ FT (T )

e(T −1)γ̃
→ 0 when T → ∞,

because F has sub-exponential growth, by (22) in Lemma 2.
Now there exists t (T ) ∈ [−1,1] with fT (t (T )) ≤ FT (1)

2 . Hence
∥∥θT

(
t (T )

) − θ̃ T
(
t (T )

)∥∥ → 0,
∥∥uT

(
t (T )

) − ũT
(
t (T )

)∥∥
�
→ 0,

as T → +∞.
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Recall that (θT , uT ) and (θ̃T , ũT ) are solutions of the same time-homogeneous
ODE (12), with data at time tT (θT (tT ), uT (tT )) and (θ̃T (tT ), ũT (tT )) whose dif-
ference goes to zero as T → +∞. From the continuous dependence of solutions of
ODE’s with respect to initial conditions, and observing that tT ∈ [−1,1], we can
conclude that

∥∥θT (t) − θ̃ T (t)
∥∥ → 0 and

∥∥uT (t) − ũT (t)
∥∥

�
→ 0,

uniformly in t ∈ [−1,1], as T → ∞.

Now, from Theorem 5, we know there exists a stationary solution (θ̄ , ū). If we
choose initial and terminal conditions (θ̃ , ψ̃) in such a way that (θ̃T (t), ũT (t)) =
(θ̄ , κ(T − t)1 + ū), we have the convergence of (θT , uT ) to (θ̄ , ū), which implies
both the trend to equilibrium and the uniqueness of stationary solutions. �

3 The N + 1-player Game

In this section we consider games between N +1-players which are symmetric under
permutation of players. As in the previous section we assume that each of the players
can be in one of d states, and knows, in addition to his or her state, the number of
players in each of the states.

Players follow a Markovian dynamics in which each player controls the switch-
ing rate, as discussed in Sects. 3.1 and 3.2. Using Hamilton-Jacobi ODE methods,
Sect. 3.3, and a verification Theorem, Sect. 3.4, we formulate the Nash equilibrium
problem for the N + 1-player problem. Maximum principle type estimates are con-
sidered in Sect. 3.3 which are then applied to establishing the existence of Nash equi-
librium solutions in Sect. 3.5.

3.1 Controlled Markov Dynamics

Remember that Id = {1,2,3, . . . , d}, and let S d
N = {(n1, . . . , nd) ∈ Z

d‖∑d
i=1 ni =

N,ni ≥ 0}. Let ek be the k − th vector of the canonical basis of R
d , and let ejk =

ej − ek .
In the preceding section we considered a game where a very large number of

players was allowed to switch among d states. The fraction of players in each state
was approximated by a deterministic vector θ(t). In an analogous way, we consider
now a game between N + 1 players that are allowed to switch between the same
d states. As before, to describe the game we will use a reference player. However,
we no longer make the assumption that the fraction of the players in each state can
be approximated by a deterministic vector θ(t). Instead, in addition to the position
it of the reference player, we consider a second controlled Markov Chain n, taking
values in S d

N , which records the number of the remaining players (distinct from the
reference player) that are in any of the d states at any given time. Each player knows
his own state, as well as the number of remaining players that are in any of the states.
No further information is available to any individual player.
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We suppose the reference player switches from state i to state j according to a
switching Markovian rate αij (n, t) which he or she would like to optimize upon.
More precisely, we suppose

P(it+h = j‖nt = n, it = i) = αij (n, t).h + o(h),

where lim o(h)
h

= 0 when h → 0. We suppose that the players distinct from the refer-
ence player follow controlled Markov processes with transition rates from state k to
state j given by β = βkj (n, t). More precisely, if we select one of the players distinct
from the reference player and call kt his position at time t , and call mt ∈ S d

N the
vector mt = nt + eit kt

, which records the number of other players in any state from
the point of view of this selected player, we have for j 	= k,

P(kt+h = j‖mt = m,kt = k) = βkj (m, t).h + o(h),

where lim o(h)
h

= 0 when h → 0. We suppose that both controls α and β are de-
fined in Id × Id × S d

N × [0,+∞) and take values in R, and also they are admissible
controls, that it is bounded and continuous as functions of time, and αkk(n, t) =
−∑

j 	=k αkj (n, t) ∀k,n, t and αkj (n, t) ≥ 0 ∀k 	= j , and that same properties hold
for β . We assume further that the state transitions of the different players are inde-
pendent, conditioned on i and n.

From the symmetry and independence of transitions assumption, for k 	= j , we
have

P(nt+h = n + ejk‖nt = n, it = i) = γ
n,i
β,kj (t).h + o(h),

where lim o(h)
h

= 0 when h → 0 and the transition rates of the process n are given by

γ
n,i
β,kj (t) = nkβkj (n + eik, t). (30)

The previous expression for the rate, namely the term n + eik instead of n, follows
from the fact that from the point of view of a player which is in state k, and is distinct
from the reference player, the number of other players in any state is given by n+ei −
ek = n + eik . Note that the rate function β is a deterministic time-dependent function,
which makes (n, i) a non-time homogeneous Markov process.

3.2 Individual Player Point of View

The reference player would like to choose its transition rate α, possibly different from
β , in order to minimize

ui
n(t, β,α) = E

β,α

At (i,n)

[∫ T

t

c

(
is ,

ns

N
,α(s)

)
ds + ψ iT

(
nT

N

)]
, (31)

where the subscript At(i, n) means we are considering the expectation conditioned on
it = i,nt = n. That is, the reference player looks for the control α which is a solution
to the minimization problem

ui
n(t;β) = inf

α
ui

n(t, β,α),
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where the minimization is performed over the set of all admissible controls α. We will
call the function ui

n(t;β) above the value function for the reference player associated
to the strategy β of the remaining N players. The control α that attains the minimum
above can be called the best response (for the reference player) to a control β .

3.3 The Hamilton-Jacobi ODE for the N + 1-player Game

Fix an admissible control β . Consider the system of ODE’s indexed by i and n given
by

−dϕi
n

dt
(t) =

∑
k,j

γ
n,i
β,kj (t)

(
ϕi

n+ejk
(t) − ϕi

n(t)
) + h

(
�iϕn(t),

n

N
, i

)
, (32)

where γβ is given by (30), and, as before, �iϕn(t) = (ϕ1
n(t) − ϕi

n(t), . . . , ϕ
d
n (t) −

ϕi
n(t)).

This system of ODE is called the Hamilton-Jacobi (HJ) ODE for the N + 1-player
game associated to the strategy β of the remaining N players.

We denote by

‖u(t)‖∞ = max
n,i

|ui
n(t)|, (33)

The proof of the next Proposition is analogous to the proof of Proposition 2 and it
is postponed to the Appendix.

Proposition 6 Let u be a solution to (32) and M = max(i,θ)∈Id×S d |h(0, θ, i)|. Then
for all 0 ≤ t ≤ T we have

‖u(t)‖∞ ≤ ‖u(T )‖∞ + 2M(T − t).

As a consequence of h being locally Lipschitz continuous, Picard Theorem, to-
gether with the previous bound, allow us to establish

Theorem 4 The terminal value problem (TVP) given by (32) and the terminal condi-
tion ϕi

n(T ) = ψi( n
N

) has a unique solution.

3.4 A Verification Theorem for the N + 1-player Game

Now we state a verification Theorem, which is completely analogous to the respective
verification Theorem of the preceding section: The corresponding proof can be found
in the Appendix.

Theorem 5 Let v be a solution to (32) satisfying the terminal condition vi
n(T ) =

ψi( n
N

). Then

ui
n(t;β) = vi

n(t).
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Also, the Markovian control

α̃(β)(i, n, t) ≡ α∗
(

�ivn(t),
n

N
, i

)
, (34)

is admissible and satisfies

ui
n(t;β) = ui

n

(
t, β, α̃(β)

)
.

Thus a classical solution to the HJ equation associated to β is the value function
corresponding to β and determines an optimal admissible control α̃(β), for the refer-
ence player.

3.5 Equilibrium Solutions

We now consider Nash equilibria for the N + 1-player game. For that we look for
controls β for which the best response of any player to β is β itself.

Definition 4 An admissible control β is a Nash equilibrium if α̃(β) = β .

Theorem 6 Under the hypothesis of Sect. 2.2, there exists a unique Nash equilib-
rium β̄ .

Proof A necessary condition for a control β̄ to be a Nash equilibrium is that from
(34), we have

β̄kj (n, t) = α∗
j

(
�kun(t; β̄),

n

N
,k

)
.

Hence this gives rise to the system of nonlinear differential equations

−dui
n

dt
=

∑
k,j

γ
n,i
kj

(
ui

n+ejk
− ui

n

) + h

(
�iun,

n

N
, i

)
, (35)

with terminal condition

ui
n(T ) = ψi

(
n

N

)
∀i ∈ Id, n ∈ S d

N , (36)

where γ
n,i
kj are given by

γ
n,i
kj = nkα

∗
j

(
�kun+eik

,
n + eik

N
, k

)
. (37)

Note that (35) is well posed because un is bounded and the right-hand side is Lips-
chitz and admits a unique solution. Hence existence and uniqueness of a Nash equi-
librium follows. �

The following property of γ
n,i
kj will be proved in the Appendix:
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Lemma 3 Let us suppose that ‖�kun‖∞ is bounded, and denote by zl
n,sr = ul

n+ers
−

ul
n. Then we have

∣∣γ n+ers ,i
kj − γ

n,i
kj

∣∣ ≤ C + CN max
rs

‖z··,sr‖∞. (38)

4 Convergence

This last section addresses the convergence as the number of players tends to infinity
to the mean field model derived in the previous section.

We start this section by discussing some preliminary estimates in Sect. 4.1. Then,
in Sect. 4.2 we establish uniform estimates for |un+ers − un|, which are essential
to prove our main result, Theorem 7, which is discussed in Sect. 4.3. This theorem
shows that the model derived in the previous section can be obtained as an appropriate
limit of the model with N + 1 players discussed in Sect. 3.

4.1 Preliminary Results

Let us denote by m = (i, n) ∈ Id × S d
N , and consider the system of ordinary differen-

tial equations

−żi
n =

∑
k,j

ai
n,kj

(
zi
n+ejk

− zi
n

) +
∑

l

al,i
n

(
zl
n − zi

n

)
,

where ai
n,kj ≥ 0 and a

l,i
n ≥ 0. Note that this system is a particular case of

−żm =
∑

m′∈Id×S d
N

amm′(t)(zm′ − zm), (39)

where amm′(t) ≥ 0. We write (39) in compact form as

−ż(t) = M(t)z(t). (40)

The solution to this equation with terminal data z(T ) can be written as

z(t) = K(t, T )z(T ), (41)

where K(t, T ) is the fundamental solution to (40) with K(T ,T ) = I . Note that equa-
tions (40) and (41) imply

d

dt
K(t, T ) = −M(t)K(t, T ). (42)

The proofs of Lemmas 4, 6 and 7 can be found in Appendix.

Lemma 4 For t < T we have

‖z(t)‖∞ ≤ ‖z(T )‖∞

(see (33)). Furthermore, if z(T ) ≤ 0 then z(t) ≤ 0.
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From the previous Lemma we also conclude

Lemma 5 If p1 ≤ p2, and t ≤ s, then we have

K(t, s)p1 ≤ K(t, s)p2,

which means K(t, s) is an order preserving operator.

Proof Observe that if p1 − p2 ≤ 0 then K(t, s)(p1 − p2) ≤ 0, by Lemma 4. �

Lemma 6 Suppose z is a solution to

−ż(s) ≤ M(s)z(s) + f
(
z(s)

)
. (43)

where M(t) was defined in (39) and (40). Then, for all m = (i, n) ∈ Id × S d
N

zi
n(t) = zm(t) ≤ ∥∥z(T )

∥∥∞ +
∫ T

t

∥∥f
(
z(s)

)∥∥∞ds.

Lemma 7 Suppose v : [0, T ] → R is a solution to the ODE with terminal condition
⎧⎪⎨
⎪⎩

−dv

ds
= Cv + CNv2 + C

N
,

v(T ) ≤ C

N
,

(44)

where N is a natural number, and C > 0. Then, there exists T � > 0, which does not
depend on N , such that T ≤ T � implies v(s) ≤ 2C

N
for all 0 ≤ s ≤ T .

4.2 Gradient Estimates

In this section we prove “gradient estimates” for the N + 1-player game, that is, we
assume that the difference un+ers − un is of the order 1

N
at time T and show that it

remains so for 0 ≤ t ≤ T , as long as T is sufficiently small.

Proposition 7 Let ui
n(t) be a solution of (35) with terminal conditions (36). Then

there exists C > 0 and T � > 0 such that, for 0 < T < T �, we have

max
rs

‖ui
n+ers

(t) − ui
n(t)‖∞ ≤ 2C

N
,

for all 0 ≤ t ≤ T .

Before proving the Proposition, we remember the norm ‖ ·‖∞ was defined in (33).

Proof Using the terminal condition (36) and remembering that ψ is Lipschitz con-
tinuous, we know that there is a constant C > 0 such that

max
rs

‖ui
n+ers

(T ) − ui
n(T )‖∞ ≤ C

N
. (45)
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Let zi
n,sr = ui

n+ers
− ui

n. We have

−żi
n,sr =

∑
k,j

[
γ

n+ers ,i
kj

(
ui

n+ers+ejk
− ui

n+ers

) − γ
n,i
kj

(
ui

n+ejk
− ui

n

)]

+ h

(
�iun+ers ,

n + ers

N
, i

)
− h

(
�iun,

n

N
, i

)

=
∑
k,j

[
γ

n+ers ,i
kj zi

n+ers ,kj
− γ

n,i
kj zi

n,kj

] + h

(
�iun+ers ,

n + ers

N
, i

)

− h

(
�iun,

n

N
, i

)

=
∑
k,j

[(
γ

n+ers ,i
kj + γ

n,i
kj

2

)(
zi
n+ers ,kj

− zi
n,kj

)]

+
∑
k,j

[(
γ

n+ers ,i
kj − γ

n,i
kj

2

)(
zi
n+ers ,kj

+ zi
n,kj

)]

+ h

(
�iun+ers ,

n + ers

N
, i

)
− h

(
�iun,

n

N
, i

)
.

Note that zi
n+ers ,kj

− zi
n,kj = ui

n+ers+ejk
− ui

n+ers
− ui

n+ejk
+ ui

n = zi
n+ejk,sr

− zi
n,sr .

From Lemma 3, we have |( γ
n+ers ,i
kj −γ

n,i
kj

2 )| ≤ C + CN maxrs ‖z··,sr‖∞. And note
that ∑

k,j

(
zi
n+ers ,kj

+ zi
n,kj

) ≤ 2
∑
k,j

‖z··,kj‖∞ ≤ 2d2 max
kj

‖z··,kj‖∞.

Hence

∑
k,j

[(
γ

n+ers ,i
kj − γ

n,i
kj

2

)(
zi
n+ers ,kj

+ zi
n,kj

)] ≤ C max
kj

‖z··,kj‖∞ + CN max
kj

‖z··,kj‖2∞.

Using item (a) of Proposition 1 and also that zi
n,sr

∑
l α

∗
l (un,

n
N

, i) = 0, we have

h

(
�iun+ers ,

n + ers

N
, i

)
− h

(
�iun,

n

N
, i

)

= h

(
�iun+ers ,

n + ers

N
, i

)
− h

(
�iun+ers ,

n

N
, i

)

+ h

(
�iun+ers ,

n

N
, i

)
− h

(
�iun,

n

N
, i

)

≤ C

N
+

∑
l

α∗
l

(
�iun,

n

N
, i

)(
zl
n,sr − zi

n,sr

)
.
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Now denoting by ai
n,kj,sr = γ

n+ers ,i
kj +γ

n,i
kj

2 , and a
l,i
n = α∗

l (�iun,
n
N

, i), we get

−żi
n,sr ≤

∑
k,j

[
ai
n,kj,sr

(
zi
n+ejk,sr

− zi
n,sr

)] +
∑

l

al,i
n

(
zl
n,sr − zi

n,sr

) + f (z),

where f (z) = C
N

+ C maxrs ‖z··,sr‖∞ + CN maxrs ‖z··,sr‖2∞.
At this point we are in position to apply Lemma 6 from the previous section. We

obtain

zi
n,sr (t) ≤ ‖z··,sr (T )‖∞ +

∫ T

t

C max
rs

‖z··,sr (s)‖∞ + CN max
rs

‖z··,sr (s)‖2∞ + C

N
ds.

Finally, as zi
n,sr = ui

n+ers
− ui

n, if we set w = maxrs ‖ui
n+ers

− ui
n‖∞ we conclude

that

w(t) ≤ w(T ) +
∫ T

t

Cw(s) + CNw(s)2 + C

N
ds.

Now we define

η(t) = w(T ) +
∫ T

t

Cw(s) + CNw(s)2 + C

N
ds.

We have that

w(t) ≤ η(t), (46)

and also that

dη

dt
(t) = −g

(
w(t)

)
,

where g is the nondecreasing function g(w) = Cw + CNw2 + C
N

. Thus

⎧⎨
⎩

dη

dt
(t) ≥ −g(η(t)),

η(T ) = w(T ).

A standard argument from the basic theory of differential inequalities can now be
used to prove that η(t) ≤ v(t) for 0 ≤ t ≤ T , if v(t) is the solution of

⎧⎨
⎩

dv

dt
(t) = −g(v(t)),

v(T ) = w(T ).

This last result can be combined with Lemma 7, the inequality (45) which means
w(T ) ≤ C

N
and the inequality (46), to prove that w(t) ≤ 2C

N
for all 0 ≤ t ≤ T , which

ends the proof of the Proposition. �
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4.3 Convergence

In this section we prove Theorem 7, which implies the convergence of both distribu-
tion and value function of the N + 1-player game to the mean field game, for small
times.

Let θ0 = (θ1
0 , θ2

0 . . . , θd
0 ) ∈ S d be given. We start by assuming that at the initial

time the N players distinct from the reference player are randomly assigned states
1,2, . . . , d independently according to the initial distribution θ0 (i.e. choosing state k

with probability θk
0 ). Therefore, n0 is a random vector of Z

d that follows a multino-
mial distribution with parameters N and θ0.

We will write nl
t for the lth coordinate of nt , which means the number of players

(distinct from the reference player) that are in state l at time t .
The norm we use for vectors of R

d , in this section, is the norm ‖v‖ =
max{|v1|, |v2|, . . . , |vd |}, where |vi | is the absolute value of the ith coordinate of v.

The main result is the following:

Theorem 7 Let T ∗ be as in Proposition 7. There exists a constant C, independent of
N , for which, if T < T ∗, satisfies ρ = T C < 1, then

VN(t) + WN(t) ≤ C

1 − ρ

1

N
,

for all t ∈ [0, T ], where

VN(t) ≡ E

[∥∥∥∥nt

N
− θ(t)

∥∥∥∥
2]

,

and

WN(t) ≡ E
[∥∥u(t) − uN

nt
(t)

∥∥2]
,

where the pair θ(t) and u = u(t) is the solution of the MFG game (12), and uN =
uN(t) is the value function of the N + 1-player game, i.e., the solution of game (35).

Before proving Theorem 7 we need two Lemmas. Let

⎧⎪⎨
⎪⎩

VN(l, t) ≡ E

[(
nl

t

N
− θ l(t)

)2]
,

WN(l, t) ≡ E
[(

ul(t) − u
N,l
nt

(t)
)2]

.

(47)

We have

VN(t) = max
{
VN(1, t), . . . , VN(d, t)

}
and

WN(t) = max
{
WN(1, t), . . . ,WN(d, t)

}
,

(48)

and

VN(l,0) = Var

[
nl

0

N

]
= θ l

0(1 − θ l
0)

N
, (49)
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because nl
0 is the sum of N independent and identically distributed random variables,

each of them having Bernoulli distribution with parameter θ l
0.

An important tool for proving Lemmas 8 and 9 is again the Dynkin Formula, now
adapted to the present situation: define the infinitesimal generator of the process (i,n)

acting on a function ϕ : Id × S d
N × [0,+∞) → R, C1 in the last variable, by

Aαϕ(i, n, s) =
∑
j

α
N,i
ij

[
ϕ(j,n, s) − ϕ(i, n, s)

]

+
∑
kj

nkα
N,i
kj

[
ϕ(i, n + ejk, s) − ϕ(i, n, s)

]
, (50)

where

α
N,i
kj = α∗

j

(
�ku

N
n+eik

,
n + eik

N
, k

)
, (51)

is the transition rate from state k to state j in for equilibrium solutions of the N + 1-
player game, as in Sect. 3.5.

Then for any t < T ,

E
[
ϕ(iT ,nT , T ) − ϕ(it ,nt , t)

] = E

[∫ T

t

dϕ

dt
(i,n, s) + Aαϕ(i,n, s)ds

]
. (52)

Note that in the right hand side of the equation above, the processes i and n are
evaluated at time s.

We will also denote by

αij = α∗
j (�iu, θ, i)

the transition rate from state i to state j in the equilibrium solutions of the mean field
game as in Sect. 2.6.

Lemma 8 Let T ∗ be as in Proposition 7, and suppose T < T ∗. There exists C1 > 0
such that

VN(t) ≤
∫ t

0
C1

(
VN(s) + WN(s)

)
ds + C1

N
.

Proof Using Dynkin’s Formula (52) with ϕl(i, n, s) = ( nl

N
− θ l(s))2, and (49), we

have

VN(l, t) − θ l
0(1 − θ l

0)

N
= E

∫ t

0

(
ωN,l(s) + ςN,l(s)

)
ds,

where

ςN,l(s) = dϕl

dt
(i,n, s) = −2

(
nl

N
− θ l

)∑
k

αklθ
k,
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and

ωN,l(s) =
∑

k

∑
j

nkα
N,i
kj

[
ϕl(n + ejk, s) − ϕl(n, s)

]
.

Note that ϕl(i,n, s) just depend on nl and s. Therefore ϕl(n + ejk, s) = ϕl(n, s) if
both j 	= l and k 	= l. Hence

ωN,l(s) =
∑

k∈Id ,j=l

nkα
N,i
kl

[
ϕl(n + elk, s) − ϕl(n, s)

]

+
∑

j∈Id ,k=l

nlα
N,i
lj

[
ϕl(n + ejl, s) − ϕl(n, s)

]

=
∑
k 	=l

nkα
N,i
kl

[(
nl + 1

N
− θ l

)2

−
(

nl

N
− θ l

)2]

+
∑
j 	=l

nlα
N,i
lj

[(
nl − 1

N
− θ l

)2

−
(

nl

N
− θ l

)2]

=
(

2

(
nl

N
− θ l

)
+ 1

N

)∑
k 	=l

nk

N
α

N,i
kl +

(
2

(
−nl

N
+ θ l

)
+ 1

N

)
nl

N

∑
j 	=l

α
N,i
lj

=
(

2

(
nl

N
− θ l

)
+ 1

N

)∑
k 	=l

nk

N
α

N,i
kl +

(
2

(
nl

N
− θ l

)
− 1

N

)
nl

N
α

N,i
ll

≤ 2

(
nl

N
− θ l

) ∑
k∈Id

nk

N
α

N,i
kl + C̃

N
,

where in the inequality above we used the fact that α
N,i
kl is bounded (with bounds that

do not depend on N—here we are using that α∗ is Lipschitz and �iun is bounded—
see Propositions 1 and 7). Now

ςN,l(s) + ωN,l(s) ≤ 2

(
nl

N
− θ l

)∑
k

[
nk

N
α

N,i
kl − θkαkl

]
+ C̃

N

= 2

(
nl

N
− θ l

)∑
k

[
nk

N
α

N,i
kl − nk

N
αkl + nk

N
αkl − θkαkl

]
+ C̃

N

= 2

(
nl

N
− θ l

)∑
k

[
nk

N

(
α

N,i
kl − αkl

) + αkl

(
nk

N
− θk

)]
+ C̃

N
.

Then

VN(l, t) = E

∫ t

0

(
ωN,l(s) + ςN,l(s)

)
ds + θ l

0(1 − θ l
0)

N



130 Appl Math Optim (2013) 68:99–143

≤ E

∫ t

0
2

(
nl

N
− θ l

)∑
k

nk

N

(
α

N,i
kl − αkl

)
ds

+ E

∫ t

0
2

(
nl

N
− θ l

)∑
k

αkl

(
nk

N
− θk

)
ds + C̃T + 1/4

N
.

Now, using again the fact that α∗ is Lipschitz and

‖�kw − �kz‖ ≤ ‖w − z‖, (53)

we see that

∣∣αN,i
kl − αkl

∣∣ =
∥∥∥∥α∗

l

(
�ku

N
n+eik

,
n + eik

N
, k

)
− α∗

l (�ku, θ, k)

∣∣∣∣
≤ K

(∥∥∥∥θ − n + eik

N

∥∥∥∥ + ∥∥uN
n+eik

− u
∥∥)

≤ K

(∥∥∥∥θ − n
N

∥∥∥∥ + 2

N
+ ∥∥uN

n+eik
− uN

n

∥∥ + ∥∥uN
n − u

∥∥)

≤ K

(∥∥∥∥θ − n
N

∥∥∥∥ + 2 + 2C0

N
+ ∥∥uN

n − u
∥∥)

,

where in the last equality we used the gradient estimates of Proposition 7.
Therefore

VN(l, t) ≤ 2KE

∫ t

0

∣∣∣∣nl

N
− θ l

∣∣∣∣
(∥∥∥∥θ − n

N

∥∥∥∥ + 2 + 2C0

N
+ ∥∥uN

n − u
∥∥)

ds

+ E

∫ t

0
2

(
nl

N
− θ l

)∑
k

αkl

(
nk

N
− θk

)
ds + C̃T + 1/4

N

≤ 2KE

∫ t

0

∣∣∣∣nl

N
− θ l

∣∣∣∣
(∥∥∥∥θ − n

N

∥∥∥∥ + ∥∥uN
n − u

∥∥)
ds

+ C3E

∫ t

0
2

∣∣∣∣nl

N
− θ l

∣∣∣∣
∑

k

∣∣∣∣nk

N
− θk

∣∣∣∣ds + C4

N

where we used the fact that αkl is bounded by a constant C3, and C4 = C̃T + 1/4 +
2T + 2C0T .

Now

VN(l, t) ≤ 2KE

∫ t

0

(∥∥∥∥θ − n
N

∥∥∥∥
2

+ ∥∥uN
n − u

∥∥∥∥∥∥θ − n
N

∥∥∥∥
)

ds

+ 2dC3E

∫ t

0

∥∥∥∥θ − n
N

∥∥∥∥
2

ds + C4

N
.
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Finally using ab < a2 + b2 and (48), we have

VN(t) ≤
∫ t

0
C1

(
VN(s) + WN(s)

)
ds + C1

N
,

where C1 = 3 max{2K,2dC3,C4}. �

Lemma 9 Let T ∗ be as in Proposition 7, and suppose T < T ∗. There exists C2 > 0
such that

WN(t) ≤
∫ T

t

C2
(
VN(s) + WN(s)

)
ds + C2

N
.

Proof Using Dynkin formula (52) with ϕl(i, n, s) = (u
N,l
n (s) − ul(s))2, and (35) and

(12), we have

WN(l, t) − WN(l, T ) = −E
[(

uN,l
n (t) − ul(t)

)2] + E
[(

uN,l
n (T ) − ul(T )

)2]

= E

∫ T

t

2
(
uN,l

n − ul
) d

ds

(
uN,l

n − ul
)
ds

+ E

∫ T

t

∑
jk

nkα
N,i
kj

[
ϕl(i,n + ejk, s) − ϕl(i,n, s)

]
ds

= E

∫ T

t

2
(
uN,l

n − ul
)(−

∑
jk

nkα
N,i
kj

(
u

N,l
n+ejk

− uN,l
n

)

− h

(
�lu

N
n ,

n
N

, l

)
+ h(�lu, θ, l)

)
ds

+ E

∫ T

t

∑
jk

nkα
N,i
kj

[(
u

N,l
n+ejk

− ul
)2 − (

uN,l
n − ul

)2]
ds

= E

∫ T

t

∑
jk

nkα
N,i
kj

[−2
(
uN,l

n − ul
)(

u
N,l
n+ejk

− uN,l
n

)

+ (
u

N,l
n+ejk

− ul
)2 − (

uN,l
n − ul

)2]
ds

+ E

∫ T

t

(
2
(
uN,l

n − ul
))(

h(�lu, θ, l) − h

(
�lu

N
n ,

n
N

, l

))
ds

= E

∫ T

t

∑
jk

nkα
N,i
kj

(
u

N,l
n+ejk

− uN,l
n

)2
ds

+ E

∫ T

t

(
2
(
uN,l

n − ul
))(

h(�lu, θ, l) − h

(
�lu

N
n ,

n
N

, l

))
ds.
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In the last equation we used the fact that

−2
(
uN,l

n − ul
)(

u
N,l
n+ejk

− uN,l
n

) + (
u

N,l
n+ejk

− ul
)2 − (

uN,l
n − ul

)2 = (
u

N,l
n+ejk

− uN,l
n

)2
.

Now, using the gradient estimates from Sect. 4.2, Proposition 7, we have that

α
N,i
kj

(
u

N,l
n+ejk

− uN,l
n

)2
<

K2

N2
,

which implies
∑
jk

nkα
N,i
kj

(
u

N,l
n+ejk

− uN,l
n

)2
<

dK2

N
.

For the same reason we have that WN(T ) is bounded by K3
N

, which implies

WN(t) ≤ K4

N
+ 2E

∫ T

t

(
h(�lu, θ, l) − h

(
�lu

N
n ,

n
N

, l

))(
uN,l

n − ul
)
ds.

Using the fact that h is Lipschitz in both variables, with Lipschitz constant uniform
(since �u is bounded) and (53) we see that

h(�lu, θ, l) − h

(
�lu

N
n ,

n
N

, l

)
< K

(∥∥∥∥θ − n
N

∥∥∥∥ + ‖uN
n − u‖

)
.

Therefore, using u
N,l
n (s) − ul(s) ≤ ‖uN

n − u‖ and again ab < a2 + b2, we have

WN(t) ≤ K4

N
+ K5

∫ T

t

VN(s) + WN(s)ds,

which ends the proof. �

Now we can prove our main result that establishes the convergence of the N + 1-
player game to the mean field model as N → ∞.

Proof of Theorem 7 Define C = C1 + C2. Adding both inequalities given in the two
last Lemmas, we have

WN(t) + VN(t) ≤ C

∫ T

0

(
VN(s) + WN(s)

)
ds + C

N
.

Now suppose ρ = T C < 1. Defining

WN + VN = max
0≤t≤T

WN(t) + VN(t),

we have

WN + VN ≤ ρ(WN + VN) + C

N
,

which proves Theorem 7. �
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5 Potential Mean Field Games

An important class of examples are potential mean field games, which have additional
structures that can be used to deduct further properties. In these mean field games h

has the form

h(z, θ, i) = h̃(z, i) + f i(θ) (54)

where h̃ : R
d × Id → R and f : R

d × Id → R is the gradient of a convex function.
More precisely, we suppose that there exists a convex function F : R

d → R such that
∇θF = f (·, θ).

5.1 Hamiltonian and Lagrangian Formulations

Let H : R
2d → R be given by

H(u, θ) =
∑

i

θ i h̃(�iu, i) + F(θ) = θ · h̃(�·u, ·) + F(θ). (55)

A direct computation shows that (12) can be written as
⎧⎪⎪⎨
⎪⎪⎩

∂H

∂uj
= θ̇ j ,

∂H

∂θj
= −u̇j .

(56)

This means the flow generated by (12) is Hamiltonian. In addition to the fact that
the Hamiltonian is preserved by the flow (56), the special structure of the H , which
depends only on �iu, implies that

∑
i θ

i is also a conserved quantity, which is con-
sistent with the interpretation of θ in terms of probability distribution of players.

Given a convex function G(p) we define the Legendre transform as

G∗(q) = sup
p

−q · p − G(p).

If G is strictly convex and the previous supremum is achieved, then q = −∇G(p), or
equivalently p = −∇G∗(q).

If the function F is strictly convex in θ then the Hamiltonian H is strictly convex
in θ . This allow us to consider the Legendre transform

L(u, u̇) = sup
θ

−u̇ · θ − H(u, θ) = sup
θ

−(u̇ + h̃) · θ − F(θ) = F ∗(u̇ + h̃(�·u, ·)).
From this we conclude that any solution to (12) is a critical point of the functional

∫ T

0
F ∗(u̇ + h̃(�·u, ·))ds. (57)

This variational problem has to be complemented by suitable boundary conditions.
The initial-terminal value problem corresponds to

θ0 = −∇F ∗(u̇(0) + h̃
(
�·u(0), ·)),
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u(T ) = ψ
(·,−∇F ∗(u̇(T ) + h̃

(
�·u(T ), ·))).

Another important boundary condition arises in planning problems. In this case the
objective is to find a terminal cost u(T ) which steers a initial probability distribution
θ0 into a terminal probability distribution θT . Hence we have the following

θ0 = −∇F ∗(u̇(0) + h̃
(
�·u(0), ·)),

θT = −∇F ∗(u̇(T ) + h̃
(
�·u(T ), ·)).

The variational principle (57) is an analog to the results in [6, 7].

5.2 Two PDE’s for the Value Function

We will present now a PDE for the value function. As pointed out by Lions in his
course in College de France, as well as in [9, 10] the value function of the mean field
game can be determined by solving a PDE. For this let g : R

d × S d × Id → R
d be

g(u, θ, i) =
∑
j

θjα∗
i (�ju, θ, j).

The first equation of (12) is equivalent to d
dt

θ i = g(u, θ, i).
Consider the PDE

−∂Ui

∂t
(θ, t) = h(U, θ, i) +

∑
k

g(U, θ, k)
∂Ui

∂θk
(θ, t), (58)

where U : Id × S d × [0, T ] → R, and the terminal condition

Ui(θ, T ) = ψi(θ). (59)

A direct computation show us that the following Proposition holds:

Proposition 8 Suppose U : Id × S d × [0, T ] → R is a solution of (58) and (59). Let
θ : [0, T ] → S d and u : [0, T ] → R

d be two functions such that

1. the first equation of (12) is satisfied, i.e. d
dt

θ i = g(u, θ, i);
2. θ(0) = θ0;
3. ui(t) = Ui(θ(t), t).

Then u satisfies the second equation of (12), i.e. − d
dt

ui = h(�iu, θ, i) as well as the
terminal condition ui(T ) = ψi(θ(T )). Therefore, u is the value function associated
to θ , and so it determines a Nash equilibria for the MFG.

As a consequence of the above Proposition, if U is a solution of (58) and (59), the
initial value problem

⎧⎨
⎩

d

dt
θ i = g(Ui(θ(t), t), θ, i),

θ(0) = θ0,
(60)
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can be solved by the usual methods of the ODE theory to find a Nash equilibrium θ

and the associated value function ui(t) = Ui(θ(t), t), for any initial distribution θ0.
Also, the function U allows one to calculate the optimal strategies for each player, at
any time. In fact the optimal switching of a player in state i, given the distribution θ

of players, is α∗
j (�iU(θ, t), θ, i), for 1 ≤ j ≤ d .

We should observe that (35) can be regarded as a discretization of (58). Indeed,
set θ = n

N
and assume ui

n � Ui(θ, t), for some smooth function U . Then, for large
N , from (37) we have

γ
n,i
kj

N
= nk

N
α∗

j

(
�kun+eik

,
n + eik

N
, k

)
� θkα∗

j (�kU, θ, k).

Furthermore,

ui
n+ejk

− ui
n

1/N
= ui

n+ejk
− ui

n+ej
+ ui

n+ej
− ui

n

1/N
� −∂Ui

∂θk
+ ∂Ui

∂θj
.

Therefore

∑
k,j

γ
n,i
kj

(
ui

n+ejk
− ui

n

) �
∑
k,j

θkα∗
j (�kU, θ, k)

(
∂Ui

∂θj
− ∂Ui

∂θk

)

=
∑
k,j

θkα∗
j (�kU, θ, k)

∂Ui

∂θj
,

taking into account that
∑

j α∗
j = 0. Observing that

∑
k,j

θkα∗
j (�kU, θ, k)

∂Ui

∂θj
=

∑
j

g(U, θ, j)
∂Ui

∂θj
,

and

h

(
�iun,

n

N
, i

)
= h

(
un,

n

N
, i

)
� h(U, θ, i),

we conclude, from the above and (35), that

−∂Ui

∂t
(θ, t) � h(U, θ, i) +

∑
j

g(U, θ, j)
∂Ui

∂θj
(θ, t).

The global existence of smooth solutions for (58) was addressed by Pierre Louis
Lions in his course at College de France under monotonicity type assumptions. The
solution to (58) yields then an approximate solution of (35) by the above consistency
result. It may be possible, in the spirit of the results by [15], to show that this also
yields a ε-Nash equilibrium strategy and therefore justify the long time convergence,
or at least the convergence of strategies.
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For potential mean field games (58) can be further simplified if we suppose that
the terminal condition is given by a gradient

Ui(θ, T ) = ∇θi ΨT (i, θ). (61)

In this case let Ψ be a solution of the PDE⎧⎨
⎩

−∂Ψ

∂t
= H(∇θΨ, θ),

Ψ (θ,T ) = ΨT (θ).
(62)

Then a direct calculation can show that Ui(θ, t) = ∇θi Ψ (θ, t) is a solution of (58)
together with the terminal condition (61). We should observe that the solutions to the
Hamilton’s equations (56) are in fact characteristic curves for (62). The Hamilton-
Jacobi PDE (62) was explored in [9, 10] to the study of MFG problems on graphs.

Appendix: Auxiliary Results

Proof of Proposition 1 To prove the first item we use the definition of h and α∗ and
also that vi

∑
j α∗

j (z, θ, i) = 0 to get

h(z, θ, i)+
∑
j

α∗
j (z, θ, i)vj = c

(
i, θ,α∗(z, θ, i)

)+
∑
j

α∗
j (z, θ, i)

(
zj +vj −zi −vi

)
.

Hence by the definition of h(z + v, θ, i) we have

h(z, θ, i) +
∑
j

α∗
j (z, θ, i)vj ≥ h(z + v, θ, i).

From this (7) holds and we deduct that if h is differentiable

α∗
j = ∂h(�iz, θ, i)

∂zj
.

Note that item (c) is a direct corollary of item (b), since

h(p, θ, i) = c
(
i, θ,α∗(p, θ, i)

) + α∗(p, θ, i) · p (63)

and the function c is Lipschitz in θ and differentiable in α.
From this point on in this proof we will omit the index i as it is not relevant and

simplifies the notation. To prove item (b) we will use the following inequalities, which
are consequence of the uniform convexity of c: for all θ, θ ′ ∈ S d , α′, α ∈ (R+

0 )d ,∑
k αk = ∑

k α′
k = 0, and p,p′ ∈ R

d , we have

c
(
θ,α′)+α′ ·p′ ≥ c(θ,α)+α ·p′ + (∇αc(θ,α)+p′) · (α′ −α

)+γ ‖α′ −α‖2, (64)

and because α∗(p, θ) is a minimizer,
(∇αc

(
θ,α∗(p, θ)

) + p
) · (α′ − α∗(p, θ)

) ≥ 0. (65)
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We will first prove that α∗ is uniformly Lipschitz in p: for that, we suppose that θ

is fixed. By the definition of α∗ and (64) we have

c
(
α∗(p)

) + α∗(p) · p′ ≥ c
(
α∗(p′)) + α∗(p′) · p′

≥ c
(
α∗(p)

) + α∗(p) · p′ + (∇αc
(
α∗(p)

) + p′)
· (α∗(p′) − α∗(p)

) + γ
∥∥α∗(p′) − α∗(p)

∥∥2
,

hence

0 ≥ (∇αc
(
α∗(p)

) + p
) · (α∗(p′) − α∗(p)

) + (
p′ − p

) · (α∗(p′) − α∗(p)
)

+ γ
∥∥α∗(p′) − α∗(p)

∥∥2
.

Now using (65) we obtain

0 ≥ (
p′ − p

) · (α∗(p′) − α∗(p)
) + γ

∥∥α∗(p′) − α∗(p)
∥∥2

.

Therefore

‖p − p′‖∥∥α∗(p′) − α∗(p)
∥∥ ≥ γ

∥∥α∗(p′) − α∗(p)
∥∥2

,

which implies

∥∥α∗(p′) − α∗(p)
∥∥ ≤ 1

γ
‖p′ − p‖.

This shows that α∗ is uniformly Lipschitz in p.
Now we prove that α∗ is Lipschitz in θ : for that, we suppose that p is fixed. Again

by the definition of α∗ and by (64) we have

c
(
θ ′, α∗(θ)

) + α∗(θ) · p ≥ c
(
θ ′, α∗(θ ′)) + α∗(θ ′) · p

≥ c
(
θ ′, α∗(θ)

) + α∗(θ) · p + (∇αc
(
θ ′, α∗(θ)

) + p
)

· (α∗(θ ′) − α∗(θ)
) + γ

∥∥α∗(θ ′) − α∗(θ)
∥∥2

,

and then

0 ≥ (∇αc
(
θ ′, α∗(θ)

) + p
) · (α∗(θ ′) − α∗(θ)

) + γ
∥∥α∗(θ ′) − α∗(θ)

∥∥2
.

Using (65) we get

0 ≥ [∇αc
(
θ ′, α∗(θ)

) − ∇αc
(
θ,α∗(θ)

)] · (α∗(θ ′) − α∗(θ)
) + γ

∥∥α∗(θ ′) − α∗(θ)
∥∥2

.

As ∇αc(θ,α) is Lipschitz in the variable θ we have

Kc‖θ ′ − θ‖∥∥α∗(θ) − α∗(θ ′)∥∥ ≥ γ
∥∥α∗(θ ′) − α∗(θ)

∥∥2
.

Therefore
∥∥α∗(θ) − α∗(θ ′)∥∥≤ Kc

γ
‖θ − θ ′‖,

which implies that α∗ is Lipschitz in θ . �
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Proof of Theorem 5 The main tool for proving Theorem 5 is once again the Dynkin
Formula, now adapted to the present situation: suppose α and β are two admissible
controls.

We recall the infinitesimal generator of the process (i,n) defined in (50). We have

(
Aβ,αϕ

)i

n
(s) =

∑
j

αij (n, s)
[
ϕ

j
n(s) − ϕi

n(s)
] +

∑
kj

γ
n,i
β,kj (s)

[
ϕi

n+ejk
(s) − ϕi

n(s)
]

(66)

where γβ is defined by (30).
We have that, for any function ϕ : Id × S d

N ×[0,+∞) → R, C1 in the last variable,
and any t < T ,

E
β,α

At (i,n)

[
ϕiT

nT
(T ) − ϕi

n(t)
] = E

β,α

At (i,n)

[∫ T

t

dϕ
is
ns

dt
(s) + (

Aβ,αϕ
)is

ns
(s)ds

]
, (67)

where At(i, n) denotes the event it = i and nt = n.
Now we prove the theorem. In the Dinkyn formula (67) let ϕ = v. Using the ter-

minal condition v
iT
nT

(T ) = ψ iT (nT

N
) we have that, for any admissible control α,

E
β,α

At (i,n)

[
ψ iT

(
nT

N

)
− vi

n(t)

]
= E

β,α

At (i,n)

[∫ T

t

dv
is
ns

dt
(s) + (

Aβ,αv
)is

ns
(s)ds

]
. (68)

In the next steps we will use the definition of u, given in (31), and then (68), (66), (4)
to have

ui
n(t, β,α) = E

β,α

At (i,n)

[
ψ iT

(
nT

N

)
+

∫ T

t

c

(
is ,

ns

N
,αs

)
ds

]

= vi
n(t) + E

β,α

At (i,n)

∫ T

t

[
dv

is
ns

dt
(s) + (

Aβ,αv
)is

ns ,
(s) + c

(
is ,

ns

N
,αs

)
ds

]

≥ vi
n(t) + E

β,α

At (i,n)

[∫ T

t

dv
is
ns

dt
(s) + min

μ∈(R+
0 )d

∑
j

μj

[
v

j
ns

(s) − vis
ns

(s)
]

+ c

(
is ,

ns

N
,μ

)
+

∑
kj

γ
ns ,is
β,kj (s)

[
v

is
ns+ejk

(s) − vis
ns

(s)
]]

ds

= vi
n(t) + E

β,α

At (i,n)

[∫ T

t

dv
is
ns

dt
(s) + h

(
�is v,

ns

N
, is

)

+
∑
kj

γ
ns ,is
β,kj

(
v

is
ns+ejk

− vis
ns

)
ds

]

= vi
n(t),

where the last equation holds because v is a solution to the Hamilton-Jacobi equa-
tion (32). Note that in this last calculation we are also proving that, for the specific
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control α̃ given by (34), we have ui
n(t, β, α̃) = vi

n(t) which show us that α̃ is the
optimal control and that the objective function ui

n(t, β) is given by vi
n(t). �

Proof of Proposition 6 Let u be a solution to (32). Let ũ = u + ρ(T − t). Then

−dũi
n

dt
= ρ +

∑
k,j

γ
n,i
β,kj

(
ũi

n+ejk
− ũi

n

) + h

(
�iũn,

n

N
, i

)
.

Let (i, n, t) be a minimum point of ũ on Id × S d
N × [0, T ]. We have ũi

n+ejk
≥ ũi

n.

This implies γ
n,i
β,kj (ũ

i
n+ejk

− ũi
n) ≥ 0. We also have ũ

j
n(t) − ũi

n(t) ≥ 0 hence �iũn =
(ũ1

n(t) − ũi
n(t), . . . , ũ

d
n(t) − ũi

n(t)) ≥ 0. Hence

−dũi
n

dt
(t) ≥ h

(
�iũn,

n

N
, i

)
+ ρ ≥ h

(
0,

n

N
, i

)
+ ρ,

because the definition of h(�ip, θ, i), with �ip ≥ 0. Furthermore, if we take M <

ρ < 2M we get

−dũi
n

dt
(t) > 0.

This shows that the minimum of ũ is achieved at T hence

ui
n(t) ≥ −‖u(T )‖∞ − 2M(T − t).

Similarly, let (i, n, t) be a maximum point of ũ on Id × S d
N × [0, T ]. We have

ũi
n+ejk

≤ ũi
n. This implies γ

n,i
β,kj (ũ

i
n+ejk

− ũi
n) ≤ 0. We also have �iũn ≤ 0. Hence

−dũi
n

dt
(t) ≤ h

(
�iũn,

n

N
, i

)
+ ρ ≤ h

(
0,

n

N
, i

)
+ ρ.

Furthermore, if we take −2M < ρ < −M we get

−dũi
n

dt
(t) < 0.

This shows that the maximum of ũ is achieved at T hence

ui
n(t) ≤ ‖u(T )‖∞ + 2M(T − t). �

Proof Lemma 3 Recall that α∗(p, θ, i) is Lipschitz in (p, θ). Let K be the corre-
sponding Lipschitz constant. Since ‖p‖ bounded, we have |α∗(p, ., .)| ≤ C. Then

∣∣γ n+ers ,i
β,kj − γ

n,i
β,kj

∣∣ =
∣∣∣∣(n + ers)

kα∗
j

(
�kun+ers+eik

,
n + ers + eik

N
, k

)

− nkα∗
j

(
�kun+eik

,
n + eik

N
, k

)∣∣∣∣
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=
∣∣∣∣[(n + ers)

k − nk
]
α∗

j

(
�kun+ers+eik

,
n + ers + eik

N
, k

)

+ nk

[
α∗

j

(
�kun+ers+eik

,
n + ers + eik

N
, k

)

− α∗
j

(
�kun+eik

,
n + ers + eik

N
, k

)]

+ nk

[
α∗

j

(
�kun+eik

,
n + ers + eik

N
, k

)

− α∗
j

(
�kun+eik

,
n + eik

N
, k

)]∣∣∣∣
≤

∣∣∣∣α∗
j

(
�kun+ers+eik

,
n + ers + eik

N
, k

)∣∣∣∣
+ N

∣∣∣∣α∗
j

(
�kun+ers+eik

,
n + ers + eik

N
, k

)

− α∗
j

(
�kun+eik

,
n + ers + eik

N
, k

)∣∣∣∣
+ N

∣∣∣∣α∗
j

(
�kun+eik

,
n + ers + eik

N
, k

)

− α∗
j

(
�kun+eik

,
n + eik

N
, k

)∣∣∣∣
≤ C + NK

∣∣�k(un+ers+eik
− un+eik

)
∣∣ + NK

∣∣∣∣ers

N

∣∣∣∣
≤ C + NK2

∥∥(
ui

n+ers+eik
− ui

n+eik

)∥∥ + C

= C + CN‖zi
n+eik,sr

‖ ≤ C + CN max
rs

‖z··,sr‖∞. �

Proof of Lemma 4 Let z be a solution of (40), and fix ε > 0. We define z̃ = z +
ε(t − T ). Hence z̃ satisfies

−˙̃zm = −ε +
∑

m′∈Id×S d
N

amm′(t)(z̃m′ − z̃m).

Let (m, t) be a maximum point of z̃ on Id × S d
N ×[0, T ]. We have z̃m(t) ≥ z̃m′(t) and

this implies amm′(t)(z̃m′ − z̃m) ≤ 0 ∀m′. Hence

−dz̃m

dt
(t) ≤ −ε.

This shows that the maximum of z̃ is achieved at T . Therefore, for all (m′, t),

zm′(t) + ε(t − T ) = z̃m′(t) ≤ z̃m(T ) = zm(T ).
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Letting ε → 0, we get

zm′(t) ≤ max
m

zm(T ), ∀(
m′, t

)
.

From this inequality we have the following conclusions:

1. if z(T ) ≤ 0, we then have zm′(t) ≤ 0, for all (m′, t), and so z(t) ≤ 0;
2. for all (m′, t),

zm′(t) ≤ ‖z(T )‖∞.

Now we define z̃ = z + ε(T − t). Hence z̃ satisfies

−˙̃zm = ε +
∑

m′∈Id×S d
N

amm′(t)(z̃m′ − z̃m).

Let (m, t) be a minimum point of z̃ on Id × S d
N × [0, T ]. We have amm′(t)(z̃m′ −

z̃m) ≥ 0. Therefore we have

−dz̃m

dt
(t) ≥ ε.

This shows that the minimum of z̃ is also achieved at T , hence for all (m′, t) we have

zm′(t) + ε(T − t) = z̃m′(t) ≥ z̃m(T ) = zm(T ).

Letting ε → 0, we get zm′(t) ≥ minm zm(T ). Hence

zm′(t) ≥ −‖z(T )‖∞,

and therefore we have ‖z(t)‖∞ ≤ ‖z(T )‖∞. �

Proof of Lemma 6 We note that if t ≤ s ≤ T we have K(t, s)K(s, T ) = K(t, T ),
which implies

d

ds

(
K(t, s)K(s, T )

) = 0.

Hence, using (42) we get

−K(t, s)M(s)K(s, T ) +
(

d

ds
K(t, s)

)
K(s,T ) = 0,

and therefore, by taking T = s we conclude that

d

ds
K(t, s) = K(t, s)M(s). (69)

Multiplying (43) by K(t, s) and using Lemma 5, we have

−K(t, s)ż(s) ≤ K(t, s)M(s)z(s) + K(t, s)f
(
z(s)

)
.
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Using the identity

d

ds
K(t, s)z(s) = K(t, s)ż(s) + K(t, s)M(s)z(s),

which follows from (69), we get

− d

ds

(
K(t, s)z(s)

) ≤ K(t, s)f
(
z(s)

)
.

Thus, integrating between t and T , we have

z(t) − K(t, T )z(T ) ≤
∫ T

t

K(t, s)f
(
z(s)

)
ds.

Note that if z(t) = K(t, T )z(T ) is a solution of (40) with terminal data z(T ) = b,
then Lemma 4 implies that ‖z(t)‖∞ ≤ ‖z(T )‖∞, hence ‖K(t, T )z(T )‖∞ ≤ ‖z(T )‖∞.

Therefore for all m ∈ Id × S d
N we have

zm(t) ≤ ‖z(T )‖∞ +
∫ T

t

∥∥f
(
z(s)

)∥∥∞ds. �

Proof of Lemma 7 Note that (44) implies that v is a monotone decreasing function of
s and is equivalent to ⎧⎪⎪⎨

⎪⎪⎩

ds

dv
= −1

Cv + CNv2 + C
N

,

s

(
C

N

)
≤ T .

This implies by direct integration that

s

(
2C

N

)
≤ T −

∫ 2C
N

C
N

dv

Cv + CNv2 + C
N

.

Now

∫ 2C
N

C
N

dv

Cv + CNv2 + C
N

≥
∫ 2C

N

C
N

N

2C2 + 4C3 + C
dv = 1

2C + 4C2 + 1
.

Therefore if we define T � = 1
2C+4C2+1

, we have that s( 2C
N

) ≤ 0 if T ≤ T �. Hence

this implies v(0) ≤ 2C
N

, which yields the desired result when we take into account
that v is a decreasing function of s. �
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