Devoir 1

Instructeur: King-Yeung Lam

le 17 janvier, 2021

Prove the following.

Corollary 0.1. Suppose $u, v \in C(\overline{\Omega}_T)$ satisfy

$$\begin{cases} u_t + \mathcal{L}u \le f(x, t, u, Du) & and \quad v_t + Lv \ge f(x, t, v, Dv) & in \ \Omega_T, \\ B(u - v) \le 0 & in \ S\Omega_T, \end{cases}$$
(0.1)

in the generalized sense. If $u(x,0) \leq v(x,0)$ in Ω , then $u \leq v$ in Ω_T .

Here's an outline of the proof.

- (a) One may assume without loss of generality that f is decreasing in the third variable u. (Hint: By finding a PDE for which $\tilde{u}(x,t) = e^{Mt}u(x,t)$ and $\tilde{v}(x,t) = e^{Mt}v(x,t)$ form a pair of suband supersolutions, where some $M \gg 1$.)
- (b) Prove that if u(x,0) < v(x,0) in $\overline{\Omega}$, then u(x,t) < v(x,t) in $\overline{\Omega}_T$. (Hint: Suppose to the contrary, then there exists $(x_0, t_0) \in \overline{\Omega} \times (0,T]$ (which means $t_0 > 0$) such that u < v in $\overline{\Omega} \times [0, t_0)$ and $u(x_0, t_0) = v(x_0, t_0)$. Derive a contradiction with definition of generalized super/subsoltions.
- (c) Show that $u(x,t) \leq v(x,t) + \epsilon$ in Ω_T , for each $\epsilon > 0$.