Devoir 4

Instructeur: King-Yeung Lam

le 7 fevrier, 2022

1. Let ϕ_1 be the positive eigenfunction of

$$-\epsilon^2 \Delta \phi_1 - c(x)\phi_1 = \mu_1 \phi_1 \quad \text{in } \Omega, \quad \mathbf{n} \cdot \nabla \phi_1 + p^0 \phi_1 = 0 \quad \text{on } \partial \Omega,$$

where Ω is a bounded domain with smooth boundary $\partial\Omega$; **n** is the outer unit normal vector on $\partial\Omega$; $c, p^0 \in C^{\infty}(\overline{\Omega})$ such that $p^0 \ge 0$. Show, without assuming convexity of Ω , that

$$\phi_1 \to 0$$
 locally uniformly in $\left\{ x \in \overline{\Omega} : c(x) < \sup_{\Omega} c \right\}$.

[Hint: The case $x_0 \in \Omega$ is the same as in convex case. For each $x_0 \in \partial \Omega$, construct a sequence of smooth functions $\rho_k(x)$ such that

$$\left. n \cdot \nabla \rho_k \right|_{\partial \Omega} > 0$$

and ρ_k attains the unique global minimum at x_k for some sequence $x_k \in \Omega$ such that $x_k \to x_0$. The consider the minimum point of $w_{\epsilon}(x) + \rho_k(x)$.]