Open problems from math

biology: com
two ty

netition between

nes of cells

Avner Friedman

Ohio State University



Introduction
1. Will small cancer continue to grow, or will the immune response shrink it ?
2. Competition between two types of breast cancer cells
3. Competition between two populations of cells during development

4. Competition between Inflammatory T cells and anti-inflammatory T cells

5. Other general models of competition among bacteria,



1, Introduction

Competition is pervasive at every level of life, in particular, in
biological processes.

At the cellular level, competition occurs between different
populations of cells during development, between different types
of immune cells during disease, between normal healthy cells
and cancer cells, and between different types of cancer cells.

Here we give some examples, including
mathematical models, and associated
open problems in PDE



1. Cancer model with normal cells N,
cancer cells C, and anti-cancer T cells

We first consider the case where T" = constant, and take

(3.11) C(r,t) +N(r,t)=1 for 0<r<R(t), t>0.
We assume that C' and N satisfy the following equations:
N
(3.12) ’9__C l s (r uC)-V2C = AC|(1- i ) — 60C —1C,
ot K
01\ 1 0 o . - - C 5 l\r -
(3.13) Y - —,,a—(r"u]\') —V*N = AnN (l - K ) — 0N

where K > 1, 17 > 0 Is the killing rate of Cby T, and

/\(: b /\N > (50.



We impose no-flux boundary conditions:
oC ON

(3.14) T 0, o 0 on r= R(t).
Adding Egs. (3.12), (3.13) and using Eq. (3.11), we get
d
(3.15) 5 (ru) = 1(C),
where
(3.16) J(C) = /\cC(l——)+/\~(1—C)(l——)—6o neC.

In healthy state, ¢ = 0, « = 0. But:

A special solution with €' = 0, u = 0 can occur if and only if f(0) = 0 and
N =1, and these two conditions hold if and only if

f(0) =An (1 - %) — 80 =0and (by (3.13)) N = K (1 - f_":{) -



R(t)

dR L 2f(C(s,t))ds.

S~

0

() < 9 < uR)
for some v > 0, so that the a prior: estimates

R(0)e™"* < R(t) < R(0)e"* forall ¢t >0

These estimates can be used to prove the existence of global-in-time
solution, and we are interested in the asymptotic behavior the
solution, and the existence of steady states and their stability




These two conditions are equivalent, and in the sequel we assume that

1
(3.18) AN (1 - E-) — 80 =0.
From Eq. (3.16) we get
(3.19) f(C) = (v —n)C,
where
(3.20) Yo = (Ac — AN) (1 — %) -3 1 |
We next rewrite Eq. (3.12) in the form
acC acC 2
(3.21) = =N 0=g(0),
where
1

C)=AcC|1—=)—6,C— - Cf(C

- 9(€) =2cC (1= ) = 56C = 1C = CS(©)

=C(1-C)(v —n).



Recalling that OC/9r = 0 on the boundary r = R(t), we can compare C(r,t) with
solutions C(t) of the ODE system

A

(3.23) —=C1-C)(w-mn)., C€()=Co,

i 0<Cpp<C(r,0)<Cp <1 for 0<r<R(0),

and éj(t) is the solution of (3.23) with Cy = Cjo, then
Ci(t) < C(r,t) < Cy(t) for 0<r < R(t), t> 0.

and use this in the equation



dR R(e) 2
y = u(R(t),t R(t) / s’ f(C

or

dR(t) o —n [
dt — R2(t)

§°C(s,t)ds < 0,

to prove the following theorem:



THEOREM 3.1. Consider the system (3.11)-(3.14) with Ax as in Eq. (3.18)
and with initial condition 0 < C(r,0) < 1 for 0 < r < R(0). Then the following
holds: (i) if n < 7y then R(t) — oo and C(r,t) — 1 uniformly as t — oo; (ii) if
n > 7o then ‘m ” <0, and %ﬂ — 0 and C(r,t) — 0 uniformly as t — oc.

The above method of comparing with an ODE
equation extends to any system with zero flux
boundary condition



Open problem

Extend Theorem 3.1 to the case on
non-zero flux boundary conditions

oC ON
b— +aC =0, b— +aN=N, forsomea >0
or or



2. Two types of breast cancer cells are in
competition
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dr —Nlrl (1 — _Kl )
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 dt Nar (1 K> )




Problem

It will be interesting to add diffusion and
advection as we did in the previous model with

C = N1 and N = N2 but without T cell (i.e. eta=0)

The RHS of each equation is, of course,
different than in the previous system

The above paper has lots of clinical data



3. Two populations of cells in competition;
example taken for Drosophila during
development



Published in final edited form as:
Science. 2009 June 26; 324(5935): 16791682, doi:10.1126/science.1163862.

Competitive Interactions Between Cells: Death, Growth, and
Geography

Laura A. Johnston
Department of Genetics and Development, College of Physicians and Surgeons, Columbia
University, New York, NY 10032, USA. E-mail: [j180@columbia.edu



Cells with different metabolic rates

A 03 OoT"sH o2
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|
:i:’uodel of cell competition. (A) Naghboring epithelial cells recognize relative differences in
ribosome function through a sensing mechanism that may mvolve the production of secreted
factors by each cell (orange and green dots). (B) Once a dafference = sensed. cells acquire
“winner™” or “loser™ status, determined by their relative nbosome function. Loser cells sense
stress and activate the INK signaling pasthway and expression of the proapoptotic factor, Had.
Had mduces apoptosis and leads to loser-cell death. Winnmer cells, with optuimal nbosome
function, are stumulated 1o proliferate faster. They also can activate genes required for cell
engulfment. leading them to engulf dying loser cells (asterisk ). Arrows depict genetic
relanonships rather than direct brochemical interactions.



2
g?ls are msulated from competition by compartment boundaries. (A) Cell competition
occumng on one side (lef) of a compartment boundary (dotted line) does not affect cells on
the other sade (nght). Gray cells, losers: orange cells, winners. (B) Local interactions between
cells identify relative metabolic status, tnggering apoptosis mn losers. Signals from dying cells
(arrowheads) may stmulate the growth of winner cells. Cells 1o the nght of the compartment
boundary are completely protected. (C) Loser cells can be engulfed by winner cells. This
process promotes winner-cell proliferation. (D) Winner cells expand their ternitory at the
expense of Joser cells. However, ths expansion 1s himiated 10 one compartment, because cells
in the opposite compartment (right of the dotted line) remam imsulated. The geographic limus
of competinon help stabilize organ saze.



Model equations

P = loser Q= winner § = signal

P +0div(Pil) - V2P = 4P (1 - 22) - d,(1+ )P  inQ,
% +6div(Qd) - V*Q = (LQ +eP)(1- 22) - 4,0 inQ,
B 6V = 1,0 - S, in £,

-

with appropriate boundary conditions (such as a + (1 —a)X = 0) and parameters

6~10°, di~1, dy~10, A>dy, A >d, €>0.



Q cells eat dying P cells, so we model it in one of two

ways:

1.P + Q = 1and e = 0and then we get a free
boundary problem as in the case of cancer

and normal cells, part of the boundary is fixed, or
2. Taking e > 0 and theta = 0 in fixed domain

Open problem

Study the asymptotic solution

dS [ — o



4. Competition between effective T cells and
regulatory T cells, mediated by Interleukin IL-2

Effective T cells (T,) kill pathogen, but cause
toxicity; T regulatory cells (T,) control T, in
order to reduce toxicity

Animals who do not have IL-2, suffer from
many autoimmune diseases
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T, cells are activated by the presence of pathogen (A)
T cells secrete cytokine IL-2 (1)
I, activates naive cells T to become T regulatory cells, 7.

I, makes T cells more proliferative, but 7', blocks this over-proliferation.

‘/Ir>< s P(}\éﬁ(rj{)‘\ Qq/
[4




Model equations

6T1 — V2T = A+/111 T/KIZ_lel in Q,
(S) S 6T, V2T /lQT()IQ = dl 1n Q,
\% - 5V2]2 =BTy — 4T, — AsTolp —dr;,  1n L,

with boundary conditions

0X,
" dn

)X 0 on 8!2, Xi = T1, Tr, 12.




Open problems

Problem 1. Take 8 = 1 so the PDEs become ODEs for spatially homgoeneous

solutions, and
O<A<1, dle.l, d2=1, K=1, T0=1.

Show that given any 0 < A < 1 and 44, ..., 45, there exists unique steady state
solution (77, T),I)) with T? > 0, I} > 0 and any solution of the system (S)

1, r? r

converges to this solution as ¢t — oo.

Problem 2. Whatif 0 <8 < 1?




6. Other competitions



Computation of mutual fitness by competing bacteria

Juan E. Keymer*'?, Peter Galajda™", Guillaume Lambert®, David Liao®, and Robert H. Austin“%*
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Competing populations in shared spaces with nonrenewable re-
sources do not necessarily wage a battle for dominance at the cost
of extinction of the less-fit strain if there are fitness advantages to
the presence of the other strain. We report on the use of nano-
fabricated habitat landscapes to study the population dynamics of
competing wild type and a growth advantage in stationary phase
(GASP) mutant strains of Escherichia coli in a sealed and hetero-
geneous nutrient environment. Although GASP mutants are com-
petitors with wild-type bacteria, we find that the 2 strains coop-
erate to maximize fitness (long-term total productivity) via spatial
segregation: despite their very dose genomic kinship, wild-type
populations associate with wild-type populations and GASP pop-
ulations with GASP populations. Thus, wild-type and GASP strains
avoid each other locally, yet fitness is enhanced for both strains
globally. This computation of fitness enhancement emerges from
the local interaction among cells but maximizes global densities. At
present we do not understand how fluctuations in both spatial and
temporal dimensions lead to the emergent computation and how
multilevel aggregates produce this collective adaptation.

blophysics | competition | ecology | microblology

the rpoS gene typically, which codes the oy factors of the RNA
polymerase (15-17).

The switching of o factors (from log phase o to stationary
phase ox) triggers the entry into stationary phase. We compared
monoculture populations with 2-strain (WT and GASP) com-
petitive communities and compared total biomass productivity
across experiments.

Multspecies communities can be described by a simple Lotka-
Volterra equation (Eq. 1), where the bactenal density of strain / is
plr), the effective growth rate s r, and the influence of the strains
on cach other is characterized by the (community) matrix element
J.; that represents the ecological coupling between strains and their
environment (18).

dp, ‘
Fia '.'P.'( 1= -’..,'A) (1)

In spatially extended systems, however, parameters of Eq. 1 vary
in space and time at multiple scales in a complex manner. Critical
scales are a result of the landscape structure and interactions
between individuals (19, 20) and thus are difficult to determine
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2.2. A More Complex Alternative: The Lotka-Volterra Competition Model

One way to accommodate more complexity and generality into the system, is to develop an alternative approach
for this type of competitive mixture data. We propose the next-order approximation away from the exponential
model: a dynamic model based on the well-known Lotka-Volterra competition equations (Volterra, 1026), and
interpret the transmission event as a snapshot from such competition dynamics. Let n,(f) and n,(f) be the number
of virions of strain 1 and 2, respectively, at time ¢ in the recipient host. They change with time according to the

»

following equations:

dn1
dt
dn2
dt

2
riny — c1iny — Ciph Ny

2
Iany — Cpn, — C2111N)
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