EPIDEMIC SPREADING IN COMPLEX
NETWORKS AS FRONT PROPAGATION
INTO UNSTABLE STATES

WORKSHOP ON COMPETITION DYNAMICS IN BIOLOGY (OHIO STATE 12/15)

Matt Holzer (George Mason University)
Collaborators: Lawrence Chen (Wisconsin) , Annie Shapiro (Boston

U.), Ashley Armbruster (Frostburg), Noah Roselli (NJIT), Lena
Underwood (Macalester), Aaron Hoffman (Olin)



Two themes
N

1. Arrival times: if a disease originates in one city, how long will it take to
appear in some other city?

e Meta-population SIR model

e Airline transportation network

2. Traveling fronts on networks

e Nonlocal connections

e Linear determinacy: linear prediction for nonlinear solution far from
equilibrium

e Use insights gleaned from PDEs to make predictions for network
ODE



Mathematical Model

Meta-population model (Brockmann and Helbing 2013)

S, = —QSpin -+ Z Prm(Sm — $n)
m=£n
m%#n
Tn = Bin+ ~ Z an(rm - Tn)
m#n

Variables: s,, (susceptible proportion), j, (infected), r, (recovered) at city n

Parameters: « (infection rate), S (recovery rate),y (average mobility rate, typ-
ically small), Row stochastic matrix P describes passenger flux between cities

Global airline network a) as of 2001 (Guimera et. al 2005) with 3618 cities
(nodes) with 14,142 connections (edges) b) as of 2014 (Openflights.org) 3304
cities with 19,082 connections



Prior Work

Defn: The arrival time at node m of an epidemic initated at node n with
Jn(0) = jo is ‘ _ .
Tnm(aaﬁaq/apa ’{730) - Hlf{t >0 | jm(t) — ’{}

Prior Work

Brockmann and Helbing (2013) — front propagation with respect to some effec-
tive distance

. Desr (P
Tnm(aa 63 ,)/7 P’ K”'jo) = Ueff(aaga(f}/ﬂ){’ajo)

Colizza et al. 2006, Balcan et al. 2010, Pastor-Satorras et al. 2015, disease
spread in stochastic models

Gautreau, Barrat, Barthelemy 2007/2008, metapopulation arrival time esti-
mates

Fu, Guo, Wu (2016), Wu (2017), lattice SIR wavespeed selection



Outlook

Goal: Use PDE theory to make estimates/ qualitative predictions for network

dynamical system

Fact: Some systems are linearly determined and their invasion speeds equal the
invasion speeds for the system linearized near the unstable state

Prediction: In some examples ZTnm(a,3,P) =~ Trlg,i;,l@(@a 3,P)

Fact: Some systems are nonlinearly determined and their invasion speeds are
typically faster than the linearized equation

Prediction: In some examples Znm(a,3,P) < Trlg,i;,l@(@a 3,P)

Fact: Heterogeneities can increase the invasion velocity

Prediction: Heterogeneities may lead to faster (on average) arrival times



Arrival times vs Distance
S

Simulation: a = 0.5, 8 = 0.25, v = 0.01, epidemic originating in Paris, France
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Linear Determinacy (super-solution)
—

Write system in vector form

s; = —asoj+~vy(P—1Ds

jt = asoj—[fj+yP-1)j
Theorem (informal) 712 < T,

Let 5(t) =1 and j, = (o — B)j + (P — I)j

Define
Ns(s,j) = sitasoj—y(P—-1IDs
N;(s,j) = jt—asoj+pj—vy(P -1
Compute
N«(1,j(t)) = aj(t)>0

Ny (L) = i (a—B)() — 7P — D(t) = 0



Arrival time estimates (small diffusion limit)
—

Linearize about the unstable disease free steady state (s,j) = (1,0) and obtain

Os; = —aji+~v(P —Ds;
O = (a—=8)ji+vP —=Dj.

Equation for infected population decouples with solution,

Jim(t) = (0 um el My,

fo'e
7Pt

Let pp = v1 P*v, and let d be the minimal number of flights between

the two cities.

+ +

d d d+1 d+1
Gm(t) = joet>=f=t | 1P at_ O pdit
d! (d+1)! !



Arrival time estimates (small diffusion limit)
—

Linearize about the unstable disease free steady state (s,j) = (1,0) and obtain

ds; = —aji+y(P —1Ds
Ojr = (a—B)ji+~v(P —1Dji.

Equation for infected population decouples with solution,
Jin(t) = ju(0)vg el Py,

2 kih
vl ey, = E o vl Pka,.
k=0

Let pr = vLPF*v, and let d be the minimal number of flights between the two
cities. For ~ sufficiently small, we anticipate

- N d - (d!)l/da _B_,Y <£>1/d
T a=pB—y d  y(pa)* \Jjo |




Asymptotic Expansions

Asymptotic expansions are computed as follows

. —d d
Tln ] — log(—1
nm Rt og(—log7)

d d 1 Pd
a_Bloga_B—a_BlogaJro(l). (1)

Observations
e To leading order, the effective distance is the graph distance

e To leading order, the effective velocity is that of a front on a 1-dimensional
lattice

e Network properties enter at O(1) where the relevant paramter is the ran-
dom walk probability between node n and m



Prediction versus Observation
e

Simulation: a = 0.5, 8 = 0.25, v = 0.01, epidemic originating in Paris, France
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Alternate Derivation
=

J1(t) = joela =" node 1

a2 - : node 2
E ~ (OJ — 6)‘]2 + ’)/Pgljl(t) \

ja(t) 2 yParel =" fg e~ (=BT (T)dT g

jo(t) = vjoParel= Pt fot dr

ja(t) & vjoPartel@=P)!

~ _1 k(a—p)
t2 - O‘_JBW ( YioP21 )




Alternate Derivation

1
il ’ ; - de 1
% ~ (o = B)ja +YPa2j2(t) + vPasjs(t) HOGE
node 3
jo(t) = kelo=AE—t2) ¢ > ¢, node 2
g3(t) =~ pela=B)(t=tz) + tq \
t node 4
Ja(t) ~ yrPyeleA / —(a—B)ta g,
; /1

t
+ 76P43€(Q_6)t/ e_(a—ﬁ)t3d7.

t3

Ja(t) =~ 7 (P42€_(a_5)t2 — P436_(O‘_5)t3) tela=P)t

Y*Jo
k(o — B)

Ja(t) = (P4oPoita + PasPaits) tela—P)t



Pushed front: model of social epidemics
—

Social epidemics involving higher order interactions via simplicial complexes
(Ilacopini et al. 2019))

S99 = —QSpin — psnjfL + Z Prm(Sm — Sn)
m¥#n
Jn = QSujn+ psuin = Bin+7 D> Prm(im — jn)
m#n

e Linear arrival times are equal to SIR

o]
o

e (1,j(t)) no longer super-solution
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Pushed front: local dynamics

1

At each node the local equations are
S" = —aSI— pSI? {
I' = aSI+ pSI?—BI

Let p = % and rescale t = er
dS
e S | %
dr
dI S

= SI? 4+ eaSI —epI

dr
Let W = 5§ + I then formally Approximate
- [ el
- = O(e) I(t) = { —B(t—0)
dl 9
o = (W — 1) I*+ O(e) log (—




Pushed front: arrival time estimates
B

Suppose j1(t) = e P2 for t > O

@%(a
dt
j2@jggvfble@k#ﬂtﬁée—ﬁ%ﬂﬂTe—BﬁuxndT

— B)jo + vP2171(t)

j2 (t) ~ 7P21€(0‘_/8) (t_Q)

’Y’;C;l) + {2

A(e) = ta(e) — ta(o0) = =5 (log(e) + log(a) — log(a — B) + log(—log(7)))
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Inhomogeneous Reaction Terms
N

Consider original model with inhomogeneous infection rate o + wy,, > wn =0

én — _asnjn - wnsnjn + Y Z an(sm - Sn)
MF#n

m##n



Inhomogeneous Reaction Terms
N

Consider original model with inhomogeneous infection rate o + wy,, > wn =0

eén — _Ofsnjn - wnsnjn + Y Z an(sm - Sn)
MF#n
m##n
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Inhomogeneous Reaction Terms
N

e Arrival times are faster on average since there typically exist multiple
paths of minimum distance connecting two nodes

e Recall T}, = a_—f@ log(~)

Ex: 50% w, =02 50% w, = —0.2
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Part ll: invasion fronts in trees
]

Consider the Fisher-KPP equation on a homogeneous tree of degree k + 1

duy, Y g
gt k1 (Un—1 = 2Up + Upy1) + k—ﬂ(k — 1)(tnt1 — up) + un(l — up).

Two Observations
e If v < 1, then reaction dominates and we expect traveling fronts

o Ifv> 1, v= @ the system can be viewed as a discretization of the

PDE
Ay
Ut = Ugpy U u,
t Az \
®

advection dominates and solution
propagates up the tree




Linear invasion speed
—

Recall: The linear spreading speed can be computed from roots of

F(S,’Y):( w1

(e —k—14+ke™)—sv+1
—L- (e — ke V) —s =4
k+1

0 0.5 1 1.5 2
o

Observation: Non-monotone invasion speeds — front slows down as population
leaves front interface



Critical diffusion coefficients

For s;;, = 0 we solve

( kiﬂ(e”—k—l—l-ke_”)—%l):o

T (e” — ke™)

We find solution for

1
()
2
(k4 1)
2 k+1—2VEk

Note that vy is [2-critcal

lull2 = (Z k”1Ui(t))

neN

For s;;,, maximal we observe

v1 = log(k)
B k+1
T k= 1)log(k)
B 1
T log(h)

solves F'(s1,71,a1) =0

Note that 14 is ['-critcal

Julli =Y k" tun(t)

neN
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