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Competition

The competition for limited resource exists almost everywhere.

In an intraspecific competition, members of the same species compete for
limited resources.

In an interspecific competition, members of different species compete for a
shared resource.

War is the extreme result of intraspecific competition in humans.

It is important to know (or predict) the outcome of the competition.

https://en.wikipedia.org/wiki/Intraspecific_competition

https://en.wikipedia.org/wiki/Intraspecific_competition
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Lotka-Volterra competition model

[Lotka, 1932], [Volterra, 1928] u′ = u(a− eu − bv), v ′ = v(d − fv − cu).
a, d : growth or resource; e, f : intraspecific competition; b, c: interspecific competition.
Simplified to: u′ = u(a− u − bv), v ′ = v(d − v − cu).

Trivial equilibrium: (0, 0) (unstable)
Semi-trivial equilibrium: (a, 0) (saddle if c < d/a, stable if c > d/a)
Semi-trivial equilibrium: (0, d) (saddle if b < a/d , stable if b > a/d)

Coexistence equilibrium: (u∗, v∗) = (
d − ac

1− bc
,
a− bd

1− bc
)

(stable when c < d/a and b < a/d ; saddle when c > d/a and b > a/d)

Case 1: u is superior than v c > d/a, b < a/d : (a, 0) is globally asymptotically stable
Case 2: v is superior than u c < d/a, b > a/d : (0, d) is globally asymptotically stable
Case 3: weak competition c < d/a, b < a/d : (u∗, v∗) is globally asymptotically stable
Case 4: strong competition c > d/a, b > a/d : (a, 0) and (0, d) are bistable

b

c

a/d

d/a

(u∗, v∗) stable

(a, 0) stable bistable

(0, d) stable
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Lotka-Volterra competitive system: phase portraits

v sup. weak comp.

u sup. strong comp.
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Reaction-diffusion Lotka-Volterra competition model


Ut = d1∆U + U (m1(x)− U − cV ) , x ∈ Ω, t > 0,

Vt = d2∆U + V (m2(x)− bU − V ) , x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , 0) = U0(x) ≥ 0, V (x , 0) = V0(x) ≥ 0, x ∈ Ω.

Semitrivial steady states
(
θ1, 0) = (θd1,m1

, 0
)

and
(
0, θ2) = (0, θd2,m2

)
, where θdi ,mi

satisfies the equation {
di∆θ + mi (x)θ − θ2 = 0, x ∈ Ω,

θν = 0, x ∈ ∂Ω.

1 [Brown, 1980, SIAP] [Lou-Ni, 1996, JDE] m1(x) = a,m2(x) = d (constant):
ODE dynamics holds (except bistable case)

2 [Dockery et.al, 1998, JMB]: m1(x) = m2(x) (not constant) and b = c = 1: if
d1 < d2, then (θ1, 0) is globally asymptotically stable (“slower disperser wins”)

3 [Lou, 2006, JDE] [He-Ni, 2016, CPAM]: m1(x),m2(x) (not constant) and
bc < 1 (weak competition): complete dynamics classified.
Other work: [Lam-Ni, 2012, SIAP] [He-Ni, 2013, JDE]
[He-Ni, 2016,2017, CVPDE]
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Classification of RD L-V dynamics

[He-Ni, 2016, CPAM] (Figure 1.1 from this paper)

[7]=[Dockery et.al, 1998, JMB]
[25]=[Lam-Ni, 2012, SIAP]
[27]=[Lou, 2006, JDE]

A: (0, θ2) g.a.s. for all d1, d2 > 0

B: (0, θ2) g.a.s. for some (d1, d2), and
(u∗, v∗) g.a.s. for other (d1, d2)

C : coexistence state (u∗, v∗) g.a.s. for
all d1, d2 > 0

D: (0, θ2) g.a.s. for some (d1, d2), (θ1, 0)
g.a.s. for some (d1, d2), and (u∗, v∗)
g.a.s. for other (d1, d2)

E : (θ1, 0) g.a.s. for some (d1, d2), and
(u∗, v∗) g.a.s. for other (d1, d2)

F : (θ1, 0) g.a.s. for all d1, d2 > 0

G : b = c = 1, degenerate case

E(m) = sup
d>0

∫
Ω θd,m∫

Ω m
,

S(m) = sup
d>0

sup
Ω

m

θd,m
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Proof of classification

[He-Ni, 2016, CPAM]
Ut = d1∆U + U (m(x)− U − cV ) , x ∈ Ω, t > 0,

Vt = d2∆U + V (m(x)− bU − V ) , x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , 0) = U0(x) ≥ 0, V (x , 0) = V0(x) ≥ 0, x ∈ Ω.

1. Carefully analyze the stability of the two semi-trivial steady state solutions.
2. Every coexistence steady state is linearly stable (thus unique).
3. (monotone dynamical system theory) Either there is a unique co-existence steady
state that is globally asymptotically stable; or there is no co-existence steady state and
one of the two semi-trivial steady state is globally asymptotically stable.

Patch model: [Chen-Shi-Shuai-Wu, 2022, Nonlinearity] (tomorrow’s talk by Wu){
u′i = µu

∑
(aijuj − ajiui ) + ui (pi − ui − cvi ), i = 1, . . . , n, t > 0,

v ′i = µv
∑

(aijvj − ajivi ) + vi (qi − bui − vi ), i = 1, . . . , n, t > 0.

(A1) (weak competition) b, c > 0, and 0 < bc ≤ 1; pi , qi > 0 for all i = 1, 2, ..., n.

(A2) The weighted digraph G is strongly connected (L is irreducible).

(A3) The weighted digraph G is cycle-balanced.

Then a positive equilibrium E = (u, v), if exists, is locally asymptotically stable except
for the case bc = 1, hence a classification of the dynamics can also be acheived.
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Effect of time delays

The birth and growth of the population may depend on the population in the past.

1 (Growth rate per capita depending on the past) [Hutchinson, 1948]

u′(t) = au(t)(1− u(t − τ)/K), or more general u′(t) = u(t)f (u(t − τ))

can occur in interspecific or intraspecific comeptiton

2 (Birth/recuitement rate depending on the past) [Gurney et.al, 1980, Nature]

u′(t) = au(t−τ)e−bu(t−τ)−du(t), or more general u′(t) = f (u(t−τ))−du(t)

can occur in intrinsic growth in compeition models

3 (Movement depending on memory) [Fagan et.al, 2013, Ecol. Lett.]
[Fagan et.al, 2017, Am. Nat.] [Potts-Lewis, 2019, BMB] and many others
[Shi-Wang-Wang-Yan, 2020, JDDE] [Shi-Wang-Wang, 2019, Nonlinearity]
[Shi-Shi-Wang, 2021, JMB]

ut(x , t) = D1∆u(x , t) + D2div(u(x , t)∇u(x , t − τ)) + g(x , t, u(x , t)),

can occur in the movement mode of compeition model

Question: How do these time delays affect the reaction-diffusion competition
dynamics?
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Deriviation of model (I)

[Chen-Shi, 2020, CVPDE]
Model: [Metz-Diekmann, 1983] [Al-Omari-Gourley, 2002] [So-Wu-Zou, 2001]
Let u(x , t, a) be the density of a species of age a at space x and time t, and let τ be

the maturation period. And let um(x , t) :=

∫ ∞
τ

u(x , t, a)da be the mature species.
ut + ua = d̃∆u − γu, x ∈ Ω, t > 0 0 < a < τ,

uν = 0, x ∈ ∂Ω, t > 0, 0 < a < τ,

u(x , t, 0) = m(x)um(x , t), x ∈ Ω, t > 0,{
(um)t = d∆um + u(x , t, τ)− u2

m, x ∈ Ω, t > 0,

(um)ν = 0, x ∈ ∂Ω, t > 0.

Then u(x , t, τ) = e−γτ
∫

Ω
G(x , y , d̃ , τ)m(y)um(y , t − τ)dy , where G(x , y , d̃ , t) is the

Green’s function of diffusion equation. And(um)t = d∆um + e−γτ
∫

Ω
G(x , y , d̃ , τ)m(y)um(y , t − τ)dy − u2

m, x ∈ Ω, t > 0,

(um)ν = 0, x ∈ ∂Ω, t > 0.
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Deriviation of model (II)

Two-species Lotka-Volterra competitive model:

Ut = d1∆U + e−γ1τ1

∫
Ω
G(x , y , d̃1, τ1)m1(y)U(y , t − τ1)dy

−U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + e−γ2τ2

∫
Ω
G(x , y , d̃2, τ2)m2(y)V (y , t − τ2)dy

−bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , t) = U0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ1, 0],

V (x , t) = V0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ2, 0].

G(x , y , d̃i , τi ) = G(x , y , 1, d̃iτi )→ δ(x − y) as d̃iτi → 0. When d̃1 and d̃2 (diffusion
coefficients of the immature species) are small, the model is approximately

Ut = d1∆U + e−γ1τ1m1(x)U(x , t − τ1)− U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + e−γ2τ2m2(x)V (x , t − τ2)− bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , t) = U0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ1, 0],

V (x , t) = V0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ2, 0].

(1)

Always assume: mi (x) ∈ Cα(Ω), for α ∈ (0, 1), and mi (x) > 0 on Ω for i = 1, 2.
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“No delay” model


Ut = d1∆U + e−γ1τ1m1(x)U − U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + e−γ2τ2m2(x)V − bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , 0) = U0(x) ≥ 0, V (x , 0) = V0(x) ≥ 0, x ∈ Ω.

(2)

Semitrivial steady states
(
θ1, 0) = (θd1,τ1,γ1,m1

, 0
)

and
(
0, θ2) = (0, θd2,τ2,γ2,m2

)
,

where θdi ,τi ,γi ,mi
satisfies the equation{

di∆θ + e−γiτimi (x)θ − θ2 = 0, x ∈ Ω,

θν = 0, x ∈ ∂Ω.

Γ = {(d1, d2, τ1, τ2, γ1, γ2) ∈ R6 : d1, d2 > 0, τ1, τ2, γ1, γ2 ≥ 0}.

Su := {(d1, d2, τ1, τ2, γ1, γ2) ∈ Γ : (θ1, 0) stable},
Sv := {(d1, d2, τ1, τ2, γ1, γ2) ∈ Γ : (0, θ2) stable},
S− := {(d1, d2, τ1, τ2, γ1, γ2) ∈ Γ : (θ1, 0) and (0, θ2) both unstable},
Su,0 := {(d1, d2, τ1, τ2, γ1, γ2) ∈ Γ : (θ1, 0) neutrally stable},
Sv,0 := {(d1, d2, τ1, τ2, γ1, γ2) ∈ Γ : (0, θ2) neutrally stable},
S0,0 := {(d1, d2, τ1, τ2, γ1, γ2) ∈ Γ : (θ1, 0) and (0, θ2) both neutrally stable}.
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“No delay” model dynamics

[He-Ni, 2016, CPAM]
Lemma 1. If 0 < bc ≤ 1, then for any (d1, d2, τ1, τ2, γ1, γ2) ∈ Γ \ S0,0, every positive
steady state of system (2) is linearly stable if exists.

Lemma 2. If 0 < bc ≤ 1, then we have the following mutually disjoint decomposition
of Γ for (2):

Γ = (Su ∪ Su,0 \ S0,0) ∪ (Sv ∪ Sv,0 \ S0,0) ∪ S− ∪ S0,0.

Moreover, the following statements hold for model (2):

(i) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ (Su ∪ Su,0) \ S0,0,
(
θd1,τ1,γ1,m1

, 0
)

is globally
asymptotically stable.

(ii) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ (Sv ∪ Sv,0) \ S0,0,
(
0, θd2,τ2,γ2,m2

)
is globally

asymptotically stable.

(iii) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ S−, model (2) has a unique positive steady
state, which is globally asymptotically stable.

(iv) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ S0,0, θd1,τ1,γ1,m1
≡ cθd2,τ2,γ2,m2

, and model (2)
has a compact global attractor consisting of a continuum of steady states

{
(
ρθd1,τ1,γ1,m1

, (1− ρ)θd1,τ1,γ1,m1
/c
)

: ρ ∈ (0, 1)}.
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Linearized systems

Linearied eigenvalue equation of “delayed model” (1) at a positive steady state (u, v):
λφ1 = d1∆φ1 + e−γ1τ1−λτ1m1(x)φ1 − (2u + cv)φ1 − cuφ2, x ∈ Ω,

λφ2 = d2∆φ2 + e−γ2τ2−λτ2m2(x)φ2 − (bu + 2v)φ2 − bvφ1, x ∈ Ω,

(φ1)ν = (φ2)ν = 0, x ∈ ∂Ω.

With ψ1 = φ1 and ψ2 = −φ2, it is equivalent to
λψ1 = d1∆ψ1 + e−γ1τ1−λτ1m1(x)ψ1 − (2u + cv)ψ1 + cuψ2, x ∈ Ω,

λψ2 = d2∆ψ2 + e−γ2τ2−λτ2m2(x)ψ2 − (bu + 2v)ψ2 + bvψ1, x ∈ Ω,

(ψ1)ν = (ψ2)ν = 0, x ∈ ∂Ω.

(3)

Corresponding eigenvalue problem for “no delay’ model” (2):
λψ1 = d1∆ψ1 + e−γ1τ1m1(x)ψ1 − (2u + cv)ψ1 + cuψ2, x ∈ Ω,

λψ2 = d2∆ψ2 + e−γ2τ2m2(x)ψ2 − (bu + 2v)ψ2 + bvψ1, x ∈ Ω,

(ψ1)ν = (ψ2)ν = 0, x ∈ ∂Ω.

(4)



LV Competition Age-structured model Applications Memory-based taxis Conclusions

Stability of steady states

Theorem 3. Assume that d1, d2 > 0, and τ1, τ2, γ1, γ2 ≥ 0. Then there exists a
principal eigenvalue λ̃1 of (3) with an associated eigenfunction (ψ1, ψ2) > (0, 0).
Furthermore,

(i) λ̃1 = sup{Reλ : λ is an eigenvalue of (3)},
(ii) λ̃1 is simple and has the same sign as λ1, the principlal eigenvalue of (4),

(iii) any eigenvalue λ̂ of (3) with λ̂ 6= λ̃1 satisfies Reλ̂ < λ̃1.

Similar results also hold for the semitrivial steady states.

Proof.
1. λ̃1 of (3) is for a linear delayed reaction-diffusion system, and λ1 of (4) is for a
linear reaction-diffusion system (with no delay).
2. Prove the solution operator U(t) of the delayed system is positive, and eventually
strongly positive.
3. Prove the supreme of the spectral set of the delayed equation is a spectral value,
and it has the same sign as the no-delayed equation. [Kerscher-Nagel, 1984]
4. Prove the supreme of the spectral set is a principal eigenvalue with positive
eigenfunction.
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Monotone dynamical system approach

Propostion 4. The stage structured model generates a monotone dynamical system:
Ut = d1∆U + e−γ1τ1m1(x)U(x , t − τ1)− U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + e−γ2τ2m2(x)V (x , t − τ2)− bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0.

That is, let (Ui (x , t),Vi (x , t)) be the corresponding solution of model (1) with initial
value (U0,i ,V0,i ) for i = 1, 2. Assume that

U0,1 ≥ U0,2 ≥ 0 for x ∈ Ω, t ∈ [−τ1, 0],

0 ≤ V0,1 ≤ V0,2 for x ∈ Ω, t ∈ [−τ2, 0].

Then
U1(x , t) ≥ U2(x , t) and V1(x , t) ≤ V2(x , t) for x ∈ Ω, t ≥ 0.

Note: The following system (delays in intraspecific competition) is not monotone:
Ut = d1∆U + U[m1(x)− U(x , t − τ1)− cV ], x ∈ Ω, t > 0,

Vt = d2∆V + V [m2(x)− bU − V (x , t − τ2)], x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0.
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Main result

Theorem 5. If 0 < bc ≤ 1, then we have the following mutually disjoint decomposition
of Γ for (1): Γ = (Su ∪ Su,0 \ S0,0) ∪ (Sv ∪ Sv,0 \ S0,0) ∪ S− ∪ S0,0.
Moreover, the following statements hold for model (1):

(i) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ (Su ∪ Su,0) \ S0,0,
(
θd1,τ1,γ1,m1

, 0
)

is g.a.s.

(ii) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ (Sv ∪ Sv,0) \ S0,0,
(
0, θd2,τ2,γ2,m2

)
is g.a.s.

(iii) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ S−, model (2) has a unique positive steady
state, which is g.a.s.

(iv) For any (d1, d2, τ1, τ2, γ1, γ2) ∈ S0,0, θd1,τ1,γ1,m1
≡ cθd2,τ2,γ2,m2

, and model (1)
has a compact global attractor consisting of a continuum of steady states

{
(
ρθd1,τ1,γ1,m1

, (1− ρ)θd1,τ1,γ1,m1
/c
)

: ρ ∈ (0, 1)}.

The asymptotic dynamics of
Ut = d1∆U + e−γ1τ1m1(x)U(x , t − τ1)− U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + e−γ2τ2m2(x)V (x , t − τ2)− bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0.

and 
Ut = d1∆U + e−γ1τ1m1(x)U − U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + e−γ2τ2m2(x)V − bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0.

are identical. But the delays τ1, τ2 alter the steady states and they could change the
outcome of the competition.
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Example (A)



Ut = d∆U + e−γτ1m(x)U(x , t − τ1)− U2 − UV , x ∈ Ω, t > 0,

Vt = d∆V + e−γτ2m(x)V (x , t − τ2)− UV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , t) = U0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ1, 0],

V (x , t) = V0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ2, 0].

(5)

Theorem 6. Assume that m(x) ∈ Cα(Ω) (α ∈ (0, 1)), m(x) > 0 on Ω, and
d , γ, τ1, τ2 > 0. Then

(i) If τ1 > τ2, then (0, θτ2 ) is globally asymptotically stable.

(ii) If τ1 < τ2, then (θτ1 , 0) is globally asymptotically stable.

(iii) If τ1 = τ2, then model (5) has a compact global attractor consisting of a
continuum of steady states {(ρθτ1 , (1− ρ)θτ1 ) : ρ ∈ (0, 1)}.

The species with shorter maturation time will prevail if all other conditions (dispersal,
growth) are identical. Faster maturer wins!
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Example (B)



Ut = d1∆U + e−γ1τ1m1(x)U(x , t − τ1)− U2 − cUV , x ∈ Ω, t > 0,

Vt = d2∆V + m2(x)V − bUV − V 2, x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , t) = U0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ1, 0],

V (x , t) = V0(x , t) ≥ 0, x ∈ Ω, t = 0.

(6)

Semitrivial steady states: (θ1, 0) =
(
θd1,τ1,γ1,m1

, 0
)

and (0, θ2) =
(
0, θd2,0,0,m2

)
.

S̃p := {(d1, d2) : (d1, d2, 0, 0, 0, 0) ∈ Sp} for p = u, v ,−,

S̃p,0 := {(d1, d2) : (d1, d2, 0, 0, 0, 0) ∈ Sp,0} for p = u, v , 0,

where Su , Sv , S−, Su,0, Sv,0 and S0,0 are defined as before.

If bc ≤ 1, then
(
R+
)2

has the following mutually disjoint decomposition:

(
R+
)2

= (S̃u ∪ S̃u,0 \ S̃0,0) ∪ (S̃v ∪ S̃v,0 \ S̃0,0) ∪ S̃− ∪ S̃0,0.



LV Competition Age-structured model Applications Memory-based taxis Conclusions

Example (B)

Theorem 7. Suppose that bc ≤ 1.

(i) If (d1, d2) ∈ (S̃v ∪ S̃v,0) ∪ S̃0,0, then (0, θ2) is g.a.s. for any γ1τ1 > 0.

(ii) If (d1, d2) ∈ S̃− ∪
(
S̃u,0 \ S̃0,0

)
, then there exists δ̃ ∈ (0, 1) such that (0, θ2) is

g.a.s. for γ1τ1 ≥ − ln δ̃, and for 0 < γ1τ1 < − ln δ̃, there exists a unique positive
steady state which is g.a.s.

(iii) If (d1, d2) ∈ S̃u , then there exist 0 < δ1 ≤ δ2 < 1 such that

µ1

(
d1, e

−γ1τ1m1 − cθd2,0,0,m2

)
= 0 for γ1τ1 = − ln δ1,

µ1

(
d2,m2 − bθd1,τ1,γ1,m1

)
= 0 for γ1τ1 = − ln δ2.

Moreover,
(A) if δ1 < δ2, then (θ1, 0) is g.a.s for 0 < γ1τ1 ≤ − ln δ2, (0, θ2) is g.a.s. for
γ1τ1 ≥ − ln δ1, and for − ln δ2 < γ1τ1 < − ln δ1, there exists a unique positive
steady state, which is g.a.s.;
(B) if δ1 = δ2, then (θ1, 0) is g.a.s. for 0 < γ1τ1 < − ln δ1, (0, θ2) is g.a.s. for
γ1τ1 > − ln δ1, and for γ1τ1 = − ln δ1, system (6) has a compact global
attractor consisting of a continuum of steady states.

previous partial result [Yan-Guo, 2018, DCDSB]
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Example (C)

Delays in interspecific competition

Ut = d1∆U + U [m1(x)− U − cV (x , t − τ2)] , x ∈ Ω, t > 0,

Vt = d2∆U + V [m2(x)− bU(x , t − τ1)− V ] , x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

U(x , t) = U0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ1, 0],

V (x , t) = V0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ2, 0].

(7)

Different system but same method.

Theorem 8. If 0 < bc ≤ 1, then the global asymptotic dynamics of model (7) for
τ1, τ2 > 0 is the same as that for τ1 = τ2 = 0.

Note: [Chen-Shi-Wei, 2011, CMA] The result does not hold for similar predator-prey
system (with m1,m2 constants):

Ut = d1∆U + U [m1 − U − cV (x , t − τ2)] , x ∈ Ω, t > 0,

Vt = d2∆U + V [m2 + bU(x , t − τ1)− V ] , x ∈ Ω, t > 0,

Uν = Vν = 0, x ∈ ∂Ω, t > 0,

Hopf bifurcation may occur when τ1 + τ2 is large.
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Spatial movement model

Suppose that Ω is a bounded, connected open region in RN , and ui (x , t) is the
population density of the i-th biological species for location x ∈ Ω and time t ≥ 0.

Continuity equation:
∂ui

∂t
= ∇ · Ji + fi (u1, u2, · · · , uk ),

where Ji (x , t) is the population flux of the i-th biological species for i = 1, 2, 3, · · · , k,
and fi depicts the effect of interaction between species on the i-th species.

Fick’s law → Diffusion Equation

Ji (x , t) = −Di∇ui (x , t) →
∂ui (x , t)

∂t
= Di∆ui (x , t).

Fick’s law + Advection → Advection-Diffusion Equation

Ji (x , t) = −Di∇ui (x , t)−vi(x , t)·ui (x , t) →
∂ui (x , t)

∂t
= Di∆ui (x , t)+∇·(vi(x , t)·ui (x , t)).

Here Di > 0 is the diffusion coefficient of ui , and vi(x , t) is a vector field indicating
the fluid flow velocity.
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Self-diffusion, cross-diffusion and taxis

[Shigesada-Kawasaki-Teramoto, 1979, JTB] Two-species model

∂u1

∂t
= ∇ · J1 + f1(u1, u2),

∂u2

∂t
= ∇ · J2 + f2(u1, u2).

Self-diffusion: additional diffusion depending on its own density
Cross-diffusion: additional diffusion depending on other’s density

J1(x , t) = −∇[u1(x , t) · (D1 + D11u1(x , t) + D12u2(x , t))],

J2(x , t) = −∇[u2(x , t) · (D2 + D21u1(x , t) + D22u2(x , t))].

[Keller-Segel, 1970, JTB]
Self-taxis: advection depending on its own density
Cross-taxis: advection depending on other’s density (chemotaxis, prey-taxis, or
predator-taxis)

J1(x , t) = −D1∇u1(x , t)− u1(x , t)[D11∇u1(x , t) + D12∇u2(x , t)],

J2(x , t) = −D2∇u2(x , t)− u2(x , t)[D21∇u1(x , t) + D22∇u2(x , t)].

Cross-diffusion: −∇[D12u1u2] = −D12(u1∇u2 + u2∇u1)
Cross-taxis: −D12u1∇u2



LV Competition Age-structured model Applications Memory-based taxis Conclusions

Memory-based self-taxis and cross-taxis

[Shi-Wang-Wang, 2021, JDE]
Delayed self-taxis: advection depending on its own density in the past
Delayed cross-taxis: advection depending on other’s density in the past (delayed
chemotaxis, prey-taxis, or predator-taxis)

J1(x , t) = −D1∇u1(x , t)− u1(x , t)[D11∇u1(x , t − τ) + D12∇u2(x , t − τ)],

J2(x , t) = −D2∇u2(x , t)− u2(x , t)[D21∇u1(x , t − τ) + D22∇u2(x , t − τ)].

Two-species reaction-diffusion system with delayed self-taxis and cross-taxis:

∂u

∂t
= D1∆u + D11∇ · (u∇uτ ) + D12∇ · (u∇vτ ) + f (u, v), x ∈ Ω, t > 0,

∂v

∂t
= D2∆v + D21∇ · (v∇uτ ) + D22∇ · (v∇vτ ) + g(u, v), x ∈ Ω, t > 0,

∂u

∂ν
= 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , t) = φ1(x , t), v(x , t) = φ2(x , t), x ∈ Ω, t ∈ [−τ, 0],

(8)
where uτ = u(x , t − τ), vτ = v(x , t − τ).
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L-V competition model with memory-based movement
[Wang-Shi-Wang, 2021, JDE]
ut = D1∆u + D11∇ · (u∇uτ ) + D12∇ · (u∇vτ ) + u(1− u − αv), x ∈ ∂Ω, t > 0,

vt = D2∆v + D21∇ · (v∇uτ ) + D22∇ · (v∇vτ ) + γv(1− v − βu), x ∈ ∂Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0.

where uτ = u(x , t − τ), vτ = v(x , t − τ).

Theorem 9. Assume that 0 < α, β < 1, then there is a coexistence equilibrium

E∗ = (u∗, v∗) where u∗ =
1− α

1− αβ
and v∗ =

1− β
1− αβ

.

1 (self-taxis) Suppose that D12 = D21 = D22 = 0 and D11 6= 0. Then (u∗, v∗) is
locally asymptotically stable provided that |D11|u∗ < D1, and it is unstable
(with dim(unstable manifold)=∞) if |D11|u∗ > D1.

2 (cross-taxis) Suppose that D11 = D22 = D21 = 0. If D12 > 0, then (u∗, v∗)
becomes unstable through steady state bifurcations when D12 increases
(regardless of τ); and if D12 < 0, then (u∗, v∗) may become unstable through
Hopf bifurcations when τ increases.

Note: When D11 = D22 = D21 = D12 = 0, the constant equilibrium E∗ = (u∗, v∗) is
globally asymptotically stable. We cannot prove the global stability when (u∗, v∗) is
locally asymptotically stable.
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“Checkerboard” pattern for large memory-based self-taxis
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Figure: The roots of characteristic equations with n = 1, 2, 3, 4 (left), and
“periodic” pattern (right). Here D1 = D2 = 1, D12 = D21 = D22 = 0,
α = β = 0.5, γ = 1, r = 25, and D11 = 1.9 > 1/u∗.

Scalar model with similar patterns: [Shi-Wang-Wang-Yan, 2020, JDDE]
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Nonhomogeneous steady state with positive cross-taxis

−5 −4 −3 −2 −1 0 1
−150

−100

−50

0

50

100

150

ℜ(λ)

ℑ
(λ

)

Purple:n=1
Red:n=2
Blue:n=3
Black:n=4
Green:n=5

Figure: Left: The roots of characteristic equations with n = 1, 2, 3, 4, 5.
Right: Convergence to a spatially nonhomogeneous steady state. Here
D1 = 1, D2 = 0.1, α = β = 0.5, γ = 1, D11 = D22 = D21 = 0,
D12 = 8.5 > 0 and r = 1.

Similar pattern: [Mimura-Kawasaki, 1980, JMB] for cross-diffusion
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Nonhomogeneous periodic solutions with negative
memory-based cross-taxis

Figure: Periodic solutions for r = 2.5 > r0
1 (left) and r = 10 (Right).

Here D1 = 1, D2 = 0.1, α = β = 0.5, γ = 1, D11 = D22 = D21 = 0 and
D12 = −12.
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Conclusions

When the stage structure is added to the reaction-diffusion Lotka-Volterra
competition system, times delays and maturation decays appear in the model.
We show that the maturation decay terms could change the existence and
stability of steady states which change the outcome of competition, but the
time delays do not change asymptotic dynamics of the competition. Here the
delays are “harmless” and do not induce oscillations as other delay models.
When the two species are identical, the species with shorter maturation time
wins the competition.

Time delays in interspecific competitions will also not alter the outcome of the
competition, but time delays in intraspecific competition may induce oscillatory
patterns.

For a competition model in the weak competition regime, if u is a timid
competitor who will move downward the past (i.e., D12 > 0), then the constant
coexistence steady state will become spatially inhomogeneous through Turing
bifurcation, as the memory-based diffusion rate D12 increases; while if u is an
aggressive competitor (i.e., D12 < 0), then Hopf bifurcation happens and a
stable spatially nonhomogeneous time-periodic solution appears for the memory
period τ at the right hand of a critical value.
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