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Outline

� Logistic RDA model for a single river (V., Lutscher 2010)

� Logistic RDA model for a river network (V. 2019)



Base RDA model: logistically growing population in a
single river segment

∂u

∂t︸︷︷︸
change in density

= D
∂2u

∂x2︸ ︷︷ ︸
diffusive movement

− q
∂u

∂x︸︷︷︸
advection term

+ ru(1− u)︸ ︷︷ ︸
growth term

+ upstream and downstream b.c.

u(x , t)=population density at point 0 ≤ x ≤ L at time t
q = advection speed



RDA model for single river segment

∂u

∂t
= D

∂2u

∂x2
− q

∂u

∂x
+ ru(1− u)

� D
(
∂u
∂x

)
|x=0 = qu(0, t) and u(L, t) = 0 (hostile)

� D
(
∂u
∂x

)
|x=0 = qu(0, t) and

(
∂u
∂x

)
|x=L = 0 (outflow)



Critical domain size: hostile and outflow downstream b.c.

For 0 ≤ q < qcr = 2
√
Dr :

Lhostc (q) =
π−arctan

(√
4rD−q2

q

)
√

4rD−q2

2D

Loutc (q) =


2D√

4rD−q2
arctan

(
q

√
4rD−q2

2rD−q2

)
, 0 < q ≤

√
2rD

2D√
4rD−q2

(
π + arctan

(
q

√
4rD−q2

2rD−q2

))
,
√
2rD < q < 2

√
rD

Loutc (q) < Lhostc (q).



Steady state solutions of a BVP

Steady state solution of

{
∂u
∂t = D ∂2u

∂x2
− q ∂u∂x + f (u)

b.c .

is found by setting ∂u
∂t = 0.

Look for a solution u = u(x) of{
Du′′ − qu′ + f (u) = 0
b.c .

or


u′ = v
v ′ = q

D v − 1
D f (u)

b.c .



Flow of the uv -system

The vector field of a system

{
u′ = f (u, v)
v ′ = g(u, v)

gives rise to the flow

operator Φ(x ,−,−) : R2 → R2 describing the “movement along
the trajectories” over the interval [0, x ]:



Phase plane method: outflow b.c.



u′ = v

v ′ = q
D v − r

D u(1− u)

v(0) = q
D u(0)

v(L) = 0



Phase plane method: outflow b.c.

• q ≥ qcr = 2
√
Dr



Phase plane method: outflow b.c.

• 0 < q < qcr = 2
√
Dr



Domain size L as the function of downstream density µ

There is no explicit formula for L = L(µ) (unlike the case of Fisher
equation, see Ludwig et al. 1979), but we can show:

� L(µ) is an increasing continuous function of µ.

� L(µ)→ Loutc as µ→ 0;

� L(µ)→∞ as µ→ 1;

It follows that for each L > Loutc there exists a unique µ ∈ (0, 1)
such that L(µ) = L. So, there is a unique orbit of “parametric
length” L.



Existence and Uniqueness 1

Thus, if q < qcr and L > Loutc , one gets existence and uniqueness

of the non-trivial solution of


u′ = v
v ′ = q

D v − r
D u(1− u)

v(0) = q
D u(0)

v(L) = 0

or the non-trivial steady state solution of
∂u
∂t = D ∂2u

∂x2
− q ∂u∂x + ru(1− u)

∂u
∂x = qu, x = 0
∂u
∂x = 0, x = L

1O.V., F. Lutscher,Population Dynamics in Rivers: Analysis of Steady
States, Can. Appl. Math. Quart., Vol. 18 (4) (2010), 439-469.



RDA models for river networks



RDA models for river networks

� Linear RDA model: J.M. Ramirez (2011)2 and J. Sarhad, R.
Carlson, K.E. Anderson (2014)3

� PDE-based approach to nonlinear RDA models:
Y. Jin, R. Peng and J. Shi (2019) 4

� Phase-plane-based approach to logistic RDA model:
O.V. (2019) 5

2J.M. Ramirez, Population persistence under advection-diffusion in river
networks, J. Math. Biology 65 (5), 919-942 (2011).

3J. Sarhad, R. Carlson, K.E. Anderson, Population persistence in river
networks, J. Math. Biology 69(2), 401-448 (2014).

4Y. Jin, R. Peng and J. Shi, Population Dynamics in River Networks, J.
Nonlin. Science 29, 2501-2545 (2019).

5O.V., Population Dynamics in River Networks: Analysis of Steady States,
J. Math. Biology 79 (1) 63-100 (2019).



River network: metric graph + cross-section areas



General river network as a metric graph

� D, q, r and carrying capacity are assumed to be the same for
all segments

� cross-section area Ai is constant throughout the ith segment

� whole cross-section is habitable

� population is well mixed in the cross-section

� cross-section areas are additive in each junction (conservation
of hydrological discharge)



Basic case: Y-shaped network



Population density functions on a metric graph

Identify segments with the intervals
[−L0, 0], [−L1 − L0,−L0], [−L2 − L0,−L0].

Let ui (x , t) represent the population density on the ith segment.



RDA model on a metric graph

On each segment, the density is subject to the same RDA equation:

∂ui
∂t

= D
∂2ui
∂x2

− q
∂ui
∂x

+ rui (1− ui ).

No-flux boundary condition at each upstream vertex:

� D ∂u1
∂x (−L1 − L0, t) = qu1(−L1 − L0, t)

� D ∂u2
∂x (−L2 − L0, t) = qu2(−L2 − L0, t)

Outflow condition at the ”root” vertex:

�
∂u0
∂x (0, t) = 0.



RDA model on a metric graph: junction conditions

At the junction, we have:

� the continuity conditions:
u0(−L0, t) = u1(−L0, t) = u2(−L0, t).

� the flux balancing condition:
outgoing flux = sum of incoming fluxes
(assuming that habitat
cross-section areas satisfy A0 = A1 + A2)

∂u0
∂x

(−L0, t) =
A1

A0

∂u1
∂x

(−L0, t)+
A2

A0

∂u2
∂x

(−L0, t)



Translating to the phase plane setting

To find steady state solution, we set ∂ui
∂t = 0.

We have ui = ui (x), vi = vi (x) = ∂ui
∂x satisfying:{

u′i = vi i = 0, 1, 2
v ′i = q

D vi − r
D ui (1− ui ) i = 0, 1, 2

� v1(−L1 − L0) = q
D u1(−L1 − L0) (upstream condition)

� v2(−L2 − L0) = q
D u2(−L2 − L0) (upstream condition)

� v0(0) = 0 (downstream condition)

� u0(−L0) = u1(−L0) = u2(−L0) ( continuity conditions)

� v0(−L0) = A1
A0
v1(−L0) + A2

A0
v2(−L0) (flux balancing

condition)

What does a steady state look like in a phase plane?



Steady state solution as an ”orbit graph” in the uv -plane

Geometric interpretation of junction conditions:

� u0(−L0) = u1(−L0) = u2(−L0) ⇐⇒ vertical alignment
� v0(−L0) = A1

A0
v1(−L0) + A2

A0
v2(−L0) ⇐⇒ vertical coordinates

satisfy the linear combination



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



“Local” preservation of concavity under flow

Given (αi , βi ), i = 1, 2, 3, on a straight line with α1 < α2 < α3 let
mij(x) =slope of the line through Φ(x , αi , βi ) and Φ(x , αj , βj).
Then for sufficiently small h > 0 we have:
m12(h) < m23(h) and m12(−h) > m23(−h).



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Steady state solution in terms of flow images of b.c. lines



Possible shapes of images of upstream b.c. line under
Φ(L,−,−)



Possible shapes of images of upstream b.c. line under
Φ(L,−,−)



Possible shapes of images of upstream b.c. line under
Φ(L,−,−)



Possible shapes of images of upstream b.c. line under
Φ(L,−,−)



Possible shapes of images of upstream b.c. line under
Φ(L,−,−)



Possible shapes of images of downstream b.c. line under
Φ(−L,−,−)



Possible shapes of images of downstream b.c. line under
Φ(−L,−,−)



Possible shapes of images of downstream b.c. line under
Φ(−L,−,−)



Possible shapes of images of downstream b.c. line under
Φ(−L,−,−)



Looking for intersection point: possible scenarios



Looking for intersection point: possible scenarios



Looking for intersection point: possible scenarios



Existence and uniqueness of a positive steady state solution
(for a Y-shaped network)

Whenever a positive steady state exists, it is unique (by
concavity).

Sufficient and necessary conditions for existence:



Looking for an intersection point

“Interesting case” (when river segments are relatively short) comes
down to distinguishing between the following two situations:



Looking for an intersection point



Using Hartman-Grobman Theorem

Recall: Φ(x ,−,−) is the flow of the system{
u′ = v
v ′ = q

D v − r
D u(1− u)

Let Ψ(x ,−,−) be the flow of the linearized system{
u′ = v
v ′ = q

D v − r
D u

Note that Ψ(x , α, β) is given by eAx(α, β)T where A =

[
0 1
− r

D
q
D

]
.

By Hartman-Grobman Theorem, there exist open neighborhoods
Ω,Ω′ of (0, 0) in R2 and a homeomorphism h : Ω→ Ω′ given by
h(u, v) = (h1(u, v), h2(u, v)) such that for any (α, β) ∈ Ω,

Φ(x , α, β) = h−1Ψ(x , h1(α, β), h2(α, β)),

for all x ∈ R such that Φ(x , α, β) ∈ Ω.



Effect of Φ(L,−,−) on slopes at (0, 0)

By a result of Guysinsky et al. (2003)6 since
f (u, v) = (v , q

D v − r
D u(1− u)) is a C∞ function, h can be chosen

so that

� h is differentiable at (0, 0)

� Dh(0, 0) =

[
1 0
0 1

]

6M. Guysinski, B. Hasselblatt, V. Rayskin, Differentiability of the
Hartman-Grobman Linearization, Discrete and Continuous Dynamical Systems,
9(4), 2003, 979-984



Effect of Φ(L,−,−) on slopes at (0, 0)
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Effect of Φ(L,−,−) on slopes at (0, 0)



Effect of Φ(L,−,−) on slopes at (0, 0)



Effect of Φ(L,−,−) on slopes at (0, 0)



Slopes at (0, 0) under the action of the linear flow

Let S(m, L) = the slope of the image of the line v = mu under
Ψ(L,−,−).

Let θ =
√

r
D −

q2

4D2 .

Then

S(m, L) =
2Dmθ cos(θL) + (mq − 2r) sin(θL)

2Dθ cos(θL) + (2mD − q) sin(θL)
.



Slopes at (0, 0) under the action of the linear flow

Let S(m, L) = the slope of the image of the line v = mu under
Ψ(L,−,−).

Let θ =
√

r
D −

q2

4D2 .

Then

S(m, L) =
2Dmθ cos(θL) + (mq − 2r) sin(θL)

2Dθ cos(θL) + (2mD − q) sin(θL)
.



Slopes at (0, 0) under the action of the linear flow

Let S(m, L) = the slope of the image of the line v = mu under
Ψ(L,−,−).

Let θ =
√

r
D −

q2

4D2 .

Then

S(m, L) =
2Dmθ cos(θL) + (mq − 2r) sin(θL)

2Dθ cos(θL) + (2mD − q) sin(θL)
.



Existence condition (assume L0 < Loutc and L1, L2 < Lhostc )
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Existence condition (assume L0 < Loutc and L1, L2 < Lhostc )



Existence condition (assume L0 < Loutc and L1, L2 < Lhostc )

For intersection, we need S(0,−L0) > A1
A0
S
( q
D , L1

)
+ A2

A0
S
( q
D , L2

)



Sufficient and necessary condition for the existence
of a positive steady state solution

There exists a (unique) positive steady state solution for a
Y-shaped network if and only if one of the following holds:

1. L0 > Loutc (or just L0 + L1, L0 + L2 > Loutc )

2. L1 > Lhostc or L2 > Lhostc

3. neither (1) nor (2) hold, and

S(0,−L0) >
A1

A0
S
( q

D
, L1
)

+
A2

A0
S
( q

D
, L2
)
.



Steady state solution as an ”orbit graph” in the uv -plane:
the general case



Existence and uniqueness in the general case

Given an arbitrary river network, we can look for the corresponding
configuration of orbits by starting with the line v = q

D u and
iterating the following steps, starting with the upstream segments
and moving towards the root segment:

� for each segment of length L, apply the flow φ(L,−,−) to the
curve obtained on a previous step;

� for each junction, produce the “vertical weighted average” of
the curves obtained on the previous steps.

The curves produced at each iteration will stay concave up. The
last step is the same as for the Y-shaped network.



Existence and uniqueness in the general case

Uniqueness is guaranteed. Existence conditions are similar.
E.g. for a tree like this

we get the condition

S(0,−L0) >
A00

A0

S

(
A000

A00

S

(
q

D
, L000

)
+

A001

A00

S

(
q

D
, L001

)
, L00

)
+

A01

A0

S

(
q

D
, L01

)
.



Effect of network geometry on persistence and steady state

� One-dimensional case (single river): the length L of the river
is the only geometric parameter that affects persistence and
steady state profile.

� River network: even in the simple Y-shaped network, there are
multiple geometric parameters (lengths of segments, ratios of
cross-section areas).

� Is there a single parameter that can be (up to some extent)
used as an analogue of river length?

� Sarhad et al.7 considered measures such as:
� total water volume (

∑
LiAi )

� radius of a circle centered at the root vertex that contains half
of the total water volume

7J. Sarhad, S. Manifold, K.E. Anderson, Geometric indicators of population
persistence in branching continuous-space networks, J. Math. Biol. (2017) 74:
981-1009.



Effect of network geometry on persistence and steady state
For a Y-shaped network:

� fix ratios of cross-section areas (A1
A0

and A2
A0

), q, D, r

� L = L0 + L1 + L2

�
L0
L + L1

L + L2
L = 1

� network geometry is determined by the ratios
`1 = L1

L and `2 = L2
L (where `1 + `2 ≤ 1)



Effect of network geometry on persistence and steady state

� For each pair of ratios (`1, `2) in the triangle region we can
determine the critical total length Lc(`1, `2).

� Geometry of the network will affect the profile of the steady
state, e.g. the location of the maximal density.

� Understanding density profile can help in analyzing
competition in river networks: e.g. low density areas can be
invaded by a competitor.



Effect of network geometry on steady state
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Effect of network geometry on steady state



Effect of network geometry on steady state



Effect of network geometry on critical total length:
a first look



THANK YOU!


