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Abstract. In this paper, we study the asymptotic profile of the steady state of a reaction-
diffusion-advection model in ecology proposed in [13, 17]. The model describes the population
dynamics of a single species experiencing a uni-directional flow. We show the existence of
one or more internal transition layers and determine their locations. Such locations can be
understood as the upstream invasion limits of the species. It turns out that these invasion
limits are connected to the upstream spreading speed of the species and is sometimes subject
to the effect of migration from upstream source patches.

1. Introduction

Most species have spatially limited distributions [1]. Ecologists have identified a few basic
aspects of dispersal and birth-death dynamics that can explain several mechanisms underlying
range limits [7]. For example, local biotic and abiotic conditions determine the basic rate of
increase of a population. The species is expected to be present where its rate of increase is
positive (its “niche”) and absent where this rate is negative. A range limit then indicates a
sign change of this rate of increase. Dispersal can enlarge a species’ range and maintain a
population in regions where the intrinsic growth rate is negative (source-sink dynamics). In
streams and rivers, water flow can induce a strong directional bias in dispersal. What then is
the effect of this biased dispersal on the emergence of range limits?

Abiotic conditions can change considerably along the course of a river or stream. Tem-
perature and nutrient loading tend to increase downstream whereas shading decreases [18].
But conditions need not change monotonically. Local habitat attributes are also affected
by substrate, confluences, dams, or point source disturbances such as waste-water treatment
plants. Accordingly, algal community composition varies considerably between upstream and
downstream [16, 21] and with it the food chain that it can support. These assemblages are
formed by the combined effects of local growth conditions (source and sinks) and of passive
transport in the water column. Because of the strong bias of transport, one could expect a
species to be absent from the upstream end of its niche or source region and persist in sink
habitats further downstream. Can one quantify this effect of hydrology on the actual range
of a species?
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2 RANGE LIMITS IN ADVECTIVE ENVIRONMENTS

The dynamics of a spatially distributed species, moving passively in a stream or river, have
been modeled with a reaction-advection-diffusion equation to explore population persistence
and the so-called “drift paradox” [13, 17]. In the simplest case, the equation for the density
u(x, t) of a population at time t and location x is given by

(1) ut = Duxx − qux + u(r − κu),

where D > 0 is the diffusion coefficient, q > 0 is the flow speed in the direction of increasing
x, r is the population growth rate at low density, and κ denotes the strength of intra-specific
competition. (Subscripts denote partial derivatives.) Lutscher and coauthors studied this
model (and a two-species extension) with linearly increasing growth function r = r(x) (i.e.
the habitat quality of downstream location is better than the upstream location) and observed
the emergence of upstream range limits [11]. Specifically, when the stream was long, the steady
state population showed a sharp transition layer from low to high density, much steeper than
the local growth conditions would predict. Numerically, the authors found that a species
initially occupying a downstream region may propagate upstream in a wave-like fashion with
decreasing speed. This upstream invasion wave comes to a halt at some location x̂, even
though local growth conditions are favorable upstream of that location, i.e. r(x) > 0 for
x < x̂.

Traveling waves are well studied for the Fisher model, given by equation (1) with q = 0 and

constant r. They arise at a minimal speed c∗ = 2
√
rD, the asymptotic spreading speed [20].

In an environment with unidirectional flow of speed q > 0, there are two spreading speeds, one
in the direction of the flow (downstream), given by c∗+q, and one against the flow (upstream),
given by c∗−q [13]. When the flow speed is lower than c∗, then the upstream spreading speed
is positive and the population can spread against the flow. When the flow speed is higher
than c∗, then the upstream speed is negative and the population retreats downstream.

When growth conditions vary spatially, r = r(x) is a non-constant function. It is then

tempting to define the “local upstream spreading speed” as 2
√
r(x)D − q [7]. A range limit

then emerges where the local upstream spreading speed is zero. For a monotone growth

function r(x), there is a unique location x∗ defined by r(x∗) = q2

4D . Numerical simulations for
model (1) indicated that, indeed, x̂ = x∗ [11].

To see why the steady state density ũ can be very small even though the local growth rate
r(x) is positive, we introduce the transformation u(x, t) = w(x, t)eqx/(2D). Then w satisfies
the equation

(2) wt = Dwxx + w

(
r(x)− q2

4D
− weqx/(2D)

)
,

with local intrinsic growth rate r(x)− q2

4D . Hence, the stream flow can be viewed as decreasing

the local growth rate. Specifically, regions with r(x) > q2

4D are population dynamic sources

whereas regions with r(x) < q2

4D are sinks.
The first purpose of this paper is to prove the existence of a steady state profile with the

steep transition layer as observed in numerical simulations [11] when the growth function
is monotone increasing and the stream segment is long. In the second part of the paper,

we consider the case that the adjusted growth function r(x) − q2

4D changes sign more than
once. In this case, we could expect multiple transition layers of ũ occurring at locations x∗i
with r(x∗i ) −

q2

4D = 0. We show that there is at most one transition layer per source patch,
i.e. an interval where r > 0. More specifically, when there is only one source patch and the
population persists, then there is only one transition layer, even if the adjusted growth rate is
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negative somewhere. If there are two or more disjoint source patches, then a second transition
layer maybe located further upstream than would be predicted by the locations x∗i . This
phenomenon arises when emigrants from high-density regions upstream contribute to local
population growth at the next downstream source patch. We give a precise characterization
of the location of a second transition layer.

We introduce the model with boundary conditions and scalings in detail in Section 2.
We state all the main results in Section 3, and present numerical illustrations in Section 4.
Auxiliary lemmas are given in Section 5. Proofs of the main theorems are presented in Section
6. Finally, an extension of our results concerning a boundary transition layer is discussed in
Section 7.

2. Model description

We denote the density of the species at time t and location x in the bounded interval [0, L]
with u(x, t), where L is the length of the river. We denote the diffusion constant by D > 0
and the flow speed by q > 0 so that advection points to increasing x-values. We supplement
the equation in model (1) with generalized Danckwerts boundary condition at the upstream
(x = 0) and downstream (x = L) end. The model then reads

(3)

{
ut = Duxx − qux + u(r(x)− κu) for 0 < x < L, t > 0,
Dux(0)− qu(0) = qbuu(0), Dux(L)− qu(L) = −qbdu(L) for t > 0.

The (dimensionless) parameters bu and bd determine the magnitude of population loss at the
upstream and downstream boundaries, respectively. No-flux condition at the downstream
boundary corresponds to bd = 0, whereas hostile condition results as bd →∞. An important
intermediate case is bd = 1, when net-movement across the boundary results only from dif-
fusion. For a more detailed discussion and derivation from a random walk model, we refer
to [8, 10]. The function r(x) stands for the quality of the habitat; the population can grow
where r > 0 and will decline where r < 0.

Based on the numerical results in [11], we consider the case where the river is very long
compared to the scales of advective and diffusive movement. We introduce non-dimensional
variables t̂ = t/τ, x̂ = x/L and û = κu, and a small parameter ε = qτ/L. Since we will study
the steady-sate problem, we may choose the time scale τ = 1. With this scaling, the model
becomes

(4)

{
ût̂ = ε2D̂ûx̂x̂ − εûx̂ + û(r̂ − û) for 0 < x̂ < 1, t̂ > 0,

εD̂ûx̂(0, t̂)− û(0, t̂) = buû(0, t̂), εDûx̂(1, t̂)− û(1, t̂) = −bdû(1, t̂), for t̂ > 0,

where D̂ = D/q2 is the rescaled diffusion coefficient and r̂(x̂) = r(x) denotes the rescaled
growth profile on [0, 1]. After dropping “ˆ” for ease of notation, we finally obtain our dimen-
sionless model system as

(5)

{
ut = ε2Duxx − εux + u(r − u) for 0 < x < 1, t > 0,
εDux(0, t)− u(0, t) = buu(0, t), εDux(1, t)− u(1, t) = −bdu(1, t), for t > 0.

The dynamics of this model are completely determined by the linear stability of the trivial
solution since the system is monotone [4]. If the zero solution is locally asymptotically stable,
then it is globally stable. If it is unstable, then there is a unique positive steady state, which
is globally stable among non-negative, non-trivial solutions. The non-trivial steady-state
solution ũ(x) of (5) satisfies the equation

(6)

{
ε2Dũxx − εũx + ũ(r − ũ) = 0 for 0 < x < 1,
εDũx(0)− ũ(0) = buũ(0), εDũx(1)− ũ(1) = −bdũ(1).
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In this paper, we study existence conditions for ũ and its spatial profile.

3. Main Results

In this section, we explain and interpret our main results about the existence and spatial
profile of the positive solution ũ(x) of (6). We formulate all of our results in terms of the local
upstream spreading speed, which, in the parametrization of (5) is given by

c(x) =

{
ε(2
√
r(x)D − 1) when r(x) ≥ 0,

−ε when r(x) < 0.

Note that when r < 0, then c is simply the transformed flow speed −ε.

3.1. Persistence Results. It is well-known that the persistence of the single species governed
by diffusive-logistic equation (5) is characterized by the principal eigenvalue λ1 of{

ε2Dφxx − εφx + rφ+ λ1φ = 0 for 0 < x < 1,
εDφx(0)− φ(0) = buφ(0), εDφx(1)− φ(1) = −bdφ(1).

Namely, if λ1 < 0 then there exists a unique positive steady state of (5) which is also globally
asymptotically stable among all non-negative, non-trivial solutions; and if λ1 ≥ 0, then the
zero solution is globally asymptotically stable. See, e.g. [4, P. 150] and also [3, 6, 12, 15]. The
principal eigenvalue λ1 is in general a nonlinear function of coefficients ε,D, r(x), bu, bd.

We state below two practical persistence/extinction results that are uniform for all (small)
values of ε which are relevant to our investigation.

Theorem 3.1. If max[0,1] c > 0, i.e. max[0,1] r >
1
4D , then there exists ε0 > 0 such that for

all ε ∈ (0, ε0) (and all bu, bd ≥ 0), equation (6) has a unique positive solution ũ that is the
globally asymptotically stable steady state for equation (5), among all non-negative and not
identically zero initial data.

Theorem 3.2. If max[0,1] c ≤ 0, i.e. max[0,1] r ≤ 1
4D , and if bd ≥ 1

2 , then for all ε > 0, equation
(6) has no positive solution, and the zero solution of equation (5) is globally asymptotically
stable among all non-negative and not identically zero initial data.

Theorem 3.1 states that when the upstream spreading speed is positive somewhere, then a
locally introduced population can spread in both directions and persist in the habitat. This
result holds only when the habitat is sufficiently long so that potential boundary loss does
not impact population survival. Specifically, we are not considering a minimal domain-size
problem here.

As a complement to Theorem 3.1, Theorem 3.2 shows that the population cannot persist
in any upstream portion of the river if its upstream invasion speed is non-positive. This
result arises only when there is some population loss at the downstream end of the habitat.
For example, if both boundary conditions are no-flux conditions (i.e. bu = bd = 0), then the
population will persist as long as some appropriate average of the growth rate is positive,

i.e.
∫ 1
0 r(x) exp(x/(εD))dx > 0.

We refer the interested reader to previous work on population persistence [8, 17, 19]. We
note that if no-flux boundary conditions are imposed at both ends (i.e. bu = bd = 0), and if
r(x) > 0, then the population always persists, regardless of ε,D. In particular, the condition
that bd ≥ 1

2 is indispensable. A recent detailed study of the influence of upstream and
downstream loss rates is given in [9].

In the rest of this section, we will focus on the Danckwerts boundary condition, which
corresponds to no-flux upstream conditions (bu = 0) and Neumann downstream conditions
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(bd = 1). We note also that Neumann conditions only describe a no-flux scenario when there
is no advection (q = 0).

3.2. Single Internal Transition Layer. We define the upstream invasion limit as the fur-
thest upstream location where the upstream invasion speed is positive, i.e.

(7) z1 = inf{x ∈ (0, 1) : c(x) > 0} = inf{x ∈ (0, 1) : r(x) > 1/4D}.
We note that when max[0,1] c > 0, i.e. max[0,1] r >

1
4D , then z1 is well defined and z1 ∈ [0, 1].

In addition, z1 is uniquely defined even when r(x) is constant in some intervals.
The following result shows that, in the case of z1 > 0, how the range of species can be

characterized by the upstream invasion limit:

Theorem 3.3. Suppose that max[0,1] c > 0, z1 ∈ (0, 1) and that r(x) > 0 for x > z1. Then,
as ε→ 0,

ũ→ r(x)1[z1,1] locally uniformly in [0, 1] \ {z1},
where 1[z1,1] denotes the characteristic function of the interval [z1, 1].

The statement of Theorem 3.3 is illustrated in Figure 1. See also Figure 2 for a numerical
example. When the upstream invasion limit z1 is below the upstream end of the habitat, then,
in a long river, the population will approach a spatial profile with a single internal transition
layer from near zero density upstream of z1 to carrying capacity downstream of z1.

3.3. Multiple Internal Transition Layers. Theorem 3.3 requires r > 0 downstream of
z1 = inf{x ∈ [0, 1] : r(x) > 1/(4D)}. When r < 0 for some intermediate region downstream
of z1 and r(1) > 1/(4D), then there will be a second internal transition layer. The main
question is the location of this second layer. To this end, we study a representative situation.

Suppose that there exists a partition 0 < x1 < x2 < x3 < 1, such that

(8) r(x) < 0 in [0, x1) ∪ (x2, x3) and r(x) > 0 in (x1, x2) ∪ (x3, 1].

Naively, we would expect another internal transition layer located at the second invasion limit
z2, given by

(9) z2 := inf{x ∈ (x3, 1) : r(x) > 1/4D}.
Our next theorem shows that while this situation can occur, more subtle effects may arise.
In fact, the second transition layer may be located upstream of z2; see Figure 3.

Specifically, we require the maximum upstream invasion speed to be positive in both patches
[x1, x2] and [x3, 1], i.e.

max
[x1,x2]

c(x) > 0 and max
[x3,1]

c(x) > 0,

or equivalently,

(10) max
[x1,x2]

r(x) > 1
4D and max

[x3,1]
r(x) > 1

4D .

When c(x) < 0 (i.e. r(x) < 1/(4D)), we can define the quantities

(11) α±(x) :=
1±
√

1−4Dr(x)
2D .

Note that α+ is always positive whereas α− has the same sign as r(x).
It turns out that the sign of

∫ z2
x2
α−(t) dt plays a critical role in determining the location of

the second internal transition layer.

Theorem 3.4. Suppose r(x) satisfies conditions (8) and (10).
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(a) Assume that
∫ z2
x2
α−(t) dt ≤ 0. Then as ε→ 0,

ũ→ r(x)
[
1[z1,x2] + 1[z2,1]

]
locally uniformly in [0, 1] \ {z1, z2},

where z1 and z2 are defined in (7) and (9), respectively.
(b) Assume that

∫ z2
x2
α−(t) dt > 0. Then as ε→ 0,

ũ→ r(x)
[
1[z1,x2] + 1[z̃2,1]

]
locally uniformly in [0, 1] \ {z1, z̃2},

where z̃2 ∈ (x3, z2) is uniquely determined by the relation

∫ z̃2

x2

α−(t) dt = 0.

The statement of this theorem is illustrated in Figures 1 and 3. The first transition layer is
located at the upstream invasion limit z1 as before. Downstream of the region where r < 0,
there is a second point, z2, where the upstream invasion speed is zero. If we only consider the
region downstream of r < 0, then we would expect a transition layer at z2 based on the same
reasoning as the layer at z1. This reasoning is correct when the region r < 0 is large. However,
if this region is small, then there will be immigration of individuals from the upstream patch
[z1, x2] to the downstream patch. This influx of individuals allows the population to establish
further upstream of z2, more specifically, at z̃2.

Figure 1. Left panel: Illustration of Theorem 3.3. Right panel: Illustration
of Theorem 3.4.

4. Numerical Results

In this section, we present some numerical results that complement and illustrate our
analytical results from the previous section. We begin with the shape and location of a single
transition layer in the case of a monotone, increasing resource function as in Theorem 3.3.

We choose the simple linear function r(x) = x to represent how habitat quality is increasing
downstream, and we fix a diffusion coefficient of D = 1/2. The condition r(z1) = 1/(4D) gives
a theoretical upstream invasion limit of z1 = 1/2. We illustrate the statement of Theorem 3.3
in Figure 2. We plot the resource function, r(x), and the steady state solution, ũ(x), for the
three different values of ε. As ε decreases, the steady state profile becomes steeper and the
transition layer “moves closer” to the theoretical value z1. We evaluated the latter distance
by numerically calculating the value y1 such that ũ(y1) = r(z1)/2 = 1/2. The results are
summarized in Table 1.
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ε 0.02 0.01 0.005
y1 − z1 0.139 0.0775 0.022

Table 1. Distance between the transition layer and the upstream invasion
limit for linearly increasing r(x). We conjecture that y1 − z1 is of the order of
ε, i.e. the actual location of the transition layer lies in an ε-neighborhood of
z1.

Figure 2. Monotone increasing resource function r(x) and steady-state profile
ũ(x) for three values of ε = 0.02 (dash-dot), ε = 0.01 (dashed), and ε = 0.005
(solid).

To illustrate the case of multiple transition layers, we choose a resource function that
has a (negative) local minimum at the upstream end and a (positive) local maximum at
the downstream end, as well as a (positive) local maximum and (negative) minimum in the
interior of the domain. We choose the function

sin
(

3πx− π

2

)
+ 0.8,

whose positive part is plotted as r(x) in Figure 3. We denote by K the interval where r is
negative in between the two maxima. We then introduce a parameter ν > 0 to modify the
above function on K and thereby change the value of the integral of α−, see (11) and Theorem
3.4.

Specifically, we set

r(x) = sin
(

3πx− π

2

)
+ 0.8− ν1K ,

and we fix parameters ε = 0.005 and D = 1/6. By increasing ν we can decrease the value of
r(x) on K and thereby decrease the value of the integral

∫ z2
x2
α−(x)dx. Accordingly, we find

that the second (downstream) transition layer is upstream of the expected limit z2 when ν is
small but moves downstream to z2 as ν increases, see Figure 3.

The two invasion limits are given by z1 = 1
6 + 1

3π sin−1(0.7) ≈ 0.249 and z2 = 5
6 +

1
3π sin−1(0.7) ≈ 0.916 as defined in (7) and (9). Furthermore, the left endpoint of K is
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Figure 3. An oscillating resource function, r(x), (dashed) and the steady-
state profile ũ(x) for various values of ν = 0, 0.5, 1, 2. Increasing ν changes
r(x) in the region where r < 0 between the two maxima. Fixed parameters
are ε = 0.005 and D = 1/6.

x2 = 1
2 + 1

3π sin−1(0.8) ≈ 0.598. The values of the integral∫ z2

x2

α−(x)dx =

∫ z2

x2

1−
√

1− 4Dr(x)

2D
dx.

are listed in Table 2.

ν 0 0.5 1 2 5∫ z2
x2
α−(x)dx 0.1613 0.1003 0.046 -0.0488 -0.2726

y1 − z1 -0.017 -0.017 -0.017 -0.017 -0.017
y2 − z2 -0.076 -0.044 -0.0225 -0.0175 -0.0175

Table 2. Summary values for the first and second transition layer for different
values of ν

We note that the integral
∫ z2
x2
α−(x)dx is positive for c = 0, 0.5, 1, whereas it is negative for

c = 2, 5. While the location of the first transition layer (as determined by the distance y1−z1)
is independent of ν, the second transition layer (as determined by the distance y2− z2) moves
downstream as ν increases. The locations yi are calculated as ũ(yi) = 1/2 and ũ′(yi) > 0.

5. Preliminaries

We introduce the notion of weak upper (lower) solution, which will play an instrumental
role for the rest in the paper. We refer to [5, Ch. 4] for the following definitions and results.

Definition 5.1. We say that w ∈ H1([0, 1]) is a weak upper (resp. lower) solution to (6) if∫ 1

0

[
−
(
ε2Dwx − εw

)
ηx + w(r − w)η

]
dx− ε (buw(0) + bdw(1)) ≤ 0 (resp. ≥ 0)

for any η ∈ C∞([0, 1]) such that η ≥ 0 in [0, 1].
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If bu = bd = ∞, then we say that w ∈ H1([0, 1]) is a weak upper (resp. lower) solution to
(6) if w(0), w(1) ≥ 0 (resp. ≤ 0), and that∫ 1

0

[
−
(
ε2Dwx − εw

)
ηx + w(r − w)η

]
dx ≤ 0 (resp. ≥ 0)

for any non-negative test functions η ∈ C∞0 ([0, 1]).

The next observation will be used frequently in this paper to construct weak upper and
lower solutions.

Lemma 5.2. When 0 ≤ bu, bd < +∞, a function w is a weak upper (resp. lower) solution to
(6) if

(i) w ∈ C([0, 1]);

and there exists a partition 0 = x0 < x1 < x2 < · · · < xk−1 < xk = 1 such that for all
i = 0, . . . , k − 1,

(ii) w = min1≤j≤ji{wi,j}, where wi,j ∈ C2([xi, xi+1]) and satisfies

Lwi,j := ε2D(wi,j)xx − ε(wi,j)x + wi,j(r − wi,j) ≤ 0 (resp. ≥ 0) in (xi, xi+1);

(iii) for all i = 1, . . . , k − 1, wx(xi−) ≥ wx(xi+) (resp. ≤),

and at the boundary points x = 0, 1,

(iv) εDwx(0)−w(0) ≤ buw(0) (resp. ≥) and εDwx(1)−w(1) ≥ −bdw(1) (resp. ≤).

Proof. The lemma can be verified in a straightforward manner, via integration by parts. We
skip the details here. �

Theorem 5.3 ([14]). If w and w are respectively weak upper and lower solutions of (6), and
w ≤ w, then (6) has at least one solution u such that w ≤ u ≤ w. In particular, if w ≥ 0, 6≡ 0,
then u is a positive solution of (6).

We refer to [5, Theorem 4.15] for the proof of Theorem 5.3.

Theorem 5.4. Let D, r0 be given positive numbers.
(a) If 4Dr0 ≤ 1, then there exists a unique positive solution wD,r0 to{

Dwyy − wy + (r0 − w)w = 0 in (−∞,+∞),
w(−∞) = 0, w(0) = r0/2, w(+∞) = r0.

Moreover, wy > 0, wy/w ↗ α− as y → −∞, where α− = 1−
√
1−4Dr0
2D . And if 4Dr0 < 1, then

w(y) ∼ exp(α−y) as y → −∞.
(b) If 4Dr0 > 1, then there exists a unique positive solution wD,r0 to{

Dwyy − wy + (r0 − w)w = 0 in (0,+∞),
w(0) = 0, w(+∞) = r0.

Moreover, wy > 0.

The proof of Theorem 5.4 is based on standard phase plane analysis. We refer to [22] for the
proof of (a), and [2] for the proof of (b).
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6. Proofs

6.1. Proof of Persistence Results. The following results hold true for diffusive logistic
equations of indefinite weight, see [4, P. 150] and also [3, 6, 12, 15].

Lemma 6.1. (a) If (5) has a positive steady state ũ, then it is globally asymptotically
stable among all non-negative, non-trivial solutions.

(b) If (5) has no positive steady state, then the trivial solution is globally asymptotically
stable among all non-negative solutions.

Proof of Theorem 3.2. By Lemma 6.1, it suffices to show that (6) has no positive solution.
Suppose to the contrary that (6) has a positive solution ũ.

By the assumption r ≤ 1/(4D), bu ≥ 0 and bd ≥ 1/2, it is easy to see that for any positive

constant M > 0, w := Mex/(2εD) ∈ C∞([0, 1]) is an upper solution of (6), i.e. w satisfies

(12)

{
ε2Dwxx − εwx + (r − w)w < 0 in [0, 1],
−εDwx(0) + w(0) ≥ −buw(0), εDwx(1)− w(1) ≥ −bdw(1).

Next, let M0 = inf{M > 0 : ũ(x) ≤Mex/(2εD) for all x ∈ [0, 1]}, and define z := M0e
x/2εD−ũ.

Then it can be verified that z satisfies

(13)

{
ε2Dzxx − εzx + (r − ũ−M0e

x/(2εD))z < 0 in [0, 1],
−εDzx(0) + z(0) ≥ −buz(0), and εDzx(1)− z(1) ≥ −bdz(1).

Moreover, by the definition of M0,

(14) z ≥ 0 in [0, 1], and z(x0) = 0 for some x0 ∈ [0, 1].

We consider the following cases separately: (i) bu = bd = +∞, (ii) bu < +∞ = bd, (iii)
bd < +∞ = bu, (iv) bu, bd < +∞.

Case (i): Then z(0) and z(1) are positive and x0 ∈ (0, 1), but then by (14), we deduce that
z(x0) = zx(x0) = 0 and zxx(x0) ≥ 0, which contradicts (13).

Case (ii): Then z(1) > 0. By the arguments in Case (i), the minimum value cannot be
attained in (0, 1), hence we deduce that x0 = 0, i.e. z(0) = 0. Then (14) implies that
zx(0) ≥ 0. But then the boundary condition in (13) implies that zx(0) ≤ (1 + bu)z(0) = 0.
Hence zx(0) = 0. By (13), we deduce that zxx(0) < 0, and hence z(x) < 0 for all 0 < x� 1.
This is a contradiction to the non-negativity of z.

Cases (iii) and (iv) can be handled similarly.
Therefore, (6) has no positive solution. We thus conclude by Lemma 6.1 that the zero

solution is globally asymptotically stable among all non-negative initial data. �

Proof of Theorem 3.1. By Lemma 6.1, it is enough to show that (6) has a positive solution. In

view of Theorem 5.3, and the fact that ū = Mex/(εD) is an upper solution for all large M > 0,
it suffices to construct a non-trivial, non-negative weak lower solution. (See, e.g. [4, Theorem
1.24].) Since max[0,1] r >

1
4D , there exist positive constants r0 and δ, and x0 ∈ (0, 1−3δ) such

that r0 >
1
4D , and r(x) > r0 in [x0, x0 + δ] ⊂ [0, 1].

Define

w(x) := ρ

(
x− x0
ε

)
,

where

ρ(s) =

{
exp

(
s
2D

)
sin
(√

4r0D−1
2D s

)
for 0 < s < 2πD√

4r0D−1
,

0 otherwise.
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Then, since ρ satisfies Dρss − ρs + r0ρ = 0, one can easily verify that ηw is a weak upper

solution of (6), provided
[
x0, x0 + ε 2πD√

4r0D−1

]
⊂ [x0, x0 + δ], i.e. ε < δ/ 2πD√

4r0D−1
and η is a

sufficiently small positive constant. �

6.2. Proof of Theorem 3.3.

Lemma 6.2. Suppose r(0) < 1
4D < max[0,1] r, then for all δ small, there is a weak upper

solution ū1 such that

(i) ū1 ≤ max{r(x), 0}+ δ,
(ii) ū1 = δ and (ū1)x = 0 in {x ∈ [z1, 1] : r(x) ≤ 0},
(iii) ū1 ≤ δ in [0, z1 − δ], where z1 = inf{x ∈ [0, 1] : r(x) ≥ 1/(4D)}.

Here and throughout this article we denote z1 = inf{x ∈ [0, 1] : r(x) > 1/(4D)}.

Figure 4. Lemma 6.2: Construction of weak upper solution u1.

Proof of Lemma 6.2. Fix δ > 0. Define

w1(x) = r(z1 − δ) exp

(
x− z1 + δ

2εD

)
.

Then take any smooth function ρ1 such that (ρ1)x(1) = 0, and

(15) max{r(x), 0} < ρ1 ≤ max{r(x), 0}+ δ in [0, 1],

ρ1,x(1) = 0 and

(16) ρ1 ≡ δ and ρ1,x ≡ 0 when r(x) ≤ 0.

Then define

ū1 :=

 w1 (x) in [0, z1 − δ),
min {w1 (x) , ρ1} in [z1 − δ, z1 − δ/2],
ρ1 in (z1 − δ/2, 1].

We claim that u1 is a weak upper solution of (6). Firstly, we verify the continuity of u1, which
follows from the fact that at x = z1 − δ, by definition of w1,

w1(z1 − δ) = r(z1 − δ) < ρ1(z1 − δ),
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which implies that, in a neighborhood of x = z1 − δ, u1 ≡ w1 is smooth. On the other hand,
at x = z1 − δ/2, one can deduce by (15) that for all ε small,

w1(z1 − δ/2) = r(z1 − δ) exp

(
δ

2εD

)
> max{r(z1 − δ/2), 0}+ δ > ρ1(z1 − δ/2).

This implies that, in a neighborhood of x = z1 − δ/2, u1 ≡ ρ1 is smooth. Hence u1 is
continuous.

Secondly, we check that u1 satisfies the required differential inequality,

L[u1] := ε2D(u1)xx − ε(u1)x + u1(r − u1) ≤ 0,

whenever it is smooth. This follows from the fact that in [0, z1 − δ/2], r(x) ≤ 1/(4D) and

L [w1] = w1

(
1

4D
− 1

2D
+ r − w1

)
< 0.

And that in [z1 − δ/2, 1], for all ε sufficiently small,

L[ρ1] ≤ ε(1 + εD)‖ρ1‖C2 −
(

inf
[z1−δ/2,1]

ρ1

)(
inf

[z1−δ/2,1]
(ρ1 − r)

)
< 0.

Finally, we check the boundary conditions.

[−εD(u1)x + u1]x=0 = [−εD(w1)x + w1]x=0 = w1

[
−εD 1

2εD
+ 1

]
> 0,

and (u1)x(1) = (ρ1)x(1) = 0 by definition of ρ1. This completes the proof. �

Lemma 6.3. Suppose max[0,1] r >
1
4D , and there exists x1 ∈ (0, 1) such that

r ≤ 0 in [0, x1], and r > 0 in (x1, 1].

Then for each δ0 > 0, for ε sufficiently small, there is weak lower solution u1 such that

u1 =

{
0 in [0, z1],
r(x)− δ0 ≤ u1 ≤ r(x) in [z1 + δ0, 1].

Figure 5. Left panel: Lemma 6.3: Construction of weak lower solution u1.
Right Panel: Lemma 6.4: Construction of weak lower solution u1.
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Lemma 6.4. Suppose 0 < x1 < x2 < 1 satisfies

r(x1) = r(x2) = 0 and r > 0 in (x1, x2).

Assume 1
4D ∈ (0,max[x1,x2] r). Then for each δ0 > 0, if ε is sufficiently small, there is a weak

lower solution u1 such that

u1 =


0 in [0, z1] ,
r(x)− δ0 ≤ u1 ≤ r(x) in [z1 + δ0, x2 − 3δ0),
ε at x = x2,
0 in [x2 + 2δ0, 1],

where z1 = inf{x ∈ (x1, x2) : r(x) > 1/(4D)}.

Note that Theorem 3.3 follows directly from Lemmas 6.2 and 6.3. We will prove Lemma
6.3, and indicate the modifications to get Lemma 6.4. The latter result plays an important
role in the construction of the second transition layer.

Proof of Lemma 6.3. Let δ0 > 0 be given. By definition of z1 = inf{x ∈ [0, 1] : r(x) >
1/(4D)}, we may choose z̃1 ∈ (z1, z1 + δ0/2), such that r(z̃1) > 1/(4D). Given any 0 < δ <
min {δ0/2, r(z̃1)− 1/(4D)}, there exists δ1 = δ1(δ) ∈ (0, δ0/2) such that

(17) |r(x)− r(y)| < δ

2
for any x, y ∈ [0, 1] such that |x− y| < δ1.

Next, let w2 be the unique positive solution to{
Dwyy − wy + (r(z̃1)− δ/2− w)w = 0 in (0,+∞),
w(0) = 0, w(+∞) = r(z̃1)− δ/2,

which exists since 4D(r(z̃1)− δ/2) > 1 (Theorem 5.4). Next, choose ρ2 ∈ C∞([z̃1 + δ1/2, 1])
such that

(18)

{
r(x)− δ < ρ2(x) < r(x) in [z̃1 + δ1/2, 1], (ρ2)x(1) = 0,
ρ2(z̃1 + δ1/2) < r(z̃1)− δ/2, ρ2(z̃1 + δ1) > r(z̃1)− δ/2,

which is possible, as r(z̃1 + δ1/2)− δ < r(z̃1)− δ/2 < r(z̃1 + δ1) by (17). Finally, we define

u1 :=


0 in [0, z̃1),

w2

(
x−z̃1
ε

)
in [z̃1, z̃1 + δ1/2),

max
{
w2

(
x−z̃1
ε

)
, ρ2(x)

}
in [z̃1 + δ1/2, z̃1 + δ1),

ρ2(x) in [z̃1 + δ1, 1].

It remains to check, for ε sufficiently small, that u1 is a weak lower solution of (6). Firstly,
we check that u1 is continuous at x = z̃1, z̃1 + δ1/2, z̃1 + δ1. This follows from

u1(z̃1+) = w2(0) = 0 = u1(z̃1−)

and that when x = z̃1 + δ1/2, (and ε small), by (18),

w2

(
x− z̃1
ε

)∣∣∣∣
x=z̃1+δ1/2

≈ r(z̃1)− δ/2 > ρ2(z̃1 + δ1/2)

which implies that u1 ≡ w2 is smooth in a neighborhood of z̃1+δ1/2; and that when x = z̃1+δ1,
by (18),

w2

(
x− z̃1
ε

)∣∣∣∣
x=z̃1+δ1

≈ r(z̃1)− δ/2 < ρ2(z̃1 + δ1)

which implies that, in a neighborhood of z̃1 + δ1, u1 ≡ ρ2 is smooth.
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Secondly, we check that at x = z̃1, z̃1 + δ1/2, z̃1 + δ1, (u1)x satisfies (u1)x(x−) ≤ (u1)x(x+).
This is clearly satisfied when x̃ = z̃1, and also at x = z̃1 + δ1/2, z̃1 + δ1 since u1 is smooth
near those points.

Finally, we check that u1 satisfies the required differential inequality L[u1] ≥ 0 whenever it
is smooth. Now, in (z̃1, z̃1 + δ1), r(x) > r(z̃1)− δ/2 (from (17)) and

L

[
w2

(
x− z̃1
ε

)]
≥ Dw2,yy − w2,y + w2(r(z̃1)− δ/2− w2) = 0,

whereas in [z̃1 + δ1/2, 1],

L[ρ2] ≥ −ε(1 +D)‖ρ2‖C2 +

(
inf

[z̃1+δ1/2,1]
ρ2

)(
inf

[z̃1+δ1/2,1]
(r − ρ2)

)
> 0

for all ε sufficiently small. This completes the proof of Lemma 6.3. �

Next, we indicate the modifications to show Lemma 6.4.

Proof of Lemma 6.4. We first modify ρ2 to satisfy, in addition to (18),

(19) ρ2 =

{
1
2δ

(
inf [x2−2δ,x2−δ] r

)
(x2 − δ − x) in [x2 − 2δ, x2 − δ],

0 in (x2 − δ, 1],

and let

(20) ρ̃2 = ε

[
2

x− x2
(x2 − 2δ)− x2

+
x− (x2 − 2δ)

x2 − (x2 − 2δ)

]
= ε

x2 + 2δ − x
2δ

.

Then it can be easily seen that, for ε > 0 sufficiently small,

u1 :=



0 in [0, z̃1) ∪ [x2 + 2δ, 1],

w2

(
x−z̃1
ε

)
in [z̃1, z̃1 + δ1/2),

max{w2

(
x−z̃1
ε

)
, ρ2(x)} in [z̃1 + δ1/2, z̃1 + δ1),

ρ2(x) in [z̃1 + δ1, x2 − 2δ),
max{ρ2(x), ρ̃2(x)} in [x2 − 2δ, x2 − δ),
ρ̃2(x) in [x2 − δ, x2 + 2δ)

is a weak lower solution. The boundary inequalities are satisfied, as u1 ≡ 0 near to the
boundary points. The continuity of u1 follows from previous arguments, and the fact that{

ρ2(x2 − 2δ) = 1
2 inf [x2−2δ,x2−δ] r > 2ε = ρ̃2(x2 − 2δ),

ρ2(x2 − δ) = 0 < ρ̃2(x2 − δ),

so that u1 is smooth near x = z̃1+δ1/2, z̃1+δ1, x2−2δ, x2−δ. It remains to check the differential
inequalities for ρ2 and ρ̃2. The differential inequality L[ρ2] ≥ 0 in [z̃1 + δ1/2, x2 − 2δ] can be
verified as in proof of Lemma 6.3. In [x2− 2δ, x2− δ], ρ2 is linear and satisfies ρ2(r− ρ2) ≥ 0,
so L[ρ2] ≥ −ε

(−1
2δ inf [x2−2δ,x2−δ] r

)
> 0. Also, in [x2 − 2δ, x2 + 2δ], 0 ≤ ρ̃2 ≤ 2ε and

L[ρ̃2] ≥ −ερ̃2,x − (ρ̃2)
2 ≥ −ε

(
− ε

2δ

)
− (2ε)2 > 0

independent of all small ε, since δ is a small and fixed constant. �
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Figure 6. Construction of upper solution u in the proof of Theorem 3.4(a).

6.3. Proof of Theorem 3.4(a).

Proof of Theorem 3.4(a). Let α− be given by (11) for x ∈ (x2, z2). By choosing δ smaller, we
may assume without loss that r(x) > δ for all x ∈ [z2 − 2δ, z2].

Claim 6.5. There exists a smooth function α such that

(i) α− < α < α+ in [x2, z2),

(ii) there exists x̃2 ∈ (x2, x3) such that α(x̃2) < 0 and
∫ z2−δ
x̃2

α = 0, and α change sign

exactly once, from negative to positive, in [x̃2, z2 − δ],
(iii) α(z2 − δ) > α−(z2) = 1

2D .

To see the claim, observe that α− < 0 in (x2, x3) and α− > 0 in (x3, z2). Therefore for
δ > 0 small ∫ z2−δ

x2

α− <

∫ z2

x2

α− ≤ 0.

Therefore, we may choose a function α satisfying (i) and (iii) such that
∫ z2−δ
x2

α < 0 and that
it changes sign exactly twice, i.e.

(21) α > 0 in [x2, x
′) ∪ (x′′, z2 − δ], and α < 0 in (x′, x′′)

for some x′, x′′ ∈ (x2, x3) such that x2 < x′ < x′′ < x3 < z2. Finally, (21) implies (ii) with
some x̃2 ∈ (x′, x′′). We then define

u :=


u1 in [0, x̃2),

δ exp
(
1
ε

∫ x
x̃2
α
)

in (x̃2, z2 − δ),
min {w3(x), ρ3} in [z2 − δ, z2 − δ/2),
ρ3 in [z2 − δ/2, 1],

where ū1 is given by Lemma 6.2, so that

(22) ū1(x̃2) = δ and (ū1)x(x̃2) = 0.

We also choose the smooth function ρ3 such that r < ρ3 < r + δ in [z2 − δ, 1], ρ3(z2 − δ/2) <
r(z2) = 1

4D and ρ3,x(1) = 0. And that w3 is given by

w3(x) = δ exp

(
x− z2 + δ

2εD

)
.
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Now, we proceed to show that u is a weak upper solution of (6). First, we check the continuity.
The continuity at x = x̃2 follows since

ū1(x̃2) = δ = δ exp

(
1

ε

∫ x

x̃2

α

)∣∣∣∣
x=x̃2

by Lemma 6.2(ii). At x = z2 − δ, by Claim 6.5(ii), u((z2 − δ)−) = δ exp
(
1
ε

∫ z2−δ
x̃2

α
)

= δ,

while w3 (z2 − δ) = δ < r(z2− δ) < ρ(z2− δ), which implies that u((z2− δ)+) = δ as well. At
x = z2 − δ/2,

w3(z2 − δ/2) = δ exp

(
δ

4εD

)
> ρ(z2 − δ/2),

for all ε small. Hence ū ≡ ρ3 near z2 − δ/2.
Next, we check that discontinuities of ux at x = x̃2, z2 − δ, z2 − δ/2 are consistent with the

definition of weak upper solutions. At x̃2, ux(x̃2−) = 0 > δ
εα(x̃2) = ux(x̃2+), by (22) and

Claim 6.5(ii). At x = z2 − δ,

ux((z2 − δ)−) =
δ

ε
α(z2 − δ) >

δ

ε

1

2D
= (w3)x(z2 − δ) = ūx((z2 − δ)+),

by Claim 6.5(iii). Hence ux((z2− δ)−) > ux((z2− δ)−). Also, ū ≡ ρ3 is smooth near z2− δ/2.

Next, we check the differential inequality. By Lemma 6.2, L[ū1] ≤ 0. Let w̃ = δ exp
(
1
ε

∫ x
x̃2
α
)

,

then, for x ∈ [x̃2, z2 − δ],

L[w̃] ≤ ε2Dw̃xx − εw̃x + rw̃

= w̃
[
Dα2 + εDαx − α+ r

]
≤ w̃

[
sup

[x̃2,z2−δ]
(Dα2 − α− rα) +Dε‖α‖C1

]
< 0

for all ε sufficiently small, where the last inequality holds since α− < α < α+ on a compact
interval [x̃2, z2 − δ], whence sup[x̃2,z2−δ](Dα

2 − α − r) < 0. Also, in [z2 − δ1, z2 − δ1/2],

r(x) ≤ 1/(4D) and

L [w3] = w3

(
1

4D
− 1

2D
+ r − w3

)
≤ 0.

Also, L[ρ3] ≤ 0 for all ε sufficiently small as before.
Finally, the boundary conditions are satisfied since u ≡ u1 in a neighborhood of 0, and

ux(1) = ρ3,x(1) = 0. Hence ū is a weak upper solution.
Next, we construct the weak lower solution. To this end, we take the lower solution u1

supported within (x1, x2) which was constructed in Lemma 6.4, and construct a lower solution
u2 analogously to Lemma 6.3, supported within (z2, 1]. Finally, define

u =

 u1 in [0, x2),
0 in [x2, z2 + δ),
u2 in [z2 + δ, 1].

Then u clearly satisfies (i) - (iv) of Lemma 5.2. Hence u qualifies as a weak lower solution.
The pair of weak upper and lower solutions given by ū and u proves that (6) has a positive
solution ũ with the asserted profile. By uniqueness of positive solution ũ, Theorem 3.4(a) is
proved. �
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Figure 7. Left panel: Construction of upper solution in the proof of Theorem
3.4(b). Right panel: Construction of lower solution in the proof of Theorem
3.4(b).

6.4. Proof of Theorem 3.4(b).

Proof of Theorem 3.4(b). Fix δ > 0, and let δ1 be given by the uniform continuity of r as
in (17). Suppose

∫ z2
x2
α− > 0. By the fact that α− changes sign exact once from negative to

positive in (x2, z2), there exists a unique number z̃2 ∈ (x3, z2) such that
∫ z̃2
x2
α− = 0. Let

α : [x2 + δ1, z2] be a smooth function that changes sign only once from negative to positive,

(23) α− < α < α+ for [x2 + δ1, z̃2 − δ1],
∫ z̃2−δ1

x2+δ1

α = 0,

and

(24) α(x2 + δ1) < 0, α(z̃2 − δ1) > 0.

We claim that this is possible for δ1 small (and still satisfy (17)). To see the claim, let

g(t) =
∫ z̃2−t
x2+t

α−, then g(0) = 0 and

g′(0) = −α−(z̃2)− α−(x2) = −α−(z̃2) < 0.

So
∫ z̃2−δ1
x2+δ1

α− < 0 for all δ1 > 0 small. And we may choose a function α that approximates

α− such that it changes sign exactly once from negative to positive, and that (23) and (24)
hold.

Choose a smooth function ρ4 defined on [z̃2 − δ1, 1] such that r(x) < ρ4(x) < r(x) + δ,
ρ4,x(1) = 0. We also define

w̃ = δ exp

(
1

ε

∫ x

x2+δ1

α

)
,

and define our weak upper solution by

u :=


u1 in [0, x2 + δ1),
min {u1, w̃} in [x2 + δ1, z̃2 − δ1),
min {w̃, ρ4} in [z̃2 − δ1, z̃2 − δ1/2),
ρ4 in [z̃2 − δ1/2, 1],

where ū1(x2+δ1) = δ and (ū1)x(x2+δ1) = 0. The continuity of u at x = x2+δ1, z̃2−δ1, z̃2−δ1/2
follows from (i) u1(x2 + δ1) = δ = w̃(x2 + δ1); (ii) at z̃2 − δ1, ū1(z̃2 − δ1) = δ = w̃(z̃2 − δ1),
and (ū1)x(z̃2 − δ1) = 0 < α(z̃2 − δ1) = w̃x(z̃2 − δ1), so ū ≡ w̃ for x ↗ z̃2 − δ1. Since also
w̃(z̃2− δ1) = δ < r(z̃2− δ1) < ρ4(z̃2− δ1), we have ū ≡ w̃ in a neighborhood of z̃2− δ1; (iii) at
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x = z̃2 − δ1/2: w̃(z̃2 − δ1/2) = δ exp
(
1
ε

∫ z̃2−δ1/2
z̃2−δ1 α

)
> ρ4(z̃2 − δ1/2) for 0 < ε� 1 since α > 0

in (z̃2 − δ1, z̃2 − δ1/2). So ū ≡ ρ4 in a neighborhood of z̃2 − δ1/2.
Next, we claim that the discontinuities of ux have the correct signs: At x = x2 + δ1, it is a

minimum of two smooth functions, so ūx((x2 + δ1)−) ≥ ūx((x2 + δ1)+). In a neighborhood
of x = z̃2 − δ1, ū ≡ w̃ as explained previously, so ū is smooth near z̃2 − δ1. Also ū ≡ ρ4 is
smooth in a neighborhood of z̃2 − δ1/2.

Next, we check the differential inequalities. We already have L[ū1] ≤ 0 by Lemma 6.2.
Also, we may deduce that for [x2 + δ1, z̃2 − δ1/2),

L [w̃] ≤ w̃(Dα2 + εDαx − α+ r − w̃) ≤

(
sup

[x2+δ1,z̃2−δ1]
(Dα2 − α+ r) + ε‖α‖C1

)
< 0,

for all ε small, similar as proof of Theorem 3.4(a). Next, L[ρ4] ≤ 0 in [z̃2 − δ1, 1] for all ε
sufficiently small same as before.

The function u satisfies the boundary conditions for upper solution, as ū1 satisfies the
boundary conditions at x = 0, −εDu1,x(0) + u1(0) ≥ 0 and ρ4,x(1) = 0 (by definition of ρ4).
This proves that ū is a weak upper solution. Since α changes sign only once, from negative

to positive in [x2 + δ1, z̃2 − δ1] and that
∫ z̃2−δ1
x2+δ1

α = 0, we see that w̃ ≤ δ in [x2 + δ1, z̃2 − δ1],
which proves the desired property for the upper solution ū.

Next, we construct the weak lower solution u. Given δ > 0, let u1 be given by Lemma 6.4.
Choose a smooth function α̂ : [x2, z̃2 + δ1] which satisfies
(25)∫ z̃2+δ1/3

x2

α̂ = 0, α̂ < α− in [x2, z̃2 + δ1], α̂(z̃2 + δ1/3) < α̂0 :=
1−

√
1− 4D(r(z̃2)− δ/2)

2D
,

and α̂ changes sign only once in [x2, z̃2 + δ1], from negative to positive.
Next, let w5 be the unique positive solution to{

Dwyy − wy + w(r(z̃2)− δ/2− w) = 0 in (−∞,+∞),
w(−∞) = 0, w(+∞) = r(z̃2)− δ/2, w(0) = (r(z̃2)− δ/2)/2.

Again, w5 exists since 4D(r(z̃2) + δ/2) < 1 for δ small. By Theorem 5.4,

(26) w5(y) ∼ O (exp(α̂0y)) and
w5,y

w5
↗ α̂0, as y → −∞.

Since wy > 0 in (−∞,∞), let yε be the unique number such that w5(yε) = ε, then (by (26))
yε < 0 satisfies |yε| ∼ O(log ε). In particular, for any fixed constant K > 0,

(27) lim
ε→0

w5

(
yε +

K

ε

)
= w5(+∞) = r(z̃2)−

δ

2
.

Next, choose ρ5 ∈ C2([z̃2, 1]) such that r(x)− δ < ρ5(x) < r(x) in [z̃2, 1],

(28) ρ5(z̃2 + 2δ1/3) < r(z̃2)− δ/2, ρ5(z̃2 + δ1) > r(z̃2)− δ/2, (ρ5)x(1) = 0.
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Such a choice of ρ5 is possible since r(z̃2 + 2δ1/3)− δ < r(z̃2)− δ/2 < r(z̃2 + δ1) by (17). With
that, we define

u :=



u1 in [0, x2),

max
{
u1, ε exp

(
1
ε

∫ x
x2
α̂
)}

in [x2, z̃2 + δ1/3),

w5

(
x−z̃2−δ1/3

ε + yε

)
in [z̃2 + δ1/3, z̃2 + 2δ1/3),

max
{
w5

(
x−z̃2−δ1/3

ε + yε

)
, ρ5(x)

}
in [z̃2 + 2δ1/3, z̃2 + δ1),

ρ5(x) in [z̃2 + δ1, 1].

We verify that u is a weak lower solution for (6) in detail. We claim that u is continuous

at x = x2, z̃2 + δ1/3, z̃2 + 2δ1/3, z̃2 + δ1. At x = x2, ū1(x2) = ε = ε exp
(
1
ε

∫ x
x2
α̂
)∣∣∣
x=x2

, so u is

continuous at x = x2. At z̃2 + δ1/3, since u1 = 0, we have, by (25) and definition of yε,

u((z̃2 + δ1/3)−) =

[
ε exp

(
1

ε

∫ x

x2

α

)]
x=z̃2+δ1/3

= ε = w(yε) = u((z̃2 + δ1/2)+).

At x = z̃2 + 2δ1/3, by (27) and (28), we have

w5

(
x− z̃2 − δ1/3

ε
+ yε

)
= w5

(
δ1
3ε

+ yε

)
≈ r(z̃2)− δ/2 > ρ5(z̃2 − 2δ1/3).

Hence u ≡ w5 in a neighborhood of z̃2 + 2δ1/3. Similarly, at x = z̃2 + δ1,

w5

(
x− z̃2 − δ1/3

ε
+ yε

)
= w5

(
2δ1
3ε

+ yε

)
≈ r(z̃2)− δ/2 < ρ5(z̃2 − δ1).

Hence u ≡ ρ5 is smooth in a neighborhood of z̃2 + δ1. This proves the continuity of the
function ū.

Secondly, we verify that at x = x2, z̃2 + δ1/3, z̃2 + 2δ1/3, z̃2 + δ, we have ux(x−) ≤ ux(x+).
This holds when x = x2, as u is a maximum of two functions there. For x less than and close

to z̃2 + δ1/3, u1(x) ≡ 0, so u(x) = ε exp
(
1
ε

∫ x
x2
α̂
)

. Hence ux((z̃2 + δ1/3)−) = α̂(z̃2 + δ1/3).

Next, by (26)

ux((z̃2 + δ1/3)+) =
1

ε
w5,y(yε) =

w5,y

w5

∣∣∣∣
y=yε

≈ w5,y

w5
(−∞) = α̂0.

Hence, ux((z̃2 + δ1/3)+) ≥ ux((z̃2 + δ1/3)−) by (25). The remaining possible discontinuities
of ux are consistent, as u is smooth in some neighborhoods of x = z̃2 + 2δ1/3, z̃2 + δ1.

Thirdly, we claim that L[u] ≥ 0 whenever it is smooth. This has already been verified for

u1. Letting ŵ = ε exp
(
1
ε

∫ x
x̂2
α̂
)

, we then proceed to compute in [x2, z̃2 + δ1/2],

L [ŵ] = ŵ
[
(Dα̂2 − α̂+ r) + εDα̂x − ŵ

]
Since inf [x2,z̃2+δ1/3](Dα̂

2− α̂+ r) > 0 independent of ε, it suffices to show the following claim.

Claim 6.6. w̃ = ε exp
(
1
ε

∫ x
x̂2
α̂
)
≤ ε in [x2, z̃2 + δ1/3].

To see the claim, first recall that α̂, changing sign only once (from negative to positive)
in [x2, z̃2 + δ1/3], and hence

∫ x
x̂x
α̂, which vanishes when x = x2 and z̃2 + δ1/3, is always

non-positive in [x2, z̃2 + δ1/3]. This proves Claim 6.6.
Hence, L[ŵ] ≥ 0 in [x2, z̃2 + δ1/3] for ε sufficiently small. It follows as before that

L
[
w5

(
x−z̃2−δ1/3+yε

ε

)]
≥ 0 in [z̃2 + δ1/3, z̃2 + δ1] and L[ρ5] ≥ 0 in [z̃2 + 2δ1/3, 1].
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Finally, we verify that u has the correct boundary conditions. Now, we have verified
previously that u1 has the correct boundary condition at x = 0. The other boundary condition
at x = 1 follows by (28). �

7. Extension

In this work, we focused on internal transition layers. When the upstream invasion limit
is at the upstream end, i.e. z1 = 0, then the population is only limited by the boundary
condition at the upstream habitat end. We expect there to be a boundary transition layer at
the upstream end, in which the population is below the carrying capacity.

Remark 7.1. Suppose that z1 = 0. We can show that as ε→ 0, ũ→ r+(x) (i.e. the positive
part of r(x)) locally uniformly in (0, 1] and that limε→0 ũ(0) exists.

We illustrate this case in Figure 8. We choose the linearly decreasing resource function
r(x) = 0.8 − x and fix D = 1/4. As ε decreases, the transition layer decreases in width, and
the value ũ(0) converges, as Table 3 indicates.

ε 0.02 0.01 0.005
ũ(0) 0.0116 0.014 0.016

Table 3. Linearly decreasing r.

Figure 8. Decreasing resource function r(x) and steady state ũ(x) for the
three values of ε = 0.020 (dash-dot), ε = 0.01 (dashed), and ε = 0.005 (solid).
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