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Abstract. Motivated by evolutionary biology, we study general infinite-dimensional dy-
namical systems involving two species - the resident and the invader. Sufficient conditions for
competition exclusion phenomena are given when the two species play similar, but distinct,
strategies. Those conditions are based on invasibility criteria, for instance, evolutionarily
stable strategies in the framework of adaptive dynamics.

These types of questions were first proposed and studied by [S. Geritz et al., J. Math.
Biol., 2002] and [S. Geritz, J. Math. Biol., 2005] for a class of ordinary differential equa-
tions. We extend and generalize previous work in two directions. Firstly, we consider
analytic semiflows in infinite-dimensional spaces. Secondly, we devise an argument based
on Hadamard’s graph transform method that does not depend on the monotonicity of the
two-species system. Our results are applicable to a wide class of reaction-diffusion models
as well as models with nonlocal diffusion operators.

1. Introduction

An important issue in evolutionary theory is what happens when an established population
employing a given strategy relative to some trait is invaded by a second population that is
identical in all respects except for its strategy relative to this trait. There are three basic
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2 RESIDENT INVADER DYNAMICS

possible outcomes of the encounter. The resident population could effectively resist invasion
so that the second population does not become established. If such is not the case and the
invader establishes itself, then there are two possibilities. Either the two populations coexist
or the invader replaces the resident and then becomes the resident itself.

Geritz, and Geritz et al. [21, 22] considered resident-invader dynamics when the strategy
of the invader is close to that of an established resident. When the strategies are identical,
the resident-invader dynamics are somewhat special and then the family of equilibria Γ =
{(sθ, (1 − s)θ) : 0 ≤ s ≤ 1} is attracting, where θ denotes the equilibrium density of the
resident. The focus of Geritz and Geritz et al. is what happens if the invader strategy
is close to, but not identical to that of the resident, and the configuration of the resident
and invader is close to Γ. What they found was that if the resident’s strategy is far from
being evolutionarily singular, then successful invasion always implies replacement. However,
near an evolutionarily singular strategy, invasion may or may not imply replacement. In
either case, they observed that during the invasion process the sum of the densities of the
resident and the invader remain near the heretofore established resident equilibrium density
θ. Consequently the pair of population densities may be envisioned as lying in a narrow
neighborhood of Γ in R2

+, a phenomenon that has come to be called the Tube Theorem. See
Figure 1.

The results in [21, 22] were set in the context of systems of two ordinary differential
equations. Recently, there has been considerable interest in questions related to evolution of
dispersal in spatially explicit and spatially implicit models. Such models include general finite
dimensional systems such as discrete diffusion systems, but also models which are realized
as infinite dimensional dynamical systems, including reaction-diffusion models and integro-
differential models. The purpose of this paper is to extend the results of Geritz and Geritz
et al. to such models. This requires considering infinite dimensional dynamical systems.
To this end, we employ the semi-group theory of unbounded operators, chiefly the infinite
dimensional version of the variation of parameters formula. With these tools, we obtain a
version of the Tube Theorem that is applicable in particular to systems of reaction-diffusion
equations wherein strategies may incorporate second order derivatives.

In [21, 22], the fact that they are considering two dimensional systems of ordinary differen-
tial equations allows them to employ the Poincare-Bendixson Theorem to prove convergence
to equilibria. Such arguments do not carry over even to higher dimensional finite dimen-
sional systems let alone infinite dimensional ones. Imposing monotonicity of the dynamical
systems is one way of generalizing the resident-invader dynamics results of [21, 22] to infi-
nite dimensions. However, this imposes some restriction to the applicability of the results.
Consequently, we have adapted the Graph Transform of Hadamard to obtain a satisfactory
description of the resident-invader dynamics that does not require the dynamical systems to
be monotone. However, in the application of these results to reaction-diffusion systems, we
can only allow strategies that depend on at most first order derivatives.
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The notions of adaptive dynamics are inherently local. Nevertheless, some of our results
have global implications. For instance, if the invader employs a strategy that is both evo-
lutionarily and convergent stable, then it invades and replaces resident with any nearby
strategy regardless of initial configuration (Theorem 5.2). In particular, it does not have to
start near Γ.

The remainder of this paper is organized as follows. In Section 2, we introduce the
modeling framework of single and two species systems. In Section 3, we establish an infinite
dimensional version of the Tube Theorem. In Section 4, we adapt the Graph Transform
of Hadamard to obtain the existence of a one dimensional invariant manifold for the flow
within the tube. This construction enables us to get good properties such as convergence to
equilibrium. The consequences of these results and their connection to notions from adaptive
dynamics are discussed in Sections 5 and 6. Applications to reaction-diffusion systems are
given in Sections 7 and 8. In Section 9, we present applications to integro-differential models.
In this context, it is necessary to develop further the spectral theory of integro-differential
operators, and we collect those results in the Appendix. Finally, we wish to thank Professors
Odo Diekmann and Amy Hurford for raising the questions that prompted the research for
this paper. We also thank the anonymous referee for careful reading of the manuscript and
many constructive comments.

2. Modeling Framework

2.1. Modeling of a Single Species. Suppose a species has a continuous trait α ∈ S where
S is an open interval in R1. The habitat of the species is represented by a smooth bounded
domain Ω ⊂ RN . Let θ = θ(x, t) denote the population density of species with trait α, with
its dynamics governed by

(2.1)

{
θt = A(α)θ + F (α,G(α)θ)θ,
θ
∣∣
t=0

= θ0 ∈ X := C(Ω̄).

Here for each α, A(α) is a sectorial operator defined on a dense subset D(A) of X = C(Ω̄),
which is assumed to be independent of α ∈ S (see, e.g. [25, P.18]); i.e. A(α) is a closed,
linear, and densely defined operator such that, for some η ∈ (0, π/2) and some M ≥ 1 and
a ∈ R, the sector

Sa,η = {λ ∈ C : 0 ≤ |Re (λ− a)| ≤ π − η, and λ 6= a}

is in the resolvent set of A(α), and∥∥(λ− A(α))−1
∥∥ ≤ M

|λ− a|
for all λ ∈ Sa,η.

We assume that A(α) is smooth in α in the sense that for each λ 6∈ σ(A(α)), R(λ,A(α)) =
(λ−A(α))−1 is smooth in α as a linear operator from X to X. Moreover, F (α,w) : S×X →
X, G(α) : S → X are smooth functions. (Here we make use of the fact that C(Ω̄) is a
Banach algebra.) By standard theory, A(α) + w is sectorial for each w ∈ X, and generates
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an analytic semigroup. We also assume that A(α) is a positive operator or has a positive
resolvent.

2.2. Modeling for Two Competing Species. Consider the following system, which mod-
els the competition of two phenotypes of the same species, with traits α and β in S respec-
tively.

(2.2)


ut = A(α)u+ F (α,G(α)u+G(β)v)u
vt = A(β)v + F (β,G(α)u+G(β)v)v
u
∣∣
t=0

= u0 ∈ X+, v
∣∣
t=0

= v0 ∈ X+.

Denote X+ = {w ∈ C(Ω̄) : w ≥ 0 in Ω̄} and IntX+ = {w ∈ C(Ω̄) : w > 0 in Ω̄}. We work
with classical solutions according to [36, Definition 7.0.1].

Definition 1. A function (u, v) ∈ C1((0, T );X) ∩ C((0, T );D(A)) ∩ C([0, T );X) is said to
be a classical solution of (2.2) in the interval [0, T ) if (2.2) is satisfied for each t ∈ [0, T ),
and u(0) = u0, v(0) = v0.

It is well-known that (2.2) is invariant in X+ × X+ under our assumptions on A(α) and
A(β). In other words, (2.2) generates a semiflow {Φt}0<t<∞ on X+×X+. In fact, if u0, v0 ∈
X+ are both non-trivial, then (u, v) ∈ IntX+ × IntX+ for all t > 0.

We assume in this paper that (2.2) is dissipative, i.e. for all µ ∈ (0, 1) and p ∈ [1,∞],
each solution to (2.2) satisfies

(2.3) ‖(u, v)‖[X]2 ≤ C, ‖(u, v)‖[D(A)]2 ≤ C(1 + t−1), ‖(u, v)‖[DA(µ,p)]2 ≤ C(1 + t−µ)

where C depends only on ‖(u0, v0)‖[X]2 , DA(µ, p) denotes the real interpolation space between
X and D(A). (Note that the third condition of (2.3) can be obtained from the first two
conditions via interpolation.)

For example, if A(α) = α∆ for α > 0 complemented by Neumann boundary conditions,
then by [36, Corollary 3.1.24(ii)]

D(A) =

{
u ∈ ∩p≥1W

2,p
loc (Ω) : u,∆u ∈ C(Ω̄),

∂u

∂n

∣∣∣∣
∂Ω

= 0

}
is independent of α, and by [36, Theorem 3.1.30],

DA(µ,∞) =

{
C2µ(Ω̄) when µ ∈ (0, 1/2),{
w ∈ C2µ(Ω̄) : ∂w

∂n

∣∣
∂Ω

= 0
}

when µ ∈ (1/2, 1).

In the following, we work in the fractional power spaces Xµ for µ ∈ (0, 1) and remark that
Xµ ⊂ DA(µ,∞).

3. Tube Theorem

Suppose, for each α ∈ S, a single species with trait α always sustains a linearly stable
equilibrium θα ∈ IntX+; i.e.
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(T1): (Existence of linearly stable steady state θα) For each α ∈ S, (2.1) has a strictly
positive steady state θα ∈ IntX+ ∩D(A) which is a hyperbolic attractor; that is, if
we define the linear operator A0 by

A0z := A(α)z + F (α,G(α)θα)z + θαFw(α,G(α)θα)[G(α)z]

then there exists a0 > 0 such that the spectrum σ(A0) satisfies

Re(σ(A0)) ≤ −a0 < 0.

(T2): (Regularity of perturbation in α) There exists a positive smooth function g :

S → (0,∞) and a constant µ ∈ (0, 1), such that
(

1
g(α)

A(α)− 1
g(β)

A(β)
)
A(α)−µ is

bounded on X, where A(α)−µ is the fractional power of A(α). Moreover, εα,β =
‖( 1

g(α)
A(α)− 1

g(β)
A(β))A(α)−µ‖ tends to zero as |β − α| → 0.

Remark 3.1. (T2) is satisfied for instance if (i) A(α) is a bounded operator that depends
continuously on α, or if (ii) A(α) is a second order elliptic operator subject to a Robin or
Neumann boundary condition such that for some positive smooth function g : S → (0,∞),

A(α) = g(α)
∑
ij

aijDij +
∑
j

bj(α)Dj + c(α),

where aij is continuous in x ∈ Ω̄ and satisfies
∑

ij aij(x)ξiξj ≥ ν|ξ|2 for some ν > 0 and for

all x ∈ Ω̄ and ξ ∈ RN ; bj(α) and c(α) are continuous in x and smooth in α. Precisely, for
µ ∈ (1/2, 1), A(α)−µ is a bounded operator from X to D(Aµ) ⊂ DA(µ,∞) = {w ∈ C2µ(Ω̄) :
Bw
∣∣
∂Ω

= 0} (see [36, Proposition 2.2.15]), and 1
g(α)

A(α) − 1
g(β)

A(β) is a bounded operator

from {w ∈ C2µ(Ω̄) : Bw
∣∣
∂Ω

= 0} to X.

The tube theorem says that if u and v are phenotypes of the same species with similar
traits α ≈ β, then the total population of the two will be approximately the total population
of a single species, i.e. u + v ≈ θα. If we assume in addition stronger spectral properties,
which follow, e.g., if A(α) has a compact, strongly positive resolvent, then we can obtain a
stronger form of the Tube Theorem in infinite dimensions.

(T3): (Compact, Strongly Positive Resolvent) For each α, R(λ,A(α)) = (λ−A(α))−1

exists for all sufficiently large λ > 0, and is compact and strongly positive.

Theorem 3.1. Assume (T1) and (T2) hold. For each ε > 0 and α ∈ S, there exists δ > 0
such that if β ∈ (α− δ, α+ δ) and ‖u0 + v0− θα‖ < δ, then (u, v) exists globally in time, and
‖u+ v − θα‖ < ε for all t ≥ 0. Assume in addition that (T3) holds. Then

Φt
(
V δΓα

)
⊂ V εΓα,

where Γα = {(sθα, (1 − s)θα) : s ∈ [0, 1]} and V δΓα and V εΓα denote the δ− and ε−
neighborhoods of Γα in X ×X, respectively.
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Figure 1. Dynamics of (2.2) when β is close to α. The distance to Γα
of points (u, v) along a trajectory of (2.2) starting at (u0, v0) , defined by
dist((u, v),Γα) = inf0≤s≤1 ‖(u, v), (sθα, (1 − s)θα)‖, has the property that for
any ε > 0 there exists a δ > 0 such that dist((u, v),Γα) < ε for all t ≥ 0 if
dist((u0, v0),Γα) < δ. Moreover, ‖u+ v − θα‖X < ε for all t ≥ 0.

Proof of Theorem 3.1. From now on denote ‖ · ‖ = ‖ · ‖X or ‖ · ‖X×X depending on context.
We may assume without loss of generality that ‖u0 + v0 − θα‖ < 1.

Step 1: For all ε, there exists δ > 0 such that if

‖u0 + v0 − θα‖ < δ, then ‖u+ v − θα‖ < ε for all t ≥ 0.

Let w = u+ v. Then w satisfies

(3.1)

{
wt = A(α)w + F (α,G(α)w)w + [A(β)− A(α)]v + ηα,β
w(t) ∈ D(A) ⊂ X for t > 0,

where
(3.2)
ηα,β = [F (α,G(α)u+G(β)v)− F (α,G(α)w)]w+[F (β,G(α)u+G(β)v)− F (α,G(α)u+G(β)v)] v.

Then [A(β)−A(α)]v(t) will be estimated by (T2), and for some constant C = C(‖(u0, v0)‖) >
0, we have

(3.3) ‖ηα,β‖ ≤ C|β − α|.

Set z = w − θα = u+ v − θα.

Claim 1. As long as ‖w − θα‖ = ‖z‖ < 1, z satisfies

zt = A0z + f(z) + [A(β)− A(α)]v + ηα,β,

where f(z) = Fw(α,G(α)θα)[G(α)z]z +O(‖z‖2)w.
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To show the claim, we observe that z satisfies

zt = A(α)z + F (α,G(α)θα)z + [F (α,G(α)w)− F (α,G(α)θα)]w + [A(β)− A(α)]v + ηα,β

= A(α)z + F (α,G(α)θα)z +
[
Fw(α,G(α)θα)[G(α)z] +O(‖z‖2)

]
w + [A(β)− A(α)]v + ηα,β

= A(α)z + F (α,G(α)θα)z + Fw(α,G(α)θα)[G(α)z]θα + Fw(α,G(α)θα)[G(α)z]z +O(‖z‖2)w

+ [A(β)− A(α)]v + ηα,β

= {A(α)z + F (α,G(α)θα)z + Fw(α,G(α)θα)[G(α)z]θα}+ f(z) + [A(β)− A(α)]v + ηα,β

= A0z + f(z) + [A(β)− A(α)]v + ηα,β

where f(z) takes the form specified in the claim and we used the fact that X is a Banach
algebra in the second equality to get the O(‖z‖2) term. By the assumption that ‖z‖ =
‖w − θα‖ = ‖u+ v − θα‖ < 1,

(3.4) ‖f(z)‖ ≤ C‖z‖2.

Since A(α) is sectorial and A0 − A(α) is a bounded operator on X, we deduce that A0

is sectorial and generates an analytic semigroup. By (T1), there exists a0 > 0 such that
σ(A0) ⊂ {z ∈ C : Re z < −a0}. Hence there exists C1 ≥ 1 depending only on A0 and a0

such that (see, e.g. [25, Theorem 1.3.4])

(3.5) ‖etA0w‖ ≤ C1e
−a0t‖w‖, t ≥ 0.

Also, by the variation of parameters formula (see, e.g. [25, P. 52], [36, P. 124, Proposition
2.4.1]),

(3.6) z = etA0z0 +

∫ t

0

e(t−s)A0{f(z(s)) + [A(β)− A(α)]v(s) + ηα,β(s)} ds.

Next we estimate the integral term in the variation of parameters formula. We begin with∥∥∥∥∫ t

0

e(t−s)A0f(z(s)) + ηα,β ds

∥∥∥∥
≤ C1

∫ t

0

e−a0(t−s) [‖f(z(s)‖+ ‖ηα,β(s)‖] ds by (3.5)

≤ C2

∫ t

0

e−a0(t−s) [‖z(s)‖2 + |β − α|
]
ds by (3.3) and (3.4),

≤ C3

(
sup
[0,t]

‖z(s)‖2 + |β − α|

)
,

as long as ‖z‖ < 1 in [0, t]. Here C2, C3 are positive constants independent of the particular
solution (u, v).

Claim 2.
∥∥∥∫ t0 e(t−s)A0(A(β)− A(α))v ds

∥∥∥ ≤ Cε̃α,β, where ε̃α,β → 0 as |α − β| → 0 indepen-

dently of t > 0.
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To show the Claim 2, we note that A(α) = A0 + B(α) for some bounded linear operator
B(α) from X to X, and

(3.7) A(β)− A(α) =

(
A(β)− g(β)

g(α)
A(α)

)
+

(
g(β)

g(α)
− 1

)
(A0 +B(α)).

Hence∫ t

0

eA0(t−s)(A(β)− A(α))v(s) ds

= g(β)

∫ t

0

eA0(t−s)
(
A(β)

g(β)
− A(α)

g(α)

)
A(α)−µA(α)µv(s) ds+

(
g(β)

g(α)
− 1

)∫ t

0

eA0(t−s)(A0 +B(α))v(s) ds

= I + II

First we estimate I by [25, Theorem 14.4]:

‖I‖ ≤ Cεα,β

∫ t

0

∥∥eA0(t−s)∥∥ ‖A(α)µv(s)‖ ds ≤ Cεα,β

∫ t

0

e−a0(t−s)(1 + s−µ) ds ≤ Cεα,β,

where we have used (T2) and the dissipativity of the system (2.2) in the first and second
inequalities respectively. Next, we estimate II, again by [25, Theorem 14.4]:

‖II‖ ≤
∣∣∣∣g(β)

g(α)
− 1

∣∣∣∣ [∫ t

0

∥∥∥eA0(t−s)A
1
2
0

∥∥∥∥∥∥A 1
2
0 v(s)

∥∥∥ ds+

∫ t

0

∥∥eA0(t−s)B(α)v(s)
∥∥ ds]

≤ C

∣∣∣∣g(β)

g(α)
− 1

∣∣∣∣ [∫ t

0

(t− s)−
1
2 e−a0(t−s)(1 + s−

1
2 ) ds+

∫ t

0

e−a0(t−s) ds

]
≤ C

∣∣∣∣g(β)

g(α)
− 1

∣∣∣∣
where we have again used dissipativity in the second inequality. This finishes the proof of
Claim 2.

By Claim 2, we may deduce from (3.5), (3.6) and the calculation preceeding Claim 2 that

(3.8) ‖z(t)‖ ≤ C1‖z0‖+ ε̃α,β + C3

(
sup
[0,t]

‖z(s)‖2 + |β − α|

)
as long as sup[0,t] ‖z(s)‖ ≤ 1. Now fix any ε < min

{
1, 1

3C3

}
and choose |z0| and |β−α| small

enough that

ε̃α,β <
ε

3
, and C1‖z0‖+ C3|β − α| <

ε

max{2C1, 3}
.

Then ‖z0‖ ≤ ε/3 < 1/3 as C1 ≥ 1. Therefore ‖z‖ < ε < 1 for all small positive t > 0 and the
above argument holds. We claim that ‖z(t)‖ < ε for all t ≥ 0. To see the claim, let us suppose
to the contrary that {t > 0 : ‖z(t)‖ ≥ ε} is non-empty, and let t∗ = inf{t > 0 : ‖z(t)‖ ≥ ε}.
By ε < 1/(3C3), (3.6) and definition of t∗, for all t ∈ [0, t∗],

‖z(t)‖ ≤ C1‖z0‖+ ε̃α,β + C3

(
sup
[0,t]

‖z(s)‖2 + |β − α|

)
< 2ε/3 + C3ε

2 < ε.
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Hence supt∈[0,t∗] ‖z(t)‖ < ε. This contradicts the finiteness of t∗ and finishes Step 1.
Step 2: It remains to show that dist(u, span{θα}) remains small. In such event

dist(v, span{θα}) ≤ dist(u+ v, span{θα}) + dist(u, span{θα})

also remains small (by Step 1, ‖u+ v − θα‖ is small). Now,

ut = A(α)u+ F (α,G(α)u+G(β)v)u

= [A(α) + F (α,G(α)θα)]u+ η̄(t)

for some

η̄(t) = [F (α,G(α)u+G(β)v)− F (α,G(α)θα)]u = O(‖z‖+ |β − α|).

By Step 1, we have supt>0 ‖η̄(t)‖ = O(ε).
Next, we recall the following spectral decomposition result.

Theorem 3.2. [25, Theorem 1.5.2] Suppose A is a closed linear operator in X (with domain
D(A) ⊂ X) with spectrum σ(A) = {λ1} ∪ σ̂ such that σ̂ ∪ {∞} is closed in the compactified
complex plane. Let

E1 :=
1

2πi

∫
∂Bε(λ1)

(λ− A)−1 dλ, E2 :=
1

2πi

∫
Γ

(λ− A)−1 dλ

where Γ is a positively oriented smooth curve with arg λ → ±Θ as |λ| → ∞ for some
Θ ∈ (π/2, π), and having σ̂ in the interior and λ1 in the exterior. Then E1, E2 are the spectral
projections associated with the spectral sets {λ1} and σ̂. Define Xj = Ej(X) (j = 1, 2). Then
X = X1 ⊕X2 and Xj (j = 1, 2) are invariant under A. Moreover, if Aj is the restriction of
A to Xj, then

A1 : X1 → X1 is bounded, σ(A1) = {λ1},
while

D(A2) = D(A) ∩X2 and σ(A2) = σ̂.

Proof. See [16, Chapter 7] or [43, Theorem 5.7 A,B]. �

Take Ā = A(α) +F (α,G(α)θα). Since Ā is sectorial, σ(Ā)∪{∞} is closed in C. We recall
the spectral properties of linear operators with strongly positive, compact resolvent, see, e.g.
[34].

Proposition 3.3. If A : D(A) → X has a strongly positive, compact resolvent, then A has
a principal eigenvalue µ1 which (i) is real and simple, (ii) has an eigenfunction φ1 ∈ IntX+,
and is such that (iii) σ(A) \ {µ1} ⊂ {z ∈ C : Re z < µ1 − a0} for some a0 > 0. Moreover, if
µ is an eigenvalue of A with an eigenfunction φ ∈ X+ \ {0}, then µ = µ1.

Therefore, by (T3), 0 is a simple eigenvalue of Ā with eigenfunction θα, and σ(Ā) can be
decomposed into the closed sets {0} and σ(Ā)\{0}, and σ(Ā)\{0} ⊂ {z ∈ C : Re z < −a0}.
Therefore, by Theorem 3.2,

u = E1u+ E2u = u1 + u2,
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and

Ā2 = Ā
∣∣
E2(X)=X2

: X2 → X2.

Then
d

dt
u2 = Ā2u2 + E2η̄(t).

Hence u2 = etĀ2u2(0) +
∫ t

0
e(t−s)Ā2E2η̄(s) ds, so that

‖u2(t)‖ ≤ C1e
−a0t‖u2(0)‖+ C2 sup

[0,t]

‖E2η̄(s)‖ ≤ C3(e−a0t‖u2(0)‖+ ε).

Hence

dist(u, span{θα}) = ‖u2(t)‖ ≤ C3(ε+ ‖u2(0)‖) for all t ≥ 0.

Now, if we choose the initial data (u(0), v(0)) close to Γα so that ‖u2(0)‖ < ε, then we can
deduce that

dist(u, span{θα}) ≤ 2C3ε for all t ≥ 0.

This completes the proof of Theorem 3.1. �

Remark 3.2. In fact, Theorem 3.1 continues to hold if the compactness and positivity as-
sumption in (T3) is weakened to

(T3′): (Spectral Property I) In addition to (T1), assume 0 is a simple eigenvalue of the
operator Aα := A(α) + F (α,G(α)θα), and that σ(Aα) \ {0} ⊂ {z ∈ C : Re z < −a0}
for some positive constant a0 > 0.

4. Graph Transform

The most general theory of compact, normally hyperbolic, invariant manifolds for finite-
dimensional dynamical systems was independently obtained by Hirsch, Pugh, and Shub [28]
and Fenichel [20]. Since then, the theory has been generalized to the infinite-dimensional
setting.

For semiflows in a Banach space, the Hadamard method has been successfully applied in
the contexts of (i) invariant manifolds without boundary [2]; or (ii) invariant manifolds with
boundary that is either overflowing or inflowing [3].

In this section, we apply the Hadamard graph transform technique [23] to prove the
persistence of a one-dimensional invariant manifold of equilibria with respect to a semiflow
in a Banach space. The methods we use to construct the inertial manifolds are adaptations
of the arguments in the study of center manifolds in finite-dimensional spaces [11].

In our settings, the boundary of our invariant manifold lies on two invariant subspaces
X+ × {0} and {0} × X+ of the flow, i.e. it is neither overflowing nor inflowing. As a
consequence, the graphs we are working on do not have a common domain. For this purpose,
we develop a generalized distance function (for which there is no triangle inequality) and
prove the existence of a fixed point via a modified contraction mapping argument.

Beside the Hadamard graph transformation, another important technique that is fre-
quently being used in the classical center manifold theory is the Lyapunov-Perron method
[37, 39]. See, e.g. [10]. This method relies on the variation of constants formula and allows
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one to obtain optimal estimates. For our purposes, the Hadamard method is more appro-
priate as it respects the invariant manifolds X+×{0} and {0}×X+ to which the boundary
of our invariant manifold belongs.

When α = β, it can be shown that (2.2) has a one-dimensional manifold of steady states,
Γα = {(sθα, (1−s)θα) : s ∈ [0, 1]} that is an exponential attractor. The tube theorem asserts
that for β sufficiently close to α, any trajectory of (2.2) that starts close to Γα remains close
to Γα for all time.

In this section, we assume the following condition which implies (T2).

(T2′): There exist constants C > 0 and µ ∈ (0, 1) such that ‖[A(β)−A(α)]A(α)−µ‖ ≤
C|β − α| for all α, β ∈ S.

We shall apply the method of Graph Transform, due to Hadamard [23], to show that for
β close to α, (2.2) has a one-dimensional invariant manifold that is exponentially attracting
and that connects the two semi-trivial steady states (θα, 0) and (0, θβ). Although the proof is
inspired by the arguments of [11], new methods are necessary due to the fact that the flow is
generated by an unbounded operator and our invariant manifold has boundary. In particular,
we develop a contraction mapping principle for a generalized distance function where the
triangle inequality fails to hold. Let Φt

α,β be the semiflow generated by the competition
system (2.2) in X ×X.

Theorem 4.1. Suppose (T1), (T2′), (T3) hold and let α ∈ S. There exists a constant δ > 0
such that for all β ∈ (α − δ, α + δ), there is a closed one-dimensional invariant manifold
Γ∗ ⊂ V δΓα with respect to the semiflow Φt

α,β generated by (2.2) that can be expressed as the
graph of a Lipchitz continuous function over Γα, connecting the semi-trivial steady states
(θα, 0) and (0, θβ). Moreover, Γ∗ attracts all trajectories starting in V δΓα.

4.1. The equations for p, z, U . We make the transformation Xµ×Xµ → R×(Xµ×E2X
µ):

(u, v) 7→ (p, q) = (p, z, U) given by

p = (E1u)/θα, z = u+ v − θα, U = E2u,

with the inverse transformation (û(p, q), v̂(p, q)) : R× (Xµ ×E2X
µ)→ Xµ ×Xµ defined by

(4.1) u = û(p, q) = pθα + U, v = v̂(p, q) = z − (pθα + U) + θα,

where Ei, X
µ
i = EiX

µ are the spectral projection and subspaces given by Theorem 3.2
applied to Ā

∣∣
Xµ = [A(α) + F (α,G(α)θα)]

∣∣
Xµ .

Now, by Claim 1, (p, z, U) satisfies

(4.2)

 pt = E1[(F (α,G(α)u+G(β)v)− F (α,G(α)θα))(U + pθα)]/θα
zt = A0z + f(z) + [A(β)− A(α)]v + ηα,β
Ut = Ā2U + E2[(F (α,G(α)u+G(β)v)− F (α,G(α)θα))(U + pθα)]

where ηα,β = ηα,β(p, z, U) = ηα,β(u, v) satisfies (3.2); Ā = A(α) +F (α,G(α)θα) with spectral
projections Āi with respect to the spectral spaces Xi (i = 1, 2).
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Figure 2. A caricature of the coordinate change from (u, v) to (p, q) =
(p, z, U) which underlies the Graph Transform. Here (u, v) = (û(p, q), v̂(p, q)),
and û = pθα + U , v̂ = (1− p)θα + z − U , where p ∈ R is now the independent
variable.

Let (pi, zi, Ui) (i = 1, 2) be two solutions of (4.2), and denote p̃ = p2− p1, z̃ = z2− z1, and
Ũ = U2 − U1, then

(4.3) z̃t = A0z̃+f(z2)−f(z1)+[A(β)−A(α)](z̃−Ũ− p̃θα)+ηα,β(p2, z2, U2)−ηα,β(p1, z1, U1),

where ‖f(z)‖ ≤ o(‖z‖) and ‖ηα,β‖ ≤ C|β − α|. For Ũ , we compute

Ũt − Ā2Ũ = E2[F (α,G(α)u2 +G(β)v2)u2 − F (α,G(α)u1 +G(β)v1)u1 − F (α,G(α)θα)(Ũ + p̃θα)]

= E2

[
F (α,G(α)u2 +G(β)v2)(Ũ + p̃θα) + Fw(α,G(α)u1 +G(β)v1)[G(α)(Ũ + p̃θα)

+G(β)(z̃ − Ũ − p̃θα)]u1 − F (α,G(α)θα)(Ũ + p̃θα) + h.o.t.
]

Here ‖h.o.t.‖ ≤ o(|p̃|+ ‖z̃‖+ ‖Ũ‖). Therefore, Ũ satisfies

(4.4) Ũt = Ā2Ũ + E2 [Fw(α,G(α)θα)[G(β)z̃]p1θα] + E2F̃1

where
(4.5)
F̃1 = (F (α,G(α)u2 +G(β)v2)− F (α,G(α)θα))(Ũ + p̃θα)

+Fw(α,G(α)u1 +G(β)v1)[(G(α)−G(β))(Ũ + p̃θα)]u1 + Fw(α,G(α)u1 +G(β)v1)[G(β)z̃]U1

+(Fw(α,G(α)u1 +G(β)v1)− Fw(α,G(α)θα))[G(β)z̃]p1θα + h.o.t.

satisfies

(4.6) ‖F̃1‖ ≤ ε|p̃|+ C0(‖z̃‖+ ‖Ũ‖),

where ε is some arbitrarily small constant in the application of tube theorem, provided |β−α|
and dist((pu, zi, Ui), {(p, z, U) : z = 0 and U = 0}) are chosen sufficiently small. Finally, we
compute the equation for p̃, which follows directly from the computations for Ũ , but with
projection operator E1 instead of E2.

(4.7) p̃t = E1 [Fw(α,G(α)θα)[G(β)z̃]p1θα] + E1F̃1.
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4.2. Linear operator on (z, U). For each given Hölder continuous p(t) : [0,∞)→ R such
that supt>0 |p(t)| ≤ 2, we define the non-autonomous operator L(t) : D(A) × E2(D(A)) →
X ×X2 by

L(t)

(
z
U

)
=

(
A0z

Ā2U + E2 [Fw(α,G(α)θα)[G(β)z]p(t)θα]

)
,

where A0 is the sectorial operator given in assumption (T1). Then it is well-known [25,
Chapter 7] that the linear non-autonomous problem

d

dt

(
z(t)
U(t)

)
= L(t)

(
z(t)
U(t)

)
generates a family of evolution operators Ψ(t, τ) (for 0 ≤ τ ≤ t) defined by(

z(t)
U(t)

)
= Ψ(t, τ)

(
z(τ)
U(τ)

)
=

(
eA0(t−τ)z(τ)

eĀ2(t−τ)U(τ) +
{ ∫ t

τ
eĀ2(t−s)E2[Fw(α,G(α)θα)[G(β)eA0(s−τ)z(τ)]p(s)θα] ds

} )
Next, define the fractional power space Xµ with norm ‖ · ‖µ = ‖(A0 − I)µ · ‖, and recall
the notation q = (z, U) where ‖q‖µ = ‖z‖µ + ‖U‖µ. Suppose there exists γ > 0 such that
for each 0 ≤ ν ≤ µ ≤ 1, there exists Cµ,ν such that ‖eA0tz0‖µ ≤ Cµ,νe

−γtt−(µ−ν)‖z0‖ν and

‖eĀ2tU0‖µ ≤ Cµ,νe
−γtt−(µ−ν)‖U0‖ν . (This holds, for instance, for sectorial operators satisfying

(3.5).) Then there exists δ ∈ (0, δ0) such that for each µ, ν ∈ [0, 1] with ν ≤ µ, there exists
C ′µ,ν (independent of p(t) as long as sup |p| ≤ 2) such that

(4.8) ‖q(t)‖µ = ‖Ψ(t, τ)q(τ)‖µ ≤ C ′µ,νe
−γ(t−τ)(t− τ)−(µ−ν)‖q(τ)‖ν

for all 0 ≤ τ < t.
Define also the norm ‖Ψ(t, 0)‖0,µ from X ×X2 to Xµ ×Xµ

2 , so that by (4.8), we have

(4.9) ‖Ψ(t, 0)‖0,µ ≤ C ′µ,0e
−γtt−µ‖q(0)‖.

where ‖Ψ(t, 0)‖0,µ denotes the norm of Ψ(t, 0) regarded as an operator from X × X2 to
Xµ ×Xµ

2 .

4.3. Estimates relating to exponential dichotomy. Suppose (pi, zi, Ui) = (pi, qi) (i =
1, 2) are two solutions of (4.2). By the tube theorem, we may take β sufficiently close to α
and assume that ‖qi‖ is arbitrarily close to 0 for all t ≥ 0.

Proposition 4.2. Suppose (T2′) holds for some µ ∈ (0, 1). For each fixed T > 0, there
exists a constant C(T ) such that for each ε > 0, there exists δ > 0 such that if |β − α| < δ
then any solutions (pi, qi) (i = 1, 2) of (4.2) satisfying sup[0,T ] ‖qi(t)‖µ < δ, sup[0,T ] |pi(t)| ≤ 2
also satisfy, for 0 ≤ t ≤ T :

(4.10) ‖q2(t)− q1(t)‖µ ≤ (‖Ψ(t, 0)‖µ,µ + C(T )ε)‖q2(0)− q1(0)‖µ + C(T )ε|p2(0)− p1(0)|

(4.11) |p2(t)− p1(t)| ≤ (eC(T )ε + C(T )ε)(|p̃0|+ C0‖q̃0‖µ)
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and

(4.12) |p2(t)−p1(t)| ≥ e−C(T )ε(1−C(T )ε)|p2(0)−p1(0)|−C0(eC(T )ε+C(T )ε)‖q2(0)−q1(0)‖µ,

where ‖Ψ(t, 0)‖µ,µ is the norm of Ψ(t, 0), defined in Subsection 4.2 by taking p = p1, as a
function from Xµ×Xµ

2 to Xµ×Xµ
2 ; C0 is a constant independent of T and ε. In particular,

by (4.8),
(4.13)
‖q2(t)−q1(t)‖µ ≤ (C ′µ,µe

−γt+C(T )ε+C(T )ε)‖q2(0)−q1(0)‖µ+C(T )ε|p2(0)−p1(0)| for t ∈ [0, T ].

Proof. Let (pi, qi) = (pi, zi, Ui) (i = 1, 2) be two solutions of (4.2). Let q̃ = q2 − q1 and
q̃0 = q2(0) − q1(0). By definition of Ψ(t, τ) in Subsection 4.2 with p = p1, we have by (4.3)
and (4.4),

q̃(t) = Ψ(t, 0)q̃0

+

∫ t

0

Ψ(t, τ)

[
f(z2)− f(z1) + [A(β)− A(α)](z̃ − Ũ − p̃θα + ηα,β(z2, U2, p2)− ηα,β(z1, U1, p1))

E2F̃1

]
dτ,

where F̃1 is given by (4.5). Now, ‖f(z2)− f(z1)‖ ≤ C(‖z2‖+ ‖z2‖)‖z̃‖) and also

‖[A(β)− A(α)](z̃ − Ũ − p̃θα + ηα,β(z2, U2, p2)− ηα,β(z1, U1, p1))‖
≤ ‖[A(β)− A(α)]A(α)−µ‖‖Aµ((z̃ − Ũ − p̃θα + ηα,β(z2, U2, p2)− ηα,β(z1, U1, p1))‖
≤ C(|β − α|)(‖q̃‖µ + |p̃|).

This allows one to choose, for each ε > 0, a constant δ > 0 such that if β ∈ (α − δ, α + δ),
and sup[0,T ] ‖qi(t)‖µ < δ, then, recalling the inequality (4.9),

(4.14)
‖q̃(t)‖µ ≤ ‖Ψ(t, 0)‖µ,µ‖q̃0‖µ + ε

∫ t
0
‖Ψ(t, s)‖0,µ(‖q̃(s)‖µ + |p̃(s)|) ds

≤ ‖Ψ(t, 0)‖µ,µ‖q̃0‖µ + C0ε
∫ t

0
e−γ(t−s)(t− s)−µ(‖q̃(s)‖µ + |p̃(s)|) ds,

for all t ∈ [0, T ]. By (4.6) and (4.7), we have (provided |α− β| � 1 and ‖qi‖µ � 1)

|p̃t| ≤ C0(‖z̃‖µ + ‖Ũ‖µ) + ε|p̃| = C0‖q̃‖µ + ε|p̃|.

By integration, we have

(4.15) |p̃(t)| ≤ eεt|p̃0|+ C0

∫ t

0

eε(t−τ)‖q̃(τ)‖µ dτ.

Substitute (4.15) into (4.14). We have

‖q̃(t)‖µ ≤ ‖Ψ(t, 0)‖µ,µ‖q̃0‖µ + C0ε

∫ t

0

e−γ(t−τ)(t− τ)−µ‖q̃(τ)‖µdτ

+ C0ε

∫ t

0

e−γ(t−s)(t− s)−µ
[
eεs|p̃0|+ C0

∫ s

0

eε(s−τ)‖q̃(τ)‖µ dτ
]
ds

≤ ‖Ψ(t, 0)‖µ,µ‖q̃0‖µ + C(T )ε|p̃0|+ C(T )ε

∫ t

0

(t− τ)−µ‖q̃(τ)‖µ dτ.



RESIDENT INVADER DYNAMICS 15

By applying Gronwall’s inequality [25, Lemma 7.1.1], we deduce that

‖q̃(t)‖µ ≤ ‖Ψ(t, 0)‖µ,µ‖q̃0‖µ + C(T )ε|p̃0|+ C(T )ε

∫ t

0

(t− τ)−µ [‖Ψ(τ, 0)‖µ,µ‖q̃0‖µ + C(T )ε|p̃0|] dτ

≤ (‖Ψ(t, 0)‖µ,µ + C(T )ε)‖q̃0‖µ + C(T )ε|p̃0|.

This proves (4.10). Substituting the previous line, as well as (4.8), into (4.15), one may
conclude that for some C0 independent of ε and T ,

(4.16)

|p2(t)− p1(t)| = |p̃(t)|
≤ eεt|p̃0|+ C0

∫ t
0
eε(t−τ) [(‖Ψ(τ, 0)‖µ,µ + C(T )ε) ‖q̃0‖µ + C(T )ε|p̃0|] dτ

≤ (eC(T )ε + C(T )ε)(|p̃0|+ C0‖q̃0‖µ)

for 0 ≤ t ≤ T . This proves (4.11). To show (4.12), we deduce similarly from (4.7) that

|p̃t| ≥ −ε|p̃| − C0‖q̃‖µ.

By substituting (4.10) into the previous line, we have

|p̃t|+ ε|p̃| ≥ −C0 [(‖Ψ(t, 0)‖µ,µ + C(T )ε) ‖q̃0‖µ + C(T )ε|p̃0|]
≥ −C0

[
(e−γt + C(T )ε)‖q̃0‖µ + C(T )ε|p̃0|

]
,

where we used (4.8). Integrating, we obtain

eεt|p̃(t)| ≥ |p̃0| − C0

[
(eC(T )ε + C(T )ε)‖q̃0‖µ + C(T )ε|p̃0|

]
for all t ∈ [0, T ]. This proves (4.12). �

4.4. Main Results. We introduce a function space to which the Graph Transform will
apply. We consider the collection of functions h = (hz, hU) : Ih → Xµ×E2(Xµ) whose graphs
over an interval Ih = [ah, bh] (depending on h) lie in V δΓα, with the endpoints corresponding
to a semi-trivial state, i.e. (û, v̂)(ah, h(ah)) ∈ {0} × X+ and (û, v̂)(bh, h(bh)) ∈ X+ × {0}.
See Figure 3. Precisely, if we recall the notations introduced in (4.1), that amounts to

(4.17) hU(ah) + ahθα = 0 and hz(bh)− (hU(bh) + bhθα) + θα = 0.

This motivates us to define

Ξ := {h = (hz, hU) : [ah, bh]→ Xµ × E2(Xµ) : sup ‖h‖µ < δ and (4.17) holds.}

where δ is the constant in the statement of Proposition 4.2, so that Graph(h) ⊂ V δΓα for
all h ∈ Ξ. Next, we define

(4.18) Ξρ :=

{
h ∈ Ξ :

‖h(p2)− h(p1)‖µ
|p2 − p1|

≤ ρ for all p2, p1 ∈ (ah, bh)

}
.

We consider small values of ρ so that

(4.19)
1

2
θα − q′ > 0 for all q′ ∈ Xµ with ‖q′‖µ < ρ,
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(which is possible since θα ∈ IntX+) and ∩h∈ΞρIh 6= ∅, e.g.
[

1
3
, 2

3

]
⊂ Ih for all h ∈ Ξρ. We

also note that for each h ∈ Ξρ, (û, v̂)(p, h(p)) ∈ ({0}×X+)∪ (X+×{0}) if and only if p = ah
or p = bh. We define the generalized distance function

d(h, h′) = sup
Ih∩Ih′

‖h(p)− h′(p)‖,

which satisfies d(h, h′) ≥ 0 for all h, h′ ∈ Ξρ with equality if and only if Ih = Ih′ and h = h′.
Although the triangle inequality fails to hold for d, the generalized distance function d suffices
for our purpose of locating a fixed point of a contraction mapping.

Figure 3. Illustration of the graph of h ∈ Ξρ with domain [ah, bh]. Here
h(p) = (hz(p), hU(p)) ∈ Xµ × E2(Xµ) for ah ≤ p ≤ bh.

We first characterize the topology of Ξρ induced by the generalized metric d.

Lemma 4.1. Suppose hn, h
∗ ∈ Ξρ, then d(hn, h

∗) → 0 if and only if ahn → ah∗, bhn → bh∗

and for each ε > 0,

sup
[ah∗+ε,bh∗−ε]

‖hn − h∗‖µ → 0.

i.e., the limit for every convergent sequence hn under the generalized metric d is unique.

Proof. For convenience of notation, we denote

an := ahn , bn := bhn , a∗ := ah∗ , b∗ := bh∗ .

First, we assume an → a∗, bn → b∗ and for each given ε > 0, sup[a∗+ε,b∗−ε] ‖hn − h∗‖µ → 0.
We can then choose N such that for all n ≥ N ,

max{|an − a∗|, |bn − b∗|} < ε and sup
[a∗+ε,b∗−ε]

‖hn − h∗‖µ < ε.
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For each p ∈ [an, bn] ∩ [a∗, b∗], there exists p0 ∈ [a∗ + ε, b∗ − ε] such that |p− p0| < 2ε, hence
by the fact that hn, h

∗ ∈ Ξρ, i.e. uniform Lipschitz property, we deduce

‖hn(p)− h∗(p)‖µ ≤ ‖hn(p)− hn(p0)‖µ + ‖hn(p0)− h∗(p0)‖µ + ‖h∗(p0)− h∗(p)‖µ
≤ 2ρε+ sup

[a∗+ε,b∗−ε]
‖hn − h∗‖µ + 2ρε

< (4ρ+ 1)ε.

This shows that d(hn, h
∗) < (4ρ+ 1)ε for all n ≥ N . Since ε > 0 is arbitrary, d(hn, h

∗)→ 0.
Conversely, assume d(hn, h

∗)→ 0. Define

â = max{lim sup
n→∞

an, a
∗}, and b̂ = min{lim inf

n→∞
bn, b

∗}.

Then it follows from definition that for each ε > 0, sup[â+ε,b̂−ε] ‖hn − h∗‖µ → 0.
It remains to show that

(4.20) lim
n→∞

an = a∗ and lim
n→∞

bn = b∗,

which implies that â = a∗ and b̂ = b∗. We will show (4.20) with two claims.

Claim 3. lim sup
n→∞

an ≤ a∗ and lim inf
n→∞

bn ≥ b∗.

Suppose there is a subsequence {n′} so that a0 = limn′→∞ an′ > a∗. Then by uniform
Lipschitz continuity, hn′(an′)→ h∗(a0). Thus, by taking limit in (hn′)U(an′) +an′θα = 0 (the
first relation of (4.17)), we obtain

(4.21) (h∗)U(a0) + a0θα = 0.

Since h∗ ∈ Ξρ, we also have

(4.22) (h∗)U(a∗) + a∗θα = 0.

Subtracting (4.22) from (4.21), we deduce that

(a0 − a∗)
[
θα +

(h∗)U(a0)− (h∗)U(a∗)

a0 − a∗

]
= 0,

which contradicts the fact that a0 > a∗ and the expression in the square bracket is non-zero
(by (4.19)). This shows lim sup

n→∞
an ≤ a∗. The proof for lim inf

n→∞
bn ≥ b∗ is analogous. This

shows Claim 3.

Claim 4. lim inf
n→∞

an ≥ a∗ and lim sup
n→∞

bn ≤ b∗.

Suppose lim inf
n→∞

an < a∗, then there is a subsequence {n′} such that a0 := lim
n′→∞

an′ < a∗.

Then a∗ ∈ [an′ , bn′ ] for all sufficiently large n′, and d(hn, h
∗)→ 0 implies that

(4.23) (hn′)U(a∗) + a∗θα → (h∗)U(a∗) + a∗θα = 0,
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as n′ → ∞. Here we used h∗ ∈ Ξρ and the first relation of (4.17) in the last equality.
Subtracting

(4.24) (hn′)U(an′) + an′θα = 0

from (4.23), we deduce, by (4.19) that

0 = lim
n′→∞

(a∗ − an′)
[
θα +

(hn′)U(a∗)− (hn′)U(an′)

a∗ − an′

]
≥ lim

n′→∞
(a∗ − an′)

θα
2
> 0.

This contradiction establishes lim inf
n→∞

an ≥ a∗. The proof of lim sup
n→∞

bn ≤ b∗ is analogous and

is omitted. This proves Claim 4 and the proof of Lemma 4.1 is completed. �

Next, we show that the contraction mapping principle holds for our generalized metric.

Proposition 4.3. Suppose ρ is sufficiently small and T ∗ is a contraction mapping from Ξρ

into Ξρ, i.e. there exists κ ∈ (0, 1) such that d(T ∗h, T ∗h′) ≤ κd(h, h′) for all h, h′ ∈ Ξρ, then
there exists a unique h∗ ∈ Ξρ such that T ∗h∗ = h∗.

Proof. Suppose ρ is chosen sufficiently small so that I0 = ∩h∈ΞρIh 6= ∅ and (4.19) holds. Take
a particular h0 ∈ Ξρ, and let hn = (T ∗)nh0. We are going to show that there exists h∗ ∈ Ξρ

such that limn→∞ d(hn, h
∗) = 0 and eventually that h∗ = T ∗h∗.

By the standard Contraction Mapping Theorem and the uniform Lipschitz continuity of
the sequence, hn converges uniformly on the interval

lim inf
n→∞

Ihn = [lim sup ahn , lim inf bhn ] := [a∗, b∗]

to some h∗. Recall the notations an := ahn and bn := bhn , and let {n′} be a subsequence so
that an′ → a∗ and bn′ → b∗.

Claim 5. lim
n′→∞

hn(an′) = h∗(a∗) and lim
n→∞

hn(bn′) = h∗(b∗).

Given arbitrary ε0 > 0, then a∗ + ε0 ∈ [an′ , bn′ ] for all large n′. Hence,

‖hn(an′)− h∗(a∗)‖µ ≤ ‖hn(an′)− hn(a∗ + ε0)‖µ + ‖hn(a∗ + ε0)− h∗(a∗)‖µ.
Since |an′ − a∗| < ε0 for all sufficiently large n′, we let n′ →∞ in the above, so that

lim sup
n′→∞

‖hn(an′)− h∗(a∗)‖µ ≤ 2ρε0 + ‖h∗(a∗ + ε0)− h∗(a∗)‖µ

holds for each ε0 > 0. Letting ε0 → 0, and using the (Lipschitz) continuity of h∗, we have
shown limn′→∞ hn(an′) = h∗(a∗). The proof for limn′→∞ hn(bn′) = h∗(b∗) is analogous. This
proves Claim 5.

By Claim 5, we deduce, by passing to the limit in

(hn′)U(an′) + an′θα = 0 and (hn′)z(bn′)− ((hn′)U(bn′) + bn′θα) + θα = 0

that
(h∗)U(a∗) + a∗θα = 0 and (h∗)z(b

∗)− ((h∗)U(b∗) + b∗θα) + θα = 0.

This shows that h∗ ∈ Ξ, with Dom(h∗) = [a∗, b∗]. Since uniform convergence preserves
Lipschitz continuity, we conclude that h∗ ∈ Ξρ. We can then repeat Claim 4 of Proof of
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Lemma 4.1 to show that the full sequences an → a∗ and bn → a∗. By Lemma 4.1, this
implies d(hn, h

∗)→ 0.

Claim 6. If d(hn, h
∗)→ 0, then d(hn+1, T

∗h∗)→ 0.

Claim 6 follows easily from the fact that T ∗ is a contraction, so that

d(hn+1, T
∗h∗) = d(T ∗hn, T

∗h∗) ≤ κd(hn, h
∗)→ 0.

By the characterization in Lemma 4.1, the limit of {hn} and {hn+1} in Ξρ is the same, this
gives h∗ = T ∗h∗, which proves the existence of a fixed point in Ξρ.

For uniqueness, suppose h∗i (i = 1, 2) are fixed points of T ∗ in Ξρ, then d(h∗1, h
∗
2) =

d(T ∗h∗1, T
∗h∗2) ≤ κd(h∗1, h

∗
2), which implies that d(h∗1, h

∗
2) = 0, i.e. h∗1 = h∗2. The proof is

finished. �

For each h ∈ Ξρ, the graph of h is given by Graph(h) := {(p, h(p)) : p ∈ Ih = [ah, bh]}.
Now, we define our Graph Transform T ∗.

Let Ξρ (ρ is a positive constant to be chosen) be as before, and let ε, T be some positive
constants yet to be chosen. Let ΦT denote the time T map of the semiflow (4.2). Define the
Graph Transform T ∗ : Ξρ → Ξρ by

T ∗h = H, where Graph(H) = ΦT (Graph(h)).

The existence of an exponentially attracting, one-dimensional invariant manifold for the
system (4.2) is an immediate consequence of the following proposition.

Proposition 4.4. Fix α ∈ S. There exists ρ ∈ (0, 1), T > 0 and δ > 0 sufficiently small
such that for all β ∈ (α− δ, α + δ), the following holds:

(i) The Graph transform T ∗ : Ξρ → Ξρ is well-defined.
(ii) T ∗ : Ξρ → Ξρ is a contraction mapping with respect to the generalized distance

function d.
(iii) Let h∗ ∈ Ξρ be the fixed point of T ∗. Then Graph(h∗) is an invariant Lipschitz

manifold of (4.2). i.e. Φt(Graph(h∗)) = Graph(h∗) for all t > 0.

Proof. We will first fix the constants T , ρ and then fix ε. Let γ be as given in Subsection
4.2, independent of T , ε. Choose T > 0 large enough so that

(4.25) max{C ′µ,µ, C0}e−γT/3 <
2

9
and C ′µ,µe

−4γT/3 · 3C0 + C ′µ,µe
−γT < 1

where C ′µ,µ is given by (4.8) and C0 is the maximum of those appearing in (4.12) and (4.11).
Then choose

(4.26) ρ = e−γT/3.

Lemma 4.2. If T > 0 is such that (4.25) holds, there exists ε = ε(T ) sufficiently small so
that (4.27) - (4.31) in the following hold:

(4.27)
eC(T )ε + C(T )ε

e−C(T )ε(1− C(T )ε)− C0(eC(T )ε + C(T )ε)e−γT/3
<

3

2
,



20 RESIDENT INVADER DYNAMICS

(4.28)
C(T )ε

e−C(T )ε(1− C(T )ε)− C0(eC(T )ε + C(T )ε)e−γT/3
<
e−γT/3

2
,

(4.29)
(C ′µ,µe

−γT/3 + C(T )ε)e−γT/3 + C(T )ε

e−C(T )ε(1− C(T )ε)− C0(eC(T )ε + C(T )ε)e−γT/3
<
e−γT/3

3
,

(4.30)

e−C(T )ε(1−C(T )ε)−C0(eC(T )ε+C(T )ε)e−γT/3 >
2

3
and (eC(T )ε+C(T )ε)(1+C0e

−γT/3) <
4

3
,

and

(4.31)
[
(C ′µ,µe

−γT + C(T )ε)e−γT/3 + C(T )ε
]
·3(eC(T )ε+C(T )ε)C0 +(C ′µ,µe

−γT +C(T )ε) < 1,

where C(T ) is as in Proposition 4.2.

Proof. By the first inequality of (4.25), C0e
−γT/3 < 1

3
and 1 − C0e

−γT/3 > 2
3
, hence (4.27)

and (4.30) are satisfied for all ε sufficiently small. Also, (4.28) is satisfied by all small ε. By
the first inequality in (4.25), C ′µ,µe

−2γT/3 < 2
9
e−γT/3 and hence (4.29) is satisfied for small ε.

Finally, (4.31) follows from the second inequality in (4.25). �

Now we begin the proof of part (i) of Proposition 4.4. Let h ∈ Ξρ. We wish to show
that T ∗h ∈ Ξρ. To show that ΦT (Graph(h)) can be represented as the graph of a Lipschitz
function H from a subset of R to the q = (z, U) space (which is a subset of Xµ ×Xµ

2 ), it is

equivalent to show that, for any (p′i, q
′
i) ∈ ΦT (Graph(h)) (i = 1, 2), we have

‖q′2−q′1‖µ
|p′2−p′1|

≤ ρ.

Let (p′i, q
′
i) ∈ ΦT (Graph(h)) (i = 1, 2) be given. By definition, there exists (pi, qi) ∈

Graph(h) (i = 1, 2) such that (p′i, q
′
i) = (pi(T ), qi(T )) := ΦT (pi, qi). We proceed to estimate

the Lipschitz coefficient of the resulting graph. By (4.10) and (4.12), for any t ∈ [0, T ],

‖q2(t)− q1(t)‖µ
|p2(t)− p1(t)|

≤ (‖Ψ(t, 0)‖µ,µ + C(T )ε)‖q2(0)− q1(0)‖µ + C(T )ε|p2(0)− p1(0)|
e−C(T )ε(1− C(T )ε)|p2(0)− p1(0)| − C0(eC(T )ε + C(T )ε)‖q2(0)− q1(0)‖µ

≤ (‖Ψ(t, 0)‖µ,µ + C(T )ε)‖q2(0)− q1(0)‖µ + C(T )ε|p2(0)− p1(0)|
[e−C(T )ε(1− C(T )ε)− C0(eC(T )ε + C(T )ε)e−γT/3]|p2(0)− p1(0)|

(4.32)

where the second inequality follows from the fact that (pi(0), qi(0)) ∈ Graph(h) for some
h ∈ Ξρ (so that ‖q2(0) − q1(0)‖µ/|p2(0) − p1(0)| ≤ ρ) and that ρ = e−γT/3 (by (4.26)). It
follows that at t = T ,

‖q′2 − q′1‖µ
|p′2 − p′2|

=
‖q2(T )− q1(T )‖µ
|p2(T )− p1(T )|

≤
(C ′µ,µe

−γT/3 + C(T )ε)e−γT/3 + C(T )ε

e−C(T )ε(1− C(T )ε)− C0(eC(T )ε + C(T )ε)e−γT/3

< e−γT/3/3 = ρ/3.

where we have used (4.8) for the first inequality and (4.29) for the strict inequality. We may
then conclude:
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Claim 7. ΦT (Graph(h)) is the Graph of some function H with Lipschitz constant strictly
less than ρ/3.

Given h ∈ Ξρ, let Dom(h) = [ah, bh]. By connectedness and previous step, Dom(H) =
[aH , bH ] and (aH , H(aH)) = ΦT (ah, h(ah)) and (bH , H(bH)) = ΦT (bh, h(bh)). By the invari-
ance of X+ × {0}, {0} ×X+ and Int (X+ ×X+) with respect to the flow (2.2), we see that
(4.17) is satisfied at (aH , H(aH)) and (bH , H(bH)). This shows that H ∈ Ξρ; i.e. (i) is proved.

Next, we prove part (ii) of Proposition 4.4. Let h1, h2 ∈ Ξρ and denote Hi = T ∗(hi), for
i = 1, 2. For any p ∈ IH1 ∩ IH2 , we choose p1, p2 such that ΦT (pi, hi(pi)) = (p,Hi(p)). Next,
choose p3 between p1, p2 (i.e. |p1 − p3|+ |p3 − p2| = |p1 − p2|) such that p3 ∈ Ih1 ∩ Ih2 and

(4.33) 5|p1 − p3| ≤ |p2 − p3| or 5|p2 − p3| ≤ |p1 − p3|,

which is possible if ρ is chosen small enough so that for all h ∈ Ξρ,(
1

22
,
21

22

)
⊂ Ih ⊂

(
− 1

22
,
23

22

)
=⇒ |Ih|

| ∩h;∈Ξρ Ih′|
≤ 6/5.

Suppose for the sake of specificity that 5|p1−p3| ≤ |p2−p3|, as the other case can be treated
in a similar way. Then, (denoting the projections π1(p, q) = p and π2(p, q) = q)

(4.34)

‖H2(p)−H1(p)‖µ = ‖π2ΦT (p2, h2(p2))− π2ΦT (p1, h1(p1))‖µ
≤ ‖π2ΦT (p2, h2(p2))− π2ΦT (p3, h2(p3))‖µ

+‖π2ΦT (p3, h2(p3))− π2ΦT (p3, h1(p3))‖µ
+‖π2ΦT (p3, h1(p3))− π2ΦT (p1, h1(p1))‖µ

By (4.13) and (4.8),

(4.35)

‖π2ΦT (p3, h2(p3))− π2ΦT (p3, h1(p3))‖µ
≤ (C ′µ,µe

−γT+εC(T ) + C(T )ε)‖h2(p3)− h1(p3)‖µ
≤ (C ′µ,µe

−γT+εC(T ) + C(T )ε)d(h2, h1),

and (since h2 ∈ Ξρ and ρ = e−γT/3)

(4.36)

‖π2ΦT (p2, h2(p2))− π2ΦT (p3, h2(p3))‖µ
≤ (C ′µ,µe

−γT+εC(T ) + C(T )ε)‖h2(p2)− h2(p3)‖µ + C(T )ε|p2 − p3|
≤ [(C ′µ,µe

−γT+εC(T ) + C(T )ε)e−γT/3 + C(T )ε]|p2 − p3|.

Similarly,
(4.37)
‖π2ΦT (p3, h1(p3))− π2ΦT (p1, h1(p1))‖µ ≤ [(C ′µ,µe

−γT+εC(T ) +C(T )ε)e−γT/3 +C(T )ε]|p3− p1|,

Substituting (4.35), (4.36) and (4.37) in (4.34), we see that (since |p1−p3|+|p3−p2| = |p1−p2|)
(4.38)
‖H2(p)−H1(p)‖µ
≤ [(C ′µ,µe

−γT+C(T )ε + C(T )ε)e−γT/3 + C(T )ε]|p1 − p2|+ (C ′µ,µe
−γT+C(T )ε + C(T )ε)d(h1, h2).
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Next, we estimate |p1−p2| in terms of d(h1, h2). Since π1ΦT (p1, h1(p1)) = π1ΦT (p2, h2(p2)) =
p, we have

−[π1ΦT (p3, h2(p3))− π1ΦT (p3, h1(p3))]
= [π1ΦT (p2, h2(p2))− π1ΦT (p3, h2(p3))] + [π1ΦT (p3, h1(p3))− π1ΦT (p1, h1(p1))]

and hence

(4.39)
|π1ΦT (p3, h2(p3))− π1ΦT (p3, h1(p3))|
≥ |π1ΦT (p2, h2(p2))− π1ΦT (p3, h2(p3))| − |π1ΦT (p3, h1(p3))− π1ΦT (p1, h1(p1))|.

By (4.12) and (4.30),

(4.40)

|π1ΦT (p2, h2(p2))− π1ΦT (p3, h2(p3))|
≥ e−C(T )ε(1− C(T )ε)|p2 − p3| − C0(eC(T )ε + C(T )ε‖h2(p2)− h2(p3)‖µ
≥ [e−C(T )ε(1− C(T )ε)− C0(eC(T )ε + C(T )ε)e−γT/3]|p2 − p3|
≥ 2

3
|p2 − p3|.

By (4.11) and (4.30),
(4.41)
|π1ΦT (p3, h1(p3))− π1ΦT (p1, h1(p1))| ≤ (eC(T )ε + C(T )ε)(|p1 − p3|+ C0‖h1(p3)− h1(p1)‖µ)

≤ (eC(T )ε + C(T )ε)(1 + C0e
−γT/3)|p1 − p3|

≤ 4
3
|p1 − p3|.

If we subtract (4.41) from (4.40), we deduce

(4.42)

|π1ΦT (p2, h2(p2))− π1ΦT (p3, h2(p3))| − |π1ΦT (p3, h1(p3))− π1ΦT (p1, h1(p1))|
≥ 2

3
|p3 − p2| − 4

3
|p1 − p3|

≥ 2
3
|p3 − p2| − 1

3
|p3 − p2|+ 5

3
|p1 − p3| − 4

3
|p1 − p3|

= 1
3
(|p3 − p2|+ |p1 − p3|) = 1

3
|p1 − p2|

where we used 5|p1 − p3| ≤ |p2 − p3| in the second inequality.
By (4.39), (4.42) and (4.11), we may estimate |p2 − p1| in terms of d(h1, h2).

(4.43)

1
3
|p2 − p1| ≤ |π1ΦT (p3, h2(p3))− π1ΦT (p3, h1(p3))|

≤ (eC(T )ε + C(T )ε)C0‖h2(p3)− h1(p3)‖µ
≤ (eC(T )ε + C(T )ε)C0d(h1, h2).

Substituting (4.43) into (4.38), we may estimate ‖H2(p)−H1(p)‖µ in terms of d(h1, h2).

‖H2(p)−H1(p)‖µ ≤{[C ′µ,µe−γT + C(T )ε)e−γT/3 + C(T )ε] · 3(eC(T )ε + C(T )ε)C0

+ (C ′µ,µe
−γT + C(T )ε)}d(h1, h2)

Let κ denote the coefficient of d(h2, h1) in the above. By (4.31), it is clear that κ ∈ (0, 1).
This implies (ii).

To prove (iii), we apply Proposition 4.3 so that T ∗ has a unique fixed point h∗ in Ξρ. In fact,
there exists δ′ > 0 small such that, for each t ∈ [T − δ′, T ], the graph transform associated
with Φt is a contraction with a unique fixed point h∗t in Ξρ(t), where ρ(t) = exp(−γt/3). In
particular, if T − δ′ < t′ < t < T , then

(4.44) h∗t ∈ Ξρ(t) ⊂ Ξρ(t′).
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Claim 8. h∗t is independent of t ∈ [T − δ′, T ].

By continuity, it suffices to show that h∗t = h∗t′ for all t, t′ ∈ Q ∩ [T − δ′, T ]. Let t > t′ be
given, then there exists N,N ′ ∈ N such that Nt = N ′t′. Thus for each n ∈ N,

Graph(h∗t ) = (Φt)nN(Graph(h∗t )) = (Φt′)nN
′
(Graph(h∗t )).

Since t > t′, we have h∗t ∈ Ξρ(t′), and the right hand side approaches the unique fixed point

h∗t′ of Φt′ as n→∞. i.e. h∗t = h∗t′ . This proves the claim.
Therefore, h∗ = h∗T is the fixed point of graph transform maps for all t ∈ [T − δ′, T ]. Now,

for each τ ∈ [0, δ′],

Φτ (Graph(h∗)) = Φτ (ΦT−τ (Graph(h∗))) = ΦT (Graph(h∗)) = Graph(h∗)

i.e. Graph(h∗) is invariant with respect to (4.2). This proves (iii).
Finally, we note that the invariant manifold given by Graph(h∗)) is exponentially attract-

ing, as it is the fixed point of the T ∗ map (representing the forward time T map ΦT ), which
is a contraction mapping. �

5. Invasion Implies Fixation

In the previous section, we established for the semiflow generated by the two-phenotype
system (2.2) the existence of a one-dimensional invariant manifold Γ∗ connecting the two
semi-trivial equilibria (θα, 0) and (0, θβ). Being a one-dimensional space, the dynamics on Γ∗

are completely determined by the number of equilibria lying on Γ∗. In particular, when there
are no equilibria on Γ∗, then it acts as a connecting orbit from one semi-trivial equilibrium
to the other. In the following two sections, we will give two sufficient conditions for the
nonexistence of equilibria on Γ∗ when |β−α| is small. We will see that this global phenomena
in fact is completely determined by a local quantity based on invasibility of the semi-trivial
equilibria, i.e. the linearized eigenvalue at (θα, 0) and its derivatives with respect to β.

We first define the notion of invasion.

Definition 2. For each β ∈ S and w ∈ X, define λ̃(β, w) by

λ̃(β, w) = inf{λ′ ∈ R : A(β)φ+ F (β, w)φ ≤ λ′φ for some φ ∈ D(A) such that φ > 0 in Ω̄}.

An important special case of the above is the invasion exponent λ(α, β) which gives the rate of
exponential growth/death as a rare phenotype β attempts to invade the steady state population
θα of phenotype α; i.e.

λ(α, β) = λ̃(β,G(α)θα).

In view of (T3), one may deduce (see, e.g. [1, P.130, Corollary 1.14]) that λ̃(β, w) (resp.
λ(α, β)) is the principal eigenvalue, in the sense of Proposition 3.3, of

A(β)φ+ F (β, w)φ = λφ (resp. A(β)φ+ F (β,G(α)θα)φ = λφ).

In particular, if (T3) holds, then λ̃(β, w) and λ(α, β) are both simple eigenvalues. We
summarize two useful consequences of this fact.
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(C1): λ̃ is smooth in β ∈ S and w ∈ X, and λ is smooth in α, β ∈ S.
(C2): If for some β ∈ S and w ∈ X, λ′ is an eigenvalue of A(β) + F (β, w) with

non-negative eigenfunction ϕ′, then necessarily λ̃(β, w) = λ′ and ϕ′ ∈ IntX+. In par-
ticular, if λ′ is an eigenvalue of A(β) +F (β,G(α)θα) with nonnegative eigenfunction
ϕ′, then necessarily λ(α, β) = λ′ and ϕ′ ∈ IntX+.

Suppose (T1), (T2′), (T3) hold. By Theorem 4.1, there exists δ > 0 such that if |β−α| < δ,
then there is a one-dimensional invariant manifold Γ∗ ⊂ V δΓα connecting (θα, 0) and (0, θβ).
Moreover, Γ∗ attracts all trajectories starting in V δΓα. Suppose ∂λ

∂β
(α0, α0) > 0. Then

there exists δ > 0 such that for all α, β such that α0 − δ < α < β < α0 + δ, we have
λ(α, β) > 0 > λ(β, α), i.e. phenotype v can invade phenotype u, but not vice versa. We
shall see that such an invasion by a population with an advantageous trait will cause that
trait to go to fixation, i.e. v will oust u to the point of extinction.

Theorem 5.1. Assume that (T1), (T2′), (T3) hold and ε > 0 is given. Suppose

(5.1)
∂λ

∂β
(α0, α0) > 0,

then there exists δ > 0 such that for all α0 − δ < α < β < α0 + δ, all solutions to (2.2)
initiating in V δΓα converge to (0, θβ), i.e. ω((u0, v0)) = {(0, θβ)} for all (u0, v0) ∈ V δΓα ∩
Int (X+ ×X+).

A global version of Theorem 5.1 is available if we make additional assumptions regarding
the global dynamics of the single phenotype equation (2.1).

(T4): (Persistence and Uniqueness of θα) For all α ∈ S, (2.1) has a globally asymptot-
ically stable steady state θα ∈ IntX+.

(T5): (Dissipativity) There exists ε0 > 0 such that for all trajectories (u, v),

ε0 ≤ lim sup
t→∞

‖(u, v)‖ ≤ 1/ε0.

Theorem 5.2. Suppose (T1), (T2′), (T3) - (T5) hold. If (5.1) holds, then there exists δ > 0
such that if α0 − δ < α < β < α0 + δ, then (0, θβ) is globally asymptotically stable among all
initial conditions (u0, v0) ∈ X+ ×X+ such that u0 6= 0 and v0 6= 0.

Remark 5.1. By the same proof, the symmetric conclusion holds when ∂λ
∂β

(α0, α0) < 0; i.e.

when α0 − δ < α < β < α0 + δ, then phenotype u with lower trait α has the advantage.

To establish Theorems 5.1 and 5.2, we need some preliminary lemmas.

Lemma 5.1. Suppose (T1), (T3) hold and that ∂λ
∂β

(α0, α0) 6= 0. Then there exists δ > 0

such that if α, β ∈ (α0 − δ, α0 + δ) and α 6= β, then (2.2) has no positive steady states in
V δΓα.

Proof. Suppose to the contrary that for some sequences αk 6= βk converging to α0, (2.2) has
positive steady states (uk, vk) in V δkΓαk such that (uk, vk) → (s0θα0 , (1 − s0)θα0) for some
s0 ∈ [0, 1]. Then by (C2)

λ̃(βk, G(αk)uk +G(βk)vk) = 0 = λ̃(αk, G(αk)uk +G(βk)vk).
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Subtracting and dividing by βk − αk, we have

0 =
[
λ̃(βk, G(αk)uk +G(βk)vk)− λ̃(αk, G(αk)uk +G(βk)vk)

]
/(βk − αk)

=
∂λ̃

∂β
(γk, G(αk)uk +G(βk)vk)

for some γk between βk and αk. By continuity, we may let k →∞ to conclude that

∂λ

∂β
(α0, α0) =

∂λ̃

∂β
(α0, G(α0)θα0) = 0.

This is in contradiction to (5.1). �

Remark 5.2. (T3) is needed in Lemma 5.1 only to ensure the validity of (C2).

By considering the restriction of the semiflow Φt
α,β on the one-dimensional invariant man-

ifold Γ∗ (guaranteed by Theorem 4.1), the non-existence of steady states implies that one
of the endpoints of Γ∗ attracts all trajectories in Γ∗. We omit the proof of the following
statement.

Lemma 5.2. Let Γ∗ be a one-dimensional invariant manifold of the semiflow Φt
α,β connecting

(θα, 0) and (0, θβ). Suppose (2.2) has no positive steady states on Γ∗.

• If λ(α, β) > 0, then (0, θβ) is globally asymptotically stable on Γ∗ \ {(θα, 0)};
• If λ(β, α) > 0, then (θα, 0) is globally asymptotically stable on Γ∗ \ {(0, θβ)}.

Since the set Γ∗ is a local attractor, the steady state (0, θβ) actually attracts all trajectories
in V δΓα if λ(α, β) > 0 , and analogously for (θα, 0) if λ(β, α) > 0.

Lemma 5.3. Suppose (T1), (T2′), (T3) hold, so that there is a one-dimensional invariant
manifold Γ∗ of the semiflow Φt

α,β connecting (θα, 0) and (0, θβ), which is an attractor in

V δΓα. Suppose (2.2) has no positive steady states on Γ∗.

• If λ(α, β) > 0, then (0, θβ) is globally asymptotically stable on V δΓα \ {(θα, 0)};
• If λ(β, α) > 0, then (θα, 0) is globally asymptotically stable on V δΓα \ {(0, θβ)}.

Proof. Assume λ(α, β) > 0. Since Γ∗ ⊂ V δΓα and (0, θβ) attracts all trajectories in Γ∗ \
{(θα, 0)}, it suffices to show that no trajectories starting in IntV δΓα converge to (θα, 0).
Suppose to the contrary that there is (u0, v0) ∈ V δΓα∩Int (X+×X+) such that Φt

α,β(u0, v0)→
(θα, 0) as t→∞. Let φ0 ∈ IntX+ be the eigenfunction corresponding to λ(α, β). Then there
exists ε0 > 0 and t0 > 0 such that

A(β)φ0 + F (β,G(α)u+G(β)v)φ0 ≥ ε0φ0 for all t ≥ t0.

Let δ0 = sup{δ > 0 : δφ0 ≤ v(t0)}. By (T3), we may deduce by method of upper and lower
solutions that

v(t) ≥ δ0e
ε0(t−t0)φ0 for all t ≥ t0.

But this implies that v 6→ 0, which is a contradiction to (u, v)→ (θα, 0). �
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Proof of Theorem 5.1. Choose δ1 > 0 by Lemma 5.1 so that for all α, β ∈ (α0 − δ1, α0 + δ1)
with α 6= β, (2.2) does not have any steady states in V δ1Γα. Let δ2 ∈ (0, δ1) be chosen
small so that for all α, β ∈ (α0− δ2, α0 + δ2), Theorem 4.1 guarantees the existence of a one-
dimensional invariant manifold Γ∗ ⊂ V δ2Γα connecting (θα, 0) and (0, θβ), which attracts all
trajectories starting in V δ2Γα. Let α0 − δ2 < α < β < α0 + δ2. Then λ(α, β) > 0, so that by
Lemma 5.3, (0, θβ) is globally asymptotically stable in V δ

1 Γα. �

Proof of Theorem 5.2. In view of Theorem 5.1, it is enough to show that given δ > 0, pro-
vided β is sufficiently close to α, then for all (u0, v0) 6= (0, 0), there exists T > 0 such that
ΦT (u0, v0) ∈ V δΓα.

First, we observe that by (T5), there exists ε0 > 0 such that for each α, β ∈ S, ε0 ≤
lim sup
t→∞

‖Φt(u0, v0)‖ < 1/ε0. By the variation of constants formula, one may deduce that for

each µ ∈ (0, 1), there exists some C ′ = C ′(ε0) (independent of α and β close to α0) such that
lim sup
t→∞

‖Φt(u0, v0)‖µ < C ′.

We now define

K = {(u0, v0) ∈ X+ ×X+ : ‖(u0, v0)‖µ ≤ C ′ and ‖(u0, v0)‖ ≥ ε0} .

It is easy to see that K, being bounded in Xµ×Xµ for some µ ∈ (0, 1), is compact in X×X.
Also, (0, 0) 6∈ K by definition.

Claim 9. Let β = α. For each δ1 > 0, there exists T1 > 0 such that ΦT1(K) ⊂ V δ1Γα.

We now prove Claim 9. Let β = α and (u, v) = Φt(u0, v0) for some (u0, v0) 6= (0, 0). By
setting α = β in the proof of Theorem 3.1, we see that u+ v satisfies (2.1) and deduce that
u + v → θα and then dist((u, v),Γα) → 0. That is, for each (u0, v0) 6= (0, 0) there exists
t0 > 0 such that Φt0(u0, v0) ∈ V δ1Γα. Claim 9 thus follows from compactness of K and
continuous dependence of initial data.

Claim 10. There exists δ2 > 0 such that if β ∈ (α − δ2, α + δ2), then ΦT1(K) ⊂ V δ1Γα,
where T1 is given in Claim 9.

Claim 10 follows from continuous dependence of the semiflow Φ on α and β.
Finally, fix β ∈ (α−δ2, α+δ2) and let (u0, v0) 6= (0, 0) be given. By (T5), and the discussion

at the beginning of the proof, lim sup
t→∞

‖Φt(u0, v0)‖µ < C ′. Since also lim sup
t→∞

‖Φt(u0, v0)‖ >

ε0, we deduce that there exists T2 > 0 such that ΦT2(u0, v0) ∈ K. Then by Claim 10,
ΦT1+T2(u0, v0) ∈ V δ1Γα. This completes the proof. �

6. Neighborhood Invader Strategy

A strategy α̂ ∈ S is a local Evolutionarily Stable Strategy [38] if there is δ > 0 such that
λ(α̂, β) < 0 for all β ∈ (α̂ − δ, α̂ + δ) \ {α̂}. A closely related concept is that of a local



RESIDENT INVADER DYNAMICS 27

Convergence Stable Strategy, which refers to those α̂ ∈ S such that for some δ > 0

(6.1)
∂λ

∂β
(α, α) =

 > 0 if α ∈ (α̂− δ, α̂),
0 if α = α̂,
< 0 if α ∈ (α̂, α̂ + δ).

A strategy α̂ is a Continuously Stable Strategy [18, 19] if it is both a local Evolutionarily
Stable Strategy, and a local Convergence Stable Strategy. We introduce a sufficient condition
for α̂ ∈ S to be continuously stable:

(CSS): ∂λ
∂β

(α̂, α̂) = 0, ∂2λ
∂β2 (α̂, α̂) < 0 and ∂2λ

∂α2 (α̂, α̂) > 0.

It is elementary to see that ∂λ
∂β

(α̂, α̂) = 0 together with ∂2λ
∂β2 (α̂, α̂) < 0 implies evolutionary

stability. As illustrated in the following lemma, if two traits α and β are both greater, or
both less than α̂, the trait closer to α̂ has the advantage.

Lemma 6.1. Suppose (CSS) holds, then there exists δ > 0 such that

∂λ

∂β
(α, α) =

{
> 0 if α ∈ (α̂− δ, α̂),
< 0 if α ∈ (α̂, α̂ + δ).

Proof.

∂

∂t

[
∂λ

∂β
(t, t)

]∣∣∣∣
t=α̂

=
∂2λ

∂β2
(α̂, α̂) +

∂2λ

∂α∂β
(α̂, α̂).

Since λ(t, t) ≡ 0 for all t > 0, we have

(6.2)
∂2λ

∂α2
(t, t) + 2

∂2λ

∂α∂β
(t, t) +

∂2λ

∂β2
(t, t) = 0.

It follows that

∂

∂t

[
∂λ

∂β
(t, t)

]∣∣∣∣
t=α̂

=
∂2λ

∂β2
(α̂, α̂)− 1

2

[
∂2λ

∂α2
(α̂, α̂) +

∂2λ

∂β2
(α̂, α̂)

]
=

1

2

[
∂2λ

∂β2
(α̂, α̂)− ∂2λ

∂α2
(α̂, α̂)

]
< 0.

�

In fact, if we assume (CSS), then there exists δ > 0 such that

(6.3) λ(α, β) =

{
> 0 if α̂ ≤ β < α < α̂ + δ or α̂− δ < α < β ≤ α̂,
< 0 if α̂ ≤ α < β < α̂ + δ or α̂− δ < β < α ≤ α̂.

i.e. the phenotype closer to α̂ always invades the phenotype further away from α̂, while the
reverse invasion always fails, hence the name local convergence stable strategy. Suppose the
strategy α̂ satisfies (CSS). Then the following result determines the global dynamics of (2.2)
completely, whenever (i) both of them are larger than or equal to α̂, or (ii) both of them are
less than or equal to α̂.

Theorem 6.1. Suppose (T1) - (T3) and (CSS) hold. Then there exists δ > 0 such that if
(i) α̂ ≤ β < α < α̂ + δ or (ii) α̂ − δ ≤ α < β < α̂, then all solutions to (2.2) initiating in
V δΓα converge to (0, θβ), i.e. ω(V δΓα) = {(0, θβ)}.
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Theorem 6.2. Suppose (T1) - (T5) and (CSS) hold, then there exists δ > 0 such that if
(i) α̂ ≤ β < α < α̂ + δ or (ii) α̂ − δ ≤ α < β < α̂, then (0, θβ) is globally asymptotically
stable.

Figure 4. Illustration of the range of parameters (α, β) where Theorems 6.1
and 6.2 apply.

We have the following technical lemma.

Lemma 6.2. Fix α̂ ∈ S. If αk, βk → α̂, αk 6= βk, and

(6.4) (uk, vk)→ (s0θα̂, (1− s0)θα̂) for some s0 ∈ [0, 1],

holds, then denoting εk = βk − αk, we have

1

εk
(uk + vk − θαk)→ (1− s0)

[
∂

∂α
θα

]
α=α̂

as k →∞,

Proof. Choose λ0 > 0 large such that the resolvent R(λ0, A(α)) exists for all α in a neigh-
borhood of α̂. For simplicity we suppress the subscript k, and write

u = uk, v = vk, α = αk, β = βk, Rα = R(λ0, αk), Rβ = R(λ0, βk)

and

θ = θα, θ̂ = θα̂, R̂ = R(λ0, α̂).

Now, u and v satisfy

u = Rα[λ0u+ F (α,G(α)u+G(β)v)u], and v = Rβ[λ0v + F (β,G(α)u+G(β)v)v].

Let w = u+ v, and rewrite the preceding as

(6.5) u = Rα[λ0u+ F (α,G(α)w)u] +Rα[F (α,G(α)u+G(β)v)u− F (α,G(α)w)u]

and

(6.6)
v = Rα[λ0v + F (α,G(α)w)v] +Rα[F (α,G(α)u+G(β)v)v − F (α,G(α)w)v]

+Rα[F (β,G(α)u+G(β)v)v − F (α,G(α)u+G(β)v)v]
+(Rβ −Rα)[λ0v + F (β,G(α)u+G(β)v)v].
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Recall that θ = θα satisfies

(6.7) θ = Rα[λ0θ + F (α,G(α)w)θ]−Rα[F (α,G(α)w)θ − F (α,G(α)θ)θ].

Let z = u+ v − θ = w − θ and ε = β − α, then z → 0 and satisfies

(6.8) z = I + II + III + IV + V.

Here

(6.9) I = Rα[λ0z + F (α,G(α)w)z] = R̂[λ0z + F (α̂, G(α̂)θ̂)z] + T1z,

and

(6.10) II = Rα [F (α,G(α)w)θ − F (α,G(α)θ)θ] = R̂
[
Fw(α̂, G(α̂)θ̂)[G(α̂)z]θ̂

]
+T2z+o(‖z‖)

where ‖T1‖, ‖T2‖ → 0 in operator norm,

(6.11)
III = Rα[F (α,G(α)u+G(β)v)w − F (α,G(α)w)w]

= ε{R̂
[
Fw(α̂, G(α̂)θ̂)[G′(α̂)(1− s0)θ̂

]
θ̂ + o(1),

(6.12)
IV = Rα [F (β,G(α)u+G(β)v)v − F (α,G(α)u+G(β)v)v]

= ε
{
R̂[Fα(α̂, G(α̂)θ̂)(1− s0)θ̂] + o(1)

}
,

and

(6.13)
V = (Rβ −Rα)[λ0v + F (β,G(α)u+G(β)v)v]

= ε
{

∂
∂α
Rα

∣∣
α=α̂

[λ0(1− s0)θ̂ + F (α̂, G(α̂)θ̂)(1− s0)θ̂] + o(1)
}

From the equations (6.8) to (6.13) we deduce that

(6.14) Tz − T1z − T2z + o(‖z‖) = ε[(1− s0)K + o(1)]

where

Tz = z − R̂
[
λ0z + F (α̂, G(α̂)θ̂)z + Fw(α̂, G(α̂)θ̂)[G(α̂)z]θ̂

]
and

K = R̂
[
Fα(α̂, G(α̂)θ̂)θ̂ + Fw(α̂, G(α̂)[G′(α̂)θ̂]θ̂

]
+

∂

∂α
Rα

∣∣∣∣
α=α̂

[
λ0θ̂ + F (α̂, G(α̂)θ̂

]
.

By the spectral assumption in (T1), T : X → X is an invertible linear operator. Since
‖Ti‖ → 0 in operator norm, T − T1 − T2 is also invertible (provided α = αk is sufficiently
close to α̂). Since ε→ 0 and z → 0, we may apply the Implicit Function Theorem to (6.14)
to deduce that

(6.15) ‖z‖ = O(ε).

Dividing (6.14) by ε, and using (6.15) and the fact that ‖Ti‖ → 0, we see that z̃ = z/ε

satisfies (T − T1 − T2)z̃ = K + o(1). Since ‖Ti‖ → 0, this implies

lim z̃ = (1− s0)T−1K.
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Now, differentiating (6.7), we can show that θ̂′ =
[
∂
∂α
θα
]
α=α̂

satisfies

θ̂′ =

[
∂

∂α
Rα

]
α=α̂

[
λ0θ̂ + F (α̂, G(α̂)θ̂)θ̂

]
+ R̂

[
λ0θ̂

′ + F (α̂, G(α̂)θ̂)θ̂′ + Fα(α̂, G(α̂)θ̂)θ̂ + Fw(α̂, G(α̂)θ̂)[G′(α̂)θ̂ +G(α̂)θ̂′]θ̂
]
,

which is equivalent to T θ̂′ = K. Hence lim z̃ = (1 − s0)T−1K = (1 − s0)θ̂′. This proves the
lemma. �

The key to the proofs of Theorems 6.1 and 6.2 lies in the following result.

Proposition 6.3. Suppose (T1) - (T3), and (CSS) hold. There exist some δ > 0 such that
whenever β, α ∈ (α̂− δ, α̂] or β, α ∈ [α̂, α̂+ δ), then (2.2) has a positive steady state in V δΓα̂
if and only if α = β.

Proof. Suppose to the contrary that the conclusion of the proposition is false and there exists
a sequence βk, αk → α̂, such that either

(I) α̂ ≤ αk < βk, or
(II) βk < αk ≤ α̂,

and there are positive steady states (uk, vk) of (2.2) corresponding to (αk, βk) satisfying (6.4).
By the equations satisfied by uk, vk respectively, with εk = βk − αk, we get

0 = λ̃(αk + εk, G(αk)uk +G(βk)vk)− λ̃(αk, G(αk)uk +G(βk)vk)

= εk
∂λ̃

∂β
(αk, G(αk)uk +G(βk)vk) +

ε2k
2

∂2λ̃

∂β2
(γk, G(αk)uk +G(βk)vk)

for some γk between αk and αk+εk. Next, we deduce from (6.1) that εk
∂λ̃
∂β

(αk, G(αk)θαk) ≤ 0,

so that

0 ≤ εk

[
∂λ̃

∂β
(αk, G(αk)uk +G(βk)vk)−

∂λ̃

∂β
(αk, G(αk)θαk)

]
+
ε2k
2

[
∂2λ̃

∂β2
(α̂, G(α̂)θα̂) + o(1)

]
.

Hence, by Taylor’s expansion again,

0 ≤ εk

{ ∂2λ̃

∂w∂β
(αk, G(αk)θαk) [G(αk)(uk + vk − θαk) + (G(βk)−G(αk))vk]

+ o (‖G(αk)(uk + vk − θαk) + (G(βk)−G(αk))vk‖)
}

+
ε2k
2

[
∂2λ̃

∂β2
(α̂, G(α̂)θα̂) + o(1)

]

= ε2k

{
∂2λ̃

∂w∂β
(αk, G(αk)θαk)

[
G(αk)

uk + vk − θαk
εk

+
G(βk)−G(αk)

βk − αk
vk

]

+ o

(∥∥∥∥G(αk)
uk + vk − θαk

εk
+
G(βk)−G(αk)

εk
vk

∥∥∥∥)+
1

2

∂2λ̃

∂β2
(α̂, G(α̂)θα̂) + o(1)

}
.
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Now, apply Lemma 6.2 and the identities{
∂2λ
∂α∂β

(α, β) = ∂
∂α

[
∂λ̃
∂β

(β,G(α)θα)
]

= ∂2λ̃
∂β∂w

(β,G(α)θα)
(
G′(α)θα +G(α)∂θα

∂α

)
,

∂λ̃
∂β

(β,G(α)θα) = ∂λ
∂β

(α, β) and ∂2λ̃
∂β2 (β,G(α)θα) = ∂2λ

∂β2 (α, β),

and continue the above calculation to get

0 ≤ ε2k

{
∂2λ̃

∂w∂β
(α̂, G(α̂)θα̂)

[
G(α̂)(1− s0)

∂

∂α
θα
∣∣
α=α̂

+G′(α̂)(1− s0)θα̂

]
+

1

2

∂2λ̃

∂β2
(α̂, G(α̂)θα̂) + o(1)

}

= ε2k

{
(1− s0)

∂2λ

∂α∂β
(α̂, α̂) +

1

2

∂2λ

∂β2
(α̂, α̂) + o(1)

}
.

Recalling the identity (6.2), we have

0 ≤ ε2k

{
− 1− s0

2

(
∂2λ

∂α2
(α̂, α̂) +

∂2λ

∂β2
(α̂, α̂)

)
+

1

2

∂2λ

∂β2
(α̂, α̂) + o(1)

}

= ε2k

{
− (1− s0)

2

∂2λ

∂α2
(α̂, α̂) +

s0

2

∂2λ

∂β2
(α̂, α̂) + o(1)

}
.

The last line is always negative, by our assumption (CSS). This is a contradiction and proves
Proposition 6.3. �

Finally, Theorems 6.1 and 6.2 follow by repeating the proofs of Theorems 5.1 and 5.2, using
the local stability criterion (6.3) and the non-existence of positive steady states (Proposition
6.3).

7. Application 1: Tube Theorem

In this section, we consider a reaction-diffusion-advection model. In the case of a single
species, the model supports more than one stable steady state. Let Ω be a smooth bounded
domain in RN . Consider

(7.1)

 ūt = ∇ · (d∇ū− αū∇m) + g(x, ū+ v̄)ū in Ω× (0,∞),
v̄t = ∇ · (d∇v̄ − βv̄∇m) + g(x, ū+ v̄)v̄ in Ω× (0,∞),
d∂ū
∂n
− αū∂m

∂n
= d ∂v̄

∂n
− βv̄ ∂m

∂n
= 0 on ∂Ω× (0,∞),

where g(x, s) is a smooth function satisfying

g(x, s) =

{
(m(x)− s) for s ≥ minΩ̄m,

s−a
minΩ̄ m−a

(m(x)− s) for s ≤ (a+ minΩ̄m)/2,

a ∈ (0,minΩ̄ m) is a positive constant, m(x) is a smooth positive function such that

a+ maxΩ̄ m

minΩ̄m
< 2.

The main result in this section is the following extension of a result in [7], which indicates
the selection of advective movement. We will prove the result by applying Theorems 3.1 and
5.1.
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Theorem 7.1. Suppose Ω is convex. There exists δ > 0 such that for all 0 ≤ α < β < δ,
every trajectory of (7.1) starting in V δΓα converges to (0, θβ) as t→∞.

To apply the abstract results proved in the previous sections, we transform the equation
by u = eαm/dū and v = eβm/dv̄, so that

(7.2)

 ut = d∆u+ α∇m · ∇u+ g(x, e−αm/du+ e−βm/dv)u in Ω× (0,∞),
vt = d∆v + β∇m · ∇v + g(x, e−αm/du+ e−βm/dv)v in Ω× (0,∞),
∂u
∂n

= ∂v
∂n

= 0 on ∂Ω× (0,∞).

Let A(α) = d∆ + α∇m · ∇ subject to a homogeneous Neumann boundary condition. Then
by [36, p. 107], A(α) is sectorial, with compact, strongly positive resolvent, and generates
a semigroup in C(Ω̄). This verifies (T3). As a result, (7.2) generates an analytic semiflow
in X+ ×X+ = {(u′, v′) ∈ C(Ω̄) × C(Ω̄) : u′, v′ ≥ 0}. In particular, the Neumann boundary
condition is satisfied by the solution for all t > 0. We shall check that (T1) and (T2′) are
also satisfied by the reaction-diffusion-advection system (7.2).

To verify (T1), we first observe some facts about the steady states of the single species
case, which are given by the positive solutions of

(7.3)

{
d∆θ + α∇m · ∇θ + g(x, e−αm/dθ)θ = 0 in Ω,
∂θ
∂n

= 0 on ∂Ω.

The following result says that for sufficiently small α, (7.3) has at least two stable solutions.
(This is a version of what ecologists call an Allee effect.)

Lemma 7.1. θ ≡ 0 is a linearly stable solution to (7.3). In addition, there exists α1 > 0
such that for all α ∈ [0, α1), (7.3) has a linearly stable positive solution θα.

Proof. It is easy to see that θ ≡ 0 is a solution to (7.3), the linear stability of which is
determined by the principal eigenvalue µ1 of{

d∆ϕ+ α∇m · ∇ϕ+ g(x, 0)ϕ = µϕ in Ω,
∂ϕ
∂n

= 0 on ∂Ω,

which can be written as

d∇ · [eαm/d∇ϕ] + g(x, 0)eαm/dϕ = µeαm/dϕ.

By variational characterization,

µ1 = max
ϕ∈H1(Ω)\{0}

{∫
eαm/d[−d|∇ϕ|2 + g(x, 0)ϕ2]∫

eαm/dϕ2

}
< 0.

where we used the fact that g(x, 0) = −am(x)
minΩ̄m−a

< 0. This proves that θ ≡ 0 is linearly stable.

Next, we show the existence of another stable solution θα. Let θα be the unique positive
solution of (see [5])

(7.4)

{
d∆θ + α∇m · ∇θ + (m− e−αm/dθ)θ = 0 in Ω,
∂θ
∂n

= 0 on ∂Ω.
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By the maximum principle, one can deduce that when α = 0, minΩ̄ m < θ0 < maxΩ̄ m. By
continuity, there exists α1 > 0 such that for all α ∈ [0, α1),

(7.5) min
Ω̄
m < e−αm/dθα < max

Ω̄
m in Ω̄.

Hence g(x, e−αm/dθ) = m − e−αm/dθ, and θα is also a positive solution of (7.3) for all α ∈
[0, α1). By (7.4), 0 is the principal eigenvalue of

(7.6)

{
d∆ϕ+ α∇m · ∇ϕ+ (m− e−αm/dθα)ϕ = µϕ in Ω,
∂ϕ
∂n

= 0 on ∂Ω.

Hence appealing again to a variational characterization,

(7.7) inf
ϕ∈H1\{0}

{∫
Ω
eαm/d[d|∇ϕ|2 + (θα −m)ϕ2]∫

Ω
eαm/dϕ2

}
= 0.

Finally, by (7.5), the linear stability of θα is determined by the principal eigenvalue of

(7.8)

{
∇ · (d∇ϕ− αϕ∇m) + (m− 2θα)ϕ = µϕ in Ω,

d∂ϕ
∂n
− αϕ∂m

∂n
= 0 on ∂Ω.

Let ϕ1 be a principal eigenfunction corresponding to the eigenvalue µ = µ1. Multiply (7.8)
by eαm/dϕ1 and integrate by parts. We have

µ1 = −
∫

Ω
eαm/d[d|∇ϕ1|2 + (2θα −m)ϕ2

1]∫
Ω
eαm/dϕ2

1

< 0 by (7.7).

i.e., θα is a linearly stable steady state of (7.3) for all small α. �

For (T2′), we simply observe that A(β)−A(α) = (β−α)∇m ·∇ does not have any second
derivative terms. Hence for each γ ∈ (1/2, 1), ‖[A(β) − A(α)]A(α)−γ‖ ≤ C|β − α| as an
operator from X → X.

In order to apply Theorem 5.1, we need to determine the sign of ∂λ
∂β

(0, 0), where λ = λ(α, β)

is the principal eigenvalue of

(7.9)

{
d∆ϕ+ β∇m · ∇ϕ+ g(x, e−αm/dθα)ϕ = λϕ in Ω,
∂ϕ
∂n

= 0 on ∂Ω.

Lemma 7.2. Suppose Ω is convex. Then ∂λ
∂β

(0, 0) > 0.

Proof. By (7.5), for α ∈ [0, α1) (α1 given by Lemma 7.1) (7.9) becomes

(7.10)

{
d∆ϕ+ β∇m · ∇ϕ+ (m− e−αm/dθα)ϕ = λϕ in Ω,
∂ϕ
∂n

= 0 on ∂Ω.

Now normalize the principal eigenfunction ϕ1 by
∫

Ω
ϕ2

1 =
∫

Ω
θ2
α, so that β = α implies

ϕ1 = θα. Differentiating (7.10) in β, and setting β = α, we have λ = 0 and (denoting
ϕ′1 = ∂

∂β
ϕ1 and λ′ = ∂λ

∂β
){

d∆ϕ′1 + α∇m · ∇ϕ′1 + (m− e−αm/dθα)ϕ′1 = λ′θα −∇m · ∇θα in Ω,
∂ϕ′1
∂n

= 0 on ∂Ω, and
∫

Ω
θαϕ

′
1 = 0.
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Next, multiply by eαm/dθα and integrate by parts. The left-hand side vanishes and the
boundary terms cancel. Hence, we have

0 = λ′
∫

Ω

eαm/dθ2
α −

∫
Ω

eαm/dθα∇m · ∇θα.

This means
∂λ

∂β
(α, α) =

∫
Ω
eαm/dθα∇m · ∇θα∫

Ω
eαm/dθ2

α

.

When α = 0, we have
∂λ

∂β
(0, 0) =

∫
Ω
θ0∇m · ∇θ0∫

Ω
θ2

0

> 0,

where the inequality follows from [6, Lemma 3.3]. �

Finally, a direct application of Theorem 5.1 yields Theorem 7.1.

8. Application 2: Neighborhood Invader Strategy

The following model, which studies the evolution of a directed dispersal trait, was intro-
duced in [9].

(8.1)

 ũt = ∇ · (d∇ũ− αũ∇m) + (m− ũ− ṽ)ũ in Ω× (0,∞),
ṽt = ∇ · (d∇ṽ − βṽ∇m) + (m− ũ− ṽ)ṽ in Ω× (0,∞),
d∂ũ
∂n
− αũ∂m

∂n
= d ∂ṽ

∂n
− βṽ ∂m

∂n
= 0 on ∂Ω× (0,∞).

In this model, u and v represent the population densities of two phenotypes of the same
species that differ only by their directed dispersal rates, α and β. Again, if we transform
(8.1) by u = e−αm/dũ and v = e−βm/dṽ, then we obtain

(8.2)

 ut = d∆u+ α∇m · ∇u+ (m− eαm/du− eβm/dv)u in Ω× (0,∞),
vt = d∆v + β∇m · ∇v + (m− eαm/du− eβm/dv)v in Ω× (0,∞),
∂u
∂n

= ∂v
∂n

= 0 on ∂Ω× (0,∞).

It is straightforward to check that (T1), (T2′), (T3) - (T5) hold. (See [5, 6] for details.)
System (8.1) has two semi-trivial steady states (θα, 0) and (0, θβ), where θα is the unique
positive steady state of (7.4).

By the proof in [24, Theorem 3.2], we have:

Theorem 8.1. Suppose Ω = (0, 1) and m,mx > 0 in [0, 1]. Then

∂λ

∂β
(α, α) =

{
> 0 if α ∈ [0, d/maxΩ̄ m),
< 0 if α ∈ (d/minΩ̄m,∞).

Hence by Theorem 5.2, any strategy α 6∈ [d/maxΩ̄ m, d/minΩ̄ m] can be invaded by strate-
gies closer to the set [d/maxΩ̄m, d/minΩ̄ m]. This suggests that if one is to look for evo-
lutionarily singular strategies (i.e. values of α where λβ(α, α) = 0) in (8.1) (a necessary
condition for ESS), one should focus on α ∈ [d/maxΩ̄m, d/minΩ̄ m].

Next, let Ω be a smooth and bounded domain in RN . The following theorem gives a suffi-
cient condition for the existence of a unique evolutionarily singular strategy in [d/maxΩ̄ m, d/minΩ̄].
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Theorem 8.2 ([31, Theorem 2.2]). Suppose maxΩ̄ m

minΩ̄m
≤ 3+2

√
2. For all Λ > 1/minΩ̄ m, there

exists d0 > 0 such that for all d ∈ (0, d0), there exists a unique α̂ = α̂(d) ∈ [d/maxΩ̄m, d/minΩ̄ m]
such that

∂λ

∂β
(α, α) =

 > 0 if α ∈ [0, α̂),
= 0 if α = α̂,
< 0 if α ∈ (α̂, dΛ).

Theorem 8.2 gives a sufficient condition for α̂ to be an evolutionarily singular strategy in
(8.1). By refining the assumptions on Ω and m it is possible to show that α̂ is actually a
continuously stable strategy, i.e. α̂ satisfies (CSS), as in the following result.

Theorem 8.3. Suppose Ω is convex with diameter D and D‖∇ lnm‖L∞(Ω) ≤ β0, where
β0 ≈ 0.814 is the unique positive root of the function t 7→ 4t+ e−t + 2 ln t− 1− 2 lnπ. Then
for all d sufficiently small,

∂λ

∂β
(α̂, α̂) = 0

∂2λ

∂β2
(α̂, α̂) < 0 and

∂2λ

∂α2
(α̂, α̂) > 0.

Here α̂ is given in Theorem 8.2.

Proof. The first two inequalities follow from the proof of [31, Theorems 2.5]. The third
inequality can be proved by following the arguments in [32, Section 6] for a related model. �

We may now apply Theorem 6.2 to obtain the following result, which says that α̂ is a
neighborhood invader strategy.

Theorem 8.4. Under the assumptions in Theorem 8.3, there exists δ > 0 such that if
α̂− δ < β < α ≤ α̂ or α̂ ≤ α < β < α̂ + δ, then (θα, 0) is globally asymptotically stable.

9. Problems involving Nonlocal Operators

In this section, we show that our results can be applied to problems involving nonlocal
operators, even though they do not satisfy the compactness assumption (T3).

9.1. Modeling. Let Ω be a bounded domain in Rn. The following class of models has been
considered in [8, 27]:

(9.1)

 ut =
∫

Ω
[k(x, y;α)u(y, t)− k(y, x;α)u(x, t)] dy + g(x, u+ v)u in Ω× (0,∞),

vt =
∫

Ω
[k(x, y; β)v(y, t)− k(y, x; β)v(x, t)] dy + g(x, u+ v)v in Ω× (0,∞),

u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0 in Ω,

where k(x, y;α), g(x,w) are smooth functions, and k(x, y;α) > 0 for all x, y ∈ Ω̄ and α ∈ S.

Definition 3. (i) For each α ∈ S, let A(α) be the linear operator defined by A(α)[φ] =∫
Ω
k(x, y;α)φ(y) dy −

∫
Ω
k(y, x;α)φ(x) dy.

(ii) For each β ∈ S and w ∈ C(Ω̄) let λ̃(β, w) be the spectral point of the operator
φ 7→ A(β)[φ] + g(x,w)φ. (See Appendix.)

Then A(α) can be expressed as L in (A.1) in the Appendix with h = −
∫

Ω
k(y, x;α) dy.
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In this section, we assume

(N1): gw(x,w) < 0 for all x ∈ Ω and w ≥ 0; and supΩ g(x,M) < 0 for some M > 0.

(N2): λ̃(α, g(·, 0)) > 0 for all α ∈ S.

Condition (N1) gives an apriori L∞ bound for solutions to (9.1), while (N2) implies the
persistence in a single species model. Together, (N1) and (N2) give a sufficient condition for
the existence of a globally asymptotically stable steady state θα, for each α ∈ S.

Theorem 9.1 ([4, 12, 30, 41, 42]). Assume (N1) and (N2). For each α ∈ S, the equation

(9.2)

{
θt = A(α)[θ] + g(x, θ)θ in Ω× (0,∞),
θ(x, 0) = θ0(x)

has a unique positive equilibrium θα. Moreover, θα is globally asymptotically stable among
all non-negative, non-trivial solutions.

Theorem 9.1 implies the following result concerning the competition system (9.1).

Proposition 9.2. (θα, 0) and (0, θβ) are the global attractors in (X+ \ {0})×{0} and {0}×
(X+ \ {0}) respectively.

Define the partial orders ≤K and �K of C(Ω̄)× C(Ω̄) by

(u1, v1) ≤K (u2, v2) ⇔ u1 ≤ u2 and v1 ≥ v2 in Ω

and

(u1, v1)�K (u2, v2) ⇔ u1 < u2 and v1 > v2 in Ω̄.

Then (9.1) is strongly positive with respect to the partial order ≤K in the sense that if (ui, vi)
(i = 1, 2) are solutions to (9.1), then (see [27]) for (u1, v1)

∣∣
t=0
6≡ (u2, v2)

∣∣
t=0
∈ Int (X+×X+),

(u1, v1)
∣∣
t=0
≤K (u2, v2)

∣∣
t=0

⇔ (u1, v1)�K (u2, v2) for all t > 0.

Proposition 9.3. There exists an open set Ũ in S × C(Ω̄) that contains {(α, θα) : α ∈ S},
such that for all (β, w) ∈ Ũ , λ̃(β, w) is a simple eigenvalue of A(β) + g(x,w) with a positive

eigenfunction. In particular, λ̃(β, w) is a smooth function in Ũ .

Proof. First, we observe that for all α ∈ S, λ̃(α, θα) = 0 is an eigenvalue of A(α) + g(x, θα)
with positive eigenfunction θα. It follows from Theorem A.2 in the Appendix that

(9.3) sup
x∈Ω

[
g(x, θα(x))−

∫
Ω

k(y, x;α) dy

]
< λ̃(α, θα) for all α ∈ S.

By continuity of λ̃ (Lemma A.4), the continuity of g in x,w, and the continuity of k in x, y, α
we deduce that

Ũ :=

{
(β, w) : sup

x∈Ω

[
g(x,w)−

∫
Ω

k(y, x; β) dy

]
< λ̃(β, w)

}
is an open set in S ×X that contains {(α, θα) : α ∈ S}. It follows then from Theorem A.2

and Proposition A.3 that λ̃(β, w) is a simple eigenvalue of A(β) + g(x,w) for all (β, w) ∈ Ũ .

The smooth dependence of λ̃ on β, w follows from the Implicit Function Theorem. �
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Corollary 9.1. There exists an open set U in S × S containing {(α, α) : α ∈ S}, such
that for all (α, β) ∈ U , λ(α, β) is a simple eigenvalue of A(β) + g(x, θα) with a positive
eigenfunction. In particular, λ(α, β) is a smooth function in U .

9.2. Tube Theorem. By Remark 3.2, Theorem 3.1 is applicable to (9.1), which yields the
following result.

Theorem 9.4. For each α ∈ S, and each ε > 0, there exists δ > 0 such that if β ∈
(α− δ, α + δ) and (u0, v0) ∈ V δΓα, then (u, v) ∈ V εΓα for all t ≥ 0.

Proof. In view of Theorem 3.1 and Remark 3.2, it is enough to verify conditions (T1), (T2)
and (T3′). Let α ∈ S be given. First, the existence of θα is guaranteed by Theorem 9.1. By
Corollary 9.1, 0 is a principal eigenvalue of A(α) + g(x, θα). Hence (T3′) is a consequence
of Proposition A.3. By comparison (Lemma A.4), we deduce that the spectral point λp of
A(α) + g(x, θα) + gw(x, θ) is strictly negative, as gw < 0. Hence (T1) is also verified. Finally,
(T2) is a consequence of continuity of k.

�

9.3. Invasion Implies Fixation. We first prove a regularity result for positive steady states
of (9.1). We say that (u, v) is a positive steady state of (9.1) if (u, v) is a solution of (9.1)
that is independent of t, and if both u and v are non-negative and not identically zero. (See
also [4] for related results for a single species model.)

Proposition 9.5. Let (u, v) ∈ L∞(Ω) × L∞(Ω) be a positive (measurable) steady state of
(9.1). Then (u, v) ∈ C(Ω̄)× C(Ω̄). Moreover, 0 ≤ u ≤ θα and 0 ≤ v ≤ θβ in Ω̄.

Proof. Suppose (u, v) is a bounded, measurable, and positive steady state of (9.1). By (N1),
for all M > 1,

(9.4) A(α)Mθα + g(x,Mθα)Mθα < 0, and A(β)Mθβ + g(x,Mθβ)Mθβ < 0.

Claim 11. u ≤ θα and v ≤ θβ a.e. in Ω. In particular, the set of all positive steady states
is uniformly bounded in L∞(Ω)× L∞(Ω).

Let M1 = inf{M > 1 : u ≤ Mθα a.e. in Ω}. Suppose to the contrary that M1 > 1, then
w = M1θα − u ≥ 0 a.e. in Ω, and essinfΩw = 0. By (9.4) and the fact that gw < 0, w
satisfies

−
∫

Ω

k(x, y;α)w(y) dy ≥ −
[∫

Ω

k(y, x;α) dy

]
w(x) + g(x,M1θα)M1θα − g(x, u+ v)u

≥ −
[∫

Ω

k(y, x;α) dy

]
w(x) + g(x,M1θα)M1θα − g(x, u)u = Φw

for some Φ ∈ L∞. Here both inequalities are strict on a set of positive measure. If w is
non-negative and not identically zero, then since the left-hand side is continuous and has
strictly negative essential supremum in Ω, the same is true for the right-hand side. By non-
negativity of w, we deduce that esssupΩΦ < 0 and essinfΩw > 0. This contradicts our choice
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of M1. Hence w ≡ 0, i.e. u = M1θα. But then by (N1),

0 ≤ A(α)u+ g(x, u)u = A(α)M1θα + g(x,M1θα)M1θα ≤M1 [A(α)θα + g(x, θα)θα] = 0.

We again obtain a contradiction, as the last inequality is strict on a set of positive measure.
Thus M1 = 1 and u ≤ θα. Similarly, v ≤ θβ. This completes the proof of Claim 11.

Now,
∫

Ω
k(y, x;α) dy − g(x, u+ v) and u are both L∞ bounded in Ω, and

(9.5)

(∫
Ω

k(y, x;α) dy − g(x, u+ v)

)
u(x) =

∫
Ω

k(x, y;α)u(y) dy

where the right-hand side and thus the left-hand side is a strictly positive continuous function
in Ω̄ (since u > 0 on a set of positive measure implies the right-hand side is positive on Ω̄).
It follows that

(9.6) essinfΩu > 0 and essinfΩ

(∫
Ω

k(y, x;α) dy − g(x, u+ v)

)
> 0.

By repeating the argument for

(9.7)

(∫
Ω

k(y, x; β) dy − g(x, u+ v)

)
v(x) =

∫
Ω

k(x, y; β)v(y) dy

we similarly deduce that

(9.8) essinfΩv > 0 and essinfΩ

(∫
Ω

k(y, x; β) dy − g(x, u+ v)

)
> 0.

Now, suppose to the contrary that u or v is not continuous. By symmetry, we may assume
without loss of generality that u is not continuous at some x0 ∈ Ω̄. Hence, there exist two
sequences {xn} and {yn} converging to x0, such that, after passing to subsequences, (by
(9.6) and Claim 11)

(9.9) 0 < lim
n→∞

u(xn) < lim
n→∞

u(yn) < +∞.

By (9.8) and boundedness of v, we may pass into further subsequences and deduce that
limn→∞ v(xn) and limn→∞ v(yn) exist and are positive. Since the right-hand side and thus
the left-hand side of (9.5) is continuous in x, this together with (9.9) implies

lim
n→∞

(

∫
Ω

k(y, x;α) dy − g(x, u+ v))

∣∣∣∣
x=xn

> lim
n→∞

(

∫
Ω

k(y, x;α) dy − g(x, u+ v))

∣∣∣∣
x=yn

.

Since
∫

Ω
k(y, x;α) dy ∈ C(Ω̄), we have

(9.10) lim
n→∞

g(x, u+ v)|x=xn
< lim

n→∞
g(x, u+ v)|x=yn

.

This in turn implies, by
∫

Ω
k(y, x; β) dy ∈ C(Ω̄), that

lim
n→∞

(

∫
Ω

k(y, x; β) dy − g(x, u+ v))

∣∣∣∣
x=xn

> lim
n→∞

(

∫
Ω

k(y, x; β) dy − g(x, u+ v))

∣∣∣∣
x=yn

,

which, in view of (9.7), implies that

(9.11) 0 < lim
n→∞

v(xn) < lim
n→∞

v(yn) < +∞.
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However, the assumption gw < 0, (9.9) and (9.11) together imply that

lim
n→∞

g(x, u+ v)|x=xn
> lim

n→∞
g(x, u+ v)|x=yn

,

which is in contradiction with (9.10). This completes the proof. �

Here is the main result of this subsection.

Theorem 9.6. If ∂λ
∂β

(α0, α0) > 0 (resp. < 0), then there exists δ > 0 such that if α0 − δ <
α < β < α0 + δ, then (0, θβ) (resp. (θα, 0)) is globally asymptotically stable.

We prepare for the proof of Theorem 9.6 with two lemmas. Fix α0 ∈ S. By Proposition
9.3, we have that the spectral point λ̃(β, w) of A(β) + g(x,w) is a smooth function in (β, w)
is some neighborhood of (α0, θα0), and that (C1) and (C2) hold.

Lemma 9.2. Suppose for each j, (9.1) has a positive steady state (uj, vj) corresponding to
α = αj and β = βj. If αj, βj → α0, then dist((uj, vj),Γα0)→ 0.

Proof. We first prove that wj = uj + vj → θα0 as j →∞. From here on we denote θj = θαj
for simplicity. Let ε > 0 be given. It suffices to show that (1− ε)θj < wj < (1 + ε)θj in Ω for
all j sufficiently large.

First, (uj, vj) satisfies

(9.12) A(αj)uj + g(x,wj)uj = 0 and A(βj)vj + g(x,wj)vj = 0.

We observe that u, v, being non-negative and non-trivial, must be strictly positive. For,
suppose u(x0) = 0 for some x0, then at x0,

A(αj)uj(x0) + g(x0, wj(x0))uj(x0) =

∫
Ω

k(x0, y;α)uj(y) dy > 0,

which is a contradiction. Similarly, v > 0 in Ω̄. Adding the two equations in (9.12), we
deduce that wj satisfies

(9.13) A(αj)wj + g(x,wj)wj = fj,

where fj := A(αj)vj − A(βj)vj → 0 in C(Ω̄) as j →∞.
Given 0 < ε < 1, we have

A(αj)[(1± ε)θj] + g(x, (1± ε)θj)[(1± ε)θj] = [g(x, (1± ε)θj)− g(x, θj)][(1± ε)θj].

Using the fact that θj → θα0 as j → ∞, we deduce that for each given ε, there exists a
positive constant a1 > 0 and integer j0 such that for all j ≥ j0 and all x ∈ Ω̄,

(9.14)

{
A(αj)(1 + ε)θj + g(x, (1 + ε)θj)(1 + ε)θj < −a1

A(αj)(1− ε)θj + g(x, (1− ε)θj)(1− ε)θj > a1.

Now we fix j ≥ j0 sufficiently large so that ‖fj‖ < a1, then z = (1 + ε)θj − wj satisfies

(9.15) A(αj)z + [g(x,wj) + ω(x,wj)]z < −a1 − fj < 0 in Ω̄,
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where (using gw < 0)

ω(x,wj) =
g(x, (1 + ε)θj)− g(x,wj)

(1 + ε)θj − wj
(1 + ε)θj < 0.

By (9.12), we also have

(9.16) uj > 0 and A(αj)uj + [g(x,wj) + ω(x,wj)]uj = ω(x,wj)uj < 0 in Ω̄.

We claim that z ≥ 0. Suppose to the contrary that z < 0 somewhere, then by applying
Lemma A.1 to (9.15) and (9.16), we deduce that z = −βuj for some β > 0. But this
is impossible since both the inequalities of (9.15) and (9.16) are strict. Hence z ≥ 0, i.e.
wj ≤ (1 + ε)θj.

Similarly, set z̃ = wj − (1− ε)θj, then

(9.17) A(αj)z + [g(x,wj) + ω̃(x,wj)]z < −a1 + fj < 0 in Ω̄,

where (using gw < 0)

ω̃(x,wj) =
g(x,wj)− g(x, (1− ε)θj)

wj − (1− ε)θj
(1− ε)θj < 0.

We also have

(9.18) uj > 0 and A(αj)uj + [g(x,wj) + ω̃(x,wj)]uj = ω̃(x,wj)uj < 0 in Ω̄.

It follows by Lemma A.1 applied to (9.17) and (9.18) that z̃ ≥ 0, i.e. wj ≥ (1 − ε)θj. This
shows that wj → θα0 as j →∞.

Now for each j, uj is principal eigenfunction of A(αj) + g(x,wj) such that supj{‖uj‖} <
+∞. By writing

(9.19) uj =

∫
Ω
k(x, y;αj)uj(y) dy∫

Ω
k(y, x;αj) dy − g(x,wj)

and noticing that by the convergence of αj → α0 and wj → θα0 ,

(9.20) inf
j

[
inf
Ω

∫
Ω

k(y, x;αj) dy − g(x,wj)

]
> 0,

we can deduce that uj converges (via compactness given by (9.19) and (9.20)) to the one-
dimensional space spanned by the principal eigenfunction θα0 of L(α0) + g(x, θα0). i.e.
dist(uj, span{θα0})→ 0. Since also uj + vj → θα0 , we have dist((uj, vj),Γα0)→ 0. �

Lemma 9.3. Suppose ∂λ
∂β

(α0, α0) 6= 0, then for some δ > 0, (2.2) has no positive steady

states in {(u, v) ∈ C(Ω̄) × C(Ω̄) : u ≥ 0 and v ≥ 0 in Ω}, whenever α, β ∈ (α0 − δ, α0 + δ)
and α 6= β.

Proof. Suppose to the contrary that there are two converging sequences {αj}, {βj} such that
limαj = lim βj = α0 and also αj 6= βj for all k, so that (9.1) has a positive steady state. By
Lemma 9.2, we may repeat the arguments in Lemma 5.1 to finish the proof. �

The following argument is inspired by [27].
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Proof of Theorem 9.6. By Lemma 9.3, we may fix α < β close enough to α0 such that (9.1)
has no positive steady states in C(Ω̄). Since ∂λ

∂β
(α0, α0) > 0, we also have λ(α, β) > 0. By

Corollary 9.1, for all β close to α, there exists a φ̂ ∈ C(Ω̄), φ̂ > 0 in Ω̄ such that

A(β)φ̂+ g(x, θα)φ̂ = λ(α, β)φ̂.

We claim that there exists ε0 > 0 such that for all ε1 ∈ (0, ε0] and ε2 ∈ (0, ε0],

(9.21)

{
A(α)[(1 + ε1)θα] + g(x, (1 + ε1)θα + ε2φ̂)((1 + ε1)θα) < 0 in Ω̄,

A(β)[ε2φ̂] + g(x, (1 + ε1)θα + ε2φ̂)(ε2φ̂) > 0 in Ω̄,

To this end, we observe that for all ε1, ε2 > 0, it follows by definition of θα and gw < 0 that

A(α)θα + g(x, (1 + ε1)θα + ε2φ̂)θα < A(α)θα + g(x, θα) = 0.

This proves the first inequality in (9.21). For the second inequality, we compute

A(β)[ε2φ̂] + g(x, (1 + ε1)θα + ε2φ̂)(ε2φ̂) = ε2φ̂[λ(α, β) + g(x, (1 + ε1)θα + ε2φ̂)− g(x, θα)]

= ε2φ̂[λ(α, β) +O(ε1 + ε2)] > 0.

Denote the solution of (9.1) with initial condition (u0, v0) = ((1 + ε1)θα, ε2φ̂) by (u, v). We
claim that (u, v) converges to (0, θβ) as t→∞. First, it follows by monotonicity that for all
0 ≤ t1 < t2, (see [27]) (u, v)|t=t2 �K (u, v)|t=t1 , where the competitive order ≤K (resp. �k)
is defined as

ū(x, t2) ≤ (resp. < )ū(x, t1) and v̄(x, t2) ≥ (resp. > )v̄(x, t1) for all x ∈ Ω.

Therefore, we deduce that limt→∞(u, v) = (û, v̂) exists in L∞(Ω), and that v̂ > 0 in Ω̄. By
passing to the limit in the variation of parameters formula, (û, v̂) is either a positive steady
state in L∞(Ω) or (û, v̂) = (0, θβ). By Proposition 9.5, (û, v̂) ∈ C(Ω̄) × C(Ω̄). Since there
are no positive steady states by our choice of α and β, we necessarily have (û, v̂) = (0, θβ).
i.e.

(9.22) lim
t→∞

(u, v) = (0, θβ).

Next, let an arbitrary initial condition (u0, v0) where both components are non-negative, non-
trivial be given. Let (u, v), (ũ, 0) and (0, ṽ) be the solutions to (9.1) with initial conditions
(u0, v0) and (u0, 0) and (0, v0) respectively. By comparison, we have

(0, ṽ) ≤K (u, v) ≤K (ũ, 0) for all t ≥ 0.

Let ε0 be as given above. By the global asymptotic stability of (θα, 0) and (0, θβ) in {(u′, 0) ∈
C(Ω̄) × C(Ω̄) : u′ ≥ 0 and u′ 6≡ 0} and {(0, v′) ∈ C(Ω̄) × C(Ω̄) : v′ ≥ 0 and v′ 6≡ 0}, we
have ũ → θα and ṽ → θβ. Hence, we may deduce that there exists T > 0 such that
u ≤ ũ < (1 + ε0)θα when t = T . Now, take ε1 = ε0 and ε2 ∈ (0, ε0] small enough so that

(u, v) ≤K ((1 + ε1)θα, ε2φ̂). We deduce that

(0, ṽ) ≤K (u, v) ≤K (u, v) for all t ≥ T.

Since (0, ṽ) → (0, θβ) and (u, v) → (0, θβ), the same holds true for (u, v). This proves the
global asymptotic stability of (0, θβ) among non-negative, non-trivial data. �



42 RESIDENT INVADER DYNAMICS

9.4. Neighborhood Invader Strategy.

Theorem 9.7. Assume for some α̂ ∈ S, (CSS) holds. Then there exists δ > 0 such that if
either (i) α̂ ≤ α < β < α̂+δ or (ii) α̂−δ < β < α ≤ α̂, then (θα, 0) is globally asymptotically
stable.

Proof. We first claim that there exists δ1 > 0 such that if (i) α̂ ≤ α < β < α̂ + δ1 or (ii)
α̂− δ < β < α ≤ α̂, then (9.1) does not have any positive steady states. We only deal with
the case (i), as the other can be proved in a similar manner. Suppose to the contrary that
for each k, there exists α̂ ≤ αk < βk such that (9.1) has a positive steady state (uk, vk) and
that αk, βk → α̂. By Lemma 9.2, we may assume that by passing to a subsequence,

(9.23) (uk, vk)→ (s0θα̂, (1− s0)θα̂) for some s0 ∈ [0, 1].

Then, we may apply Proposition 6.3 to finish the proof. Here we observe that the compact-
ness assumption is only needed to deduce (9.23), and the smoothness of λ̃(β, w) and λ(α, β)
for all α, β close to α̂ and w near θα̂, holds in view of Proposition 9.3. �

Appendix A. Spectral Properties of Nonlocal Operators in C(Ω̄)

In this section, we collect and develop some spectral properties for nonlocal operators that
are needed for our purposes. We refer the interested reader to the recent work in [35] for a
more comprehensive treatment. For each k ∈ C(Ω̄× Ω̄), h ∈ C(Ω̄) such that k > 0 in Ω̄× Ω̄,
define

(A.1) Lφ :=

∫
Ω

k(·, y)φ(y) dy + hφ.

The idea of the following comparison lemma can be traced back to [44].

Lemma A.1. Suppose there are u, v ∈ C(Ω̄) such that

Lu ≤ 0, Lv ≤ 0 and v > 0 in Ω̄.

If u is negative somewhere in Ω̄, then u = −βv for some positive constant β and Lu ≡ Lv ≡
0. In particular, if either of the two inequalities is strict for some x0 ∈ Ω̄, then u ≥ 0 in Ω̄.

Proof. Let β = inf{µ ∈ R : u + µv ≥ 0 in Ω}. If u is negative somewhere in Ω̄, then β > 0,
w = u+ βv ≥ 0 in Ω̄ and ∫

Ω

k(x, y)w(y) dy + h(x)w(x) ≤ 0.

Either w ≡ 0 (in which case u = −βv) or w(x0) > 0 for some x0 ∈ Ω̄. In the second case,

0 <

∫
Ω

k(x, y)w(y) dy ≤ −h(x)w(x).

In this event, w(x) 6= 0 for all x ∈ Ω̄. Then w(x) > 0 in Ω̄. Hence

u+ (β − ε)v ≥ 0
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in Ω̄ for some ε > 0, a contradiction to the definition of β. So if u is negative somewhere in
Ω̄, u = −βv and Lu(x) = −βLv(x) for all x ∈ Ω̄. Since Lu ≤ 0 and Lv ≤ 0, it must be the
case that Lu ≡ 0 and Lv ≡ 0 if u is negative somewhere in Ω̄. Consequently, in particular,
if for some x ∈ Ω̄, we have either Lu < 0 or Lv < 0, then u ≥ 0 in Ω̄. �

Next, define the spectral point λp = λp(L) of the operator L : C(Ω̄) → C(Ω̄) (defined in
(A.1)) as

λp = inf{λ ∈ R : Lφ− λφ ≤ 0 for some positive φ ∈ C(Ω̄)}.

Since the spectral properties of L + cI for a real constant c are equivalent to those of L,
we may assume that h ≥ 0, which makes L a strongly positive operator in X = C(Ω̄). In
this case, we note that λp gives the spectral radius |σ(L)| of L.

Proposition A.1. If h ≥ 0, then λp = |σ(L)|, where |σ(L)| = sup{|λ| : λ ∈ σ(L)}.

Proof. First, it follows from h ≥ 0 that λp ≥ 0. Next, by definition of λp,

(λp,∞) ⊂ {λ ∈ R : Lφ− λφ ≤ 0 in Ω̄ for some φ ∈ C(Ω̄) such that φ > 0 in Ω̄}.

Hence for each λ̃ > λp, there exists φ̃ ∈ C(Ω̄) such that φ̃ > 0 in Ω̄, and

(A.2) Lφ̃− λ̃φ̃ ≤ 0.

By positivity, we deduce that Lnφ̃ ≤ λ̃nφ̃ for all n. By a property of positive operators (see

for example [40]) , |σ(L)| = lim
n→∞
‖Lnφ̃‖1/n. Since

‖Lnφ̃‖ = sup
Ω̄

|Lnφ̃| ≤ λ̃n max
Ω̄

φ̃ for all n,

we have |σ(L)| ≤ λ̃. Letting λ̃↘ λp, we deduce |σ(L)| ≤ λp.

Next, for λ̃ ∈ ρ(L), let ũ = (λ̃− L)−11.

Claim 12. For all λ̃ > λp, ũ > 0 in Ω̄.

By definition λ̃ > λp ≥ |σ(L)|, so (λ̃ − L)−1 exists. Next, we claim that (λ̃ − L)−1 is

strongly positive. To show the claim, suppose u 6≡ 0 and that the inequality Lu − λ̃u ≤ 0
is strict somewhere, then together with (A.2), we may apply Lemma A.1 to conclude that
u ≥ 0 in Ω̄. It remains to show that u > 0 in Ω̄. Suppose to the contrary that u(x0) = 0 for
some x0 ∈ Ω̄, then at x = x0,

0 ≤
∫

Ω

k(x0, y)u(y) dy = Lu− λ̃u ≤ 0.

Therefore,
∫

Ω
k(x0, y)u(y) dy = 0 and thus u ≡ 0. This is impossible as u 6≡ 0. So u > 0 in

Ω̄. This proves the claim. In particular, ũ = (λ̃− L)−11 > 0 in Ω̄.

Claim 13. For all λ̃ > |σ(L)|, ũ > 0 in Ω̄.
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Suppose to the contrary that

λ̃0 = inf{λ′ ∈ (|σ(L)|,∞) : ũ = (λ̃− L)−11 > 0 in Ω̄ for all λ̃ ∈ (λ′,∞)} > |σ(L)|.
Then by continuity of λ̃ 7→ (λ̃ − L)−1 in the interval (|σ(L)|,∞) ⊂ ρ(L), the function

ũ0 = (λ̃0 − L)−11 satisfies ũ0 ≥ 0 and ũ0(x0) = 0 for some x0 ∈ Ω̄. But then at x = x0,

0 ≤
∫

Ω

k(x0, y)ũ0(y) dy = Lũ0 − λ̃0ũ0 = −1 < 0,

which is a contradiction. Hence for all λ̃ > |σ(L)|, there exists ũ ∈ C(Ω̄) such that ũ > 0 in

Ω̄ and Lũ− λ̃ũ = −1 ≤ 0. i.e. λ̃ ≥ λp. Letting λ̃↘ |σ(L)|, we obtain |σ(L)| ≥ λp. �

λp may or may not be an eigenvalue of L [14]. One may observe that, by definition of λp,

λp ≥ sup
Ω
h.

A precise characterization is given by the following result in [15].

Theorem A.2. There exists a positive continuous eigenfunction associated with λp if and
only if λp > supΩ h.

Here we collect the properties which characterize λp as a principal eigenvalue of L.

Proposition A.3. Suppose λ0 is an eigenvalue of L with a positive continuous eigenfunction.
Then λp = λ0, and the following hold:

(i) λp is a simple eigenvalue.
(ii) There exists δ > 0 such that Reλ < λp − δ for all λ ∈ σ(L) \ {λp}.

By replacing L by L+cI for some real constant c, we may assume without loss of generality
that h > 0 in Ω̄. In particular, this makes L into a bounded, strongly positive operator.

Before proving Proposition A.3, we start with a few useful lemmas.

Lemma A.2. Let L : C(Ω̄) → C(Ω̄) be a bounded, linear, strongly positive operator. If L
has an eigenvalue λ1 with a positive eigenfuntion in C(Ω̄), then λ1 is simple, λ1 = |σ(L)|.
Moreover, for any other eigenvalue λ of L, we have |λ| < λ1.

Proof. First, we claim that if λ is an eigenvalue corresponding to a positive eigenfunction
φ (which implies right away that λ > 0), then necessarily λ = λp. By definition, λ ≥ λp.
Suppose to the contrary that λ > λp, then there exists λ′ ∈ (λp, λ) and φ′ > 0 such that

(A.3) Lφ′ − λφ′ ≤ (λ′ − λ)φ′ < 0.

With the last inequality being strict, Lemma A.1 implies that −φ satisfies

(A.4) L(−φ)− λ(−φ) = 0,

can never be negative anywhere (otherwise −φ is a multiple of φ′ and equality cannot hold
in (A.4)). Hence −φ ≥ 0, which is a contradiction. Therefore, if λ is an eigenvalue corre-
sponding to a positive eigenfunction φ, then λ = λp. In fact, by Proposition A.1, we have
shown λ = λp = |σ(L)|.
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To show that λp is simple, let φ1 be a positive eigenfunction and let φ2 be another eigen-
function. Since one of φ2 or −φ2 is negative somewhere, Lemma A.1 implies that φ2 is a
constant multiple of φ1.

Finally, if λ′ ∈ σ(L), then |λ′| ≤ |σ(L)|. From the arguments in [34, pp. 253-255], the
equality can hold only if λ = |σ(L)| (line 22 p. 254 to line 2 p. 255), i.e. λ′ 6= |σ(L)| implies
|λ′| < |σ(L)|. Hence, Lemma A.2 follows. �

The next lemma shows that if λp > supΩ h = |h|L∞(Ω), then the part of the spectrum

{λ ∈ σ(L) : |λ| > |h|L∞(Ω)}
behaves like that of a compact operator.

Lemma A.3. Suppose λp > supΩ h, then for each constant λ0 ∈ (supΩ h, λp),

{λ ∈ σ(L) : |λ| > λ0}
consists of finitely many eigenvalues of L with finite multiplicities.

Proof. Let (Kφ)(x) :=
∫

Ω
k(x, y)φ(y) dy and (Hφ)(x) := h(x)φ(x), then L = K + H, such

that K is a compact linear operator in C(Ω̄), and H is a bounded linear operator in C(Ω̄).
If h ≡ 0 then L = K is compact and the lemma follows from standard spectral theory for
compact linear operators. Henceforth assume |h|L∞(Ω) > 0. First, for all λ ∈ C such that
|λ| > supΩ h = |h|L∞(Ω), λI −H : C(Ω̄)→ C(Ω̄) is invertible. Hence λI −L = (λ−H)−K.
Being a compact perturbation of an invertible map, it is Fredholm of index zero. This shows
that each λ ∈ σ(L) such that |λ| > supΩ h is an eigenvalue of finite multiplicity.

It remains to show that for each constant λ0 ∈ (supΩ h, λp), {λ ∈ σ(L) : |λ| > λ0} is a
finite set. Suppose to the contrary that there is a sequence of distinct λk such that λk ∈ σ(L)
and infk{|λk|} ≥ λ0. By the preceding argument, for each k, there exist φk ∈ C(Ω̄) such
that Lφk = λkφk. Fix a positive integer N such that

(A.5) (λ0)N > 6|h|NC(Ω̄).

Then L̃ := LN = K̃ + H̃, where H̃ = HN is a bounded operator such that ‖H‖ = ‖h‖NL∞(Ω)

and K̃ = L̃ − H̃ is a compact operator. ( The operator K̃ has the form K̃ = K(LN−1) +K1

where K1 is a finite sum of finite compositions of the operators H and K with the form
Hm ◦K ◦ . . . where 1 ≤ m ≤ N − 1.) Moreover, for each k, λ̃k := λNk is an eigenvalue of L̃
for all k, with the same eigenfunction. By (A.5), we have

(A.6) |λ̃k| > 6‖H̃‖.
For each m, define Ym to be the subspace spanned by φ1, ..., φm. Since eigenfunctions pertain-
ing to distinct eigenvalues are linearly independent, φk, being eigenfunctions of distinct eigen-
values of L, are linearly independent. Choose, for each n ≥ 2, yn ∈ Yn such that ‖yn‖C(Ω̄) = 1

and dist(yn, Yn−1) > 1/2 for all n ≥ 2. Now we claim that ‖K̃ym− K̃yn‖C(Ω̄) ≥ ‖H̃‖ > 0 for

all m > n ≥ 2, which contradicts the compactness of K̃. Since, for m > n ≥ 2,

K̃ym − K̃yn = L̃ym − L̃yn − H̃ym + H̃yn = (λ̃mym − y′)− (H̃ym − H̃yn)
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for some y′ ∈ Ym−1. Hence by (A.6),

‖K̃ym − K̃yn‖C(Ω̄) ≥ |λ̃m|dist(ym, Ym−1)− 2‖H̃‖C(Ω̄) >
|λ̃m|

2
− 2‖H̃‖C(Ω̄) > ‖H̃‖ > 0.

for all m > n ≥ 2. This contradicts the compactness of K̃, which completes the proof. �

Proof of Proposition A.3. Let λ0 be an eigenvalue of L with a positive eigenfunction. Then
by Proposition A.1 and Lemma A.2,

(A.7) λ0 = |σ(L)| = λp,

and it is a simple eigenvalue. Hence (i) follows. Next, by Theorem A.2,

(A.8) λp > sup
Ω
h.

Claim 14. |λ| < λp for all λ ∈ σ(L) \ {λp}.

Let λ ∈ σ(L), if |λ| ≤ supΩ h, then |λ| < λp, by (A.8). Otherwise |λ| > supΩ h, and λ is
an eigenvalue of L (Lemma A.3) and hence |λ| < λp, by Lemma A.2. This proves the claim.

Finally, the spectral gap follows from Claim 14 and the fact that {λ ∈ σ(L) : |λ| >
(supΩ h+ λp)/2} is a finite set (Lemma A.3). Therefore,

sup{|λ| : λ ∈ σ(L) \ {λp}} < λp.

This completes the proof of Proposition A.3. �

Next, we state a comparison lemma which follows from the definition of spectral point for
nonlocal operators. This in particular implies the continuous dependence of λp with respect
to h ∈ C(Ω̄) and positive functions k ∈ C(Ω̄× Ω̄).

Lemma A.4. Let k1(x, y), k2(x, y) > 0, and a1(x), a2(x) be continuous. Define

λ1,1 := sup{λ ∈ R : ∃φ > 0 such that k1(x, ·) ∗ φ+ a1φ+ λφ ≤ 0.}
λ1,2 := sup{λ ∈ R : ∃φ > 0 such that k1(x, ·) ∗ φ+ a2φ+ λφ ≤ 0.}
λ2,1 := sup{λ ∈ R : ∃φ > 0 such that k2(x, ·) ∗ φ+ a1φ+ λφ ≤ 0.},

then we have

min(a2 − a1) ≤ λ1,1 − λ1,2 ≤ max(a2 − a1)

λ1,1 −min(k1/k2)λ2,1 ≤ |min(k1/k2)− 1|max |a1|
λ2,1 −min(k2/k1)λ1,1 ≤ |min(k2/k1)− 1|max |a1|.
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