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Abstract

The ideal free distribution in ecology was introduced by Fretwell and Lucas to
model the habitat selection of animal populations. In this paper, we revisit the
concept via a mean field game system with local coupling, which models a dy-
namic version of the habitat selection game in ecology. We establish the existence
of classical solution of the ergodic mean field game system, including the case
of heterogeneous diffusion when the underlying domain is one-dimensional and
further show that the population density of agents converges to the ideal free dis-
tribution of the underlying habitat selection game, as the cost of control tends to
zero. Our analysis provides a derivation of ideal free distribution in a dynamical
context.
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1 Introduction

How organisms move to select their habitat is a central question in ecology. From
an evolutionary perspective, organisms tend to adopt strategies in order to optimize
their fitness [32]. The optimization viewpoint is applied extensively in the study of
how adaptation can occur in animal foraging behavior [6, 55], in habitat choices [38],
as well as in the migration process of many organisms [1, 56]. In most cases, it is far
from a straightforward optimization problem of an individual navigating in a static
environment, given that environmental productivity and habitat suitability depend on
interactions between individuals inhabiting a given location. Hence, the game theo-
retical framework [51] is widely applied, leading to the search for Nash equilibria of a
game with many players in which each player can anticipate the average response of
others, so as to adopt a best response strategy.

1.1 The Ideal Free Distribution

An important paradigm was presented by Fretwell and Lucas [26, 27], who introduced
the ideal free distribution (IFD), which can be understood as a Nash equilibrium
concept in a habitat selection game (see Lemma 3.2). Their simplest model predicts
that as all individuals move around freely until they cannot do any better in terms
of obtaining resources, the local fitness of individuals will be equal in all occupied
habitats, whereas the local fitness in the unoccupied habitat is less than or equal to
the occupied ones [33]. Later, Cressman and Krivan [23, 39] proved that the patch
selection strategy producing an IFD is an example of an evolutionarily stable strategy
(ESS), i.e. a strategy which is stable with respect to any other patch selection strategy.

More precisely, consider a smooth bounded spatial domain Ω and let F (x,m) be
the local fitness at location x, given the local population density m, and assume that
F (x,m) decreases in m. The theory of ideal free distribution predicts the following:

(I) Suppose the spatial location x is occupied while the location y is unoccupied, i.e.
m(x) > 0 while m(y) = 0. Then we must have F (x,m(x)) ≥ F (y,m(y)), for
individuals at location x would otherwise leave and move to location y;

(II) Suppose the spatial location x and y are occupied. Then local density must be
adjusted so that F (x,m(x)) = F (y,m(y)) for x, y ∈ {x′ : m(x′) > 0}.

In a different line of research focusing on the evolution of dispersal, Hastings [31]
showed that lower dispersal rates are selected among phenotypes that are randomly
dispersing in a spatially heterogeneous but temporally constant environment, in the
sense that for two phenotypes which are identical except for their dispersal strategies,
the one with lower dispersal rate always competitively ousts the one with higher
dispersal rate. See [14, 24, 41] for mathematical results in a more sophisticated context.
A closer examination of the results reveals that random dispersal creates a mismatch
between population distribution and the carrying capacity. This mismatch allows for
the possible invasion by phenotypes with exotic dispersal strategies. In [46], McPeek
and Holt analyzed spatially discrete models and found that selection favors dispersal
strategies that do not create such mismatches. Later on, the evolutionary stability of
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such strategies was proved in [11] for spatially discrete models, and in [13] for reaction-
diffusion-advection systems. It is interesting to underline another point of [33]: many
dispersal behaviors, which are not necessarily ideal or free, can lead to an ideal free
distribution. Indeed, it was proved in [11, 13] that a class of dispersal behavior, for
which the movement of the organism only depends on local (but not global) spatial
information, is enough to produce IFD.

As aforementioned, the IFD can be regarded as the Nash equilibrium of a habitat
selection game, and as such it does not address the mechanisms and dynamics that
might lead to IFD. The analyses using the adaptive dynamics framework in [13, 31]
partially addressed this problem by showing that dispersal strategies producing IFD
are both evolutionarily stable strategies (ESS), as well as neighborhood invader strate-
gies (NIS). Roughly speaking, a strategy is an ESS if it is an evolutionary endpoint,
while it is an NIS if phenotypes with such a dispersal strategy (should they arise by
random mutation) can always dominate and outcompete whichever resident strategies
that were present. Precisely, consider the following reaction-diffusion-advection model

mt = div(µ∇m− P⃗ (x)m) +m(K(x)−m) for t > 0, x ∈ Ω, (1.1)

with no-flux boundary condition on ∂Ω, modeling a population density m(x, t) whose
members move with a combination of diffusion with rate µ > 0 and a biased movement
following the vector field P⃗ (x). Under the framework of adaptive dynamics, and by

regarding the vector field P⃗ as strategy, it is proved that the set of evolutionarily
stable strategies coincides with those strategies P⃗ whose corresponding stationary
distribution m̂(x) leads to equilibration of fitness, i.e.

F (x, m̂(x)) = K(x)− m̂(x) = constant.

Hence, it is necessary that the population distribution exactly matches the carrying
capacityK(x) at an ESS [papers]. (In principle we could consider other general logistic-
type growth rate where s 7→ F (x, s) is strictly decreasing.) This is also true when the
environmental conditions vary periodically as well, under mild conditions [12].

Besides the framework of adaptive dynamics, another explicit type of game dynam-
ics was introduced by Taylor and Jonker [53]. These dynamics, called the “replicator
equations”, are constructed to model situations in which there is an instantaneous
change in the frequency of different strategies due to their differing relative fitness.
The Folk Theorem of this framework relates the dynamical stability of the replicator
equation with the Nash equilibrium property or evolutionary stability of a given strat-
egy. A wider class of dispersal dynamics, including best response dispersal strategies,
was considered by Cressman and Krivan [39]. Recently, Ambrosio et al. [2] intro-
duced and proved the well-posedness of spatially heterogeneous replicator models in
continuous space and derived the limit as the number of agents tends to infinity.

1.2 Our main objective

In this paper, we interpret the framework of mean field games (MFG) in terms of evo-
lution of dispersal, in which individual movement is governed by a controlled diffusion
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process so as to optimize an objective functional. The objective function incorporates
the effect of the cost of control, the payoff function F (t, x) which is perturbed by a
mean field distribution m(t, x) of the conspecifics. For each fixed cost of control, we
will first develop the existence and uniqueness of solution of MFG, which corresponds
to the Nash equilibrium of the mean field game. Next, we will show that as the cost of
control/dispersal goes to zero, the overall population distribution of individuals con-
verges to the IFD. This provides a dynamical optimization through which IFD can be
achieved. For the precise statement of our main results, see Theorems 3.4 and 3.5.

1.3 Mean Field Games

Mean field game (MFG) was considered in the economics literature by Jovanovic
and Rosenthal [35], in the engineering literature by Caines, Huang and Malhamé
[34], and independently and around the same time by the mathematicians Lasry and
Lions [42]. MFG models are a set of PDEs used to approximate an infinite number
of players behaving as a Nash equilibrium with respect to a differential game. In
the game, each individual has knowledge of its own space-time coordinate, and the
empirical distribution of the other players. In contrast to existing adaptive dynamics
models where one studies the invasion of trait/phenotype by allowing (usually two)
populations with prescribed dispersal strategies to compete [13, 24, 31], MFG focuses
on the selection at the level of an individual, which is able to optimize its performance
as measured by a suitable payoff functional K(x) which is perturbed by the mean field
term m(t, x) representing the average behavior of the infinite number of agents. Of
course, the complexity of the differential game becomes intractable as the number of
individuals becomes large. Thus, MFG considers the special solutions in which all the
players are identical, meaning they are governed by an identical (albeit independent)
controlled diffusion process and are optimizing a symmetric objective. In other words,
MFG models symmetric Nash equilibria, where the average player chooses a behavioral
strategy which is optimal given mean field terms where all other agents also adopt
the given strategy. Roughly speaking, a typical individual in the MFG solution uses
both the information on (i) the net payoff function K(x) and (ii) how the mean field
distribution m(t, x) depends on the choice of individual feedback control α(t, x), to
adopt a control that is optimal (balancing the cost of control with the perturbed
payoff function F (t, x) = K(x)−m(t, x)) in anticipation of how the entire population
is expected to distribute in the future up to the terminal time. The questions of
existence, uniqueness and qualitative properties of this equilibrium are at the core of
the mathematical difficulties of MFG.

MFG has a number of applications in economic theory [19, 30, 35], cryptocur-
rency and Bitcoin mining [7] and financial engineering [20]. It is also applied to model
biological phenomena such as animal swarming [47, 52] and diel migration in phyto-
plankton [45]. For the latter area, Thygesen and his coauthors developed a different
approach to the connection between the ideal free distribution and mean field games
in [28] and applied it to predator-prey systems. Its mathematical formulation is more
explicitly game theoretical than ours, in the spirit of [39], and does not use the for-
mulation of Larsy and Lions [42] directly. The models in [28] assume that movement
takes place on a fast timescale so that it instantaneously reaches an equilibrium in
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space, as opposed to our starting assumption of diffusive movement. The analysis in
[28] is based on variational inequalities. Related ideas are developed in [29]. In [54]
the authors formulate a mean field game for the diel migration of copepods. They use
an explicit formula for cost of motion and note that any equilibrium in their model
would correspond to an ideal free distribution. In a later paper [45] they extend those
ideas and derive a system to characterize their mean field game which is similar to the
one we will consider analytically in this paper.

2 Model Formulation

Within the MFG framework we consider a population of individual agents who
can assess the quality of their surrounding environments, the spatial distribution of
conspecifics, and are able to move freely.

Mathematically, assume that a representative agent is governed by the following
controlled stochastic differential equation (SDE):

dXt = α(t,Xt)dt+
√

2µ(Xt)dBt, X0 = x ∈ Ω ⊆ Rd, (2.1)

where x is the initial state/location, αt = α(t,Xt) represents the feedback control
terms and Bt is a standard Brownian motion with a state-dependent coefficient µ(x)
which is smooth and bounded from above and below by positive constants. More pre-
cisely, the above SDE applies when Xt is in the interior of Ω, while on the boundary
∂Ω it is reflected as modeled by a Skorokhod problem [43], leading to the no-flux
boundary condition (2.3). Consistent with the notion of symmetric Nash equilibrium,
we assume that all agents are indistinguishable and follow the above SDE with inde-
pendent noise. Let a finite time horizon T > 0 be fixed, if every agent is independent
and is governed by the same diffusive law given above, the population density mT (t, x)
of agents is given by the forward Fokker-Planck equation [48]:

∂tm = ∆(µm)− div(αm) in Ω× (0, T ), m(0, x) = m0(x) in Ω. (2.2)

with boundary condition (thanks to the Skorokhod formulation)

ν · (µ∇mT −mTα) = 0 on ∂Ω× (0, T ), (2.3)

where ν is the unit outward normal vector on ∂Ω. The representative agent then seeks
to optimize a payoff functional J T (t, x;α) over a finite time horizon [0, T ], i.e.

uT (t, x) = inf
α

J T (t, x, ;α) (2.4)

where the payoff functional J T (t, x, ;α) depends on the behavior of the population
density mT of all players, in addition to other factors:

J T (t, x;α) = Et,x

{ˆ T

t

ϵ

2
|αs|2 −

1

ϵ
F (Xs,m

T (s,Xs)) ds+G(XT )

}
. (2.5)
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Here we take a quadratic cost of control for simplicity, as it represents the square
of velocity, which represents the energy cost to implement the control (see further
discussion in Section 4.1), and α = {αs}s is a nonanticipative control process, i.e. for
each s, αs can depend on knowledge of the process {Xs′}0≤s′≤s up to time s. Next, we
discuss the choice of our scaling factor ϵ in (2.5). First, note that the optimal control
α (that minimizes J T ) will not change even if we multiply J T by any function h(ϵ).
Hence ϵ is genuinely the ratio between the control cost running cost. The specific
choice of the coefficients ϵ

2 and 1
ϵ is to prevent the value function from converging to

zero or infinity as ϵ → 0.
To derive the IFD, we will first let T → ∞ to connect with the ergodic MFG and

then consider the limit ϵ → 0 when the cost of control becomes negligible. Further
discussion can be found in Section 4.

A typical choice of F (x,m) is given in logistic form:

F (x,m) = r(x)

(
1− m

K(x)

)
(2.6)

where r(x) and K(x) are the intrinsic growth rate and the carrying capacity, respec-
tively. When F is independent of m, (2.4) becomes a typical stochastic optimal control
problem, and has been applied extensively in mathematical biology, such as in bird mi-
gration [1]. Motivated by the differential games of many players, the MFG formulation
incorporates the consideration that each player is playing the field, which means that
the individual is optimizing its control strategy {αt} while anticipating the density
mT (t, x) of other players.

By considering for the moment the density of mT (t, x) as given, and requiring that
the individual behavior is consistent with the payoff (t, x) 7→ F (x,mT (t, x)), it follows
from classical theory [25] that the optimal control is necessarily given as a feedback
control proportional to the gradient of the value function u

α = −1

ϵ
∇uT (t,Xt) (2.7)

where uT (t, x) is the value function associated with this minimization (2.4), which
can be characterized as the unique viscosity solution to the Hamilton-Jacobi-Bellman
equation

0 = max
α

[
−(uT )t − µ∆uT − α · ∇uT − ϵ

2
|α|2 + 1

ϵ
F (x,mT (t, x))

]
.

The Hamilton-Jacobi-Bellman equation can be written as follows:{
−(uT )t − µ∆uT + 1

2ϵ |∇uT |2 + 1
ϵF (x,mT (t, x)) = 0 for t ∈ [0, T ], x ∈ Ω,

uT (T, x) = G(x) for x ∈ Ω.
(2.8)

Finally, the reflecting boundary condition of the diffusion process keeps the process
inside Ω̄, hence the value function satisfies the Neumann condition [50, Theorem 4.1],

6



which says that the controller cannot lower the cost by pushing the state outside the
domain:

ν · ∇uT = 0 for t ∈ (0, T ), x ∈ ∂Ω. (2.9)

Upon substituting (2.7) into (2.2) and (2.3), then combining with (2.8)-(2.9), we obtain
the finite horizon MFG model with local coupling (see [18]):

∂tu
T = −µ∆uT + 1

2ϵ |∇uT |2 + 1
ϵF (x,mT (t, x)) for t ∈ [0, T ], x ∈ Ω,

∂tm
T = ∆(µmT ) + div(mT ∇uT

ϵ ) for t ∈ [0, T ], x ∈ Ω,

ν · ∇uT = 0 for t ∈ [0, T ], x ∈ ∂Ω,

ν · (µ∇mT +mT ∇uT

ϵ ) = 0 for t ∈ [0, T ], x ∈ ∂Ω,

mT (0, x) = m0(x), uT (T, x) = G(x) for x ∈ Ω.

(2.10)

When the parameter ϵ > 0 (which appears originally in the cost functional in (2.5)) is
small, then the cost of control becomes small and the drift due to control dominates
over the standard noise due to diffusion in the Fokker-Planck equation governing the
population density mT (t, x). It is this combination of large and optimal drift and a
bounded diffusive movement that together enables the ideal free distribution.

2.1 The Stationary Problem

It is natural to investigate the behavior of the MFG system (2.10) as the horizon T
tends to infinity. In fact, it can be shown that the influence of the initial/terminal data
(m0, G) vanishes as T → ∞ (see Proposition 2.1 below), and that the long-time average
can be approximated by the following stationary ergodic problem with unknowns
(λ, u(x),m(x)). (For later purposes, we also denote the solution by (λϵ, uϵ,mϵ) to
emphasize the dependence on ϵ.)

λ− ϵµ∆u+ 1
2 |∇u|2 + F (x,m(x)) = 0 for x ∈ Ω,

−ϵ∆(µm)− div (m∇u) = 0 for x ∈ Ω,

ν · ∇u = ν · [∇(µm) +m∇u] = 0 for x ∈ ∂Ω,´
Ω
u dx = 0 and

´
Ω
mdx = m̄0 :=

´
Ω
m0 dx.

(2.11)

Here λ ∈ R is called the ergodic constant, or optimal long-time average reward. This
system is central in the study of the long-time behavior of MFG systems, and has
been the topic of a systematic study when µ is constant and when F satisfies stronger
regularity assumptions. The two main references are [15, 17]. It is important to point
out that in the first-order case, that is, when ε = 0, the existence of solutions to the
ergodic system under several assumptions is linked to the weak KAM theory; we refer
to [15] for a discussion of this aspect of the theory. In Appendix B, we provide some
existence results for the stationary problem. In case µ is a constant, the existence
of the solution is due to [17]. In this paper, we also derive the existence of classical
solutions when µ is nonconstant under the limitation that Ω is one-dimensional.
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The ergodic system (2.11) can be interpreted as follows: each agent seeks to
minimize his/her ergodic cost u(x) = infα J (x, α), where J is the ergodic cost function

u(x) = inf
α

J (x, α) = inf
α

lim sup
T→∞

E

[
1

T

ˆ T

0

ϵ

2
|α(Xt)|2 −

1

ϵ
F (Xt,m

(α)(Xt)) dt

]
,

where α = α(x) is a feedback control, and Xt is the solution to the SDE

dXt = α(Xt)dt+
√

2µ(Xt)dWt such that X0 = x,

and m(α)(x) is the stationary population density which satisfies
−∆(µm) + div(αm) = 0 in Ω,

ν · [∇(µm) + αm] = 0 on ∂Ω,´
Ω
mdx = m̄0.

(2.12)

Here, we state a convergence result of the solution of (2.10) to that of the ergodic
problem (2.11). For convenience, we provide a version here and refer the reader to [17,
Theorems 2.1 and 3.1] and [18, Theorem 1.14] for more precise results. We need the
monotonicity condition

(F1) F (x, s)− F (x, s′) ≥ 0 for x ∈ Ω, and s′ ≥ s.
(F2) F ∈ Liploc([0,∞)×Ω̄) and there is c1 > 0 such that F (x, s)−F (x, s′) ≥ c1(s

′−s)
for x ∈ Ω, and s′ ≥ s.

Proposition 2.1. Let (λ, u(x),m(x)) ∈ R×C2+β(Ω̄)×C2+β(Ω̄) be a classical solution
of the ergodic problem (2.11), and for each T > 0, let (uT (t, x),mT (t, x)) be a solution
of (2.10) such that

m0, G ∈ C2(Ω̄) and inf
Ω

m0 > 0.

Define θT , νT : [0, 1]× Ω → R by

θT (s, x) = uT (sT, x) and νT (s, x) = mT (sT, x). (2.13)

(a) Suppose (F1) holds. Then

¨
(0,1)×Ω

(νT +m)|∇θT −∇u|2 dxdt ≤ C

T
(2.14)∣∣∣∣∣

¨
(0,1)×Ω

(−F (x, νT ) + F (x,m))(νT −m) dxdt

∣∣∣∣∣ ≤ C

T
for T ≥ 1. (2.15)

(b) Suppose (F2) holds. Then

∥νT −m∥L2((0;1)×Ω) + ∥∇θT −∇u∥L2((0;1)×Ω) →
T→∞

0. (2.16)
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sup
0≤s≤1

∣∣∣∣ 1T
 
Ω

θT (s, x) dx− λ(1− s)

∣∣∣∣ →
T→∞

0. (2.17)

(See Appendix A for the proof.)
In a certain sense, if individuals behave optimally, then we expect the overall

population to organize into a stationary distribution, i.e. mT (t, x) ≈ m(x) over a
sufficiently long time horizon. In the next section, we will characterize the population
distribution m(x) when the cost ϵ of control is small and connect it with the concept
of the ideal free distribution.

3 Deriving the ideal free distribution

It is sometimes mathematically more convenient to work with the following definition
of IFD as a variational inequality [36], which implies (I) and (II) in the introduction
(see Lemma 3.2 below).
Definition 3.1. We say that a nonnegative function m̂ ∈ C(Ω̄) is an IFD if

ˆ
Ω

F (x, m̂(x))m(x) dx ≤
ˆ
Ω

F (x, m̂(x))m̂(x) dx (3.1)

for any 0 ≤ m ∈ L1(Ω) such that
´
Ω
mdx =

´
Ω
m̂ dx.

Here C(Ω̄) (resp L1(Ω)) denotes the class of functions which are continuous on Ω̄
(resp. integrable on Ω).

The above characterization by a variational inequality is consistent with the notion
of IFD being the result of selection at the individual level. Indeed, suppose m̂(x) is
IFD, then one can regard the vast majority of individuals playing the mixed strategy
m̂(x) implying that the fitness of a typical individual is given by the right-hand side
of (3.1), which is necessarily greater than or equal to the fitness of an individual with
an arbitrary mixed strategy m(x), as given by the left-hand side of (3.1).

Also, Definition 3.1 is consistent with the general statement of what is meant by
an IFD, as outlined in (I) and (II) in the introduction, as is shown below.
Lemma 3.2. Suppose m̂ ∈ C(Ω̄). Then m̂ is an IFD according to Definition 3.1 if
and only if then there exists a constant c0 ∈ R such that

(i) F (x, m̂(x)) ≡ c0 is constant in supp m̂, and
(ii) F (x, m̂(x)) ≤ c0 for all x ∈ Ω.

Proof. Without loss of generality, suppose
´
Ω
m̂ dx = 1. The “⇐” part of the assertion

is obvious, so we prove the “⇒” part below. Define

c0 =

ˆ
Ω

F (x, m̂(x))m̂(x) dx.

By letting a sequence of m = mj → δx′ (the Dirac mass supported at x′), we deduce
from (3.1) that

F (x′, m̂(x′)) ≤ c0 for each x′ ∈ Ω. (3.2)
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Next, multiply (3.2) by m̂(x′) and integrate over Ω, we deduce that

c0 =

ˆ
Ω

F (x′, m̂(x′))m̂(x′) dx′ ≤
ˆ
Ω

c0m̂(x′) dx′ = c0.

Hence F (x′, m̂(x′)) = c0 for all x′ ∈ supp m̂.

To keep the ideas clear, we assume hereafter the special case when F is given by

F (x, s) = K(x)− s, (3.3)

for some strictly positive function K ∈ C(Ω̄). 1

Remark 3.3. If F is given by (3.3), then m̂(x) is an IFD if and only if

m̂(x) = max{K(x)− λ̄, 0} for some λ̄ ∈ R,

which is as described by Fretwell and Lucas [27]. To see that, define λ̄ =´
F (x, m̄)m̄ dx, then by Lemma 3.2(i), m̄ = K − λ̄ in the support of m̄, and that

{m̄ ≡ 0} ⊂ {K ≤ λ̄}.
Let (λϵ, uϵ(x),mϵ(x)) be a solution to the stationary system (2.11). Then mϵ(x)

represents the spatial population distribution as each individual behaves optimally
given the information (consisting of the carrying capacity K(x), and the distribution
of all players mϵ(x)) and given the cost of control ϵ > 0. Furthermore, by Proposition
2.1, in any finite horizon MFG with T ≫ 1, the population distribution of individuals
is approximately equal to mϵ(x) a.e. in [0, T ].

To derive the IFD, we consider the asymptotic limit when the cost of control tends
to zero, i.e. ϵ → 0. We begin with a general result that holds in all dimensions, but
only provides a weak convergence of (mε)ε>0 in the sense of measures.
Theorem 3.4. For any ε > 0 let (λϵ, uϵ(x),mϵ(x)) ∈ R × C2+β(Ω̄) × C2+β(Ω̄) be a
classical solution of (2.11). Then there exists λ̄ ∈ R such that

λε → λ and mε ⇀
L2

max{K(x)− λ, 0} as ϵ → 0, (3.4)

which is the IFD accoring to Definition 3.1 above. Particularly, λ is determined by

ˆ
Ω

max{K(x)− λ̄, 0} dx = m̄0, (3.5)

and m̄0 is as given in (2.11).
In the next theorem, we will show the uniform convergence of (mε)ε>0, when µ is

constant or when Ω is one-dimensional.
Theorem 3.5. Let (λϵ, uϵ(x),mϵ(x)) ∈ R×C2+β(Ω̄)×C2+β(Ω̄) be a classical solution
of the ergodic problem (2.11). Suppose that one of the following conditions holds.

(a) Ω is a smooth bounded domain in Rd for some d > 1 and µ(x) is constant in x.

1We remark that the same result holds true for the more general class of F (x, s) which is strictly decreasing
in s and such that s 7→ F (x, s) + λ has a unique root K(x, λ).
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(b) Ω = (0, 1);

Then as ϵ → 0,

λϵ → λ̄ and mϵ(x) → max{K(x)− λ̄, 0} uniformly in Ω. (3.6)

Here λ̄ is uniquely characterized by (3.5). In particular, K(x) − mϵ(x) tends to a
constant in the support of limmϵ.

Recall that (λϵ, uϵ,mϵ) represents a symmetric Nash equilibrium of the differential
game in which the individual payoff contains a mean field term mϵ. The above result
says that as the cost of the control tends to zero, then the symmetric Nash equilibrium
of the ergodic problem approaches the IFD (see Remark 3.3). Particularly, there exists
a constant c0 such that for each x ∈ Ω, one of the following holds:

• mϵ(x) → 0 as ϵ → 0;
• F (x,mϵ(x)) → c0 as ϵ → 0.

i.e. the fitness function F (x,mϵ(x)) becomes approximately constant in the support
of the population. Furthermore, a corresponding statement holds for the finite horizon
problem as well, thanks to Proposition 2.1. This gives an alternative derivation of the
IFD via the framework of MFG in the stationary setting.

More generally, IFD can be observed in the MFG in the finite time horizon [0, T ]
with large enough T > 0 as well. Indeed, it follows from Proposition 2.1 that the
population mT (t, x) ≈ mϵ(x) for a.e. t ∈ [0, T ], except possibly near the initial and
terminal times, when the initial distribution m0 and the terminal payoff G(x) take
effect.

Before we prove these theorems in the next section, let us establish the following
a priori estimate.
Lemma 3.6. Let (λϵ, uϵ,mϵ) ∈ R×C2+β(Ω̄)×C2+β(Ω̄) be a solution of (2.11), then

|λϵ|+
ˆ
Ω

|∇uϵ|2 dx+

ˆ
Ω

|mϵ|2 dx ≤ 3∥K∥L∞ + 2

m0 sup
Ω

µ

inf
Ω

µ
. (3.7)

Proof. Using the uniform bound which is due to (B.8) in Remark B.3.

|λϵ|+
ˆ
Ω

|∇ūϵ|2 dx ≤ ∥K∥∞ +

m0 sup
Ω

µ

inf
Ω

µ
. (3.8)

Since uϵ is normalized by
´
Ω
uϵ dx = 0, then

sup
ε>0

∥uε∥H1(Ω) < ∞. (3.9)
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Second, multiplying the first equation of (2.11) by mε, integrating by parts and using
the second equation of (2.11), we obtain

ˆ
Ω

(mε)2 = λε +

ˆ
Ω

Kmε − 1

2

ˆ
Ω

|∇xu
ε|2mε ≤ ∥K∥L∞ + λε.

Combining with (3.8), we deduce (3.7).

Thanks to (3.7), we may pass to a subsequence, and there exists (λ̄, ū, m̄) ∈ R ×
H1(Ω)× L2(Ω) such that

λϵ → λ̄, uϵ H1

⇀ ū, and mϵ L2

⇀ m̄. (3.10)

3.1 Proof of Theorem 3.4

Let (λ̄, ū, m̄) ∈ R×H1(Ω)×L2(Ω) be a subsequential limit as given by (3.10). Define
the function

Gε : C
2(Ω)× P(Ω) ∋ (ϕ,m) 7→

ˆ
Ω

(−εµ∆ϕ+
1

2
|∇ϕ|2 + (K −mε))dm,

where in the case of m ∈ L1, we follow the convention that dm = m(x)dx. First of all,
by integrating the first equation of (2.11), we have

Gε(u
ε,m) = −λε = Gε(u

ε,mε) for all m ∈ P(Ω) ∩ C2(Ω). (3.11)

Second, for any ϕ ∈ C2(Ω), define z := ϕ− uε. Then

Gε(ϕ,m
ε)−Gε(u

ε,mε) =

ˆ
Ω

(−εµ∆z + ⟨∇z,∇uε⟩)dmε +
1

2

ˆ
Ω

|∇z|2dmε

=
1

2

ˆ
Ω

|∇z|2dmε ≥ 0,

where the second equality follows from multiplying the second equation of (2.11) by
z and integrating by parts. We thus deduce that, for all (ϕ,m) ∈ C2(Ω)× P(Ω),

Gε(u
ε,m) ≤ Gε(u

ε,mε) ≤ Gε(ϕ,m
ε). (3.12)

Using ˆ
Ω

(m̄)2 ≤ lim inf
ε→0

ˆ
Ω

(mε)2,

which is a consequence of Fatou’s lemma, we deduce that

lim
ε→0

Gε(ϕ,m
ε) ≤

ˆ
Ω

(
1

2
|∇ϕ|2 + (K − m̄))m̄ for all ϕ ∈ C2(Ω). (3.13)

12



Furthermore, if m ∈ P(Ω) ∩ C2(Ω) such that ν · ∇(µm) = 0 on ∂Ω,

lim
ε→0

Gε(u
ε,m) ≥ lim

ε→0

(ˆ
Ω

(K −mϵ)dm−
ˆ
Ω

uε(ε∆(µm))

)
=

ˆ
Ω

(K − m̄)m. (3.14)

Here, we used
´
|∇uϵ|2 dm ≥ 0 and integrated by parts. Hence, by taking ϕ = 1 and

combining (3.12), (3.13) and (3.14), we deduce that for any m ∈ P(Ω) ∩ C2(Ω) such
that ν · ∇(µm) = 0 on ∂Ω, there holds

ˆ
Ω

(K − m̄)m ≤ −λ0 ≤
ˆ
Ω

(K − m̄)m̄.

By approximation, we observe that the above inequality holds for all m ∈ P(Ω). This
shows that m̄ satisfies the definition of an IFD. The rest follows from Lemma 3.2 and
the constraint

´
mϵ dx = m̄0 in (2.11).

3.2 Proof of Theorem 3.5(a)

In this section, we establish the uniform convergence of the ergodic measure mϵ to the
IFD as ϵ → 0, in the case of domains with dimension n ≥ 2 assuming the stronger
condition that µ is constant. By scaling in x, we may assume without loss of generality
that µ ≡ 1

2 , and (2.11) becomes
λϵ − ϵ

2∆uϵ + 1
2 |∇uϵ|2 + F (x,mϵ) = 0 for x ∈ Ω,

− ϵ
2∆mϵ − div (mϵ∇uϵ) = 0 for x ∈ Ω,

ν · ∇uϵ = ν · ∇mϵ = 0 for x ∈ ∂Ω,´
Ω
uϵ dx = 0 and

´
Ω
mϵ dx = m̄0.

(3.15)

Observe that the Fokker-Planck equation implies that mϵ(x) can be expressed as a
Boltzmann distribution with Hamiltonian uϵ(x) and that a partition function C̄, i.e.

mϵ(x) = C̄exp

(
−2uϵ(x)

ϵ

)
, (3.16)

where the constant C̄ = m̄0

[´
Ω
exp

(
−2uϵ(x)

ϵ

)
dx

]−1

is chosen to ensure
´
Ω
mϵ dx =

m̄0. This follows from the fact that both exp
(

−2ū(x)
ϵ

)
and mϵ are positive eigenfunc-

tions of the same linear elliptic operator (corresponding to the zero eigenvalue), and
must be linearly dependent, thanks to the Krein-Rutman Theorem [37].

We take ϕϵ(x) = e−uϵ/ϵ and seek to solve the nonlinear eigenvalue problem{
ϵ2∆ϕϵ + 2

(
F
(
x, ϕ2

ϵ

)
+ λ̄

)
ϕϵ = 0 in Ω,´

Ω
ϕ2
ϵ dx = m̄0 and n · ∇ϕϵ on ∂Ω.

(3.17)

13



To solve (3.17), we consider, for each ϵ > 0 and Λ ∈ R, the following semilinear
equation {

ϵ2∆w + 2
(
F (x,w2) + Λ

)
w = 0 in Ω,

n · ∇w = 0 on ∂Ω.
(3.18)

Proposition 3.7. For each ϵ > 0 and Λ > Λϵ, (3.18) has a unique positive solution
wϵ,Λ, where Λϵ is the principal eigenvalue of{

ϵ2∆φ+ 2 (F (x, 0) + Λ)φ = 0 in Ω,

n · ∇φ = 0 on ∂Ω.
(3.19)

Furthermore,

(a) wϵ,Λ(x) < wϵ,Λ′(x) in Ω̄ if Λ < Λ′.
(b) wϵ,Λ ↘ 0 as Λ ↘ Λϵ.
(c) There exists Λ > 0 independent of ϵ such that

´
Ω
|wϵ,Λ|2 dx > m0 for any ϵ > 0 and

Λ ∈ [Λ,∞).

Proof. Fix an arbitrary ϵ > 0. The existence of wϵ,Λ for Λ > Λϵ is classical [9, 40]. For
(a), observe that for Λ′ > Λ, wϵ,Λ′ is a strict supersolution of (3.18), so it follows by
comparison [40, Corollary 5.1.9] that wϵ,Λ < wϵ,Λ′ in Ω̄. This proves (a).

Thanks to (a), the family {wϵ,λ}Λ∈(Λϵ,Λϵ+1] is bounded in L∞(Ω). It follows by

elliptic Lp estimates that this family is bounded in W 2,p(Ω) for any p > 1. By passing
to a subsequence, we may assume that wϵ,Λ → w̄ as Λ ↘ Λϵ weakly in W 2,p(Ω).
Moreover, the limit w̄ satisfies

ϵ2∆w̄ + 2(F (x, 0) + Λϵ)w̄ = 2(F (x, 0)− F (x, w̄2)) ≥ 0 in Ω (3.20)

and the Neumann boundary condition on ∂Ω.
Next, multiplying both sides of (3.20) by principal eigenfunction φϵ > 0 of (3.19)

and integrating by parts, we deduce that

0 =

ˆ
Ω

φϵ(F (x, 0)− F (x, w̄2)) dx ≥ 0.

Since s 7→ F (x, 0) is strictly decreasing, it follows that w̄ ≡ 0. This proves (b).
For (c), choose Λ = supΩ

(
−F (x, |m̄0|2/|Ω|)

)
+ 1. Then one obtains that for each

Λ ∈ [Λ,∞) w = |Ω|−1/2m̄0 > 0 is a strict subsolution of (3.18). It follows from the
comparison principle [40, Corollary 5.1.9] that

wϵ,Λ ≥ |Ω|−1/2m0 in Ω for Λ ∈ [Λ,∞).

This proves (c).

Proposition 3.8. For each ϵ > 0, the nonlinear eigenvalue problem (3.17) has a
unique solution (λϵ, ϕϵ).
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Proof. Let ϵ > 0 be fixed. By Lemma 3.7, there exists a unique Λ such that´
Ω
w2

ϵ,Λ dx = 1. It follows that (λϵ, ϕϵ) = (Λ, wϵ,Λ) exists, and is uniquely deter-
mined.

Proof of Theorem 3.5(a). For j ∈ N, let (λj , uj ,mj) be the solution of (3.15) with
ϵ = ϵj → 0. By Lemma 3.7, λj is the unique number in (Λϵ,Λ) such that

ˆ
Ω

|wj |2 dx = m̄0 where wj = wϵj ,λj
,

and that
(uj ,mj) = (−ϵ logwj , w

2
j ).

Next, we claim that

|λj |+ sup
Ω

|wj | ≤ C for some C independent of j.

Indeed, λj ∈ (Λϵ,Λ) is uniformly bounded from above by Proposition 3.7(c). Also,
since the lower bound satisfies Λϵ → − supΩ F (·, 0) as ϵ → 0 (see, e.g. [40, Proposition
1.3.16], it follows that {λj} is uniformly bounded.

Since supΩ F (·,M0) → −∞ as M0 → +∞, we can obtain that w = wϵj ,λj
is also

bounded from above. Indeed, let Λ2 be an upper bound of λj , and choose M2 ≥ 1
such that F (x,M2) + Λ2 ≤ 0, then one can argue similarly as Lemma 3.7(c) that
wϵj ,λj

≤ M2. This means mj = w2
ϵj ,λj

is bounded from above uniformly in j.

Since {λj} is a bounded sequence, we may pass to a further subsequence and
assume that λj → λ̄. It follows that, for each δ > 0,

lim
ϵj→0

wϵj ,λ̄−δ ≤ lim inf
j

wj ≤ lim sup
j

wj ≤ lim
ϵj→0

wϵj ,λ̄+δ. (3.21)

By [40, Theorem 5.2.5], it holds that

lim
ϵj→0

wϵj ,λ̄+δ = max{0,K(x) + λ̄± δ} uniformly in Ω̄.

Hence, (3.21) becomes

max{0,K(x) + λ̄− δ} ≤ lim inf
j

wj ≤ lim sup
j

wj ≤ max{0,K(x) + λ̄+ δ}

uniformly in Ω̄. Since δ > 0 is arbitrary, we may let δ ↘ 0. This proves the convergence
of mj → max{K(x)− λ̄, 0}. Using the constraint

´
Ω
mj dx = m̄0, we deduce that the

limit value λ̄ is independent of subsequence, and so the convergence holds for the full
limit as ϵ → 0. This concludes the proof.
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3.3 Proof of Theorem 3.5(b)

By the bounds in Remark B.3, we can pass to a subsequence and suppose

λϵ → λ̄ and uϵ → ū weakly in H1. (3.22)

Since µ(x) is nonconstant, mϵ can no longer be solved explicitly in terms of uϵ as
in (3.16). We need the following lemma instead.
Lemma 3.9. Fix ϵ > 0.

(a) Suppose mϵ > K̄ + λϵ in (a, b), then µmϵ cannot have a local maximum in (a, b).
(b) Suppose mϵ < K̄ + λϵ in (a, b), then µmϵ cannot have a local minimum in (a, b).

Proof. We prove (a), and omit the proof of (b) as can be proved in a similar manner.
First, by the no-flux boundary condition, we may integrate the second equation

of the ergodic problem (2.11) (under the assumption that Ω = (0, 1)) from 0 to x to
obtain

ϵ(µmϵ)x = −mϵux (3.23)

Next, observe from the first equation of (2.11) that uϵ cannot have a local minimum
in (a, b). Therefore, either uϵ is strictly monotone in (a, b), or there exists c ∈ (a, b) such
that uϵ is strictly increasing in (a, c) and strictly decreasing in (c, b). The conclusion
follows from (3.23).

Lemma 3.10. (Uniform L∞ upper bound of m)

0 ≤ µmϵ ≤ ∥µ(K + λϵ)∥L∞(Ω) +
m̄0

|Ω|
for all x ∈ Ω. (3.24)

Proof. Since |mϵ|L1 ≤ C, Chebyshev’s inequality says that

inf
I
mϵ ≤ 1

|I|
|mϵ|L1 for any interval I.

In particular inf
Ω

mϵ < m̄0/|Ω| and the inequality (3.24) holds for some x0 ∈ Ω.

Suppose the conclusion is false, and we choose a maximal interval Iϵ = (aϵ, bϵ) in
which µ(x)mϵ(x) > ∥µ(K + λϵ)∥∞ + m̄0

|Ω| . We divide into two cases:

(i) {aϵ, bϵ} ∩ ∂Ω = ∅, and (ii) {aϵ, bϵ} ∩ ∂Ω ̸= ∅.

In the former case, we may choose a point yϵ and an open interval Iϵ ∋ yϵ such that
(i) µ(x)mϵ(x) > ∥µ(K̄ + λϵ)∥∞ in Īϵ and (ii) µ(x)mϵ(x) attains local maximum at
a point yϵ ∈ Int Iϵ. However, uϵ does not have a local minimum point in Iϵ by the
maximum principle. It follows from (3.23) that µmϵ does not attain local max in Iϵ.
This is a contradiction.

In the latter case, then exactly one of the boundary point (say, aϵ) of Iϵ belongs
to the boundary of Ω, since Iϵ ̸= Ω. One can extend the problem by reflecting at the
boundary point aϵ ∈ ∂Ω to obtain an interior local maximum point yϵ, and then argue
as in case (i) to derive a contradiction.
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Lemma 3.11. Suppose that there is δ > 0 and sequences ϵ = ϵk → 0 and I = (a, b)
such that

mϵk −K − λϵk ≥ δ2 in I,

then
mϵ → 0 in Cloc(I).

Proof. Fix a small η > 0, we need to show that

mϵ → 0 in [a+ η, b− η]. (3.25)

The function uϵ, with ϵ = ϵk, satisfies

−ϵµuϵ
xx + |uϵ

x|2 ≥ δ2 in I. (3.26)

Thanks to (3.22), and that H1 ⊂ C1/2, uϵ → ū uniformly. It is standard to see that
the uniform limit ū is a viscosity supersolution [5] of{

|wx|2 = δ2 in (a, b),

w(a) = ū(a), w(b) = ū(b).
(3.27)

By the maximum principle, uϵ and its limit ū cannot attain a local minimum in (a, b),
so there exists x̄ ∈ [a, b] such that

ūx ≥ 0 a.e. in (a, x̄), and ūx ≤ 0 a.e. in (x̄, b). (3.28)

(We regard (a, x̄) as empty when x̄ = a and a similar convention holds for (x̄, b).) Note
that ūx ∈ L2 is defined almost everywhere.

Next, note that (3.27) has a unique viscosity solution

w(x) = min{ū(a) + δx, ū(b) + δ(b− x)} for x ∈ (a, b).

It follows by comparison that

ū(x) ≥ min{ū(a) + δ(x− a), ū(b) + δ(b− x)} for x ∈ (a, b).

Rearranging (3.23), we have

[log(µmϵ)]x = − (uϵ)x
ϵµ

. (3.29)

Integrating again, we have

log
µ(x)mϵ(x)

µ(y)mϵ(y)
= −1

ϵ

ˆ x

y

(uϵ)x(z)

µ(z)
dz = −1

ϵ

[ˆ x

y

ūx(z)

µ(z)
dz + o(1)

]
. (3.30)

where we used uϵ → ū weakly in H1.
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By (3.28), ūx does not change sign in (a, x̄) (resp. (x̄, b)), it follows that

− log
µ(x)mϵ(x)

µ(y)mϵ(y)
≥ 1

ϵmaxµ

(ˆ x

y

ūx(z) dz + o(1)

)
=

1

ϵmaxµ
(ū(x)− ū(y) + o(1))

(3.31)
for a ≤ y < x ≤ x̄. Setting y = a, we obtain

µ(x)mϵ(x) ≤ C|mϵ|L∞ exp

(
− ū(x)− ū(a) + o(1)

ϵmaxµ

)
≤ C|mϵ|L∞ exp

(
−δ(x− a) + o(1)

ϵmaxµ

)
for x ∈ [a+ η, x̄].

If x̄ = b, then we are done, if not, we argue similarly in the interval (x̄, b−η) to obtain

µ(x)mϵ(x) ≤ C|mϵ|L∞ exp

(
−δ(b− x) + o(1)

ϵmaxµ

)
for x ∈ [x̄, b− η].

Since inf µ > 0 and mϵ is bounded in L∞ (thanks to Lemma 3.10), we proved that
mϵ → 0 uniformly in each compact subset of (a, b).

We record the following observation from the proof of Lemma 3.11.
Corollary 3.12. Suppose |ūx|2 ≥ δ2 in (a, b) in viscosity sense, then

mϵ → 0 in Cloc((a, b)).

Proof of Theorem 3.5(b). Passing to a sequence, we may assume that (3.22) holds
for some λ̄ ∈ R and ū ∈ H1. It remains to prove that λ̄ is uniquely determined by´
max{K̄ + λ̄, 0} dx = m0, and that

mϵ(x) → max{K(x) + λ̄, 0} uniformly as ϵ → 0. (3.32)

Step #1. mϵ → 0 in Cloc(I−), where I− = {x : K(x) + λ̄ < 0}.
For each closed interval [a, b] ⊂ I−, choose [a′, b′] such that

[a, b] ⊂ (a′, b′) and [a′, b′] ⊆ I−.

It follows by definition of I− that there exists δ2 > 0 such that for any 0 < ϵ ≪ 1,

mϵ −K − λϵ ≥ δ2 in (a′, b′).

It follows from Lemma 3.11 that mϵ → 0 uniformly in compact subsets of (a′, b′), i.e.
mϵ → 0 uniformly in [a, b]. This proves mϵ → 0 in Cloc(I−).

Step #2. For each δ > 0 and η > 0, there exists ϵ0 = ϵ0(δ, η) > 0 such that for any
ϵ ∈ (0, ϵ0], the inequality

inf
I
(mϵ −K − λϵ) < δ (3.33)
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holds uniformly for all interval I = (a, b) ⊂ {x : K+ λ̄ ≥ −δ/2} such that |b−a| ≥ 2η.
Suppose not, then there exist η, δ > 0 and Iϵ = (aϵ, bϵ) such that

Iϵ ⊂ {x : K+ λ̄ ≥ −δ/2}, bϵ−aϵ > 2η, and inf
(aϵ,bϵ)

(mϵ−K−λϵ) ≥ δ. (3.34)

Without loss, we may assume that aϵ → a and bϵ → b for some a ̸= b, such that a < b.
Then, uϵ(x) → ū uniformly and ū satisfies, in viscosity sense,

|ūx|2 ≥ δ in (a, b).

By Corollary 3.12, we deduce that, as ϵ → 0,

mϵ(x) → 0 in Cloc((a, b)).

However, this contradicts with the fact that

δ

2
≤ δ +K + λϵ ≤ mϵ at x =

a+ b

2
∈ (aϵ, bϵ) ∩ (a, b).

This completes Step #2.

Step #3. For each δ > 0, there exists ϵ1 = ϵ1(δ) > 0 such that for any ϵ ∈ (0, ϵ1], we
have

sup
{K(x)+λ̄≥−δ/4}

(mϵ −K − λϵ) ≤ 2δ. (3.35)

Suppose not, then there exists a sequence ϵ = ϵj → 0 and cϵ ∈ {K(x) + λ̄ ≥ −δ/4}
such that (mϵ−K−λϵ)(cϵ) > δ. Since cϵ is uniformly bounded away from {K(x)+λ̄ <
−δ/2}, we can use the previous step to deduce that there exist δ̃, aϵ < cϵ < bϵ such
that

(aϵ, bϵ) ⊂ {K(x) + λ̄ ≥ −δ/2}, bϵ − aϵ → 0

and 
mϵ −K − λϵ = δ at x ∈ {aϵ, bϵ},
mϵ −K − λϵ > δ in (aϵ, bϵ),

mϵ −K − λϵ > 2δ at x = cϵ.

Without loss of generality, we may assume that 0 < bϵ − aϵ < η, where η > 0 is small
enough such that

|µ(x)K(x)−µ(y)K(y)| < δ infΩ µ

2
, |µ(x)−µ(y)| < δ infΩ µ

2(|λ̄|+ δ)
whenever |x−y| < η.

(3.36)
This choice yields

inf
I

[
µ(K + λ̄+ 2δ)

]
> sup

I

[
µ(K + λ̄+ δ)

]
(3.37)
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for any interval I containing x of length smaller than η. Hence,

µ(cϵ)m
ϵ(cϵ) > µ(cϵ)(K(cϵ)+λϵ+2δ) > sup

(aϵ,bϵ)

µ(K+λϵ+δ) ≥ max{µ(aϵ)m(aϵ), µ(bϵ)m(bϵ)}.

This means that µm has an interior local maximum at some c′ϵ ∈ (aϵ, bϵ) such that
mϵ −K − λϵ > 0 at x = c′ϵ. This is a contradiction with Lemma 3.9. This completes
Step #3. Combining Steps #1 and #3, we deduce that

lim sup
ϵ→0

mϵ(x) ≤ max{0,K(x) + λ̄} uniformly in Ω. (3.38)

Step #4. We claim that for each δ > 0,

sup
I
(mϵ −K − λϵ) ≥ −4(1 + ∥ū∥∞)ϵ

δ2

for any interval I = (x0 − δ, x0 + δ) in Ω.
Indeed, by the uniform convergence uϵ → ū, we can set C2 = 1 + ∥ū∥∞ to ensure

that
∥uϵ∥∞ < C2 for all 0 < ϵ ≪ 1.

Fix an arbitrary x0 and let ϕ = 2C2

(
x−x0

δ

)2
. Then ϕ(x0 ± δ) = 2C2 implies that

sup
I∩Ω

(uϵ − ϕ) ≥ (uϵ − ϕ)(x0) > −C2.

Note that for y ∈ ∂(I ∩ Ω), we either have (i) y = x0 ± δ or (ii) y ∈ ∂Ω.
In case (i), (uϵ −ϕ)(y) < −C2. In case (ii), the outer normal derivative of uϵ −ϕ is

strictly negative since (uϵ)x(y) = 0. In both cases, we conclude that uϵ −ϕ has a local
maximum at some interior point yϵ ∈ I ∩ Ω, where it holds that (uϵ)′′(yϵ) ≤ ϕ′′(yϵ)
and (uϵ)′(yϵ) = ϕ′(yϵ). Thus, by the first equation of (2.11),

−4C2ϵ

δ2
+

|4C2|2

δ4
|yϵ − x0|2 ≤ m(yϵ)−K(yϵ)− λϵ.

This implies sup(x0−δ,x0+δ)(m
ϵ −K − λϵ) ≥ − 4C2ϵ

δ2 . This completes Step #4.

Step #5. For each δ̃ > 0, there exists ϵ1 = ϵ1(δ̃) > 0 such that for any ϵ ∈ (0, ϵ1], we
have

inf
Ω
(mϵ −K − λϵ) ≥ −2δ̃. (3.39)

Suppose the claim does not hold, then there exists δ̃ > 0 and cϵ → c0 such that
(mϵ − K − λϵ)(cϵ) < −2δ̃. We may assume without loss that c0 ∈ IntΩ (otherwise
c0 ∈ ∂Ω and we may extend the problem by reflection). Hence, by Step #4, there
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exists aϵ < cϵ < bϵ such that

bϵ − aϵ → 0 and


mϵ −K − λϵ = −δ̃ at x ∈ {aϵ, bϵ},
mϵ −K − λϵ < −δ̃ in (aϵ, bϵ),

mϵ −K − λϵ < −2δ̃ at x = cϵ.

Again, we can assume bϵ − aϵ < η for some η > 0 small enough so that

sup
I

[
µ(K + λ̄+ 2δ̃)

]
< inf

I

[
µ(K + λ̄+ δ̃)

]
holds for every interval with length smaller than η. Hence, we obtain again

µ(cϵ)m
ϵ(cϵ) < µ(cϵ)(K(cϵ)+λϵ+2δ̃) < inf

(aϵ,bϵ)
µ(K+λϵ+δ̃) ≤ min{µ(aϵ)m(aϵ), µ(bϵ)m(bϵ)}.

This means that µm has an interior local minimum at some c′ϵ ∈ (aϵ, bϵ) such that
mϵ −K − λϵ < 0 at x = c′ϵ. This is a contradiction with Lemma 3.9. In particular, we
establish in this step that

lim inf
ϵ→0

mϵ(x) ≥ K(x) + λ̄ uniformly in Ω. (3.40)

Combining (3.38) and (3.40), and the nonnegativity of mϵ, we prove that mϵ →
max{K(x) + λ̄, 0} uniformly in Ω. By the integral constraint of mϵ, it follows that λ̄
is uniquely determined and we may conclude the proof of Theorem 3.5 as before.

4 Discussion

By now, the ideal free distribution (IFD) [27] is a well established concept in eco-
logical theory, and it has many ramifications in the evolution of dispersal [22]. At
the basic level, the IFD is derived in a static setting as the Nash equilibrium of the
habitat selection game, and it has been demonstrated that it is an evolutionarily sta-
ble strategy in the adaptive dynamics framework [3, 13]. In this paper, we leverage
the framework of mean field games (MFG), introduced by Lasry and Lions recently,
to give an alternative derivation of the IFD in a dynamic setting. Mean field game
(MFG) models, proposed by Lasry et al. [42] and Huang et al. [34] independently, are
a set of PDEs used to approximate an infinite number of players behaving as a Nash
equilibrium with respect to the differential game. In contrast to existing models where
(usually two) populations with prescribed dispersal strategies are allowed to compete
[13, 24, 31], MFG grants the individual the ability to optimize their performance as
measured by a suitable payoff functional which is perturbed by the mean field term
representing the average behavior of the infinite number of agents.

4.1 Model assumptions and generalizations

An important feature in the MFG setting of this paper is that there is no birth or death
in the model, so that having zero diffusion does not mean that the population can
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achieve IFD, and is therefore different from the setting in [11]. When the parameter
ϵ > 0 (which appears originally in the cost functional J ) is small, then the cost
of control becomes small and the drift due to control dominates over the standard
noise due to diffusion in the Fokker-Planck equation governing the population density
mT (t, x). It is this combination of large and optimal drift and a bounded diffusive
movement that together enables the ideal free distribution.

In our model, the cost of motion is taken to be quadratic in the velocity for sim-
plicity and for consistency with kinetic energy. If this assumption is relaxed to a more
general form of convex function L(v) ̸= 1

2v
2, then it is no longer natural to work with

H1 estimates of the value function u. Nonetheless, we conjecture that an analogous
argument holds.

The choice of fitness function F (x, s) = K(x) − s can be significantly relaxed. In
general, the same conclusions hold for any fitness function F satisfying (F2) in Section
2.1.

Regarding the fact that Theorem 3.5 requires Ω to be one-dimensional in case µ is
nonconstant and hence is more restrictive than Theorem 3.4, it is of course natural to
wonder whether some stronger (typically uniform) convergence might hold in higher
dimensions. At the moment, we do not know whether it is possible to strengthen the
result, as this hinges on quite involved technical aspects of ergodic mean field games.
First of all, observe that Theorem 3.4 does not give any information regarding the
convergence of the value function uϵ, as this would require a priori estimates that are
out of reach in higher dimensions. Second, such stronger estimates would be necessary
to obtain better convergence of mϵ. The underlying reason has to do with the lack
of regularisation effect of the local coupling term F (m) = K − m; indeed, the usual
setting considered in ergodic MFG assumes that F takes values in a Hölder space (e.g.,
F = F (ρ∗m) where ρ is a smoothing kernel), which allows one to obtain, for instance,
uniform Lipschitz regularity of uϵ. We refer, for instance, to [15], and we leave this
question as an interesting problem.

The access to and use of information by the individual is critical in achieving IFD.
In this work, the individual moves according to the gradient of value function, which
is a special form of usage of full space-time information of the environment and of the
overall population dynamics. In general, this can be considered as a approximation
when each individual retains information of past realized fitness. Such information
can for example be resulted from personal experience or can be communicated from
conspecifics.

4.2 Related work

In [8] the evolution of size distribution in a prey-predator model was considered. These
models incorporates birth and death dynamics, while most papers in mean field games
ignore such effects, except some recent work on the mean field games of branching
processes [21].

In [16], the MFG with degenerate parabolic operators was considered. In their
setting, a weak notion of solution is introduced for the first order MFG, and the exis-
tence, uniqueness and stability of such weak solutions is proved via the connection with

22



two optimization problems. Their work naturally encompasses the vanishing viscos-
ity limit in a rather weak and sophisticated setting. In particular, they demonstrated
an exponential rate of convergence of the solutions to the time-dependent problem to
those of the ergodic problem which is uniform away from initial and terminal time [18,
Theorem 1.14]. In contrast, our main focus is the vanishing viscosity limit for classical
solutions of the ergodic problem itself (λϵ, uϵ,mϵ) → (λ̄, ū, m̄). We provide conditions
for uniform convergence, and emphasize the connection with the game theoretical in-
terpretation of the uniform limits (λ̄, ū, m̄) which is its connection with the ideal free
distribution of players.

In this work, we mainly considered the control of the drift of the diffusion process
governing the movement of agents. We expect that the ideal free distribution can also
arise from other modes of control (as the cost of control tends to zero), such as the
control of diffusion rate [25, Chapter IV], and the optimal switching between movement
behaviors [49, Chapter 5]. It will also be interesting to consider the convergence to
IFD when the payoff function is periodically varying in time [10, 12]; in such a case,
we expect that the population of players will converge to the state where the fitness
is equilibrated in space, but not necessarily in time.

A Proof of Proposition 2.1

In this section, we consider the convergence of classical solutions (uT ,mT ) : [0, T ] ×
Ω → R2 to the finite horizon MFG (2.10) to the solutions (λ, ū, m̄)) : Ω → R2 to the
ergodic MFG (2.11), in an average sense as T → ∞. We will assume the existence of
the respective solutions and discuss only the convergence as T → ∞. (Note that the
existence of solutions is known for any dimension if µ is constant, and for d = 1 if µ
is nonconstant. For the latter case, see Section B.)

We start with the following uniform bound:
Lemma A.1. Suppose infΩ m0(x) ≥ δ > 0. There exists a constant C > 0 dependent
on ∥m0∥C2(Ω̄) and ∥G∥C2(Ω̄) independent of T ≥ 1 such that

∥∇uT (0, ·)∥L2(Ω) ≤ C.

Proof of Lemma A.1. We proceed as in [17, Lemma 1.6]: multiply the first equation of
(2.10) by ∂tm and the second equation by ∂tu; then integrating in space proves that

−
ˆ

µ∆u∂tm+
1

2

ˆ
|∇u|2∂tm+

ˆ
F (x,m)∂tm =

ˆ
∆(µm)∂tu−

ˆ
m⟨∇u,∇∂tu⟩.

In other words,

ˆ
(−µ∆u∂tm−∆(µm)∂tu) +

d

dt

ˆ
1

2
|∇u|2m+

d

dt

ˆ
F̃ (x,m) = 0,
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where F̃ (x, s) =
´ s

0
F (x, t) dt. Then, defining

H(t) := −
ˆ

µm∆u+

ˆ
1

2
|∇u|2m+

ˆ
F̃ (x,m)

we deduce that H(t) is constant in t. In particular,

H(0) = H(T ) (A.1)

Next, using the estimate F̃ (x,m) ≤ (supΩ×[0,∞) F )m (which follows from m 7→
F (x,m) being decreasing, so that supΩ×[0,∞) F = supΩ F (·, 0) is finite), we deduce

ˆ
Ω

F̃ (x,m) dx ≤ (supF )

ˆ
Ω

mdx = (supF )m̄0 for any t ∈ [0, T ],

where we used
´
Ω
m(t, x) dx =

´
Ω
m0 dx = m̄0 for all t. Hence,

H(T ) ≤ m̄0∥G∥C2∥µ∥L∞ +
∥G∥2C1

2
+ (supF )m̄0.

On the other hand,

H(0) ≥ −
ˆ

∆(µm0)u(0, ·) dx+
1

2

ˆ
|∇u(0, ·)|2m0 dx− sup

x∈Ω
|F̃ (x,m0(x))|.

Since infΩ m0 dx ≥ δ, We thus deduce that

ˆ
|∇u(0, ·)|2 dx ≤ A+B

ˆ
∆(µm0)u(0, ·) dx (A.2)

for two constants A,B that do not depend on T . Finally, observe that

ˆ
∆(µm0)u(0, ·) dx =

ˆ
∆(µm0)(u(0, ·)−

 
u(0, ·)) dx

≤ ∥∆(µm0)∥L2∥u(0, ·)−
 

u(0, ·)∥L2

≤ C∥∇u(0, ·)∥L2 , (A.3)

where we used
´
Ω
∆(µm0) dx = 0 due to the no-flux boundary condition for the first

equality, and Poincaré’s inequality for the last inequality. Combining (A.2) and (A.3),
we deduce that

∥∇u(0, ·)∥2L2 ≤ A+BC∥∇u(0, ·)∥L2 .

This proves the boundedness of ∥∇u(0, ·)∥L2 .

Next, we recall the following special identity.
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Lemma A.2. It holds that

1

2

¨
(mT + m̄)|∇uT −∇ū|2 dxdt−

¨
(F (x,mT )− F (x, m̄))η dxdt

=

ˆ
Ω

(v(0, ·)η(0, ·)− v(T, ·)η(T, ·)) dx. (A.4)

where v := uT − u, η := mT −m.

Proof. Using the notation v := uT − u, η := mT −m, we have the system
−λ− ∂tv − µ∆v + 1

2 (|∇uT |2 − |∇u|2) = −F (x,mT ) + F (x,m) ,

∂tη −∆(µη) = ∇ · (mT∇uT )−∇ · (m∇u)

v(T, ·) = Ψ− u, and η(0, ·) = m0 −m.

(A.5)

Next, we multiply the first equation by η = mT − m̄ and the second equation by
v = uT − ū, integrate by parts and subtract the result to obtain (the terms containing
mT and m̄ are separated in the second equality)

−
¨

(F (x,mT )− F (x, m̄))η dxdt+

ˆ
(v(T, ·)η(0, ·)− v(0, ·)η(0, ·)) dx

=

¨
|∇uT |2 − |∇u|2

2
(mT −m) dtdx−

¨
⟨∇v,∇uT ⟩mT dtdx+

¨
⟨∇v,∇u⟩mdtdx

=

¨ [
⟨∇v,

∇uT +∇ū

2
⟩ − ⟨∇v,∇uT ⟩

]
mT −

¨ [
⟨∇v,

∇uT +∇ū

2
⟩ − ⟨∇v,∇ū⟩

]
m̄

=
1

2

¨
⟨∇v,−∇v⟩mT − 1

2

¨
⟨∇v,∇v⟩m̄

= −1

2

¨
|∇v|2(mT + m̄).

This proves the lemma.

Corollary A.3. The ergodic problem (2.11) has at most one classical solution.

Proof. For i = 1, 2, let (λ̄i, ūi, m̄i) be two solutions to (2.11). Similar as above, one
can prove

1

2

ˆ
(m̄2 + m̄1)|∇ū2 −∇ū1|2 dx−

ˆ
(F (x, m̄2)− F (x, m̄1))(m̄2 − m̄1) dx = 0.

Since s 7→ F (x, s) is strictly decreasing, it follows that

(∇ū2, m̄1) ≡ (∇ū1, m̄1).

Since we normalize so that
´
Ω
(ū2 − ū1) dx = 0, we conclude that ū2 − ū1 ≡ 0.
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Lemma A.4. Let v := uT − u, η := mT −m, then∣∣∣∣ˆ v(0, ·)η(0, ·) dx
∣∣∣∣+ ∣∣∣∣ˆ v(T, ·)η(T, ·) dx

∣∣∣∣ ≤ C ′.

Proof. Using
´
Ω
η(t, ·) dx = 0 for all t and Poincaré’s inequality, we have∣∣∣∣ˆ v(0, ·)η(0, ·) dx
∣∣∣∣ = ∣∣∣∣ˆ (v(0, ·)−

 
v(0, ·))η(0, ·) dx

∣∣∣∣ ≤ C∥m0−m̄∥L2(Ω)∥∇v(0, ·)∥L2(Ω).

It then follows from Lemma A.1 that∣∣∣∣ˆ v(0, ·)η(0, ·)
∣∣∣∣ ≤ C∥m0 − m̄∥L2(Ω)∥∇u(0, ·)−∇ū∥L2(Ω) ≤ C ′,

for some constant C ′ independent of time.
Next, we observe that |v(T, ·)η(T, ·)| ≤ |v(T, ·)|mT (T, ·) + |v(T, ·)|m̄(·). Hence,∣∣∣∣ˆ v(T, ·)η(T, ·) dx

∣∣∣∣ ≤ C(

ˆ
mT (T, ·) dx+

ˆ
m̄ dx) ≤ 2Cm̄0,

since v(T, ·) = G− ū is bounded uniformly in L∞(Ω).

Proof of Proposition 2.1(a). Using the identity (A.4) and Lemma A.4, we obtain

1

2

¨
(mT + m̄)|∇v|2 dtdx−

¨
(F (x,mT )− F (x, m̄))(mT − m̄) dtdx ≤ C ′. (A.6)

Using inf m̄ > 0 and that s 7→ F (x, s) is decreasing (thanks to (F1)), (2.14) and (2.15)
follow by the change of variable s = t/T .

Proof of Proposition 2.1(b). Next, assume (F2), then it follows from (2.14) and (2.15)
that

∥νT − m̄∥L2((0,1)×Ω) + ∥∇θT −∇ū∥L2((0,1)×Ω) ≤
C

T
as T → ∞. (A.7)

This proves (2.16).
Next, we claim that

∥F (x, νT (s, x))− F (x, m̄(x))∥L1([0,1]×Ω) → 0. (A.8)

Indeed, by (F2), there exists δ > 0 such that

δ(s′ − s) ≤ F (x, s)− F (x, s′) ≤ 1

δ
(s′ − s) for x ∈ Ω, 0 ≤ s ≤ s′ ≤ 2∥m̄∥∞.
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Then from (A.6) and the fact that (F (x, s′)− F (x, s))(s′ − s) ≤ 0, we have

C

T
≥
¨

[0,1]×Ω

∣∣(F (x, νT )− F (x, m̄))(νT − m̄)
∣∣ dxds

≥ ∥m̄∥∞
¨

{νT≥2∥m̄∥∞}
|F (x, νT )− F (x, m̄)| dxdt+ c′

¨
{νT<2∥m̄∥∞}

|νT − m̄| dxdt.

Therefore,

∥F (x, νT )− F (x, m̄)∥L1([0,1]×Ω)

≤
¨

{νT≥2∥m̄∥∞}
|F (x, νT )− F (x, m̄)| dxdt+

¨
{νT<2∥m̄∥∞}

|F (x, νT )− F (x, m̄)| dxdt

≤
¨

{νT≥2∥m̄∥∞}
|F (x, νT )− F (x, m̄)| dxdt+ 1

δ

¨
{νT<2∥m̄∥∞}

|νT − m̄| dxdt

≤ C

T

(
1

∥m̄∥∞
+

1

δc′

)
.

This proves (A.8).
Next, integrate (2.11) over Ω to get

λ̄+

 
Ω

⟨∇µ,∇ū⟩ dx+
1

2

 
Ω

|∇ū|2 dx+

 
Ω

F (x, m̄) dx = 0. (A.9)

Similarly, we integrate (2.10) over [0, t]×Ω, and change variables θT (s, x) = uT (sT, x)
to get

1

T

( 
Ω

θT (s, ·) dx−
 
Ω

Gdx

)
= −

ˆ 1

s

 
Ω

⟨∇µ,∇θT ⟩ dxds− 1

2

ˆ 1

s

 
Ω

|∇θT |2 dxds−
ˆ 1

s

 
Ω

F (x, νT ) dxds. (A.10)

It follows from (A.7) to (A.10) that

lim
T→∞

1

T

 
Ω

θT (s, x) dx = (1− s)

[ 
Ω

⟨∇µ,∇ū⟩ dx− 1

2

 
Ω

|∇ū|2 dx−
 
Ω

F (x, m̄) dx

]
= (1− s)λ̄ (A.11)

uniformly for s ∈ [0, 1]. Using Poincaré’s inequality, it follows that

¨
[0,1]×Ω

∣∣∣∣θT −
 
Ω

θT (s, ·) dx− ū

∣∣∣∣2 dxdt ≤ C

¨
[0,1]×Ω

∣∣∇θT − ū
∣∣2 dxdt → 0. (A.12)

The convergence of 1
T θ

T (s, x) to (1−s)λ̄ in L2([0, 1]×Ω)) follows by combining (A.11)
and (A.12).
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B Existence Results
λ̄− µ∆ū+H(x,∇ū) = V [m] in Ω,

−∆(µm̄)− div(m̄DpH(x,∇ū)) = 0 in Ω,´
Ω
m̄ dx = m0, and

´
Ω
ū dx = 0,

∂ν(µm̄) = 0 = ∂ν ū on ∂Ω.

(B.1)

We will prove the existence of classical solution (λ̄, ū, m̄) ∈ R × C2+α(Ω̄) ×W 1,2(Ω)
under the following hypotheses:

(H1) Ω is a bounded smooth domain in Rd and µ ∈ C3(Ω) satisfies infΩ µ > 0.
(H2) For each p > d, there exists α ∈ (0, 1) such that

V [m] ∈ Cα(Ω) for every m ∈ W 1,p(Ω), (B.2)

and there exists K ∈ Cα(Ω) such that

−K(x) ≤ V [m] ≤ m(x)−K(x) for all m ∈ W 1,p(Ω) ∩ P (Ω). (B.3)

Moreover, for each k ∈ N, and mn,m ∈ (W 1,p(Ω) ∩ P (Ω))

∥mn −m∥∞ → 0 =⇒ ∥min{k, V [mn]} −min{k, V [m]}∥∞ → 0 (B.4)

(H3) For some α ∈ (0, 1), H ∈ Cα
loc(Ω× Rd) and for some Ai > 0

A1(|p|2 − 1) ≤ H(x, p) ≤ A2(|p|2 + 1) and |DpH(x, p)|2 ≤ A3 +A4H(x, p))

(H4) d = 1, i.e. Ω = (0, 1).

Remark B.1. In application, we take µ̄(x) = ϵµ(x) and H(x, p) = |p|2.

B.1 Apriori estimates for the ergodic problem

Lemma B.2. Assume (H1) - (H3). Suppose (λ̄, ū, m̄) ∈ R× C2+α(Ω̄)×W 1,p(Ω) (for
some p > d) is a solution of (B.1), then

λ̄ ≥ − sup
Ω

H(·, 0)− sup
Ω

K and λ̄

ˆ
Ω

1

µ
dx+

ˆ
Ω

H(x,∇ū)

µ
dx ≤ m0

inf
Ω

µ
, (B.5)

In particular,

|λ̄|+A1

ˆ
Ω

|∇ū|2 dx ≤ A1 + ∥H(·, 0)∥∞ + ∥K∥∞ +

m0 sup
Ω

µ

inf
Ω

µ
(B.6)

28



Furthermore, there exists C0 = C0(m0, inf
Ω

µ, sup
Ω

µ) such that

ˆ
Ω

|log∇(µm̄)|2 dx ≤ C0. (B.7)

Remark B.3. If we replace µ by ϵµ and take H(x, p) = |p|2, then we have

|λ̄|+
ˆ
Ω

|∇ū|2 dx ≤ ∥H(·, 0)∥∞ + ∥K∥∞ +

m0 sup
Ω

µ

inf
Ω

µ
. (B.8)

Note that λ̄| and ∥∇ū∥L2 are bounded uniformly in ϵ > 0.

Proof. First, we prove the lower bound of λ̄ by the idea in [44, Lemma 2.1]. Let x0 be
the global minimum point of ū, we claim that

λ̄+H(x0,∇ū(x0)) ≥ m̄(x0)−K(x0). (B.9)

If x0 ∈ Ω, then (B.9) follows from classical maximum principle. Suppose x0 ∈ ∂Ω and
that (B.9) does not hold, then it follows by continuity that there is a neighborhood O
of x0 in Ω̄ such that −∆ū > 0 in O. By Hopf’s lemma, it follows that ∂ν ū < 0. This
is impossible since ū satisfies the homogeneous Neumann boundary condition. Hence,
(B.9) holds. It follows from (B.9) and the fact that ∇ū(x0) = 0 (using the Neumann
boundary condition again if x0 ∈ ∂Ω) that λ ≥ − supΩ H(·, 0) −K(x0). This proves
the lower bound in (B.5).

For the upper bound of λ̄, we divide the first equation of (B.1) by µ(x) and integrate
to obtain (using K(x) ≥ 0 and the homogeneous Neumann boundary condition)

ˆ
Ω

1

µ

(
λ̄+H(x,∇ū)

)
dx ≤

ˆ
Ω

m̄

µ
dx ≤

´
Ω
m̄ dx

inf µ
. (B.10)

The upper bound in (B.5) follows.
It remains to prove (B.7). To this end, we divide the second equation of (B.1) by

µm̄, and integrate by parts to get

ˆ
Ω

|∇ log(µm̄)|2 dx =

ˆ
Ω

1

µm̄
∆(µm̄) dx

=

ˆ
m̄DpH(x,∇ū) · ∇( 1

µm̄ ) dx

=

ˆ
Ω

1
µDpH(x,∇ū) · ∇ log(µm̄) dx

≤ 1

2

ˆ
Ω

|∇ log(µm̄)|2 dx+
1

2(inf µ)2

ˆ
Ω

|DpH(x,∇ū)|2 dx.
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Hence,

ˆ
Ω

|∇ log(µm̄)|2 dx ≤ 1

(inf µ)2

ˆ
Ω

|DpH(x,∇ū)|2 dx ≤ C(1 +

ˆ
Ω

H(x,∇ū) dx)

where we used (H3). Combining with (B.10), we obtain (B.7)

Lemma B.4. Assume (H1) -(H3) and assume Ω = (0, 1). Let (λ̄, ū, m̄) ∈ R ×
C2+1/2([0, 1]) × W 1,2([0, 1]) be a solution of (B.1), then there are constants C1 > 0
depending on sup[0,1] K, inf [0,1] µ and ∥µ∥C2+1/2([0,1]) such that

|λ̄|+ ∥m̄∥W 1,2(Ω) + ∥ū∥W 2,∞(Ω̄) ≤ C1, (B.11)

Proof. The bound for |λ̄| (B.11) is due to Lemma (B.2).
Next, we estimate ∥m̄∥∞.

| log m̄(x1)− log m̄(x2)| ≤
ˆ x2

x1

|(log m̄)x| dx ≤ ∥(log m̄)x∥L2([0,1])|x1 − x2|1/2. (B.12)

Note that ∥(log m̄)x∥L2([0,1]) is bounded, by (B.7). Thanks to (B.12), the Harnack
inequality holds for m, i.e. there is a constant C ′ such that

sup
[0,1]

m̄ ≤ C ′ inf
[0,1]

m̄. (B.13)

Since the left hand side is bounded from above by C ′ ´
Ω
m̄ = C ′m0, we deduce that

m̄ is bounded uniformly.
Next, we estimate ∥ū∥∞. To this end, let x0 be the maximum point of |ūx|2, then

by the first equation of (B.1),

A1|ūx(x0)| −A2 ≤ H(x0, ūx(x0)) + λ̄ ≤ V [m] ≤ m̄(x0)− K̄(x0) ≤ C ′′

where we used hypothesis (H3) for the first inequality, ūxx(x0) ≤ 0 for the second
one, and (H2) for the second last one. Thus ∥ūx∥∞ is bounded. By multiplying the
equation of m̄ by µm̄ and integrating by parts, it follows from [4, Lemma 2.3] that

∥µm̄∥W 1,2(Ω) ≤ C(1 + ∥ūx∥∞). (B.14)

We supply the proof of (B.14) for the convenience of the reader. Indeed, for any
φ ∈ C(Ω̄) satisfying the Neumann boundary condition, the definition of m̄ as weak
solution implies ˆ 1

0

[(µm̄)x + m̄DpH(x, (x, ūx))]φx dx = 0.

Hence,∣∣∣∣ˆ 1

0

(µm̄)xφx dx

∣∣∣∣ = ∣∣∣∣ˆ 1

0

m̄DpH(x, ūx)φx dx

∣∣∣∣
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≤ C

ˆ 1

0

m̄(1 + |ūx|)|φx| dx ≤ C

inf µ
(1 + ∥ūx∥∞)∥µm̄∥2∥φx∥2.

This implies that ∥(µm̄)x∥2 ≤ C∥ūx∥∞. Combining with (B.13), we obtain (B.14).
Since inf µ > 0 and µ ∈ C2(Ω̄), we also obtain the bound for ∥m̄∥W 1,2([0,1]).

Finally, because we are in one-spatial dimension, it follows that

∥m̄∥C1/2([0,1]) ≤ C∥m̄∥W 1,2([0,1]) ≤ C.

We can then deduce from the first equation of (B.1) that ∥ūxx∥∞ ≤ C. Combining
with the bound for ∥ū∥∞, we obtain the bound for ∥ū∥W 2,∞([0,1]).

Next, we prove the existence of classical solution to (B.1)
Theorem B.5. Assume (H1)-(H3) and suppose Ω = (0, 1). Then the following hold.

(i) There exists at least one solution (λ̄, ū, m̄) ∈ C2+1/2([0, 1]) × W 1,2([0, 1]) to the
ergodic MFG system (B.1).

(ii) The set of solutions are uniformly bounded in R×W 2,∞([0, 1])×W 1,2([0, 1]).
(iii) The solution (λ̄, ū, m̄) is unique provided the Lasry-Lions condition holds:

ˆ
Ω

(V [m]− V [m̃])(m− m̃) dx > 0 if m, m̃ ∈ W 1,2([0, 1]) and m ̸= m̃.

Proof. The assertion (ii) is a consequence of Lemma B.4.
The assertion (iii) is well known. (Multiply the equation of (u1−u2) by (m1−m2)

and vice versa.)
Next, we prove assertion (i) regarding the existence of solution (ū, m̄) to (B.1)

with V [m(·)]. We proceed by approximation. For each k ∈ N, we apply the existence
results of Bardi et al. [4] to the problem (B.1) with Vk[m] = min{k, V [m]}. To this
end, we verify the following two conditions (which corresponds to the conditions (B.7)
and (B.32) therein) holds:

∀mn,m ∈ (W 1,p(Ω) ∩ P (Ω)), ∥mn −m∥∞ → 0 =⇒ ∥Vk[mn]− Vk[m]∥∞ → 0

(thanks to (B.4)) and

sup
m∈(W 1,p(Ω)∩P (Ω))

∥Vk[m]∥∞ < ∞.

Hence, by [4, Theorem 2.6] (see Theorem B.6 below), there exists (λ̄k, ūk, m̄k) ∈
R× C2+1/2([0, 1])×W 1,2([0, 1]) which solves (B.1) with Vk[m] = min{k, V [m]}.

By Lemma B.4, {(λ̄k, ūk, m̄k)}∞k=1 is bounded uniformly in R × W 2,∞ × W 1,2.
Passing to a subsequence, we have

λ̄k → λ̄, ūk ⇀ ū in W 2,2([0, 1]) and m̄k ⇀ m̄ in W 1,2([0, 1]),
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and that (λ̄, ū, m̄) ∈ R × W 2,2([0, 1]) × W 1,2([0, 1]) is a solution to (B.1). Finally,
m̄ ∈ C1/2([0, 1]) by Sobolev embedding, and ū ∈ C2,1/2([0, 1]) by the first equation of
(B.1).

B.2 Existence results from Bardi et al.

We state some existence results due to Bardi et al. [4] for the ergodic problem (B.1).
Theorem B.6 ( [4, Theorem 2.6]). Suppose V [m] verifies

(B.7) ∀mn,m ∈ (W 1,p(Ω)∩P (Ω)), ∥mn−m∥∞ → 0 =⇒ ∥V [mn]−V [m]∥∞ → 0

and
(B.32) sup

m∈(W 1,p(Ω)∩P (Ω))

∥V [m]∥∞ < ∞.

and that H satisfies the natural growth condition

(C2*) For some α ∈ (0, 1),

|H(p)| ≤ C1|p|2 + C2 for all p ∈ Rd.

There exist ū ∈ C2,α(Ω), m ∈ W 1,p(Ω), for all 1 ≤ p < ∞, which solve (B.1).
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