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Abstract

We consider the spreading dynamics of the Fisher-KPP equation in a shifting environ-
ment, by characterizing the limit of the rate function of the solution. For the environment
with a weak monotone condition, it was demonstrated in a previous paper that the rate func-
tion converges to the unique viscosity solution of the underlying Hamilton-Jacobi equations.
In case the environment does not satisfy the weak monotone condition, we show that the
rate function is then characterized by the Hamilton-Jacobi equation with a dynamic junction
condition, which depends additionally on the generalized principal eigenvalue derived from
the environmental function. This approach applies to the case when the environment has
multiple shifting speeds, and clarifies the transition between nonlocally pulled fronts and
forced traveling waves.
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1 Introduction

Consider the following KPP equation with heterogeneous coefficients

{ut ~tap = ulg(z —art) —w) for (1) € R x (0,00), (L1)

u(z,0) = up(z) for z € R,

where ¢; € R, g is a continuous and positive function on R with g(+o0) > 0, and ug € L*(R) is
nonnegative, nontrivial and compactly supported. This type of equations models the growth and
dispersal of a population with density u in a shifting habitat, which arises from the ecological
question of whether the species can survive in the midst of climate change [52, [7, 45]. In
a previous work [44], we considered as a special case of a class of integro-differential
equations with a distributed time-delay in heterogeneous shifting environments. Under the
assumption sup g < max{g(+oo)}, we utilized the theory of viscosity solutions of Hamilton-
Jacobi equations, specifically the uniqueness of viscosity solutions in the sense of Ishii [42], to
obtain the complete explicit formulas of rightward spreading speeds for in terms of ¢ as
well as leftward spreading speeds. However, the assumption sup g < max{g(+oo0)} was crucial
in [44], as the uniqueness of viscosity solutions in the sense of Ishii can no longer be expected
if such a condition is relaxed [3], 31].

To recover uniqueness and further develop the Hamilton-Jacobi approach, we will utilize the
notion of flux-limited solution recently introduced by Imbert and Monneau [40}, 4], which were
motivated by the study of Hamilton-Jacobi equations on networks. See also [37] for a recent
application of this approach to study the shape of expansion in the road-field propagation model
introduced by Berestycki et al. [12]. Throughout our paper, we are mainly working on
which has one shifting speed c¢;, and we are able to determine the spreading properties of
for any g for which g(+o00) exist. Furthermore, our treatment naturally extends to the case
of multiple shifting speeds; see Section for the precise statements. Before stating our main
results, we provide a brief account of several related works.

The asymptotic speed of spread, or spreading speed in short, is a crucial quantity in spatial
ecology that determines the expansion boundary of a population under the joint influence of
the diffusion rate and environmental conditions. For simplicity, the diffusion rate has been
normalized to 1 in . In a homogeneous environment, i.e. g(-) = go for a positive constant
go, model reduces to the classical Fisher-KPP equation. A well known result of Kolmogorov
et al. [43] states that there is a number ¢, = 2,/gg > 0 such that

lim sup u(t,x) =0 for ¢ € (¢x,+00), and liminf inf w(t,z) >0 for c € (0,cy).
t—o00 x>ct t—oo 0<z<ct

Moreover, the same value also coincides with the minimal wave speed of traveling wave solutions
U(z — ct) of (L.1)). This result was later extended to more general nonlinearity and in higher
dimensions in [I]. It is also remarkable that in homogeneous media, the spreading speed can be
obtained via local information, where c, = 2,/go is the smallest value of ¢ > 0 such that

—CPyz + Pz + goP = A(b

admits a zero generalized principal eigenvalue.



Since then, spreading speeds for various reaction-diffusion models including Fisher-KPP
equations have been intensively investigated [55], 46, [9, 53], 10}, 25, [11]. Among those, an elabo-
rate method was proposed by Weinberger [55] to establish the existence of spreading speeds for
discrete-time order-preserving recursions with a monostable structure and its characterization
as the minimal speed of traveling wave solutions. These results were subsequently generalized
to monotone semiflows [46, 25]. By combining the Hamilton-Jacobi approach [23] and homog-
enization ideas [47, 22], Berestycki et al. [I0) [I1] showed the existence of spreading speed for
spatially almost periodic, random stationary ergodic, and other general environments, whose
speed was characterized as a min-max formula in terms of suitable notions of generalized prin-
cipal eigenvalues in unbounded domains.

The heterogeneous shifting environment, which is the focus of this article, was introduced
by Potapov and Lewis [52] and Berestycki et al. [7] to investigate the impact of shifting climate
on the persistence of one or several focal species. As a simple formulation, the temporal-spatial
heterogeneity x — ¢t was incorporated into various diffusion models including for the single
species, where ¢; is regarded as the velocity of the shifting climate. For , the propagation
dynamics have been rigorously explored in [52) [7, 13, [I4] for the case of a moving patch of
a finite length, and in [45] B9] for a retreating semi-infinite patch. The latter problem is a
special case of in case g is increasing and g(—o0) < 0 < g(+00), where it is proved that
the species persists if and only if it can spread faster than the environment with the spreading
speed being given by the KPP formula ¢, = 24/g(+00). A shifting environment can also arise
in other ways. Holzer and Scheel [38] considered a partially decoupled reaction-diffusion system
of two equations, where a wave solution for the first equation induces a shifting environment
for the second one. See also [21], 18, [33], 50] for further results on competition or prey-predator
systems. A similar modeling idea was also adapted in Fang et al. [24], where (1.1)) was also
retrieved from an SIS disease model to study whether pathogen can keep pace with its host. If
g is non-increasing, then (|L.1]) becomes a special case of the cylinder problem studied by Hamel
[35]. Du and collaborators [20, 19] proposed a free boundary version of (L.1). Yi and Zhao
[56l [57] established a general theory on the propagation dynamics without spatial translation
invariance. See also [26] for a model with shifting diffusivity. Finally, we refer to Wang et al.
[54] for a survey on reaction-diffusion models in shifting environments.

Indeed, the shifting habitat brings about new spreading phenomena in case that the intrinsic
growth rate profile g is strictly positive everywhere. When 0 < inf g < sup g < max{g(+o0)} =
g(+00), the results of [38, 44] clarified that, for a certain range of shift speed c¢;, the initially
compactly supported population selects a supercritical speed of spread c, > 24/g(—o0) in a
phenomenon called non-local pulling [38] 33]; see Figure [Lfa). This falls into the biological
scenario when the species fails to keep up with the climate shifting, but is still influenced by
the presence of a favorable habitat which is located at a distance of order ¢ ahead of the front.
When supg > max{g(+o0)}, Holzer and Scheel [38] proved the existence of forced traveling
wave solutions, which move at the same speed as the environment. Subsequently, Berestycki
and Fang [§] classified such forced traveling wave solutions and proved global attractivity results.

Our main contribution, in the case of , where the environment has a single speed cq, is
to completely determine the existence of the rightward spreading speed ¢, and its dependence
on the environmental speed ¢, whenever g(+00) exist and inf g > 0; see Figure[I[b). Moreover,
our framework provides the context in which the spreading results in [38][44] (where ¢, < ¢; with
nonlocal pulling) connects with those in [8] (where ¢, = ¢1). Furthermore, our method readily
generalizes to the case when the environment has more than one shifting speed (Subsection.

Organization of the paper

Our approach is to study the spreading speed via the asymptotic limit of the rate function,
following [23] (see also [3, Chapter 29] and [44]). However, the consideration of a shifting habitat
leads to a discontinuous Hamiltonian. Also, the rate function has unbounded and discontinuous
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Figure 1: For panel (a), the spreading speed ¢, = Spgse, see Theorem (due to [44]) for the
explicit formula. For panel (b), the exact formula of ¢, is given by Theorem ﬂ which is not
covered by [44].

initial data since the initial population was compactly supported. In our previous work [44], the
solution concept of Ishii was used and the corresponding comparison principle was established.
Nevertheless, the previous results in [44] are not applicable in case supg > max{g(£o0)},
because then the invasion is enhanced by the specific profile of g, and the solutions in the sense
of Ishii are generally non-unique. To overcome the non-uniqueness of viscosity solution and
connect with the results regarding forced waves, we need to incorporate further information of
in deriving the limiting Hamilton-Jacobi equation. To this end, we recall some results of
an eigenvalue problem with weight coefficient g(-). Then in Subsection we introduce the
concept of a flux-limited solution and prove the comparison principle needed in our context. In
Subsection we state our main theorems and extensions of our results. We also discuss the
viscosity solutions in sense of Ishii and recall some earlier results from [44] in Subsection

Section [3| presents the application of Theorem [2.9] and we place it immediately after stating
our main theorem. In this section, we take Theorem for granted and apply it to obtain
several explicit formulas for the spreading speed in terms of g(+o00), g(—o0) and Ay, where Ay
is the principal eigenvalue given in . This provides a general context connecting previous
results of [8, B8] concerning forced wave (where ¢, = ¢;) and of [44] concerning nonlocal pulling
(where ¢, < ¢1 but is influenced by the presence of the shifting environment).

In Section [4] we present preliminary results. In particular, we recall the properties of A; in
Proposition (Subseotion, as well as a few technical results for Hamilton-Jacobi equations.

Section [f] is devoted to the proof of the main results, namely, Proposition 2.6, Corollary [2.7]
and Theorem This section only logically depends on Proposition (proved in Appendix
, Lemma concerning continuity of subsolutions (proved in Subsection , the critical
slope lemmas inspired by Imbert and Monneau [40] (Lemmas and proved in Appendix
, as well as the comparison principle (proved in Appendix .

Finally, the appendices present the proofs of the technical results mentioned above.



2 Preliminaries and Statements of Results

The concepts of maximal and minimal spreading speeds are introduced in [36, Definition 1.2]
for a single species; see also [30, 50]. In our setting, we define

¢, = inf {¢ > 0 | limsup sup u(t,z) = 0},

t—oo x>ct

(2.1)

¢, =sup{c>0 \hn_l)(l)gfkl;li tu(t x) > 0},

where ¢, and ¢, are the maximal and minimal (rightward) spreading speeds of species u, re-
spectively. If ¢, = ¢, > 0, we say that the population has the (rightward) spreading speed given
by the common value c,.

Motivated by the large deviations technique [23| 27, 28], we introduce, for fixed solution u
of (L)), the scaling u(t,z) = u(%,2) with € > 0. The resulting function u®(¢,z) satisfies the
following equation:

{ut —euf, = i(ue (g (=21) —ue)  for (t,2) € (0,00) xR, (2.2)
= ug

(0, ) x/€) for x € R.
Observe that the spreading speed of the population is given by ¢, > 0 if and only if

limu®(t,z) - 0 in Cpe({z > cit}), lim i(glf u(t,z) >0 in Cie({0 <z < et}).  (2.3)
€E—

e—0

To fully characterize these limits, we introduce the following eigenvalue problem:
"+ g(y)® =A® for y € R. (2.4)
In this paper, we define the principal eigenvalue Ay of as follows:
A :=Ai(g) =inf{AeR: Ip e CL.(R), ¢ >0, ¢"+g(y)p < A¢p in R}. (2.5)

This and several other notions of principal eigenvalues are analyzed in [15]. We will recall some
basic properties of A; and the associated positive eigenfunction in Proposition

As we shall see in Section (3| the four quantities c¢1, Aj, g(+o00) and g(—o0) completely
determine the spreading speed c,.

2.1 Flux-limited solution due to Imbert and Monneau

To determine the exact spreading speed in Theorem we will study the rate function
we(t,x) := —elogu®(t,x). More precisely, we will show that w(t,x) — tp(x/t) in Cjo., where
the limit p(s) is to be interpreted using the notion of fluz-limited solution introduced by Imbert
and Monneau [40]. This notion is well-adapted to catch the influence of the coefficients along a
discontinuity at s = ¢;.

We begin with a few notations regarding the effective Hamiltonian and effective junction
condition.

Definition 2.1. Define the Hamiltonian H (s, p) by
H(s,p) = —sp + P + X{s2e1}9(+00) + X{s<e139(—00),
and its increasing (resp. decreasing) part by

H* (sp):me(sp) (resp. H~™ (sp):lan(sp))

p'>p p'<p



Definition 2.2. For each A € R, define the flux-limited junction condition to be

Fa(ps.p-) = max{A, H™ (c1+,p4), H (e1—,p-)}, (2.6)
where H' (c14,p) = lim H*(s,p) and H™ (c14,p) = lim H~(s,p), as defined above, can be
S—C1 S—C1
expressed as follows:
—lal g for p < ¢1/2
Hf(a+p)={ * © g( ), orp< /2 (2.7)
—c1p +p* +g(Foo)  forp >c1/2,
_ —c1p+p* + g(£o0)  for p < ¢1/2,
H (01i7p) = |Cl‘2 ( ) / (2.8)
— =+ g(£00) for p > ¢;/2.

Remark 2.3. The above definitions are adapted from [41], Section 2] with s/2 being the minimum
point of p — H(s,p).

The information of the profile of g can be incorporated into the Hamilton-Jacobi equation
by an additional junction condition as follows:

{min{p,p—l—H(s,p’)}:O for s >0, s # c1, (2.9)

min{p(c1), p(c1) + Fa(p'(c14), p'(c1=))} = 0,

where the flux-limiter A € R will be specified in (2.13)), and F4(p+,p—) are given in (2.13) and
([2.6]) respectively. The above equations are to be considered using continuous and piecewise O
test functions whose left and right derivatives at ¢; are well defined but maybe unequal:

C;w = { € C((0,00)) : C((0,¢1]) N C([e1, 00)). (2.10)

In the following, we provide the definitions of FL-super/subsolutions introduced in [40]. Note
that the boundary conditions are satisfied in a strong sense, in contrast to the usual relaxed
sense in classical viscosity solutions [2].

Definition 2.4. Let A € R be given.

(a) We say that p: (0,00) — R is a FL-subsolution of (2.9)) provided (i) p is upper semicon-
tinuous, and (i) if p — ¢ (with ¢ € C,,,) attains a local maximum point at some so > 0
such that p(sp) > 0, then

p(s0) + H(s0,9'(s0)) <0 in case s # c1,
plcr) + Fa(W'(e1+),¢' (ec1—)) <0 in case s = ci.
b) We say that p: (0,00) — R is a FL-supersolution of (2.9) provided (i) p is lower semicon-
p p

tinuous, (i) p > 0 for all s > 0, and (iii) if p — ¢ (with ¢ € C},,) attains a local minimum
point at some sg > 0, then

p(s0) + H(sp,¢'(s0)) >0 in case sg # c1,
pler) + Fa(' (c1+),4'(c1—)) > 0 in case sp = c1.

(¢) We say that p is a FL-solution of (2.9) if it is both FL-subsolution and FL-supersolution
of (29).



Remark 2.5. In practice, p — 1 having a local maximum point at s is equivalent to ¥ (s) :=
W(s) —(sg) + p(so) touching p at the point sy from above. In addition, one can also assume
without loss of generality that p — ¢ has a strict local maximum [2, Proposition 3.1]. Hence
we will sometimes reduce our consideration to this smaller class of test functions, without loss
of generality, for the verification of subsolution property. Analogous statements hold when
considering supersolutions.

Next, we discuss the uniqueness of FL-solution of ([2.9)) by first showing the following com-
parison principle.

Proposition 2.6. Let A € R be given. If p and p are, respectively, a FL-subsolution and a
FL-supersolution of (2.9)), and such that
p(0) <5(0) and  lim 2 = joo, (2.11)

then p(s) < p(s) in [0,400).

Corollary 2.7. For each A € R, (2.9) has a unique FL-solution pa which satisfies the following
boundary conditions (in a strong sense)

p(0)=0 and lim PLs) = +00. (2.12)

s—+oo 8§

These two results will be proved in Subsection [5.4]

We apply the half-relaxed limit method, due to Barles and Perthame [4, 5], to pass to the
(upper and lower) limits of w(t,z). Moreover, we can show that we(¢t,x) — tpa(x/t) in Ciye,
where the flux limiter A is identified by

2

A=A —% (2.13)

The spreading speed ¢, will then be fully characterized by p4 with this specific flux-limiter A.

Remark 2.8. Note that A = Ay — % could be regarded as the principal eigenvalue of of U” —
a0V + g(y)¥ = AV in the sense that:

A=inf{AeR: Fp € CL(R), >0, ¢ —c1¢' +g(y)¢ < Ap in R}, (2.14)
which quantifies the influence of the coefficient g(x — ¢1t) in the moving coordinate y = x — ¢;t.

2.2 Main results

We are now in position to state our main result.
Theorem 2.9. Let u be a solution of . Then the following statements hold.
(a) The spreading speed cy of u exists, and is given by
¢y = 54 =sup{s € [0,00) : pa(s) =0}, (2.15)

2
where p 4 is the unique FL-solution of (2.9)with A = Al—%l that also satisfies the boundary
conditions ([2.12]).

(b) Furthermore, if A = max{g(d+o0)}, then cx = Spase = SUP{S : Prase(s) = 0}, where pPpase
is the unique viscosity solution of (2.26)—(2.12) in the sense of Ishii (see Definition [D.1]).

Remark 2.10. In Section |3, we will give explicit formulas of ¢, in terms of of g(+00), ¢; and A;.

7



Remark 2.11. After the research of this work has finished, the preprint of Giletti et al. [32] was
brought to our attention, where the authors treated the case when g is piecewise constant:

9(t, ) = T1X{z<A@®)} T T2X{AW) <a<A@)+L} T T3X{z>A(t)+L}- (2.16)

Here t — A(t) is either linear or slowly oscillating between two shifting speeds. Interestingly,
they obtained the formula of Theorem assuming that ¢ is given by with A(t) = eqt.

Furthermore, it was remarked that their construction can be generalized to treat
provided that g(y) is constant near y = too. They also conjectured that the last condition may
not be necessary. Their proof is based on the direct construction of super/subsolution for the
parabolic problem.

Incidentally, our main result can be considered as an affirmative answer of their conjecture,
by passing to the limiting Hamilton-Jacobi problem with junction condition. It is worth men-
tioning that (i) we need only A(t) = c1t + o(t) and (ii) we merely require g(+00) exist (but not
necessarily constant for |z| > 1). In particular, the spreading speed can be determined by the
value of the eigenvalue Ay and the exact shape of g is not important.

Here we mention several outstanding open questions.
1. The effect of more general initial data that are not compactly supported [51].

2. The consideration of models with nonlocal coupling in space (nonlocal diffusion) or in
time (time-delay) [44].

3. More precise estimate of the level set such as the analysis of logarithmic correction term,
and the convergence of the solution profile to the traveling wave profile [16].

4. If g is bounded and g(Z00) does not exist, and/or when A(t)/t is bounded but does not
tend to a limit, then it is not clear whether the spreading speed exists, or that there exist
distinct maximal and minimal speeds, as in [36, Definition 1.2].

2.3 Monotonicity of the flux-limited solutions

Since F4(p+,p—) is monotone increasing in the variable A, the effect of the flux limiter A is as
follows.

Corollary 2.12. Let A € R and pa be the unique FL-solution of (2.9)-(2.12)).

(a) If A> A, then pa(s) < par(s) for all s > 0. In particular, the free boundary point §4 is
monotone increasing with respect to A, i.e. §4 > S/, where

$4 :=sup{s: pa(s) = 0}. (2.17)

2
(b) If Ap := max{g(+oo)} — I, then for any A < Ay, pa coincides with the unique viscosity
solution of (2.26)-(2.12) in the sense of Ishii, and is independent of A < Ag. In case
A > Ay, pa is a viscosity subsolution (but not necessarily a supersolution) in the sense of
Ishia.

Proof. Assertion (a) is a direct consequence of Proposition [2.6] since p4(0) = par(0) =0, par is
a FL-supersolution of (2.9) and satisfies (2.12)). Assertion (b) is proved in Subsection O



2.4 Generalizations

Our arguments can also be applied in the following setting where f = f(¢,z,u) possesses
multiple junction points P = {¢;}I"_; for some 0 < ¢; < ¢2 < ... < ¢p.
up — Uy = uf(t,x,u)  for (z,t) € R x (0, 00), (2.18)
u(z,0) = up(z) for z € R. '
(HY) f(t,z,u) € L*(Ry x R x R).
(H2") There exists g; € L>°(R) with g;(+00) > 0, i =1, ...,n, and for some d; > 0,

tllglo €58 SUP|gp—c;t| <1t ‘f (t7 x, 0) - gi(l‘ - Cit)| =0.
(H3') There exist R, R : [0,00) — [0,00) such that inf R > 0, R(s) = R(s) a.e. and

t t
R(s) = limsup f <7 x,()> and R(s)= liminf f <, x,O) )
e—0+ € € e—0t € €
(t,x)—(1,s) (t,z)—(1,s)
Moreover, R is locally monotone in R\ P, i.e. for each sp € R\ P,

either liminf inf [R(s)— R(s)]>0 or limsup sup [R(s)— R(s)] <0,
0—=0 (s,8)€S(S) 0—0 (s,s")€S(5)

where S(0) = {(s,8'): sp—d<s<s <sp+d}.
(H4") There exist positive constants C’, ¢’ such that

—C'ul” < f(t,z,u) — f(t,2,0) <0 forall (t,z), and 0 < u < o’
(H5') There exists M > 0 such that f(¢,z,u) < 0 for (t,z,u) € Ry x R x [M, 00).
H6") For each i =1,...,n, let A be the principal eigenvalue given by
( 1
AV —inf{AeR: 3peC2(R), ¢>0, ¢ +gi(y)p < Ap}. (2.19)

Theorem 2.13. Given P = {¢;}!,, and [ satisfying (H1") — (H6'). If up € L>®(R,Ry) is
nontrivial and compactly supported, then the solution of spreads to the right at speed c,,
where

co =sup{s > 0: pl(s) =0},

and p' is the unique FL-solution of

min{p,p+ H(s,p')} =0 for s € (0,00) \ P,
min{p(c), ple) + FOW (i), /() =0 forall1<i<n,  (220)
p(0)=0 and Ein p(s)/s =400,

where
H(s,p) = —sp+p° + R(s),
N N 3 3
PO p) = ma [ = E H o), H )
such that H¥(¢;%,-) are the decreasing/increasing parts of H(c;=£,-) given by

H~ (Cz+ap) = H(Ci+a min{p7 01/2})’ H+(Ci_ap) = H(Ci_a max{p, CZ/Q})7
and Agi) is the principal eigenvalue given by (2.19)).

Proof. For s € (0,00) \ P, the limiting Hamilton-Jacobi equation can be derived exactly
as in [44, Section 2]. The derivation of the second equation in for s € P, the uniqueness
of pf, and the rest of the assertions can be developed in exactly the same procedure to establish
Theorem 2.9]in Section 5. O



2.5 Related optimal control formulations

It is well known that the viscosity solutions of Hamilton-Jacobi equations correspond naturally
to the value functions of certain optimal control problems, whereas the viscosity solutions of
variational inequalities correspond to the value functions of two-player, zero-sum deterministic
differential games [23]. In fact, following the control formulation for Hamilton-Jacobi equations

stated in [40], we conjecture that the following formulation holds for the unique FL-solution of
(12.20)):

T /
p(s) = inf [ sup /0 e ® E(z(s’),z(s/)—é(s/))ds/], (2.21)

;gi . | T€l0,00]

where X = H'([0,0);[0,00)), T € [0,00] is any constant and the cost function ¢ is given by
2 2

(s, ) = % —R(s)if s e R\ {c;}y, £(s,q) := % — AV s =,

By a change of variables 7 = t(1 — e~*'), one can show that w(t, ) = tp(x/t) satisfies

wit,z) = inf [SUp / min{tve}é(”” —W)) dT]- (2.22)

(0)= t—71’
T0=s [oelo,00]

Applying the arguments in [29, Lemma 2.4], one can check that the above is consistent with
the known max-min formulas involving stopping times when the running cost ¢ is a continuous
function [23,11]. When the minimum with p is not taken in the Hamilton-Jacobi equation (2.20)),
then the unique viscosity solution can be characterized via the optimal control formulation (with
T and 6 taken to be +o0o in (2.21)) and (2.22) respectively); see [40] 3].

2.6 An earlier result: Viscosity solution in the sense of Ishii
First, let H be the truncated version of the Hamiltonian H, given by
H(s,p) = —sp+p? +g(—o0) fors<eci, H(s,p)=—sp+p>+g(+o0) fors>c; (2.23)

and then set H(c1,p) = —c1p + p? + g(—00) V g(+00). Note that H uses only the information
g(+00) but does not depend on the specific form of the profile of g nor does it depend on the
eigenvalue Aj. The following left and right limits of H(s,p) at s = ¢, as functions of p, will be
used later.

H(ci—,p) = —aip+p* +g(=00) and  H(ei+,p) = —e1p +p° + g(+00). (2.24)
In a previous paper [44], we studied equation ([1.1)) in the case

Zlelgg(y) < max{g(+0o0), g(—00)}, (2.25)

which is connected to the unique ppase such that (2.12)) holds and satisfies, in viscosity sense,
min{p, p+ H(s,p))} =0 for s > 0. (2.26)

Since the Hamiltonian function H is discontinuous at ¢;, the viscosity solution needs to be
interpreted in a relaxed sense introduced by Ishii [42]. As this definition is well known, we skip
it here and refer the reader to Definition in the appendix.

We will show in Section that p is an Ishii solution to the equation if and only if it
is a FL-solution of with A € (—o0, Ag], where Ay := max{mRin H(ei+, ), m]Rjn H(ei—,9)}.
See Proposition [5.8|

In [44], we showed that the rate function of problem selects Ppase provided that (2.25
holds. This means that the spreading speed of is as predicted by the equations (2.26))-(2.12
(with the solution in the sense of Ishii).

10



Theorem 2.14. For each ¢; > 0, there ezists a unique ppgse which satisfies (2.26)) in the sense
of Ishii and the boundary conditions (2.12|). Furthermore, if (2.25|) is valid, then

t x T
—clogu <, > — tﬁbase(;) as € — 0 which implies ¢y = ¢, = Spase-
€ €

Recall that spase = sup{s > 0 : ppase(s) = 0}. With the notation ri = g(£00), the following
formulas hold.

(a) If r— <ry, then

211 if o <24/,
Shase = %—\/T’JF—T‘f—F%_\;ﬁ Zf2\/E<C1 §2(w/7‘7+\/7“+j), (227)

27— if 1 > 27 + /Ty — 7).

(b) If r— > ry, then
277 if o1 < 277,
Shase = €1 if 2,7y < 1 < 277, (2.28)
2 /7= if 1 > 27

Proof. See [44, Proposition 1.7, Theorem 1, Remark 1.6] for the first part of the statement and

[44, Theorems 6(iv) and 7] for (2.27)) and (2.28). O

For the case when ¢(y) does not satisfy , we may compare the solution u of with
the solution @ of the same problem with g replaced by the truncation min{g, max{g(£o0)}}, to
deduce that the spreading speed is always bounded from below by sp.s.. However, we will show
in Corollary [4.3[ below that if A; > max{g(Z+00)}, then this lower bound is not optimal.

Corollary 2.15. Suppose sup g > max{g(+oo)}. For each ¢1 > 0,
Cy Z Shases

where c, 1s the minimal spreading speed and Spqse be given in Theorem [2.14)

Remark 2.16. In case holds, the spreading speed can then be determined as soon as an
explicit solution ppgse Of — (in the sense of Ishii) can be constructed. This gives an
alternative verification of the formula (in case g(—o0) < g(+00)) and formula (in
case g(+00) < g(—o0)) based on the viscosity solution in sense of Ishii [44].

3 Applications and Explicit Formulas

As applications, we apply Theorem to treat , which concerns the case when there is a
single environmental shifting speed ¢;. We will derive explicit formulas for the spreading speed
in terms of ¢1, g(4+00), g(—o0) and Aq, where A; is the principal eigenvalue of defined by
(2.5). To simplify the notations, we denote for the remainder of this section

r— =g(—o00), and ry=g(+o0).
Thanks to standard properties of the principal eigenvalue A; (see Proposition (a)) we have

Ay € [max{r_,ry},00).

11



Remark 3.1. For g(y) = r—Xx{y<o} + TmX{o<y<L} + T+X{y>r} With 7, > max{r_,r,}, there
exists L > 0 such that

Ay > max{r_,ry} ifand onlyif L > L,

where L = 0 when r_ = r4 and

1 — _
L= arccot (\/rm max{r ,r+}> >0 whenr_ #ry.

Vrm —max{r—_ - =]

See [32], Theorem 2.1] for the precise statement.

The following theorem says that the spreading speed c, is enhanced according to the specific
profile of g(-).

Theorem 3.2. Let u be a solution of (1.1 with compactly supported, nonnegative, nontrivial
initial data, then the rightward spreading speed satisfies

2,/T1 if g < 2./11,
B c1 if 2./r+ < c1 < 2v/Aq,
Cx = Cx =C, = %—1/A1—T7+c71_\;ﬁ Zf?\/Al<61§2(,/7‘7—|—\/A1—’/“7),

2

21— if cr > 2(/r— + /A —r2).

In particular, the mapping c1 — cs is in general non-monotone and not more regular than
Lipschitz-continuous, see panels (b), (d) and (f) of Figure[] for illustration.

Remark 3.3. The case ¢; € (2,/71,2v/A1) is contained in [8]. In fact, under this assumption,
they proved the existence of a family of forced waves. Moreover, it is proved that solutions with
sufficiently fast decaying initial data (including those that are compactly supported) converge
locally uniformly to the unique minimal forced wave.

Remark 3.4. In case that Ay = r_ > r, then case (iii) in Theorem is eliminated. In case
that Ay = ry > r_, then case (ii) in Theorem is eliminated. In case that A = r_ = ry,
then cases (ii) and (iii) in Theorem are eliminated. In our former paper [44], we showed
that ¢, = Spase When sup g < max{ry} with three cases: ry > r_, ry <r_ and ry = r_. Next
corollary extends the validity of ¢, = Spgse to all g such that A = max{ry}, which may or may
not satisfy condition sup g < max{ry} due to Remark see Figure 1.

Corollary 3.5. Let u be a solution of (L.1)) with compactly supported, nonnegative, nontrivial
initial data.

(a) If Ay =7y >r_, then

Cy = C, = Spase  With Spese being given in (2.27)).

Cx

(b) If Ay =r_ >ry, then

Cx

Cx = C, = Spase  With Spese being given in (2.28)).

(¢) Ifc1 <0, then ¢, =2,/r1 (as R(s) =ry for s >0), see also [39].
See Figure[d(a), (c) and (e) for the dependence of ¢, on the shifting speed c1.

Remark 3.6. We remark that while this paper is devoted to the rightward spreading speed,
analogous formulas for the leftward spreading speed can be obtained via the transformation
x — —z. We do not consider the case ¢; < 0 due to assertion (c) in Corollary

12
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Proof of Theorem[3.3 We will give an explicit formula for the unique FL-solution of ({2.9)
satisfying (2.12)).
Case (i): 0 < ¢1 < 2,/ry. Define

p1(s) := max{s?/4 —r,,0}.
It is easy to see that pi(s) is nonnegative and satisfies the first equation of (2.9)) in the sense

of Ishiiﬂ We only need to verify the second equation of (2.9). Clearly, p; is automatically a

FL-subsolution as pj(c;) = 0. Note that F}y > A with A = Ay — % >ry — % > (0. Therefore
we have (regardless of the test function i) € C’;w)

pi(cr) + Fa((c1+),9 (c1—)) > A >0,
This implies that p; is also a FL-supersolution, and hence, p1(s) is a FL-solution of (2.9). Since

p1 also satisfies (2.12)), p4 = p1 by uniqueness, It then follows from the definition of ¢, in (2.15)

that ¢, = 2,/7+.
Case (ii): 2,/r1 < ¢1 < 2y/A;. Define

(s) s s> e+ /ol —4ry,
p2(8) == 7

max{ VI (5 — 1), 0} 0 <5 < ey /e - dry.
One could directly check that py € C*((0,¢1)) N C*((c1,+00)) and satisfies the first equation of

(2.9). Since pa(c1) = 0 and A > 0, we infer that py is a FL-solution of (2.9) due to the same
reason as in Case (i). Therefore, by locating the free boundary point in (3.1]), we get cx = ¢;.

Case (iii): 2v/A1 <1 <2(/r=+ VA1 — 7). Set

C1

C
M+=2+ Ay —ry, M—:é—m>0- (3.2)

(3.1)

Define
52/4_T+a 52204,
pa(s) = { pis — (12 +14), o <5< 2,
max{u—s_(ﬂa+r—)70}7 0<s<gc,

where p4 and p— are as in (3.2). Noting that

pg(Cl) =-A=—=—-—A;>0.

It is easy to check that ps3 satisfies in the classical sense except for two non-differentiable
points s1 = ¢; and sy = ;—: + pu—.The FL-subsolution property at s = s9 holds since p3(s2) = 0.
To show it is indeed a FL-subsolution, it suffices to consider the case that ps — 1) attains a
global maximum at s; = ¢, for some test function ¢ € Cj,,. It then follows from p(s) — ¥(s) <
pler) —1(ea) for any s close to ¢y that v/(e1+) = phlert) = g = %, and ¥/(c1—) < phy(e1—) =
p— < 5. This implies

2 2

_ C C C
p3(c1) + H (e1+,9¢'(e1+)) = p3(c1) + H(e1+, 51) = Zl — M- Zl +ry=ry — A <0,
and
4 / €1 cf i
p3(c1) + H (c1—, ¢ (c1—)) = p3(c1) + H(e1—, 5) =7 Ay — v +r_=r_—A <0,

!By the results of Subsection the Ishii solution p; automatically qualifies as a FL-solution with A = Ap.
Since all solutions with A < Ay coincides, it follows that p; is an FL-supersolution for any A € R.
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2
where we used p3(c1) = —A = & — Ay and Ay > max{r,,r_}. Finally, we obtain

p3(c1) + Fa(d'(c1+),¢'(c1—)) <0,

by taking the minimum of the above and of p3(c1) + A = 0. So, p3 is a FL-subsolution of ([2.9).
Next, we verify that p3 is a FL-supersolution. It suffices to check two non-differentiable

points s; = ¢ and s9 = ;—: + p—. Also, observe from ¢y < 2(/r—++/A1 —r_) that u_ < /r_,

and hence

r_
Sy = p— + . > 2. (3.3)
Suppose first that a test function ¢ € C’;w touches p3 from below at ¢1, then

ps(c1) + Fa(d'(e14),¢'(ec1-)) = pa(er) + A= 0.

Suppose next that a test function ¢ € C’gw touches p3 from below at so = ;—: + p—_, it then
follows that 0 < ¢)'(s2) < p— (note that v'(s2) exists).

ps(sa) + H sz, (s2)) = —sat/(s2) + [¢(s2)]* + 71— > —sop— + p2 +r_ =0,

where the first inequality is due to ¥/(s2) € [0, u_], and that p — —sop + p? + 7, is monotone
decreasing in [0, p—] (thanks to (3.3])). We can then conclude that p3(s) is a FL-solution of (2.9)

in (0,00), and hence, ¢, = s9 = :T: T
Case (iv): 1 > 2(y/7= + /Ay — 7). Define
§2 /4 =14, s> 24y,

pis —(p3 +ry), e <s<2puy,
pos—(u2 +r.), 2u_<s<c,
max{%—r_,()}, 0<s<2u_.

pa(s) =

Noting that p4 is a classical solution except at two points ¢; and s3 = 2,/7—. For s = ¢, we
could argue similarly to that in the case (iii) to obtain that the junction condition for super-
and subsolution hold true. For s3 = 2,/7—, p4(s3) = 0 implies that the junction condition for
subsolution hold at s = s3. Now suppose that a test function 1 € C’;w touches p4 from below
at s3. Then again ¢(s3) exists, satisfies 0 < ¢'(s3) < p— and

2
s
pa(s3) + H(s3,9'(s3)) = —s3¢"(s3) + [/ (s3)]* +7- > = Zg =0,
where we used min,(—ssp + p?) = —|s3]?/4 and s3 = 2,//—. As a consequence, py is a FL-
solution and ¢, = s3 = 2,/1_. O

Proof of Corollary[3.5 By part (b) of Theorem implies that ¢, = spqse. Then it is a direct
consequence of [44, Theorems 6(iv) and 7). O

4 Preliminary Results

We will give some preliminary results in this section in preparation of the proof of the main
result (Theorem [2.9)) in the next section.
To study the behavior of u at the leading edge, we consider the rate function

we(t,x) = —elogu(t,x) = —elogu(t/e, x/e). (4.1)

We first observe that w(t,z) := lim,_,o+ we(t, x), if exists, is 1-homogeneous, that is, Vo > 0,
w(at, ax) = aw(t, z) for every (t,x).
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Lemma 4.1. Suppose w® — w0 in Cjoe((0,00) x [0,00)), as € = 0, then w(t,x) = tp(z/t) for
some function p.

Proof. Fix a constant a > 0, then

1
w(a,as) = 61_i>1%1+ —elogu <%, %) =« (e/g)n—l>0+ —(e/a) logu (e/a’ 6;}) = aw(l,s).

The lemma follows if we take p(s) := w(1l,s), s =z/t and a = t. O
Suppose the limit function w(t, z) = tp(x/t) exists, and define
s=sup{s >0: p(s) =0}, (4.2)

then we immediately have

w(ta) = oxp (-2 ) —oxp (BT o ()

€ €

for each x/t > §, thanks to the definition of s.

Furthermore, it can be shown (e.g. [51, Lemma 3.1] or [23], Sect. 4]) that u®(¢, x) is positive,
bounded away from zero in the interior of {(¢,x) : w(t,x) = 0}, i.e., ¢, > §, where ¢, is the
minimal spreading speed given in . Hence, the study of the spreading speed c, reduces to
the unqgiueness of p and the determination of the free boundary point § given in . Next,
we collect the properties of the eigenvalue problem as well as a few technical results for
Hamilton-Jacobi equations with general Hamiltonians H (s, p).

4.1 The eigenvalue problem associated with ¢(y)

Observe from and that the value of spuse depends only on the values of g(+o00) but
not on the specific profile of g. The next questions are if and when the invasion is enhanced
by the specific profile of g. The answer is completely determined by the eigenvalue A; given
by . This and several other notions of principal eigenvalues are analyzed in [15]. Here, we
recall some basic properties of A1 and the associated positive eigenfunction.

Proposition 4.2. Let A; be given by (2.5).

(a) Then Ay > max{g(—00), g(+00)} and the eigenvalue problem (2.4)) has a positive solution
in C2_(R) if and only if A € [Ay,00).

loc

(b) If, in addition, Ay > max{g(—00),g(+00)}, then A; is a simple eigenvalue of (2.4)) and
the following statements hold.

(i) Let Ay := /A1 — g(£00) and ®1(y) be the positive eigenfunction corresponding to
A=A, then
D1 (y) = exp(=Asly[ +0(y)) asy — oo,

i.e. for any sufficiently small n > 0, there exist positive numbers én,Qn, such that

{One‘(““ﬂy < Pi(y) < Cue MMy if y >0, (43)

Qne(LJrn)y < Py(y) < @ne(kf—n)y if y <0.

(ii) Suppose (2.4) has a positive eigenfunction o e C?

loc

® — 0 as |y| — oo, then A = Ay and ® € span {®;}.

(R) for some A € R such that
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(c) If Ay = max{g(—00), g(+00)}. Then for any n > 0, there exists g, : R = R, such that

gn(x) = g(x)  forall |x|>1,
() < gylx) <glx)+n foral zeR,
A? = Ai(gy) satisfies A} > max{g(£o0)}.

For the convenience of the reader, we provide the proof of Proposition [£.2] in Appendix [A]
The following result describes the effect of A; in enhancing the spreading speed c,.

Corollary 4.3. Let Ay be given by (2.5) and let spqse be given by Section .

(a) If Ay = max{g(£o0)}, then for each ¢; > 0, we have ¢ = Spase-

(b) If Ay > max{g(£o0)}, then for some c; > 0, we have ¢y, > Spgse-
Proof. Statement (a) follows from Theorem [2.9] Statement (b) is a direct consequence of The-
orem Namely, if ¢; = 2v/A1, then we have ¢, = 2¢/A1 > 2\/max{g(£00)} > Spase- ]
4.2 The continuity of subsolutions

We discuss the weak continuity condition for sub-solutions, which are half-relaxed limits of
solutions to reaction-diffusion equations. This property first appeared in [6].

Lemma 4.4. Suppose p is nonnegative and satisfies p(0) = 0, and satisfies
min{p, p+ H(s,p')} <0 in [0, 00)
in viscosity sense (of Ishii).
(a) If H(s,0) > 0 for each s > 0, then p is nondecreasing.

(b) If lim mf H(s,p) — oo for each compact set K C [0,00), then p € Lip;.([0,00)). In

|p|—o0 s€
particular, zt satisfies the weak continuity condition:

plcr) =limsup p(s) and p(c1) = limsup p(s). (4.4)

s—c1+ s—rCc1—

Proof. Part (a) is due to [44, Lemma 2.9]. For Part (b), fix a bounded interval K = [0, 5] with
5 >0, and let M > 0 be given such that

H(s,p) >0 forallse[0,5+1], [p|> M.

Fix any point sg € [0, 5], we claim that

p(s) = p(so) < Mls —so| for all s € [0, 3]. (4.5)
For this purpose, define
. a+ Mls — sg for s € 10, 5],
a+ M [|s—so|+ o —1] for s € [s, s+ 1),

for any a > 0, then W is continuously differentiable except at sg, such that
|U'(s)| > M forse[0,5+1)\ {so} (4.6)

Next, take the minimal o such that ¥ touches p from above at some point s; € [0,5+ 1), which
is possible since p is upper semicontinuous, and thus bounded on [0, 5 + 1].
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If s = sp, then a = p(sp) and we obtain (4.5). Suppose to the contrary that s; # sg. We
first observe that p(s1) > 0, which follows from W(sq) < ¥(s) for s € [0,5 + 1) and

p(s1) = W(s1) > ¥(so) > p(s0) > 0.
Now p(s1) > 0, so the definition of viscosity subsolution implies that
0> p(s1) + H(s1, ¥'(s1)).

But the right hand side is strictly positive thanks to (4.6) and the choice of M. This is a
contradiction. Therefore, (4.5)) is proved.
Since M depends only on K = [0, §] but not on s, we can reverse the role of s and sy in

(4.5) to conclude that
lp(s) — p(s0)| < M|s —so| for all 5,50 € [0, 3].

This proves the Lipschitz continuity of p in any compact subset of [0, cc). O

4.3 Critical slope lemmas

The following two lemmas describe the effect of the equation in the interior of the domain on
strengthening the boundary condition, and is crucial in deriving the FL-conditions in the strong
sense at s = ¢; later. Let U be an open interval in R containing c¢;, and recall that

Cp(U) = C(U)NCHU N (=00, c1]) N CHU N [e1,00)).
(HH) Assume p — H(s,p) is convex and coercive, and H(c;+,p) and H(c1—,p) exist.
Lemma 4.5. Assume that (HH) holds. Let p: U — [0,00) satisfy the following:

(i) p is a viscosity subsolution of

min{p,p+ H(s,p)} =0 in{s€U: s>c}.

(ii) p satisfies the weak continuity condition (4.4)).

(iii) p(c1) > 0.

Suppose there is a test function ¢ € C’;w(U) that touches p from above only at ci. Let py =
¢'(c1+), and

py=inf{peR: Ir>0, p(s)+D(s—c1) > p(s) for0<s—ec3 <r}. (4.7)

Then —oo < py <0 and
plc1) + H(ci+, py +p4) <0.

The proof is an adaptation of [40, Lemmas 2.9 and 2.10], where we use the weak continuity
condition. For the convenience of the reader, we provide the proof in Section

Remark 4.6. Suppose, in addition, that p is a viscosity subsolution of min{p,p + H(s,p')} =0
in{seU: s<ci}. Then
B(Cl) + H(Cl_7 ' p—) < 07

where —p_ = ¢/(c;1—) and p_ € (—00,0] is given by

p_:=inf{peR: Ir>0, p(s)—D(s—c1) >p(s) for —r<s—c; <0}. (4.8)
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Lemma 4.7. Assume that (HH) is valid. Suppose p is a viscosity supersolution of
p+H(s,p)=0 in{seU: s>c}.

and there is a test function p € C;w(U) that touches p from below only at ¢1. Let py = ¢'(c1+),
and
p, = sup{peR: Ir>0, ¢(s)+p(s—c1) <p(s) for0<s—ci <r}. (4.9)

If p, <o, then
pler) + H(er+,py +p,) >0,  with p, >0.

Note that no weak continuity condition is needed as we do not claim the finiteness of p L
The proof of Lemma [£.7] is also included in Appendix [B]

Remark 4.8. Suppose, in addition, that p is a viscosity supersolution of min{p, p+H_(s,p')} =0
in{seU: s<c}. Let —p_ = ¢/(c1—) and

p =sup{peR: Ir>0, ¢(s) —p(s—c1) <p(s) for —r <s—c; <0}. (4.10)

If p < +oo, then
pler)+ H(cr—,—p-—p )>0 and p >0.

5 Proof of Main Results

Lemma 5.1. Let u be a nonnegative, nontrivial solution of (1.1)) and assume inf g > 6y > 0.

Then for any n € (0,2+/dg)
lim inf inf u(t, z) > do. (5.1)
t=00 |z[<(2v/80—n)t

Proof. Choose 61 € (do,inf g), then u is a supersolution to
Uy — flgg = W6 — @) in (0,00) x R

It is a classical result that (5.1]) holds for @, which is the solution of the above equation with
compactly supported initial data ug. By the comparison principle, (5.1)) also holds for w. ]

Fix a solution wu(t,x) of (1.1), then the rate function w* given in (4.1)) satisfies

w§ — ewS, + [wE|? + g (=) — e~/ =0 for (t,x) € (0,00) x R,
W (0, ) = —elogug(xz/e) if z/e 6 Int(supp ug), (5.2)
+o0 otherwise.

Consider the half-relaxed limits [0]:

w*(t,r) = limsup w(t,2’) and w.(t,z)= lim inf we(t', ') (5.3)
(t/,;)ﬁﬁo(t,z) ", z")—(t,x)

Lemma 5.2. Let w* and w, be given as above. Then w*(t,x) = tp*(x/t) and w.(t,x) =
tp«(z/t), for some upper semicontinuous function p* and lower semicontinuous function py.

Proof. The existence of p* and p, is similar to Lemma [£.1] and is omitted. The semicontinuity
are due to the half-relaxed limits in the definition of w*, w. O

Lemma 5.3. p*(s) > p«(s) > 0 for all s > 0 and p*(0) = 0. Moreover, pi(s)/s — +oo as
§ — +00.

19



Proof. By the maximum principle, one can establish uniform upper bound of u, i.e. u(t,z) <
My := max{sup |ug|,sup g}, so that we(t,x) > —elog My. This implies w* > w, > 0 and hence
p* = psx = 0.

To show p*(0) = 0, it suffices to prove w*(t,0) = 0 for all ¢ > 0. By Lemma we have

w*(t,0) = limsup w(t,2’) < limsup —elogu <%, %) < —lim elogdg = 0.
e—0 e—0 e—0
(t',x')—(t,0) (t,z’)—(t,0)
Finally, by a similar argument to that in [44, Lemma B.3], we have w, (0, z) = +oo for all z > 0.
It then follows from lower semicontinuity of w, that

* . 1
lim inf 2 (5) = lim inf w, <, 1) > w,(0,1) = +o0.
s—+00 S s——+o0 S
This completes the proof. ]

5.1 Verification of flux-limited solutions property

The main result of this subsection is the following.

Proposition 5.4. Let p* and p. be given in Lemma. Then p* (resp. ps«) is a FL-subsolution
2
(resp. FL-supersolution) of (2.9) with flux limiter given by (2.13)), that is, A = Ay — %.

We divide the proof of Proposition into the verification of FL-subsolution and supersolution.

Lemma 5.5. Let p* be given by Lemmalb.2 Then

(a) p* € Lipy([0,00));
(b) p* satisfies the weak continuity condition (4.4));

02
(c) p* is a FL-subsolution of (2.9)) with A= Ay — .

Proof. By construction p* : [0,00) — [0,00) is upper semicontinuous. It is standard (see, e.g.
[50, Lemma 2.3] or [2, Corollary 3.1]) to show that w*(¢,z) = tp*(x/t) is a viscosity subsolution
to

min{w, wy + |w,|? + g(—o0)} =0 in {(t,z):0 <z < cit},

min{w, w; + |wz|? + g(+00)} =0 in {(t,z): x > c1t > 0}, (5.4)
min{w, w; + |w;|* + infyer g(y)} =0  in (0,400) x (0, +00).

From the third equation, we deduce as in [50, Lemma 2.3] that, in viscosity sense,
min{p", g = s(p") + (") +inf g} <0 in (0,00). (5.5)

Since also p*(0) = 0 (thanks to Lemma [5.3)), we infer from Lemma [4.4] that p* € Lip,,,.([0, 00)).
This proves assertion (a). Assertion (a) implies (b).
The proof of (c) is inspired by [34]. From the first two equations of (5.4), we deduce that,

min{p*, p* + H(s,(p*))} <0 for s € (0,00) \ ¢,

in viscosity sense with H (s, p) given in ([2.23)). It remains to show that p* is a subsolution to the
second equation of (2.9). For this purpose, let ¢ € C’;w and suppose ¥ touches ¥ from above
strictly at s = ¢1 (see Remark [2.5) and so that ¥ (¢1) = p*(c1) > 0. Denote

2

A=A — %, A= —p*(c1) = —(c1), py = (a1+), p— =Y (c1—).
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(Note the negative sign in the definition of p_.) We want to show
_>\+maX{A7H_(Cl+ap+)7H+(Cl_v_p*)} S 0. (56)

(Observe that if A > 0, then any nonnegative (sub)solution p*(s) satisfying the junction condi-
tion min{p, p + Fa(p'(c1+), p'(c1—))} < 0 must vanish at the point ¢, i.e. the case p*(¢1) > 0
is null.) We first claim that

H (c1+,ps) <A, and HT(c1—,—p_) <\ (5.7)

By Lemma [4.5]
H(ci+,p+ +p4+) <A for some py € (—o0,0]. (5.8)

Hence, using the fact that H~ is decreasing in p and H~ < H,
H™ (e1+,p4+) < H (e1+,p+ +p4) < H(eit+,p4 +04) < A

Arguing similarly, we also have H*(c;—, —p_) < \. This proves (5.7)).
2
It remains to show A < A\, where A = A; — %. Suppose by contradiction A > A. Then by

(5.7), we have

ot

A > max{min H(c; %, p)} = max{g(+o0)} — 1 (5.9)
P
In particular, A; > max{g(+o0)}. Define
po(x) = iy max{x, 0} — pi_ min{z, 0}, (5.10)
where
Cc1 —C1
fr =5 T Ar—g(+00), and p_ = 5 T Ay — g(—00). (5.11)
Note that 4 are also determined uniquely (thanks to (5.9)) by
H(ci+,pqe)=A and  py > argmin H(ci1+, ), (5.12)
H(ep—,—p—)=A and — pu_ <argminH(c;—,-). '

By and that A < A = H(c1+, ), we have H(c1+,p+ + p+) < H(c1+, pu4) and thus
P+ + D+ < p+ (here we have used the fact that py is the larger root of H(ci+,p) = A). By
definition of p4 in , we deduce that there exists a small right neighborhood (¢1,¢1 + 7) of
¢ (with 0 < r < min{1, ¢ }) such that (by Lipschitz continuity of p*)

p*(c1)
2

<p(s) <A+ ¢o(s—c1) foreg <s<c+r,

with the second inequality being an equality iff s = ¢;. By arguing similarly, along with the
definition of p_ in (4.8)), we have

p*(c1)

5 <p(s) <A+ do(s—c1) forep—r<s<e,

with the second equality holds iff s = ¢;. In other words, —A + ¢o(s — ¢1) is also a test function
touching p* from above at ¢1 in (¢; — r,c; + 7). Hence, letting

Qr :={(t,z):x/t€lcy —rye1+7], [t —1| <7}, (5.13)

we get,

wlt) = (@) < Pty = 1P (Ao (5] me, a9
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with equality iff (¢,2) = (1,¢1). We can then choose ¢ € (0, (1 — r)p*(c1)) small such that

w*(t,x) + 6 < °(t,x)  on AQ,. (5.15)
Next, define
. - A 9 x—cit
e (t,z) == T(t_l) —tA —elog V¥ for (t,z) € Qy,
€
where ¥(y) = e D 1(y) and ®q is the positive eigenfunction given in Proposition M Thanks

to Proposition 4 ( )(i), one has ¢ — ¢ in Cy,. since

—elog |:6_ 3 z_:ltq)l <x — Clt)} — ¢o(z — c1t) = top <$ — Clt) locally uniformly.
€

t
Hence, we deduce from (j5.15)) that
w(t,x) +0/2 < ¢(t,x) on OQy, (5.16)
for sufficiently small e. Next, we observe that ¢ — §/2 satisfies

— et e A— )
’ cl)—emzeé) 5= 1) = A At o(1) >0,

o5 — et 05 4+ g (

)
where we used |t — 1| < r < 1 in the strict inequality, and e~ e = o(1) in the last equality

follows from

Hence ¢ —0/2 is a supersolution to the equation (5.2)) of w¢. In view of the boundary condition
(5.16)), the comparison principle yields

w(t,z) 4+ 6/2 < p(t,z) = Ot z) + o(1) in Q,. (5.17)

By definition of w*(1,¢1) = p*(c1) = —A (recall that ¢ touches p* from above), there exists
(t°,x2°) = (1, ¢1) such that we(t¢, 2¢) — —A\. Substituting (¢,z) = (¢, =€) into and letting
€ — 0, we have

~A+6/2<¢%(1,¢1) ==X\ for some § > 0,

which leads to a contradiction. Therefore, A < A. This concludes the proof. O
Next, we show the FL-supersolution property of p.

Lemma 5.6. The lower limit p, is a FL-supersolution of (2.9) with A= A; — =

Proof. Again, it is standard to check that w, is a viscosity supersolution to the first two equa-
tions of in the viscosity sense. This implies again, by [50, Lemma 2.3] that p, is the
viscosity supersolution of the first equation of .

It remains to verify it is a supersolution to the second equation of . Suppose that there
is a test function ¢ € C’;w that touches p, from below only at s = ¢, and denote

A= —pi(c1) = —¢Y(c1), py = (1+), p-=—9¢'(c1-).

By way of contradiction, assume that there exists n > 0 such that

max{A + 41, H™ (c1+,ps+), H (c1—, —p_)} <A where A = Ay — 14 (5.18)

22



By Proposition (c), there exists g, € C(R,R) such that A] € (max{g(+o0)}, A1 + 7] and
0 < g, — g <n. Denote
Ay = max{g(+oo)} — % and A7=A7- % such that Ag < A7 < A+n.
Next, define p!l as in (5.12]) with A" in place of A, and let (similarly as in ((5.10]))
¢g($) = ,ui max{x, 0} + :uz max{—x, 0}

Let 0" (y) = e_%yé?(y) where ®](y) is a positive and bounded eigenfuction associated with
A7. We first prove the following claim.

Claim 5.7. =\ + ¢((s — ¢1) touches ps from below strictly at c1 in a small neighborhood of cy.

Let p, be given in (4.9) and (4.10). The claim is obviously trueif (p_,p_) € (p —ps, 00] X
(1" — p_,+o0]. It remains to consider the case 0 < p, <+ and/or 0 < p < +4oo. If the
former holds, then we have

H_(Cl-f-, p+) <A < H(Cl+’ b+ +B+)a
which implies py + p = argmin H (c1+, -) by convexity. Using A" € (Ap, A + 7], we have
AT <A, H(ci+,p) = A"

with g/l being the larger root of p — H(c1+,p) — A", we deduce that p; +p L > . This yields
p«(8) > =X+ ¢{(s — ¢1) in a right neighborhood of ¢; (which depends on 7).
In the case that p_ < +o00, we could argue similarly to get p— +p_ > w", so that p.(s) >

—A+ ¢((s — 1) in a left neighborhood of ¢1. As a consequence, the Claim is proved.

Now there exists 7 € (0,1), such that —\ + ¢ (s — ¢1) touches p, from below strictly at ¢
in (¢; —r,c1 + 7). Letting @, be given in (5.13]), we get
A—A -t
wta) = 9./ 2 P00) = S 17w e (A4 (T0) e

with equality holds iff (¢,x) = (1,¢1). Then there exists () > 0 such that
wy(t, ) > @*(t,z) + on 9Q,.

Define

A - )\ cl.z—clt

e (t,x) = T(t — 1)2 —tA —elog |:e_2 " (

x — cit

)] for (t,z) € Q.

€

Clearly, ¢©" — %" in O}, since

_cpa—cyt T — cit T — cit
—elog |[e72 ¢ PN(——

)} — ¢f(x — c1t) =t ( > locally uniformly.
€

Therefore,
w(t,z) > p“(t,z) + /2 on 0Q,.

for sufficiently small e. Now we verify ¢ + §/2 is a subsolution of (5.2)). Indeed,

7 — e g+ g () e
<Ay ar- G- gl
< A;A(t—l)—>\+A+A717—A1+Hg—gn||oo
g?(t—l)—A—kA—i—Qn
<24 o c0 mo.
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It then follows from the maximum principle that, for all small ¢,
€ € A-A 2
w(t,x) —0/2 > o"(t,x) = T(t — 1) —tA+ ¢f(x —art) +o(1)  for (t,z) € Qr. (5.19)

Choose (t¢,2¢) — (1,c1) such that we(t¢, 2¢) — w.(1,c1) = p«(c1) = —A. Evaluating (5.19) at
(t¢,2¢) and then letting € — 0, we again deduce that —\ — §/2 > ¢%7(1,¢1) = —\, which is a
contradiction. This concludes the proof. ]

Proof of Proposition[5.4 It is a direct consequence of Lemmas [5.5 and O

5.2 Equivalence between Ishii solution and FL solution with A = A,

This section is a special case of [40, Section 7] with the general Hamilton H (s, p) being discon-
tinuous at c;y.

Proposition 5.8. Let H(s,p) : [(0,00) \ {c1}] X R be convez in p and such that H(ci%,p) are
well-defined and coercive, and argmin H(c1+,-) = argmin H(c1—,-). Define

H(S,p) = H(S,p) ifS 7£ C1, and ﬁ(clap) = maX{H(Cl—,p),H(Cl—f—,p)}.

Then for any given nonnegative function p, it is a FL-supersolution (resp. FL-subsolution) to

{min{p, p+H(s,p)} =0 in(0,00)\{cr}, (5.20)

min{p(c1), p(er) + max{Ag, H™ (e1+,p'(c1+)), H (1=, p'(c1=))} = 0,

with Ag := max{ijn H(er+, ), m]R@n H(ei—, 1)}, if and only if it is a viscosity supersolution (resp.

subsolution) in the sense of Ishii to
min{p, p+ H(s,p')} =0 in (0,00), (5.21)

where the definition of viscosity sub/supersolutions of (5.21|) in sense of Ishii is given in Defi-
nition [D]l

Note also that FL-supersolution (resp. subsolution) with A < A is equivalent to the case
A = Ay due to the fact that

max{A, H (c1+, p/(e1-0)), H* (c1—, p (e1=))} = max{H (c1-+, p/ (1), H (e1—, o (e1 =)}
provided A < Ag. For the particular Hamiltonians satisfying
H(ci—,p) = —cip+p° +g(=00) and  H(cr+,p) = —c1p +p° + g(+00). (5.22)
that we consider in this paper, one has Ay = max{g(+o0)} — c3/4.

Proof of Proposition[5.8 Denote p be the common value of argmin H(ci+,-). First, we show
sufficiency, i.e. super/subsolution in sense of Ishii implies FL-super/subsolution.

Let p be a viscosity supersolution of in the sense of Ishii. Then p > 0 for all s. Let
P € C;w be a test function touching p from below at s = ¢;. Denote

A= —plc1), py=9'(a1+), p_=—Y(c1—). (5.23)

We need to show Fa,(p4, —p—) > A, where

FAo(p+7 _p—) = maX{A07 Hi(cl—i_?p-‘r)a H+(Cl_7 _p—)}
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By the critical slope results (Lemma and Remark , there exist p . =0 such that
H(ci+,p+ +Q+) >X and H(ci—,—p-—p )=\ (5.24)

(These p . are given in (4.9)- 1) If any of them is infinite, then we simply take a large enough

positive number satisfying ([5.24)).)
If Ag > A, then Fjy, (p+, _) > Ao > A, and we are done.
p_=

Ifpy +p L < p (resp. —p_ — p), then we are done, since

H™(e1+,py) 2 H (ert,ps +p, ) = H(er+,p+ +p,) 2 A (resp. H (c1—, —p-) > ).

Henceforth, we assume

{AO < A < min{H (c1+, p+ +£+)>H(Cl_7 —p-—p )} (5.25)

—oo<—p_—g_<13<p++12+<+oo.

By the definition of the critical slopes, the second line in (5.25) means that p— ¥(s) has a strict
local minimum at s = ¢1, where 1) € C! is the special smooth test function

P(s) = ¢(er) +p(s — ).
By the (relaxed) supersolution property in the Ishii sense (see Definition [D.1|(b)), we have
Ap = max{min H(c1+, )} = max{H (c1%,p)} > A.

This is a contradiction with , and shows that p is FL-supersolution with flux limiter Ag.
Next, we show the subsolution in the sense of Ishii implies the FL-subsolution.
Denote p be a viscosity subsolution of in the sense of Ishii with p(c;) > 0 and let
Y € C,, be a test function touching p from above at s = ¢1. We need to show

max{Ag, H (c1+, pi), H (c1—, —p_)} < A, (5.26)

where A, py, p_ are as in ([5.23)).
By critical slope results in Lemma and Remark (p enjoys weak continuity property
thanks to Lemma , there exist finite real numbers py < 0 (given by (4.7)-(4.8)) such that

H(ci+,p+ +p+) <X and H(c;—,—p- —p-) <A\ (5.27)

In particular, we deduce that
Ap < A (5.28)

Moreover, (5.27)) also implies that

H™ (c1+,p4+) < H (c1+,p+ +py) since H (¢1+,-) is nonincreasing,
< H(eit+,p+ +p4) S A (5.29)

Similarly, we also obtain H*(c;—,—p_) < A. Combining with and , we obtain
(5.26]). This proves that w is a FL-subsolution with A = Ay.

Next, we show the converse statement, i.e. FL-super/subsolution implies super/subsolution
in sense of Ishii.

Let p be a FL-supersolution of , and let 1) be a C? test function touching p from below
at s = c;. Then we have p > 0 for all s, and

max{H (c1+,¢/(c1)), H(er—, ¢/(e1))} = max{H " (er+,9(c1)), H' (ex—,¢'(e1))} = =1 (en).
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This proves that p is viscosity supersolution of (5.21)) in the Ishii sense.
Finally, let p be a FL-subsolution of (5.20) with A = Ag, and ¢ be a C! test function
touching p from below at s = ¢;. Then we have

max{H " (c1+,9/(c1)), H (e1—, ' (1))} < —plea)-

Now, since p = argmin H(c¢1+,-) = argmin H(c;—, -), we have either ¢'(¢1) > p or ¥/'(¢1) < p.
In the former case, we have H(c1—,v'(c1)) = H (c1—,9'(c1)) < —p(c1). In the latter case, we
have H(c1+,v'(c1)) = H (e1+,¢'(c1)) < —p(c1). This implies that

Hy(e1, ¢/ (e1)) = min{ H(c1—, ¢/ (1)), H(er+, ¢ (1))} < =plen),
i.e. p is a viscosity subsolution of ([5.21)) in the sense of Ishii. O

Next, we specialize to the class of Hamiltonian defined in (2.23)), and prove the first part of
Theorem 2.9

Proof of Theorem[2.9, first part. We establish Theorem in case A; < max{g(+oo)}. Then
A1 = max{g(+o0)} (thanks to Proposition [4.2)(a)). By Proposition p* (resp. ps) is a
FL-subsolution (resp. FL-supersolution) of (2.9)) with

2
A = Ap := max{g(+o0)} — %

Thanks to Proposition p* and p, are viscosity sub- and supersolution of (2.26)) in the Ishii
sense. Moreover, it follows from Lemma, [5.3| that

p (0) =p«(0) =0, and p.(s)/s — 400 ass— +oc. (5.30)

Hence, we may apply the comparison principle [44, Proposition 2.11] for viscosity solutions in
the Ishii sense to deduce that

p*(s) < pu(s) forall s >0.

Since also p* > p, by construction (see (5.3)), we conclude that p* = p,. We define pa, to be
the common value. This proves the existence and uniqueness of p4, stated in Proposition
(Note that this also settles the case A < Ay, as they yield the same equation )

Furthermore, w(t, ) — tpa,(x/t) in Cjoe((0,00) % (0,00)). Let spase = sup{s > 0: p4,(s) =
0}, then pa,(s) > 0 for s > Spase. Since we(t, x) is bounded from below by a positive constant
in each compact subset of {(t,z) : t >0, & > Spusct}, this gives

wE (t,x)

u(t,z) =e ¢ — 0 locally uniformly for {(¢,z): ¢ >0, = > spasct},

i.e. Cx < Spase, Where ¢, is the maximal spreading speed given in ([2.1)).
Next, we observe that p4, is nonnegative and monotone increasing (Lemma |4.4{(a)), so that
Pa,(s) =0 for s € [0, Spase] and hence

w(t,z) =0 in Clpe({(t,z): t >0, 0 < x < Spaset}).
It then follows as in [51, Lemma 3.1] that

liminfinf u(¢,z) > infg > 0
e—0

for each compact subset K C {(t,x) : ¢t > 0, 0 < & < Spgset}. For each n > 0, we may take
K ={(1,s): infg/2 < s < spgse — N}, and deduce

liminf inf u(t,z) = liminf inf u(¢t,x) >0 for any n > 0.
t—00 %tgmg(sbase_n)t =0 K

Since 1 > 0 is arbitrary, this implies ¢, > Spgse- Combining with €, < Spese, We obtain ¢, =
C, = Spase- This concludes the proof of Theorem in the case A; = max{g(+o0)}. O
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We continue our proof of Theorem [2.9|in the general case. Having verified that w* and w, are
FL-subsolution and FL-supersolution of , one may apply the arguments in [40] to obtain a
comparison principle. Here, however, we will follow the arguments due to Lions and Souganidis
[48] to show that they are in fact viscosity sub- and supersolutions of certain Kirchhoff junction
conditions, and establish the more general comparison principle (see Appendix . The concept
of FL-sub/supersolutions was originally introduced in [40, [41], in which the authors established
the comparison principle based on the construction of certain “vertex test functions”.

5.3 Verification of Kirchhoff junction conditions

Let B € R be given. Consider the Hamilton-Jacobi equation with Kirchhoff junction condition:

min{p,p+ H(s,p )} =0 for s # ¢,
min{p(er), min{p(er) + H(ermk, o (e1£)), o (e1—) — /e +) — BY} <0, (5.31)
min{p(c1), max{p(c1) + H(e1+, p'(c1£)), p'(e1—) — p'(e1+) — B}} > 0.

The definition of viscosity solution to the above problem also involves the use of piecewise C!
test functions.

Definition 5.9. (a) We say that p is a viscosity subsolution of (5.31)) provided (i) p is upper
semicontinuous, and (ii) if p — 1/ has a local maximum point at some so such that 1 € C’;w
and p(sg) > 0, then

p(so) + H(s0,9'(s0)) <0 in case so # ci,
min{p(c1) + H(c1 %, ¢ (e1£)), ¢ (c1—) — ' (c1+) — B} <0 in case so = c1.

(b) We say that p is a viscosity supersolution of ([5.31]) provided (i) p is lower semicontinuous,
(ii) p > 0 for all s, and (iii) if p — ¢ has a local minimum point at some sp such that
(RS C’;w then

p(s0) + H(so,%'(s0)) >0 in case so # c1,

max{p(c1) + H(c1=£, ¢ (e1£)),¢'(c1—) —¢'(c1+) — B} >0 in case sg = c;.

(c) We say that p is a viscosity solution of (5.31) provided it is a viscosity subsolution and
supersolution of (5.31]).

Next, for each flux-limiter A > Ag, where Ayg = max{g(£o0)} —
junction condition parameter B as follows:

2
4

+ we associate a Kirchhoff

B=—py—p-,
where 4, p— are uniquely determined in terms of A by
Hf(c1+,pp)=A and H (c1—,—p_) = A. (5.32)

By recalling the definition of H™ (c1+,p) and H™ (c1+,p) in (2.7) and (2.8)), we deduce

1 1
pr = e+ G+ AA —g(+o0), o= (- 1/ +4(A - g(-))
Lemma 5.10. Let A > Ay := max{g(+o0)} — %, and define p+ in terms of A as in (5.32]).

If p is a FL-subsolution to (2.9), then it is a viscosity subsolution of the problem ([5.31)) with
Kirchhoff junction condition with parameter B = —p4 — p—.
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Proof. It remains to show that p is a subsolution to the second equation of (5.31). For this
purpose, let ¢ € C;w and suppose p — 1 has a strict global maximum point at ¢;, and that
Y(c1) = p(c1) > 0. Denote

A=—plc1) = =¥(a1), pr=Y(at), p-=-Y(a1—). (5.33)

Suppose
H(ci+,p+) > X and H(cp—,—p-) > A, (5.34)

we need to show that
—p— —p+ + pt +p- <0. (5.35)
Thanks to the critical slope lemma (Lemma , H(ei+,p+ + p4) < A for some py < 0, it
follows by convexity that p; > argmin H(c1+,-). Similarly, we have —p_ < argmin H(c;—,-).
By the definition of FL-subsolution (see Deﬁntion, it follows that A > A. This, together
with the fact that py (resp. —p_) is the larger (resp. smaller) root of p — H(ci1£,p) — A,

implies

p+ > pp and  —p_ < —p. (5.36)
Therefore, we obtain —py — p— + pu4 + p— < 0. O

Lemma 5.11. Let A > Ag. If p is a FL-supersolution of (2.9), then it is a viscosity superso-
lution of the problem ((5.31)) with Kirchhoff condition with parameter B = —py — ji—.

Proof. 1t remains to verify the third condition of . Assume that there is a test function
(VNS Cp}w that touches p from below only at s = ¢;. Suppose, with the same notation in ,
that
H(ei+,p4) <A and H(ci—, —p-) < A, (5.37)
we need to show
—p— —p+ + pt +p— > 0. (5.38)
Since p is a FL-supersolution, we have A > A. Upon considering , and also py (resp.
—u_) being the larger (resp. smaller) root of H(ci+,p) = A (resp. H (c1—,p) = A), we
deduce?]
pr < py and  —p_ > —p_. (5.39)

This implies (5.38)). O

Corollary 5.12. p* (resp. p«) given by Lemma is a viscosity subsolution (resp. supersolu-

tion) of (5.31)) with B = —puy — u— where py are associated with A = Ay — % via ((5.12]).

Proof. Fix A= A1 — % > max{g(+o0)} — %. Define pq, u— by 1' By Proposition p*
and p, are FL-subsolution and supersolution of (2.9) with A = A;— %, respectively. By Lemmas
and they are viscosity sub- and supersolutions of (5.31) with B = —puy — u_. O

5.4 Proof of main results

Proof of Proposition[2.6. Recall that Ay = max{g(£o0)} — %. Let p and p be a pair of FL-
subsolution and FL-supersolution of for some A > Ag, such that holds.
If A < Ag holds, then by Proposition p, p is a pair of viscosity sub- and supersolution
of in the sense of Ishii. The comparison principle follows from [44, Proposition 2.11].
Henceforth, we assume that A > Ag. Then it follows from Lemmas and that p and
p are a pair of sub- and supersolutions of . The comparison principle then follows from
Theorem O
2Note that we do not need j; < +oco here, comparing with the proof of the previous verification for junction

subsolution. This asymmetry in the arguments of super and subsolutions is due to the fact that H is convex and
coercive.
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Proof of Corollary and Theorem[2.9. For a given function g, denote A = Ay — %, where A
is given in (2.5)). By Proposition (a), A > Ap = max{g(f+o0)} — %.

For the case A = Ay, in view of Proposition the problem is equivalent to and
(2.12)). The existence and uniqueness of p4, follows from [44, Proposition 1.7(b)]. The conver-
gence we(t,z) — tp(x/t) in Cjpe and determination of spreading speed is given in the first part
of the proof of Theorem (see Subsection .

For the case A > Ay, it follows that p* and p, are viscosity sub- and supersolutions of
and satisfy p*(0) = p«(0) = 0 and p«(s)/s — +oo as s — +00 (see Lemma [5.3]). Hence,
Theorem implies p* < p,. Arguing similarly as in the proof of the first part of Theorem
2.9 (in Subsection [5.2)), we conclude that (i) (2.9)-(2.12) has a unique FL-solution p4(s); (ii)
we(t,x) — tpa(x/t) in Cj,; (iii) the spreading speed is given by ¢, = §4 = sup{s > 0: pa(s) =
0}. O
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A Proof of Proposition 4.2

Proof of Proposition[{.9. For (a), observe that if ¢” + g(y)¢ < A¢ in R for some positive
¢ € C3.(R) and A < g(+00), then ¢’ < 0 for y > 1. Since ¢ > 0 in R, we deduce that
¢’ > 0 for y > 1, and hence ¢'(+00) € [0,4+00) and ¢(+00) € (0, +0o0] both exist. However,
this means limsup,_,,, ¢"(y) < (A — g(+00))¢(+o0) < 0, which contradicts ¢'(+o00) > 0.
This proves A; > g(+00). Similarly, we can show that A; > g(—o00). Next, we apply [I5]
Theorem 1.4] to infer that has a positive solution if and only if A € [A1,00). (Note that
Ay = =X\ (L,R) in the notation of [I5].) This proves (a).

For (b)(i), we first apply [I5, Proposition 1.11(ii)] to deduce that if A; > max{g(+o0)},
then A; is a simple eigenvalue and ®; converges exponentially to zero as |y| — co. To establish
(4.3)), it suffices to prove the estimation of accurate decay rate of ®1 at +00. Since A1 > g(+00),
there exists ag > 0 such that A; > g(y) for any y > ag. Now we define

Aa) :=sup/A1 — g(y), Ma):= 51212 VAL —g(y), Yy>ap.

y>a

Fix a > ag. Then for any ¢ > 0 and M > 0, it is easy to check that ®M(y) = Me 2 4 ¢ is a
supersolution of (2.4) on [a,+00), that is,

(@) + (g(y) — A1)@Y <0 on [a,+00).

Next, we take M; = eA@®,(a) and €y > 0 such that M1 (y) > ®(y) on [a, +00). Using the
sliding argument or strong maximum principle, we infer that ®M1(y) > ®1(y) on [a, +00) for
any € € (0, ). Letting € — 0%, we have Mje=2(®Y > &, (y) on [a, +00).

Similarly, for any M > 0 and € € (0,e~ M), ®M(y) := max{0, M(e ¥ — ¢)} is a
subsolution of in (a,+00), that is,

(@) + (g(y) — A1)2M > 0 on [a, +00).
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Then we choose My = eM9%®;(a) and ey > 0 such that @2{2@) < ®4(y) on [a,+00). By
the sliding argument again, it follows that ®M2(y) < ®1(y) on [a,+o0) for any € € (0, €].
Letting € — 0%, we have Mae MY < ®(y) on [a, 4+00). Consequently, there exist C > 0,C >
O(dependent on a), such that

Ce MW < @y (y) < Ce 2@, vy >0,

Noting that A(a) and A(a) are continuous on [ag, +00) with A(+00) = A(+00) = Ay. Therefore,
for any sufficiently small n > 0, there exists a > ag such that A\, —n < A(a) < Xa) < Ay + 1.
This implies the first inequality in is valid.

For (b)(ii), suppose (A, ®) is an eigenpair of . By the first assertion of the Proposition,
either A = Ay or A > A;. On the one hand, if A = A;, then we can immediately conclude by
the fact that A; is simple (by [15, Proposition 1.1(ii)]).

On the other hand, if A > A, then one can prove that ®(y) ~ e”VA-9(+)ytoly) a4
y — +o0. It then follows that ®(y)/®;(y) — 0 as y — +oc. By repeating the argument, we
also obtain ®(y)/®;(y) — 0 as y — —oco. We can then touch ®;(y) from below with k®(y) to
obtain, from the strong maximum principle, that ®;(z) = k®(z) for some k > 0. In this case
A= A1, a contradiction.

For (c), if g is piecewise constant, then one can use Remark to conclude. In the general
case, fix an arbitrary n > 0 we choose, for each k € N, a continuous function such that

gr(x) = g(), 2| > k+1,
g(x) < gk(x) < gla)+n, k<|z|<k+1,
gr(x) = g(x) +n, 2| < k.

If Al(gf)) > A1(g) for some k, we are done. Suppose to the contrary that Al(g,’;) = Ay(g) for all
k, and let ®; € C2_ be a positive eigenfunction of Al(gij). By Harnack inequality, there exists
a positive number C(R) independent of k such that

1 <I>k(x)

C(R) = (0

<C(R) forkeN, |z|<R.

Normalizing by ®;(0) = 1, we see that {®;} is bounded in C?([~R, R]) for each R. It follows
that (up to a subsequence) ®; converges in CL (R) to a positive eigenfunction ® € C? (R)
satisfying

" + (g(z)+n)® =A1(9)® inR.

By assertion (a), it follows that Aj(g) > Ai(g + 1), which is impossible since A1(g + 1) =
Ai(g) + . O

B Proof of Lemmas 4.5 and 4.7

Following the same procedure in [40, Lemmas 2.9 and 2.10], it suffices to prove Lemma
without weak continuity condition and then show the finiteness of p, in Lemma with weak
continuity condition.

Proof of Lemma[{.7. By the definition of p > We see that p N > 0. For any sufficiently small
e > 0, there exists r. € (0, €) such that

p(s) = @(s)+(p, —€)(s—c1) for0<s—er <re
and there exists s € (c1,c1 + %) such that

Ps0) < @(se) + (p, +)(se — en).
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Now construct a smooth function ¥ : R — [—1, 0] such that

W(s) = 0 for s € (=1/2,1/2),
A for s & (—1,+1)

and define

B(s) = p(s) + 260, (5) + {0% te)s—a) ifseUn (e, +oo),

if seUnN(—o0,c]
with U, (s) = r¥((s —c1)/re). It then follows that ®(c;) = ¢(c1) = p(c1) and

{(I)(Cl +7r) =¢(cr +7e) + (g+ —e)re < plcr +re),
D(se) = p(se) + <B+ +€)(se — c1) > p(se)-

This implies that there exists a point s, € (c¢1, ¢ +r) such that p — ® attains a local minimum
at S.. Therefore, by the definition of viscosity supersolution and H (-, p) is convex in p, we obtain

P(5e) + sup  H(s, @/(56)) > p(8e) + H*(3e, (I)/(ge)) >0,
s€(c1,e1+7e)
which yields
®(3)+ sup  H(s,¢/(5) +2e¥] (5) +p, +¢) > 0.
s€(er,c1+re) n

Letting € — 0", we reach

plcr) + H(ert, ¢'(er+) +p,) 2 0.
Now the conclusion follows immediately from the fact that p(c;)=¢(c1). O
Proof of Lemma[{.5 We only show that py > —oo. Without loss of generality, we might assume

that ¢(c1) = p(c1) > 0. Suppose by contradiction that p; = —oo, then there exists p, — —oo
and r, > 0 such that

©(8) + pn(s —c1) > p(s) for 0 < s—cy < ry.

Modifying ¢ if necessary (e.g., ¢ + (s — ¢1)?), we could further assume that
©(s) + pu(s —c1) > p(s) for 0 <s—cp <y (B.1)

For fixed n, since p satisfies the weak continuity condition (4.4)), it then follows that there exists
Sm € (c1,¢1 + 1rp) such that s, — ¢1 and p(s,) — p(c1) as m — +oo. Define

_ (Sm _01)2
\I]m(s) _90(3)_'_1771(3_01)‘1‘?, s> cC1.

For each m € N, there exists 8,, € (c1,c1 + 7] such that ¥, — p attains the minimum at 3,.
Then

o(1) = Uy (sm) — B(Sm) > Wi (3m) — p(3m) = ¢(8m) + Pn(8m —c1) — B(ém) (B.2)

I

Suppose §,, — Ssop # ¢1 (up to a subsequence) as m — oo. Then letting m — +oo (in a
subsequence) in (B.2)), we have p(5,,) — liminf,, ;o p(5m) and hence

0> ¢(s0) + pn(so—c1) — lingnfg(§m) > lim sup p(8p,) — liminf p(3,,) > 0,

m—00 m—00 —
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where the strict inequality follows from (B.1) and the upper semicontinuity of p. This is a
contradiction. Therefore, we conclude that 5,, — ¢; and p(5,,) = p(c1) > 0 as m — oo. Now
we might assume p(8,,) > 0 for each m € N, by the definition of viscosity subsolution, we obtain

)+ Ho (S () o~ =) <
F\°m * m» m n (ém—01)2 - .

Note that inf H(s,p) < Hy(Sm,p). Then we pass to the limit as m — +o00 in the inequality

s€(c1,8m]
above and get

pler) + H(cit, ¢ (er+) +p2) <0,

where p2 = p, — limsup (sm—c1)® o [—00,0]. It then follows from liminf, , o H(ci+,p) > 0

(8m—c1)?
m—o0
that p > —oo and pY is bounded from below by a constant C' which only depends on H(c1+, p),
p(c1) and ¢'(c1+). But this also implies p, > C, which leads to a contradiction. This completes
the proof of the finiteness of p, . O

C Comparison Principle for problem with Kirchhoff condition

The comparison principle for FL-solutions was first proved by Imbert and Monneau [40, [41].
Subsequently, Lions and Souganidis gave an alternative proof by transforming it to an equivalent
Kirchhoff junction condition [49, 48]. We combine the arguments of the latter and of [44] to
prove a comparison result that allows for solutions that grows superlinearly.

Let P = {¢;}7, for some 0 < ¢; < ... < ¢, and B; € R for all i. We establish a comparison
principle for viscosity sub- and supersolutions of the Hamilton-Jacobi equation

min{p,p+ H(s,p')} =0 in (0,00) \ P (C.1)
with the following Kirchhoff junction condition at ¢;
o ei—)—p(ei+)—B;=0 fori=1,..n, (C.2)

and boundary conditions p(0) = 0 and p(s)/s — 400 as s — +oo. Here, we assume the
following for the Hamiltonian function H (s, p).

(A1) For any given L > 0 and each s € (1, L) \ P, there exist 5y = do(L) and hg € {£1} such
that
H*(s,p) — Hu(s',p) <wi(|s — s'|(1+ |pl))

for all s, s’ such that 0 < [s—sg|+|s’—so| < dp and (s'—s)ho < 0. Here wy, : [0, 00) — [0, 00)
is a modulus of continuity for each L > 0, i.e. it is continuous with wz(0) = 0, and H*
(resp., H,) is the upper (resp., lower) semicontinuous envelope of H with respect to the
first variable, that is,

H*(s,p) = limsup H(s',p) (resp., Hi(s,p) = liminf H(s',p)). (C.3)
s'—s

s'—s

(A2) p— H(-,p) is convex, iggH(s,O) > 0 and ‘ 1|im [in}f{H(s,p)] — oo for each compact set
s p|—o0 | sE
K C (0,00).
(A3) The one-sided limits H(c; £, p) are well defined.

(A4) There exists 5 > max {¢;} such that H(s,p) = —sp+ H(s,p)+ R(s) for s > 5 and H (s, p)

is non-increasing in s € [s, 00). Moreover, R € L™ is locally monotone in s € [s, 00).
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Remark C.1. The definition of local monotonicity of R(s) is stated in (H3’) of Subsection
see also [I7]. Note also that (A1) implies that H(s,p) is locally monotone as a function of two
variables.

Remark C.2. For our purpose, we will take H(s,p) = —sp + p?> + R(s), where R equals to
positive constants on (0, ¢1) and on (¢, 00). It is obvious that (A1)-(A4) hold.

To define what it means by a viscosity solution to (C.1))—(C.2|), we recall the space of piecewise
C' test functions

Cpw = Cloe((0,00)) N CH((0,e1]) N C ([ex, e2]) M. 1 CH([en—1, €n]) N Cle( [, 00)).
and use the notations in (C.3)).
Definition C.3. (a) We say that p is a viscosity subsolution to (C.I)-(C.2) if p is upper

semicontinuous on (0, +00) and it satisfies, in the viscosity sense,

min{p,p+ H(s,p')} <0 for s € (0,00) \ P,
min{p(c;), min{p’(¢;—) — p'(ci+) — Bi, p(ci) + H(cit, p'(¢;£))} <0 for each 1 < i <mn,

that is, whenever p — 1 has a strict local maximum point at sg for some ¢ € C;w and
p(s0) > 0, we have

p(s0) + Hy(s0,%'(s0)) <0 if sg € (0,00) \ P,

min{y'(¢;—) — ¢’ (¢i+) — Bi, p(ci) + H(eit, ¢ (¢ %))} <0 if 59 = ¢;.

(b) We say that p is a viscosity supersolution to (C.1)—(C.2)) if p is lower semicontinuous on
(0, 400) and it satisfies, in the viscosity sense,

min{p, p+ H(s,p')} >0 for s € (0,00) \ P,
min{p(¢;), max{p’'(c;—) — p'(¢i+) — By, p(¢c;) + H(ci+, p'(c;£))}} > 0 for each 1 < i < n,

that is, p > 0 for all s > 0 and whenever p — % has a strict local minimum point at sy for
some 1) € C’;w, we have

ﬁ(So) + H*(So, wl(SO)) >0 ifsye (0, OO) \ P,
max{y’(¢;—) — ¢'(ci+) — B, p(ci) + H(ci, ¢/ (e £)} > 0 if 59 = ¢

(c) We say that p is a viscosity solution to (C.1) —(C.2), if it is both a viscosity subsolution
and viscosity supersolution.

Remark C.4. The above setting includes the case with general r(x,t) with infinitely many shifts
(in that case H;(p) = p? and R is locally monotone except possibly at c;), as well as the case
when there is finitely many shifts, but periodic homogenization in between (in that case R = 0).

Theorem C.5. Let p and p be, respectively, viscosity sub- and supersolutions of (C.1)~(C.2),
such that
p(s)

p(0) <0<5(0), p(s)<oo foralls>0, and ——= — 400 ass— —+oo.
= = s

Then p(s) < p(s) in [0, +00).
Remark C.6. The above theorem directly implies the corresponding comparison principle for FL-
super /subsolutions (see Proposition. This is because p and p being a pair FL-super/subsolution

(for an arbitrarily given A € R) implies the corresponding super/subsolution property with
Kirchhoff junction condition (for some B = B(A)); See Subsection
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Proof of Theorem[C.3. First of all, we may assume without loss that p is nonnegative, p(0) =0

and p € Lip;,.([0,00)). This can be achieved by replacing p by max{p,0}. Since 0 and p

(and hence also max{p, 0} is automatically a viscosity subsolution (in Ishii sense) to min{p, p+

H(s,p)} =0, Lemmaﬁ is applicable and it is therefore locally Lipschitz continuous.
Suppose to the contrary that

iglg[e(é‘) —p(s)] > 0. (C.4)

Step #1. We may assume without loss of generality that p(s) —p(s) — —oo as s — +o0.

If limsup,_, o @ < 00, then we are done. Otherwise, we proceed as in [44] Proposition

2.11]. First, observe that p € Lip;,.((0,00)). By Rademacher’s theorem, it is differentiable in
some [0, 00)\ S where S has zero Lebesgue measure. Hence, we may choose s; € [, 00), s — 00
such that p is differentiable at s, and

iréfg(sk) >0 and R(sg) — limsup R(s).

§—00

Note that the latter is a consequence of local monotonicity of R thanks to (A4). Next, define

p(s) — v for 0 < s < s,
Bk(s) = {p(sk) —vp+p'(sk)(s —sp)  for s > sy,
where vy = supj,, o) It — R(sx) (note that v, — 0). Observe that p, is a viscosity subsolution
in [0,00) with linear growth as s — oco. Indeed, p, is a viscosity subsolution of in [0, sg)
on the one hand, and a classical subsolution of in [sx,00) on the other hand, since
p,+H(s,p\) = p, —sp) + H(s,p}) + R(s)

= [ar — v + b(s — sp)] — sby + H(s,b,) + R(s)

< ay — v — spb + H(sg, bp) + R(s)

= (ar, — by + H (s, b) + R(sk)) + (R(s) — R(sk) — )

< p(sk) + H (s, p (1)),

where we adopted the notation ax = p(sg), b = p/(si) and s > sy.

We can then replace p by Pps if necgssar'y. Note that still holds provided k is sufficiently
large, since vy — 0 and s — +00.

In the rest of the proof, we will show the comparison result is valid, i.e.

max{p, (s),0} <p(s) in[0,00), for all sufficiently large k.
Granted, then we can take k — oo to deduce that p < p.

Step #2. For A € (0,1), define W (s) = Ap(s) — p(s). Then choose A 1, 0 < s9 < 5p such
that

no = W(sp) = max W(s) >maxq sup W,(1—X) sup |H(s,p)|p. (C.5)
o Fome) e
pI=4|s50

For given 1 < i < n, we consider two cases. Either (i) there is a sequence \; 1 such that
sop # ¢; for all j, or (ii) there exists a sequence A; 1 such that sg = ¢; for all j. We first
consider case (i), so # ¢;.

Step #3. Next, define
1—A

Was,t) = Mpls +a”2ho) = (1) = S ls =t = == s = sof?, (C.6)
where hg is given in (A1).
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Claim C.7. There exists & > 0 such that if a > &, then the following statements hold.

(i) W4 has an interior local mazimum (s1,t1) in (5, 22$50) x (0, So).

(ii

(iii

(i

)
) Walsi,t1) > Ya(so, s0) =m0+ o(1) > 0.
) als; —t1> = 0 as a — oco.

v) (s1,t1) = (s0,50) as a — oo.

Denote @ = [%, SOJFSO] x [0,350]. Clearly, ¥, is upper semicontinuous in @, therefore, it
attains the maximum at (s1,¢1) € Q. By (C.5)) and p € Lip,,.((0,00)), it follows that

Slclzp W, > Wo(s0,50) = no + AMp(so + ™ 2hg) — p(s0)) = no + o(1)

where o(1) is considered with respect to v — +oo. This proves (ii). For (iii), first observe that
als; —t1])?> = O(1) which is a direct consequence of statement (ii). In particular, (sq,t1) — (3, 3)
for some § € [, 20F80]. By (ii), we can write

2 -

W s0) + [W () £ P(s0)] = (1) — o s = s0f” + (1),

« ’ "
— S J—
9 1 1

Since s — W (s) + p(s) and ¢t — —p(t) are both upper semicontinuous, we can take o — oo to

obtain
1—-A

()<hmsup—|81—t1\ < —W(sg) + W(s) — 15— 50> <0,

a—r 00
where the last inequality follows from the fact that W attains global maximum at sg. This
proves (iii) and (iv). Finally, statement (iv) yields (s1,¢1) must be an interior point of Q. This
proves (i).
Step #4. Fixing t = ty, observe that for a > &, p(s1 + a~2hg) > no +p(t1) + o(1) > 0 since
p >0, and s+ p(s) — ¢(s) attains a local maximum at s = §; := s1 + a~1/2hg, where

1 «o _ 1—A _
p(s) = N [P(tl) + §|S —a Y2hy — 12 + T\s—a 12p, —so|2] .

By definition of viscosity subsolution, we have

B(él) + H, (§1, O[(Sl)\_ tl) + L ; )\(81 — So)> <0. (C?)

Using the convexity of H,, we have

AH, (§1, alsr —f) 1o )\(31 - So)> + (1= AN Hy (81, —(s1 = 80)) > Ho (81, 0(s51 — 11)) -

A A
Substitute into (C.7)
Ap(31) + Hy (81, a(s1 —t1)) < (1 = A)Hi (51, (51 — 50)) < (1 = A) s[up] H(s,p). (C.8)
s€[0,50
[pl<2[50]

Next, we fix s = s; and observe that t — p(t) — ¢ (t) has an interior local minimum at ¢ = ¢,
where

Hence,
ﬁ(fl) + H*(tl,()é(sl — tl)) > 0. (Cg)
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Since sg ¢ P, it follows that t; ¢ P for sufficiently large a. Combining (C.8)) and (C.9)), we have

Mol51) = p0) < H'(1n,(s1 = 10)) = Ha(n,a(ss =) +(1 =) sup H(s,p). (C.10)
s€[0,3
Ip|<2|50]

Step #5. Observe that Ap(31) — p(t1) > Wo(s1,t1) > no + o(1). Using also |hg| = 1 (by (Al))
and als; — t1|> = o(1) (by Claim iii)), we have

(tl — §1)h0 = [tl — 81 — a_1/2h0]h0 < |t1 — 81| — (1_1/2 < 0.
We can then apply (A1) to (C.10) to get

o(1) +no < wr(|t1 —81—04_1/2h0|(a]t1 —s1|4+ 1)+ (1= sup H(s,p). (C.11)
5€[0,50],|p|<2|50]

Using als; — t1]? = o(1) and
tr = 51— o™ hol(alty — 51| +1) < (@]t — 51| + 1) (! ?[tr — 51| + a7 ),
we let a — oo in (C.11)) to obtain

7o S (1 - )\) sup H(Sap)a
s€[0,30],|p|<2|50|

which is a contradiction. This concludes the proof when W (s) = Ap(s) — p(s) attains a local
maximum at sg, such that sy # ¢; for all 4.

It remains to consider the case (ii) (see Step #2), when there is A; 1 such that X\jp —p
has a global maximum at sop = ¢; for some 7. Since this holds for a sequence of A\; 1, we
reduce to the case that p — p attains the global maximum at ¢; for some i. For convenience,
let’s assume so = ¢;. Next, define

a=p(c) and b=p(c)
and assume to the contrary that a > b > 0. (We will show that a < b so there is a contradiction.)
Step #6. We claim that the critical slopes of p, given as follows, are finite.
p-=sup{p € R: Ir >0, p(c1) +p(s —c1) > p(s) for —r <s—c; <0},

pr =sup{p e R: Ir >0, p(c1) —p(s —c1) > p(s) for 0 <s—cy <r}.

Indeed, they are finite because p is locally Lipschitz continuous. Moreover, we have

{a+ H(ci—,p-) <0, a+H(ci+,—ps) <0,  and c12)

min{p’_ + p/, — Bi,a+ H(c1£, Fp4)} <0 for (p_,p,) € (—o0,p_] x (—o0,p4],

where the former is due to Lemma and Remark (note that p € Lipy,,, so there exists at
least one constant test function in ), while the latter holds by considering the test function
P(s) = p(c1) + p_ min{s — ¢;,0} — p/, max{s — ¢1,0}, which touches p from above at c;.

Next, define a

s) — ple s) — ple
p* = limsup M and p} = —liminf M (C.13)
s—c1— s—0C s—c1+ s —cC1
Note that
pL >p- and pi >py, (C.14)

36



: . p(s) = plar) . p(s) — plcr)
since p_ = liminf =————— and p; = —limsup =——.
S—C1— s—C s—c1+ s—C

Step #7. We improve (C.12)) to

{a+H(c1—,p*>§0, a+ H(ci+,—p}) <0, and (C.15)

min{p’_ +p', — Bi,a+ H(c1 £, Fply)} <0 for (p'_,p/,) € (—o0,p*] x (—o0,pk].

Indeed, since p is locally Lipschitz, p exists a.e. and p(s) —p(c1) = fcsl p'(t) dt, the definition
of p% implies that, for each 0 > 0, the set {s € (c1,c1 +9) : p'(s) < —p% + 6} has positive
measure. This implies that there is a sequence si \, ¢ such that p is differentiable at s and

also that limsup p'(sy) < —p% . Hence, letting & — oo in p(sy) + Ha(sk, p'(sx)) < 0, we obtain

k—00

a+ H(ci+,liminf p/(s)) <0
k—oo —

Noting that H is convex in p variable, lign inf p/(s1,) < —p% < —p4, and using the first part of
—00 —

(C.12)), we deduce
a+ H(ci+,—p.) <0 forall p, € [p4,pl]. (C.16)

By a completely similar argument, we also have

a+ H(ci—,p ) <0 forall p €[p_,p*]. (C.17)

Combining (C.16)) and (C.17)) into (C.12)), we obtain (C.15)).

Step #8. We claim that the critical slopes of p, defined as follows, are well-defined but possibly
equals —oo.

g—=inf{geR: Ir>0, plcr) +q(s —c1) <p(s) for —r <s—cy <0}

g+ =inf{geR: Ir>0, plcr) —q(s —c1) <p(s) for 0 <s—ecy <7}
Indeed,

p(s) —p(s) < p(c1) —p(cr) forall s, with equality holds at s = ¢y, (C.18)

i.e. the locally Lipschitz function p(s) — p(c1) + p(c1) touches p(s) from below at s = ¢;. This
shows that ¢_ and ¢ are well-defined in RU {—o0}.
Next, we observe that

¢- <p- and g4 <pi, (C.19)
which is due to (C.13]), (C.18)), and
q- zlimsupM and Q+=—liminfM,
s§—C1— s§—0C s—c1+ s—cC

Step #9. Suppose g+ > —oo, then we have

b+ H(ci—,q-) >0, b+ H(c1+,—q+) >0 and (C.20a)
max{q" + ¢} — Bi,b+ H(c1, Fq4)} 2 0, for (¢_.¢}) € [g-,00) x [g4,00),  (C.20b)

where the former holds by virtue of the critical slope lemma (Lemma and Remark ,
and the latter holds by considering the CJ, test function ¢ (s) = p(c1) + ¢/ min{s — ¢1,0} —
¢’ max{s — ¢, 0}.

If - = —o0 (resp. g+ = —o0) then take ¢_ (resp. ¢4) large and negative enough (but
finite) to satisfy both (C.19)) and (C.20a). Then, for any (¢_,¢,) € [g—,00) X [g4,00), the test
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function ¥ (s) = p(c1) + ¢_ min{s — ¢1, 0} — ¢/, max{s — ¢1, 0} touches p at s = ¢;. Then it
follows that holds.
Step #10.

In view of (C.15), (C.19), and (C.20)), we may apply the Lemmal|C.8 with (H1(p) = H(c1—, p)
and Hy(p) = H(ci+,—p), p € R, p1 = p*, po = p, 1 = q— and ¢2 = ¢4) to conclude that
a <b. This is a contradiction to the assumption that a > b. The proof is now complete. 0

The following key lemma is due to Lions and Souganidis [48].

Lemma C.8. Assume that Hy,...,H, € C(R), p1,.cc; Pms @1, -, @m € R, and a,b € R are such
that, for alli=1,...,m,

1. p; > ¢qi, a+ Hi(p;)) <0<b+ Hi(q;) for all i,
2. min (), p} — B, min;(a + H;(p}))) < 0 for each p}; € (—o0, pi,
3. max (3, ¢, — B,max;(b+ Hi(q}))) < 0 for each ¢} € [g;, >0).
Then a < b.
Remark C.9. By replacing p; by p1 + B and ¢1 by ¢1 + B, and redefining
Hy(-) tobe Hi(-+ B),
one can reduce Lemma to the case B = 0, which is exactly [48, Lemma 3.1].

D Definition of viscosity solution in sense of Ishii
Definition D.1. Let p: (0,00) — R.
(a) We say that p is a viscosity subsolution of
min{p, p+ H(s,p))} =0 fors>0 (D.1)

in the sense of Ishii provided (i) p is upper semicontinuous, (ii) if p—1 has a local maximum
point at sop > 0 such that ¢ € C* and p(sq) > 0, then

p(s0) + Ha(s,1'(s0)) <0,

where H,(s,p) is the lower semi-continuous envelope of H (s, p), i.e.

—sp + p? + g(—o0) for s < ¢y,
H.(s,p) = { H(c1—,p) A H(c1+,p) = —c1p + p? + min{g(—00), g(+00)}  for s = c1,
—sp 4 p? + g(+00) for s > ¢;.

(b) We say that p is a viscosity supersolution of (D.1]) in the sense of Ishii provided (i) p is
lower semicontinuous, (ii) p > 0 for all s > 0, (iii) if p — ¢ has a local minimum point at
sp > 0 such that ¢ € C*, then

p(s0) + H*(s,9/(s0)) > 0,

where H*(s,p) is the upper semi-continuous envelope of H (s, p), i.e.

—sp + p? + g(—o0) for s < ¢y,
*(s,p) = { Ale1—,p) v H{er+,p) = —c1p+ 12 + max{g(—o0), g(+o)}  for s =1,
—sp + p? + g(+o0) for s > ¢;.

(c) We say that p is a viscosity solution of (D.1]) in the sense of Ishii if it is both subsolution
and supersolution of (2.26)) in the sense of Ishii.
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