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Abstract

Fungi are cells found as commensal residents, on the skin, and
on mucosal surfaces of the human body, including the digestive track
and urogenital track, but some species are pathogenic. Fungal infec-
tion may spread into deep-seated organs causing life-threatening infec-
tion, especially in immune-compromised individuals. Effective defense
against fungal infection requires a coordinated response by the innate
and adaptive immune systems. In the present paper we introduce a
simple mathematical model of immune response to fungal infection
consisting of three partial differential equations, for the populations of
fungi (F ), neutrophils (N) and cytotoxic T cells (T ), taking N and T
to represent, respectively, the innate and adaptive immune cells. We
denote by λF the aggressive proliferation rate of the fungi, by η and
ζ the killing rates of fungi by neutrophils and T cells, and by N0 and
T0 the immune strengths, respectively, of N and T of an infected in-
dividual. We take the expression I = ηN0 + ζT0 − λF to represent
the coordinated defense of the immune system against fungal infec-
tion. We use mathematical analysis to prove the following: If I > 0,
then the infection is eventually stopped, and F → 0 as t → ∞; and
(ii) if I < 0 then the infection cannot be stopped and F converges
to some positive constant as t → ∞. Treatments of fungal infection
include anti-fungal agents and immunotherapy drugs, and both cause
the parameter I to increase.
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1 Introduction
Fungi are eukaryotic cells, found in soil, water, air, and trees; they also

grow in household wallpaper and basement (as mold) and spread in the air.
In humans, fungi may cause infection and disease.

There are fungi that live naturally in the human body, and they may be
helpful or harmful. They include the family of Candida albicans, as well as
other Candida families. C. albicans are found as commensal resident of the
skin, digestive tract, urogenital tract, oral cavity, and other mucosal surfaces.
C. albicans is the most common and most studied fungal pathogen.

Most fungi, including C. albicans, are hyphae, cylindrical cells that in-
crease in length by growth in one direction. Life cycle starts with a spore (a
slim rod) that grows and branches, with productive branches producing new
branches, etc., in a process that forms a radiating system of hyphae, known
as mycelium [6]. Fungi feed by absorption of nutrients from the environment
around them. Hyphae ligaments grow outward away from each other in order
to maximize exploration and invasion opportunities [4,18]. Hyphae are very
motile and can adjust their morphology in response to stimuli and changes
in the environment [21].

C. albicans can penetrate the endothelium and disseminate into deep
seated organs, causing life threatening infection, especially in immuno-
compromised individuals [28, 33]. Host defense against C. albicans is de-
pendent upon coordination between the innate and adaptive immune re-
sponse. Innate response to infection is fast rather than specific; it includes
macrophages, neutrophils and dendritic cells (DC s).

Neutrophils form an essential part of the innate immune system. Neu-
trophils circulate in the blood and have the ability to pass through the en-
dothelial lining at the site of infection. Neutrophils and macrophages kill
fungal pathogen in different ways. Macrophages ingest pathogens and de-
stroy them in their phagosomes after they mature into phagolysosome; how-
ever, pathogen may evade destruction and replicate within macrophages [17].
Neutrophils kill pathogen primarily extracellularly, by secreting oxidative cy-
totoxic species and inflammatory cytokines, and neutrophil extracellular nets
(NETS) [9].

Dendritic cells mediate adaptive T cells immune protection against C. al-
bicans [28,33,34]. DC s patrol the peripheral tissue beneath skin and mucosal
surfaces. They are recruited to the site of infection by recognizing molecular
pattern of fungal cell wall. Fungal cell is phagocytosed by DC, and fungal
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peptide antigens are then assembled on MHC I or II, and presented to mem-
ory T cells. The T cells then become activated as effective CD4+ T cells,
specifically inflammatory Th1 cells, under IL-12 environment [28, 33, 34].
Th1 cells secrete IL-2 that activate cytotoxic T cells (CTLs), commonly
called CD8+ T cells. CD8+ T cells kill C. albicans [23,30,38]; they do it ex-
tracellularly by secreting perforins and granzymes that perforate the fungal
cell wall and break down its DNA.

In the present paper we consider a mathematical model of fungal infection,
focusing on the interaction between the innate and adaptive immune systems.
We denote by N and T the densities of neutrophils and CTLs, respectively.
We take N to represent the innate immune response and T to represent the
adaptive CD8+ T cells response. We consider fungal infection at a colony
level, with scale of 0.1 - 1cm. At this scale, we ignore the complex dynamics
of hyphae and the network details of mycelium, replacing them by a density F
within the territory occupied by the fungi. Mathematical models describing
the development of fungal mycelium were developed by G. P. Boswell et
al. [3], F. A. Davidson [8], L. Edelstein [14], L. Edelstein and L. A. Segel [15]
and collaborators; some models were represented by a system of PDEs with
variables that include hyphal tips (p), biochemical chemoattractant (c) and
biomass (m).

Neutrohphils are produced in the bone marrow by a tightly regulated
process controlled by cytokines. They are released into the blood at a rate
of 1011 cells per day, and their half-life span is 6-12 hours. The population
of neutrophils is highly heterogeneous [31, 36], and some are known not to
be passive in homeostasis [31]. Aging predisposes over activation of neu-
trophils [36]. In homeostasis, aging neutrophils revealed signaling pathways
related to changes in inflammatory-associated neutrophils [35]. We accord-
ingly assume that, in homeostasis, there is a subset of neutrophils exhibiting
active inflammatory behavior, and denote its concentration by N0.

We denote by dN the death rate of N . Then, in homeostasis, the ODE
dynamics of N is dN

dt
= −dN(N −N0), and, under fungal infection,

dN

dt
= λNF − dN(N −N0), (1.1)

where λN is the response rate of neutrophils to F . Since there is only a
limited study on the effect of fungal infection on neutrophils [20], we take dN
to be constant.
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The activation of T through DC s can be described by the following se-
quence of activation/production events:

F −→ DC −→ IL-12 −→ Th1 −→ IL-2 −→ T.

Writing each such event in the form Xj → Xj+1 with ODE dynamics

dXj+1

dt
= λj+1Xj − dj+1Xj+1

where λj+1 is the actiation/production rate and dj+1 is the death/degradation
rate of species Xj+1, and taking steady state in all intermediate events, we
get

dT

dt
= λTF − dTT,

where dT is the death rate of T .
Dendritic cells are the primary antigen presenting cells (APC s), but neu-

trophils are also known to be antigen presenting cells [2, 27]. Neutrophils,
after infection, were shown to migrate to the lymph nodes and secrete
chemokines that attract CD4+ T cells to the infection site [42]; they are
also known to deliver antigens to DC s [25]. Hence the complete ODE dy-
namics for T is

dT

dt
= λTF + λTNN − dTT

where λTN is smaller than λT , since DC s are the primary APC s. We can
rewrite this equation in the form

dT

dt
= λTF + λTN(N −N0)− dT (T − T0) (1.2)

where
λTNN0 − dTT0 = 0, or T0 =

λTN
dT

N0. (1.3)

Our mathematical model consists of a system of PDEs for F , N and T in
planar domains Ω(t) that vary increasingly with time. The area Ω(t) occupied
by the fungal colony may have different shapes. For simplicity we take it to
be circular, as seen in the agar petri dish with C. albicans isolated from
patients [19, Fig. 1]. We assume that immune response to fungal infection
is not qualitatively different for other shapes of fungal colonies, such as oval
shape or other shapes with smooth boundary. Accordingly, we take F , N
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and T to be radially symmetric, that is, functions of (r, t), where r = |x| is
the distance from the origin in the 2-d plane, and Ω(t) = {0 ≤ r ≤ R(t)};
we assume that F satisfies a logistic growth at rate λF and carrying capacity
K, and it is killed by N and T at rates η and ζ, respectively.

The complete model is introduced in Section 2. In the rest of the paper we
study the progression of the infection by mathematical analysis. In Sections
3 - 6 we consider the special case where the fungal infection solicits only innate
immune response, that is, we take ζ = 0, or equivalently, set T ≡ 0.

The parameter ηN0/λF represents the ratio of the neutrophil killing rate,
in case λN = 0, to the fungal growth rate, when K = ∞. We prove the
following results:

(i) Suppose ηN0/λF > 1. Then lim
t→∞

R(t) < ∞ and (F,N) → (0, N0) as
t→∞.

(ii) Suppose ηN0/λF < 1 and lim
t→∞

R(t) =∞, then (F,N)→ (F ∗, N∗) as t→
∞, where (F ∗, N∗) is the unique steady state of the space-independent
dynamics of the (F,N) system, namely

F ∗ =

(
1− ηN0

λF

)(
1

K
+

η

λF
· λN
dN

)−1

, N∗ = N0 +
λN
dN

F ∗.

A sufficient condition for lim
t→∞

R(t) =∞ is

R(0) >

[
δF

λF − ηN0

]1/2

j0,

whereas a necessary and sufficient condition for lim
t→∞

R(t) =∞ is

R(t0) >

[
δF

λF − ηN0

]1/2

j0 for some t0 ≥ 0;

here j0 ≈ 2.4048 is the smallest zero of the Bessel function of order
zero.

In Section 7 we include the adaptive immune response and prove results
similar to (i), (ii); situations analogous to cases (i) and (ii) depend on whether
(ηN0 + ζT0)/λF is greater than or smaller than 1.
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A mathematical model of fungal spore inhalation was developed in [39];
the model consists of 4 ordinary differential equations for the fungal spore,
macrophages, neutrophils, and inflammatory dendritic cells. Another ODE
model, in [41], considered fungal infection in immune compromised individ-
uals with fungal strains that are susceptible or resistance to drugs.

In Section 2 we present our mathematical model. In Section 3 we establish
a priori estimates and prove the existence and uniqueness of a solution. We
also prove that if R(t) remains bounded as t→∞, then (F,N)→ (0, N0) as
t→∞. The proof of (i) is given in Section 5, and the proof that lim

t→∞
R(t) =

∞, in case (ii), is given in Section 5. We prove the remaining part of (ii) in
Section 6.

The extension of the results of Sections 3 - 6 to the complete model (2.1)-
(2.7) is given in Section 7. In Section 8 we draw biological conclusions from
the mathematical results of the paper.

2 Mathematical model
We consider a model of immune response to fungal infection. We denote

the fungi density by F , the neutrophils density by N , and the density of
CD8+ T cells by T . The infected region is a 2-dimensional domain Ω(t) that
varies with time. Hyphae ligaments grow away from each other [21]; hence,
the density of F is dispersing, with a diffusion coefficient δF . We assume
that F has a logistic growth with rate coefficient λF and carrying capacity
K, and that it is being killed by N at rate η, and by T cells at rate ζ, so that

∂F

∂t
− δF∇2F = λFF

(
1− F

K

)
− ηNF − ζTF. (2.1)

Note that λF represents the difference between proliferation and death rates
of the fungi.

The innate immune response is given by neutrophils whose density N
satisfies the following equation:

∂N

∂t
− δN∇2N = λNF − dN(N −N0) (2.2)

where λN is the rate of accumulation of neutrophils in response to F , dN is
the death rate of N , andN0 is the density of active neutrophils in homeostasis
[35,36].
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The adaptive immune response is given by T cells. The density T satisfies
the following equation:

∂T

∂t
− δT∇2T = λTF + λTN(N −N0)− dT (T − T0) (2.3)

where λT is the rate of accumulation of T cells by activated DC s, λTN is
an additional accumulation by direct antigen presentation by neutrophils
[2, 25, 27], and dT is the death rate of T cells.

The boundary conditions at the free boundary ∂Ω(t) are taken to be

F = 0, N = N0, T = T0 =
λTN
dT

N0 on ∂Ω(t). (2.4)

We denote by ~n the outward normal to ∂Ω(t). We assume that the fungi
territory grows by outward production of new mycelium network from hyphae
near the boundary, so that the rate of growth is proportional to the gradient
of F . Hence, Ω(t) grows in response to the flux −∇F · ~n, and the outward
normal velocity Vn of ∂Ω(t) is given by an equation

Vn = h(−∇F · ~n)

where h(s) is a function satisfying the following conditions:{
h(0) = 0, h′(0) > 0, ‖h′‖L∞[0,∞) <∞,
h′(s) ≥ 0 for all s > 0.

(2.5)

It follows that
h(s) ≤ µs for all s ≥ 0

where µ = ‖h′‖L∞[0,∞). Particular examples are

h(s) = µs and h(s) =
µs

A+ s
(for some A > 0).

We consider only the case where F , N , T and Ω(t) are radially symmetric.
Then {

∇2 = 1
r
∂
∂r

(
r ∂
∂r

)
, Ω(t) = {0 ≤ r ≤ R(t)},

F = F (r, t), N = N(r, t), T = T (r, t),

and the free boundary r = R(t) satisfies the equation

dR

dt
(t) = h

(
− ∂F

∂r
(r, t)

∣∣∣∣
r=R(t)

)
. (2.6)
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We take initial conditions

F (r, 0) = F 0(r), N(r, 0) = N0(r) T (r, 0) = T 0(r) for 0 ≤ r ≤ R(0)
(2.7)

and F 0, N0, T 0 are in C2+α([0, R(0)]) for some α ∈ (0, 1), such that{
0 < F 0(r) ≤ K, N0(r) > 0 T 0(r) > 0 for 0 ≤ r < R(0),

F 0(R(0)) = 0, N0(R(0)) = N0, T 0(R(0)) = T0.

By the maximum principle

F (r, t) > 0, N(r, t) > 0, T (r, t) > 0 for all 0 ≤ r < R(t), t > 0,

and
∂F

∂r
(R(t), t) < 0 for all t > 0.

Hence,
dR

dt
(t) > 0 for all t > 0.

By the maximum principle, we also have

F (r, t) ≤ K for 0 ≤ r ≤ R(t), t > 0; (2.8)

hence
∂N

∂t
− δN∇2N ≤ λNK + dN(N0 −N).

By comparison with the function

Ae−dN t +N0 +
λNK

dN
where A = sup

0≤r≤R(0)

N0(r),

we then get,

N(r, t) ≤ Ae−dN t +N0 +
λNK

dN
for 0 ≤ r ≤ R(t), t > 0. (2.9)

Similarly, denoting dN ∧ dT = min{dN , dT}, we have

T (r, t) ≤ A0e
−(dN∧dT )t + T0 +

K

dT

[
λT +

λNλTN
dN

]
for r ≤ R(t), t > 0.
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We refer to the model (2.1)-(2.7) as the FNT model, and to the submodel
(2.1)-(2.7) with T ≡ 0 as the FN model. In Sections 3 - 6 we analyze the FN
model, and in Section 7 we extend the analysis to the FNT model.

In Section 3 we prove existence of a unique solution for all t > 0, and in
the following sections we focus on properties of the solution; in particular on
the question whether

F → 0, or F → F ∗ > 0 as t→∞.

As will be proved, these two different outcomes are associated with the cases

lim
t→∞

R(t) <∞ or lim
t→∞

R(t) =∞.

The first case is considered in Section 4 and the second case in Sections 5 - 6.

Part 1. The FN Model

In Sections 3 - 6 it is tacitly assumed that T ≡ 0, without stating it
explicitly each time when we refer to the system (2.1)-(2.7).

3 Existence of solutions
Theorem 3.1. The system (2.1)-(2.7) has a unique solution for all t > 0,
such that

R(t) ∈ C1+α/2[0,∞), (F (r, t), N(r, t)) ∈ [C2+α,1+α/2(Ω∞)]2,

where
Ω∞ = {(r, t) : 0 ≤ r ≤ R(t), 0 ≤ t <∞};

furthermore,

‖Ṙ‖Cα/2[0,∞) + ‖(F (r, t), N(r, t))‖C2+α,1+α/2(Ω∞) <∞. (3.1)

To prove the theorem we first establish a priori estimate. The first step
is the following lemma, which is adapted from [10, Lemma 4.2].

Lemma 3.2. There exists a positive number M such that

0 ≤ Ṙ(t) ≤ h(2MK) for all t > 0. (3.2)
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Proof. We define a domain

ΩM := {(r, t) : t > 0, R(t)− 1/M < r < R(t)}

and construct an auxiliary function

F (r, t) := K[2M(R(t)− r)−M2(R(t)− r)2].

We will show that M can be chosen large so that F (r, t) ≥ F (r, t) in ΩM .
Direct calculation shows that, for (r, t) ∈ ΩM ,

∂F
∂t

= 2KMṘ(t)[1−M(R(t)− r)] ≥ 0,

−∂F
∂r

= 2MK[1−M(R(t)− r)] ≥ 0,

−∂2F
∂r2

= 2KM2, λFF
(
1− F/K

)
≤ λFK.

(3.3)

It follows that

∂F

∂t
− δF∇2F − λFF

(
1− F/K

)
≥ 2δFKM

2 − λFK ≥ 0,

provided M2 ≥ (λF )/(2δF ). On the other hand,

F (R(t)− 1/M, t) = K ≥ F (R(t)− 1/M, t), F (R(t), t) = 0 = F (R(t), t).

Thus, if we can choose M such that F0(r) ≤ F (r, 0) for r ∈ [R(0) −
1/M,R(0)], then we can apply the maximum principle to F − F over ΩM to
deduce that F (r, t) ≤ F (r, t) in ΩM . It follows that

0 ≥ ∂F

∂r
(R(t), t) ≥ ∂F

∂r
(R(t), t) = −2MK,

and 0 ≤ Ṙ(t) = h
(
− ∂F

∂r
(R(t), t)

)
≤ h(2MK), as asserted in (3.2).

Proof of Theorem 3.1. For t0 ≥ 0, define

F̌ (ř, t) = F

(
R(t)

R(t0)
ř, t

)
and Ň(ř, t) = N

(
R(t)

R(t0)
ř, t

)
for 0 ≤ ř ≤ R(t0), t ≥ 0. The functions F̌ (ř, t) and Ň(ř, t) satisfy the
following equations:∂F̌

∂t
− δF R(t0)2

R(t)2
∇2F̌ − řṘ(t)R(t0)

R(t)
∂F̌
∂ř

= F̌
[
λF

(
1− F̌

K

)
− ηŇ

]
,

∂Ň
∂t
− δN R(t0)2

R(t)2
∇2Ň − řṘ(t)R(t0)

R(t)
∂Ň
∂ř

= λN F̌ − dN(Ň −N0),
(3.4)
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with ‖Ṙ‖L∞[0,∞) <∞. Since F̌ and Ň are uniformly bounded (by (2.8) and
(2.9)), we may use the Lp parabolic estimates to conclude that there is a
positive constant C (independent of t0) such that, for any t0 ≥ 0,∫ t0+1

t0

dt

∫ R(t0)

R(t0)−R(0)

ř

[
|∇2F̌ |p + |∇2Ň |p +

∣∣∣∣∂F̌∂t
∣∣∣∣p +

∣∣∣∣∂Ň∂t
∣∣∣∣p] dř ≤ C,

Then, by interpolation [24, p. 80, Lemma 3.3]∥∥∥∥∂F̌∂ř (R(t0), t)

∥∥∥∥
Cα/2[t0,t0+1]

≤ C,

with another constant C. Since

Ṙ(t) = h

(
−R(t0)

R(t)

∂F̌

∂ř
(R(t0), t)

)
≤ −µR(t0)

R(t)

∂F̌

∂ř
(R(t0), t) for t ∈ [t0, t0+1],

we easily deduce that
‖Ṙ(t)‖Cα/2[0,∞) <∞. (3.5)

Using this fact, we may go back to the system (3.4) and conclude that the
Schauder estimate (3.1) holds.

One can now use these a priori estimates to prove the existence and
uniqueness of the solution asserted in Theorem 3.1; the details are by stan-
dard arguments used for Stefan-type free boundary problems, as given, for
instance, in [16] or [40, Theorem 2.1].

In the following sections we consider cases where the limit

R(∞) = lim
t→∞

R(t)

is either finite or infinite. The following result will be useful.

Theorem 3.3. If R(∞) <∞, then

lim
t→∞

Ṙ(t) = 0 (3.6)

and

lim
t→∞

sup
0≤r≤R(t)

F (r, t) = 0, (3.7)

lim
t→∞

sup
0≤r≤R(t)

|N(r, t)−N0| = 0, (3.8)
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Proof. If the assertion (3.6) is not true, then there is a sequence tn →∞ and
β > 0 such that Ṙ(tn) ≥ β for all n. We may assume that tn+1 − tn ≥ 1. By
(3.5), there exists 0 < δ < 1 such that |Ṙ(t) − Ṙ(s)| < β/2 if |t − s| ≤ δ.
Hence Ṙ(t) ≥ 0 for t ≥ 0 and Ṙ(t) ≥ β/2 for t ∈ ∪∞n=1(tn − δ, tn + δ).
Integrating from tn to tn+1, we have

R(tn+1)−R(tn) =

∫ tn+1

tn

Ṙ(t) dt ≥ δβ

2
for all n,

But this implies R(tn) → ∞ as t → ∞, which contradicts the assumption
that R∞ <∞. This proves (3.6).

Next we prove (3.7) by contradiction, assuming that

sup
0≤r≤R(t)

F (r, tn) ≥ β > 0 for a sequence tn →∞. (3.9)

From the uniform Schauder estimate in (3.1), it follows that, for some δ > 0,

sup
0≤r≤R(t)

F (r, t) ≥ β

2
for |t− tn| < δ, n = 1, 2, ... (3.10)

From (3.1) it also follows that there is a subsequence n′ such that the func-
tions

F̂n′(r, t) := F

(
R(t)

R(∞)
r, t+ tn′

)
, N̂n′(r, t) := N

(
R(t)

R(∞)
r, t+ tn′

)
converge uniformly in 0 ≤ r ≤ R(∞), |t| ≤ δ to functions F̂∞(r, t) and
N̂∞(r, t) which satisfy (2.1)-(2.2) in [0, R(∞)] × [−δ, δ]. Since F̂∞(1, 0) = 0
and, by (3.10), F̂∞(r, t) 6≡ 0,

∂F̂∞
∂r̂

(R(∞), 0) < 0

by the maximum principle, and hence

lim
tn′→∞

Ṙ(tn′) = lim
tn′→∞

h

(
−R(∞)

R(tn′)

∂F̂n′

∂r̂
(R(∞), 0)

)

= h

(
−∂F̂∞(R(∞), 0)

∂r̂

)
> 0,
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which is a contradition to (3.6); this completes the proof of (3.7).
To prove (3.8), set Ñ(x, t) = N̂−N0. From (3.7) we obtain, for any ε > 0,

the inequality ∣∣∣∣∣∂Ñ∂t − δN
R2(t)

∇2Ñ − r̂Ṙ(t)

R(t)

∂Ñ

∂r̂
+ dNÑ

∣∣∣∣∣ < ε, (3.11)

if 0 ≤ r̂ ≤ 1 and t > Tε, provided Tε is chosen large enough. By comparison,

|Ñ(r̂, t)| ≤ ε

dN
+ Ae−dN (t−Tε) for 0 ≤ r̂ ≤ 1, t > Tε, (3.12)

where A = sup
0≤r̂≤1

|Ñ(r̂, Tε)|. Letting t → ∞ and then ε → 0, the assertion

(3.8) follows.

4 The case R(∞) <∞ and F → 0 as t→∞
In this section we prove the following theorem.

Theorem 4.1. If ηN0 > λF , then R(∞) <∞ and hence, by Theorem 3.3,

sup
0≤r≤R(t)

F (r, t)→ 0 as t→∞ (4.1)

and
sup

0≤r≤R(t)

|N(r, t)−N0| → 0 as t→∞. (4.2)

Proof. Define

X(t) =

∫ R(t)

0

rF (r, t) dr. (4.3)

Since F (R(t), t) = 0 and ∂F
∂r

(R(t), t) ≤ 0,

dX

dt
(t) =

∫ R(t)

0

r
∂F

∂t
(r, t) dr

≤
∫ R(t)

0

r [λF − ηN(r, t)]F (r, t) dr.

By comparison,
N(r, t) ≥ N0(1− e−dN t),
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so that
dX

dt
(t) ≤

∫ R(t)

0

r[λF − ηN0 + ηN0e
−dN t]F (r, t) dr.

Define γ = 1
2
(ηN0 − λF ), then γ > 0 and

dX

dt
(t) ≤ −γ

∫ R(t)

0

rF (r, t) dr = −γX(t)

if t ≥ max{0, tγ} where tγ = − 1
dN

log
(

γ
ηN0

)
, so that

X(t) ≤ X(tγ)e
−γ(t−tγ) for t ≥ max{0, tγ}.

Hence, by integration,∫ ∞
tγ

∫ R(t)

0

rF (r, t) drdt ≤ 1

γ
X(tγ).

Since 0 ≤ F (r, t) ≤ K and sup
t≥0

Ṙ(t) <∞, we have

∫ ∞
0

∫ R(t)

0

rF (r, t) drdt ≤ A(R(0) + max{0, tγ}) ·
1

γ
≤ A′

R(0) + | log γ|
γ

:= Aγ

(4.4)
for some constants A,A′, Aγ, where A,A′ are independent of γ. Next, since
dR
dt

(t) ≤ −µ∂F
∂r

(R(t), t),

d

dt

[∫ R(t)

0

rF (r, t) dr +
δF
2µ
R(t)2

]

≤
∫ R(t)

0

r
∂F

∂r
(r, t) dr − δFR(t)

∂F

∂r
(R(t), t)

=

∫ R(t)

0

r

[
∂F

∂t
(r, t)− δF∇2F (r, t)

]
dr

= λF

∫ R(t)

0

rF (r, t)

(
1− F (r, t)

K

)
dr − η

∫ R(t)

0

rN(r, t)F (r, t) dr

by equation (2.1). Integrating in t and using (4.4), we get

sup
t≥0

[∫ R(t)

0

rF (r, t) dr +
δF
2µ
R(t)2

]
≤ Aγ +

[∫ R(0)

0

rF (r, 0) dr +
δF
2µ
R(0)2

]
,
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hence sup
t≥0

R(t) < +∞. The remaining assertions (4.1) and (4.2) follow from

Theorem 3.3.

Corollary 4.2. From the last inequality we deduce that if ηN0 > λF , then

R(t)2 ≤ C

[
1 +R(0)2 +

| log(ηN0 − λF )|
ηN0 − λF

]
(4.5)

where C is a constant independent of how small ηN0 − λF is. This provides
an upper bound on R(∞) as ηN0 − λF ↘ 0.

Remark 4.3. If we repeat the above proof with the function

X(t) =

∫ R(t)

0

r
[
ε(N −N0)2 + F (r, t)

]
dr (4.6)

and take 2ελN = η, then we get

dX

dt
(t) ≤

∫ R(t)

0

r
[
−2ε(N −N0)2 +−(ηN0 − λF )F

]
dr ≤ −γX(t)

for some γ > 0 and t ≥ 0. Hence, in addition to the estimate (4.2), we also
have the estimate ∫ R(t)

0

r(N −N0)2 dr ≤ Ae−γt. (4.7)

5 The case R(∞) =∞
We denote by j0 the first root of the Bessel function of order zero; it can

be approximated by j0 ≈ 2.4048.

Theorem 5.1. If ηN0 < λF and

R(0) >

[
λF − ηN0

δF

]−1/2

j0, (5.1)

then R(∞) =∞.

Theorem 5.1 implies the following dichotomy.
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Theorem 5.2. If ηN0 < λF then either R(∞) =∞ or

R(∞) ≤
[
λF − ηN0

δF

]−1/2

j0. (5.2)

Proof. Indeed, if the inequality (5.2) is reversed, then

R(t0) >

[
λF − ηN0

δF

]−1/2

j0

for some t0 > 0. Hence R(∞) = ∞, by repeating the proof of Theorem
5.1.

Proof of Theorem 5.1. Let u0 denote the minimizer of

inf
u

∫ 1

0
r|u′|2 dr∫ 1

0
ru2 dr

in the class of functions in W 1,2[0, 1] which vanish at r = 1. Then
−∇2u0 = (j0)2u0 for 0 ≤ r < 1,

u0(r) > 0 for 0 ≤ r < 1,

u0(1) = 0.

By scaling, we can construct a function U(r) such that
−δF∇2U = λU for 0 ≤ r < R∗,

U(r) > 0 for 0 ≤ r < R∗,

U(R∗) = 0.

for any λ > 0 and R∗ = [λ/δF ]−1/2j0. We choose

λ = (1− δ)(λF − ηN0)

and

R∗ =

[
(1− δ)λF − ηN0

δF

]−1/2

j0,

where 0 < δ < 1 is so small that, by (5.1),

R(0) > R∗.
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To prove the theorem, we proceed by contradiction, assuming that
R(∞) <∞. Then, by Theorem 3.3,

sup
0≤r̂≤1

[
F̂ (r̂, t) + |N̂(r̂, t)−N0|

]
→ 0 as t→∞. (5.3)

It follows that for sufficiently large Tδ,

∂F

∂t
− δF∇2F ≥ (1− δ)(λF − ηN0)F for 0 ≤ r ≤ R(t), t > Tδ.

We note that
R(t) ≥ R(Tδ) > R(0) > R∗ if t > Tδ

and take ε small such that

F (r, Tδ) > εU(r) for 0 ≤ r ≤ R∗.

Then, by comparison (i.e. applying the maximum principle to F − εU), we
conclude that

F (r, t) > εU(r) for 0 ≤ r ≤ R∗ and t > Tδ.

But this contradicts (5.3) and thus completes the proof of the theorem.

6 The case R(∞) = ∞: (F,N) → (F ∗, N∗) as
t→∞

In this section we consider the asymptotic behavior of the solution of
(2.1)-(2.7) in case R(∞) = ∞. We assume, as in Theorem 5.1, that ηN0 <
λF , so that if the initial condition (5.1) is satisfied then R(∞) = ∞. When
ηN0 < λF there exists a unique non-zero homogeneous steady state (F ∗, N∗)
of the system (2.1)-(2.2), that is,

λF

(
1− F ∗

K

)
− ηN∗ = 0, λNF

∗ − dN(N∗ −N0) = 0, (6.1)

given by

F ∗ =

(
1− ηN0

λF

)(
1

K
+

η

λF
· λN
dN

)−1

, N∗ = N0 +
λN
dN

F ∗; (6.2)
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this state is asymptotically stable with respect to spatially independent solu-
tions of the system (2.1)-(2.2). We are interested to know whether it is also
asymptotically stable with respect to spatially dependent solutions. In this
section we prove the following:

Theorem 6.1. If ηN0 < λF and R(∞) =∞, then

(F (r, t), N(r, t))→ (F ∗, N∗) as t→∞ (6.3)

locally uniformly in r, for 0 ≤ r <∞.

It will be convenient to set Q = N−N0 and rewrite the system (2.1)-(2.2)
in the following form:

∂F

∂t
− δF∇2F = G(F,Q)F for x ∈ Ω(t), t > 0, (6.4)

where G(p, q) = λF − ηN0 − pλF/K − ηq, and

∂Q

∂t
− δN∇2Q = dN

(
λN
dN

F −Q
)

for x ∈ Ω(t), t > 0, (6.5)

with the boundary condition

F (x, t) = Q(x, t) = 0 for x ∈ ∂Ω(t), t > 0. (6.6)

Here Ω(t) ⊂ R2 is a growing domain such that Ω(t) ↗ Ω(∞) = R2 as
t → ∞. We will also find it convenient to write F (r, t) as F (x, t), where
x ∈ R2, |x| = r, and similarly the same convention for Q(r, t) and all other
functions of (r, t).

The proof of Theorem 6.1 will use a Lyapunov function, but in order
to define this function we need to ensure that lim inf

t→∞
F (r, t) > 0 uniformly

locally in r for 0 ≤ r < ∞. This will be proved in Lemmas 6.2 and 6.3. In
these lemmas we assume that the initial conditions F 0, N0 can be arbitrary
functions subject to uniform bounds

‖(F 0, N0)‖C2+α(R2) ≤ A <∞, and F 0(0) > 0. (6.7)

Lemma 6.2. If ηN0 < λF and Ω(t)↗ R2, then

lim inf
t→∞

F (x, t) ≥ α0 > 0 for each x ∈ R2 (6.8)

where α0 is independent of x, the growing domain {(x, t) : t ≥ 0, x ∈ Ω(t)}
and the initial data (F 0, Q0).
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We first prove a weaker result:

Lemma 6.3. If ηN0 < λF and Ω(t)↗ R2, then

lim sup
t→∞

F (x, t) ≥ α1 > 0 for each x ∈ R2 (6.9)

where α1 is independent of x, the growing domain {(x, t) : t ≥ 0, x ∈ Ω(t)}
and the initial data (F 0, Q0).

Such lemmas were proved in [12,13] for the Cauchy problem of predator-
prey systems in R2. Here we adapt their arguments in the context of a
free-boundary problem.

Remark 6.4. The proofs of Lemmas 6.2-6.3 work for general expanding
domains in n dimensions, with solutions that are functions in (x, t), not
necessarily radially symmetric. The proof Theorem 6.1, however, relies on
a classification of entire solutions based on a Lyapunov functional argument
that holds only for two-dimensional domains (see Subsection 6.3). For higher
dimensional domain, we refer to an alternative Lyapunov function argument
in [12], which requires the additional assumption that δF = δN .

Remark 6.5. A completely different approach to proving the assertions of
Theorem 6.1, which is not based on the existence of Lyapunov function, is by
constructing two nested sequences of positive numbers

F2 < F4 < · · · < F3 < F1, and N2 < N4 < · · · < N3 < N1,

which converge to F ∗ and N∗ respectively; this approach was used in [40,
Theorem 4.3] for a predator-prey model. The construction of the sequences
proceed in 4-step cycles, that proves (i) F (x, t) ≤ F2i−1; (ii) N(x, t) ≤ N2i−1;
(iii) F (x, t) ≥ F2i; (iv) N(x, t) ≥ N2i, using standard comparison. The
assertion (6.3) can then be proved by an induction argument. This method
works for general expanding domains in n dimensions and does not require
the condition δF = δN . However, the assumption on coefficients needs to be
strengthened from λF

ηN0
> 1 to λF

ηN
> max

{
1, λNK

dNN0

}
.

6.1 Proof of Lemma 6.3

Since
∂Q

∂t
− δN∇2Q ≥ −dNQ in Ω(t), Q ≥ 0 on ∂Ω(t)
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for t > 0, and Q ≥ −N0 at t = 0, we get, by comparison

Q(x, t) ≥ −N0e
−dN t;

hence
lim inf
t→∞

[
inf

x∈Ω(t)
Q(x, t)

]
≥ 0. (6.10)

Similarly, since F (x, t) ≤ K,

∂Q

∂t
− δN∇2Q ≤ dN

(
λN
dN

K −Q
)

and, by comparison,

Q(x, t) ≤ λN
dN

K + A0e
−dN t (6.11)

for some constant A0, which can be chosen to be independent of the initial
data in view of (6.7). Hence,

Q(x, t) ≤ λN
dN

K + 1 ≡MN if t ≥ t0,

where t0 is independent of the initial data.
To prove the lemma we assume, to the contrary, that for each n ∈ N

there is a solution (Fn, Qn) and growing domains Ωn(t) satisfying (6.4)-(6.6),
xn ∈ R2 and tn →∞ such that

Fn(xn, t) <
1

n
for all t > tn, (6.12)

and proceed to derive a contradiction.
By further increasing tn, we may assume that for each R� 1, there exists

nR such that Ωn(tn) ⊃ BR(xn) for any n ≥ nR. Here BR(xn) denotes the
disc of radius R centered at xn. In the following, BR = BR(0) denotes the
ball of radius R centered at the origin.
Step 1. We claim that for any R > 0,

lim
n→∞

Qn(xn + x, t+ tn) = 0 uniformly in (x, t) ∈ BR × [0,∞). (6.13)

To prove it we assume, to the contrary, that there exist R > 0, δ > 0,
(F 0

n , Q
0
n), sn ∈ (tn,∞) and x′n ∈ BR such that

Qn(xn + x′n, sn) ≥ δ (6.14)
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for the solution (Fn, Qn) with initial data (F 0
n , Q

0
n). By passing to a subse-

quence, we may assume that

(Fn, Qn)(xn + x, sn + t)→ (F∞, Q∞)(x, t)

locally uniformly in (x, t) ∈ R2 × R, where (F∞, Q∞) satisfy the system
(6.4)-(6.5) over the entire space R2 × R. Since F∞(0, 0) = 0, by (6.12), the
maximum principle implies that F∞(x, t) ≡ 0 for x ∈ R2, t ≤ 0. Hence

∂Q∞
∂t
− δn∇2Q∞ = −dNQ∞ for x ∈ R2, t ≤ 0,

and, by comparison, for any x ∈ R2, t0 < t ≤ 0,

Q∞(x, t) ≤MNe
−dN (t−t0).

Letting t0 → −∞, we have Q∞(x, t) ≤ 0 while, by (6.10), Q∞ ≥ 0; hence
Q∞ ≡ 0. Since this is a contradiction to (6.14), the proof of (6.13) is com-
pleted.

From (6.11) and (6.13) it follows that for each R� 1 and 0 < δ � 1,

Qn(xn + x, tn + t) ≤MN1R2\BR(x) + δ1BR(x) := QR,δ(x)

for sufficiently large n; here 1D = 1 if x ∈ D and 1D = 0 if x 6∈ D.
In the sequel we fix R and δ such that

γ :=
K

λF
(λF − ηN0 − ηδ − δFµR) > 0

where (φR, µR) is the eigensolution of

−∇2φR = µRφR in BR, φR = 0 on ∂BR, ‖φR‖L∞ = 1.

Note that µR → 0 if R → ∞, hence we can make γ prositive by taking R
sufficiently large and δ sufficiently small.
Step 2. Let F n denote the solution of{(

∂
∂t
− δF∇2

)
F n = G(F n, QR,δ(x))F n for x ∈ Ωn(t+ tn)− xn, t ≥ 0,

F n(x, t) = 0 for x ∈ ∂Ωn(t+ tn)− xn t ≥ 0,

(6.15)
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with initial data

F n(x, 0) = Fn(xn + x, tn) for x ∈ Ωn(tn)− xn, (6.16)

for n large (so that BR ⊂ Ωn(t+ tn)− xn). By comparison,

Fn(xn + x, tn + t) ≥ F n(x, t) for x ∈ Ωn(t+ tn)− xn, t ≥ 0. (6.17)

Step 3. We extend φR(x) by zero to R2\BR and consider the maximal interval
(0, γ0] such that for all γ ∈ (0, γ0],

−δF∇2(γφR) ≤ G(γφR, QR,δ(x))(γφ(R)) for all x ∈ BR.

Since G(p, q) = λF − ηN0 − pλF/K − ηq,

γ0 ≥ γ =
K

λF
(λF − ηN0 − ηδ − δF − µR) > 0.

Note that γφR is a (stationary) sub-solution of (6.15) for γ ∈ (0, γ0].
Consider the solution ψγ(x, t) of (6.15) with initial data γφR(x). If 0 <

γ ≤ γ0 then
∂

∂t
ψγ(x, t)

∣∣
t=0

> 0,

and ∂ψγ
∂t
≥ 0 on ∂Ω(t+ tn)−xn, for t ≥ 0. We may then apply the maximum

principle to ∂ψγ
∂t

to conclude that

∂ψγ(x, t)

∂t
> 0 for x ∈ Ωn(t+ tn), t > 0.

It follows that ψγ(x, t)↗ pγ(x) as t→∞, where pγ(x) is a positive solution
of

−δF∇2pγ = G(pγ, QR,δ(x))pγ in Ω(∞) = R2, (6.18)

and
pγ(x) > γφR(x) for all x ∈ R2. (6.19)

By comparison,

ψγ(x, t) < ψγ′(x, t) if 0 < γ < γ′ ≤ γ0

and hence
pγ(x) ≤ pγ0 for γ ∈ (0, γ0], x ∈ R2.
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Step 4. If γ is small enough such that

γφR(x) ≤ Fn(xn + x, tn) for x ∈ Ωn(tn)− xn,

then F n(x, t) and ψγ(x, t) are a pair of solution and subsolution of (6.15)-
(6.16). In view of (6.17), we have

Fn(xn + x, tn + t) ≥ F n(x, t) ≥ ψγ(x, t) for x ∈ Ωn(t+ tn)− xn, t ≥ 0,

while, as t→∞, ψγ(x, t)↗ pγ(x). It follows that

lim inf
t→∞

Fn(xn + x, tn + t) ≥ pγ(x) > γφR(x) locally uniformly for x ∈ R2,

where the strict inequality follows from (6.19). We claim that

pγ(x) = pγ0(x) for x ∈ R2 and γ ∈ (0, γ0]. (6.20)

Once this is proved, then

lim inf
t→∞

Fn(xn + x, tn + t) ≥ γ0φR(x) locally uniformly for x ∈ R2.

Taking x = 0 and recalling (6.12), we see that 1
n
> γ0φR(0), which is im-

possible if n is sufficiently large. This contradiction completes the proof of
Lemma 6.2. Thus, it remains to prove the assertion (6.20).

Step 5. To prove (6.20), we note that if pγ(x0) = pγ0(x0) for some x0, then
by the maximum principle applied to pγ0(x)− pγ(x), we conclude that (6.20)
holds. Hence, if (6.20) is not true, then, for some γ1 ∈ (0, γ0),

pγ1(x) < pγ0(x) for all x ∈ R2. (6.21)

We proceed to derive a contradiction to (6.21). First we note that there must
exist x0 ∈ BR such that

γ0φR(x0) > pγ1(x0).

Since otherwise we can apply the maximum principle to pγ1(x) − ψγ0(x, t)
and conclude that pγ1(x)− ψγ0(x, t) > 0 for all t > 0, and hence

pγ1(x) ≥ lim
t→∞

ψγ0(x, t) = pγ0(x),
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which contradicts (6.21). Hence, setting

γ∗ = sup{γ ≥ 0 : γφR(x) < pγ1(x) ∀x ∈ R2},

we conclude that γ∗ < γ0 (and thus is finite),

γ∗φR(x) ≤ pγ1(x) in R2 and γ∗φR(x′) = pγ1(x
′) for some x′ ∈ BR.

But since pγ1(x) is a solution of (6.18) while γ∗φR(x) is a subsolution, the
maximum principle implies that pγ1(x) = γ∗φR(x) in R2, which is impossible
since pγ1(x) > 0 in R2 while φR(x) = 0 in R2 \BR. This completes the proof
of (6.20).

6.2 Proof of Lemma 6.2

Following [13] we use a method from persistence theory [37] to derive
(6.8) from (6.9). We begin by noting that if (6.8) is not true then for each
n ∈ N, there is a solution (Fn, Qn) and growing domains Ωn(t) satisfying
(6.4)-(6.6), and xn ∈ R2 such that

lim inf
t→∞

Fn(xn, t) <
1

n
.

By applying Lemma 6.3, we easily see that there exist sequences tn → ∞
and sn ≥ 0 such that{

Fn(xn, tn) = α1

2
, Fn(xn, t) ≤ α1

2
for t ∈ [tn, tn + sn],

Fn(xn, tn + sn) = 1
n
.

(6.22)

By passing to a subsequence we may assume that (x, t) 7→ (Fn, Qn)(xn +
x, tn + sn + t) converges locally uniformly to (F∞, Q∞), an entire solution
in R2 × R of (6.4)-(6.5). Since F∞(0, 0) = 0, by the maximum principle
F∞(x, t) ≡ 0 for x ∈ R2, t ≤ 0. This implies that sn →∞. Indeed, otherwise
sn has a bounded subsequence. We may then pass to a further subsequence
so that sn → s∗ <∞ and then

α1

2
= lim

n→∞
Fn(xn, tn) = F∞(0,−s∗) = 0.

We next consider the function

(x, t) 7→ (Fn, Qn)(xn + x, tn + t)
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and, by passing to a further subsequence, its limit

(F̂ , Q̂)(x, t) = lim
n→∞

(Fn, Qn)(xn + x, tn + t) in the local uniform sense.

The pair (F̂ , Q̂) is an entire solution in R2 × R of (6.4)-(6.5), and that
F̂ (0, 0) = α1

2
. As a consequence of the maximum principle, Q̂(x, t) > 0

for all (x, t). The initial data

(F̂ , Q̂)(x, 0) = lim
n→∞

(Fn, Qn)(xn + x, tn)

belongs to the class (6.7). We can then apply the proof of Lemma 6.3, which
works the same in the case where Ω(t) ≡ R2 for all t > 0 (note that the
constant α1 > 0 is independent of Ω(t) as long as Ω(∞) = R2), to conclude
that

lim sup
t→∞

F̂ (x, t) ≥ α1 for each x ∈ R2. (6.23)

On the other hand, by (6.22),

Fn(xn, tn + t) ≤ α1

2
for t ∈ [0, sn]

and since sn → ∞ we deduce that F̂ (0, t) ≤ α1

2
, for all t. This contradicts

(6.23), and completes the proof of Lemma 6.2.

6.3 Using Lyapunov function

From Lemma 6.2 and (6.10)-(6.11), we have,
0 < α0 ≤ lim inf

t→∞

[
inf

x∈Ω(t)
F (x, t)

]
≤ lim sup

t→∞

[
sup
x∈Ω(t)

F (x, t)

]
≤ K,

0 ≤ lim inf
t→∞

[
inf

x∈Ω(t)
Q(x, t)

]
≤ lim sup

t→∞

[
sup
x∈Ω(t)

Q(x, t)

]
≤ λN

dN
K.

We shall construct a Lyapunov function and use it to prove the assertion
(6.3) of Theorem 6.1. Our proof uses the assumption that the dimension
of the spatial domain is two. (For higher dimensions, see [12] for a proof
which uses the additional assumption δF = δN .) Consider also the function
V : (0,∞)× R→ [0,∞) defined by

V (F,Q) = V1(F ) + V2(Q)
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where

V1(F ) =

∫ F

F ∗

ξ − F ∗

ξ
dξ, V2(Q) =

η

2λN
(Q−N∗ +N0)2. (6.24)

Note that {
V ′1(F ) = F−F ∗

F
, V ′′1 (F ) = F ∗

F 2 ,

V ′2(Q) = η
λN

(Q−N∗ +N0), V ′′2 (Q) = η
λN
.

The function V (F,Q) was proposed by Ardito and Ricciardi [1], as a suitable
Lyapunov function, to prove the global stability of certain predator-prey
system.

Note that V ≥ 0 on the set

P := {(F,Q) ∈ R2 : α0 ≤ F ≤ K and 0 ≤ Q ≤ λNK/dN},

and that it is strictly convex in P and attains a unique global minimum at
(F ∗, N∗ −N0). Moreover, there exists κ ∈ (0, 1) small enough such that

κ(|F −F ∗|2 + |Q−N∗+N0|2) ≤ V (F,Q) ≤ κ−1(|F −F ∗|2 + |Q−N∗+N0|2)
(6.25)

for all (F,Q) ∈ P . Now define the vector field ~H : P → R2 by

~H(F,Q) = (G(F,Q)F, λNF−dNQ) = ((λF−ηN0−ηQ−λFF/K)F, λNF−dNQ).

By computation, using (6.1),

∇V (F,Q) · ~H(F,Q) (6.26)
= V ′1(F )(λF − ηN0 − ηQ− λFF/K)F + V ′2(Q)(λNF − dNQ)

= (F − F ∗)[−η(Q−N∗ +N0)− (F − F ∗)/K]

+
η

λN
(Q−N∗ +N0)[λN(F − F ∗)− dN(Q−N∗ +N0)]

= − 1

K
(F − F ∗)2 − ηdN

λN
(Q−N∗ +N0)2.

Recalling (6.25) we see that there exists a positive constant α2 such that

∇V (F,Q) · ~H(F,Q) ≤ −α2V (F,Q) for all (F,Q) ∈ P ⊂ R2. (6.27)

26



Proof of Theorem 6.1. The proof is adapted from a proof of a similar result
for a predator-prey model in R2 [13], and in bounded domains with Neumann
boundary conditions [11]. We proceed by contradiction, assuming that there
exists a sequence (xk, tk) such that tk →∞ and xk → x∞ for some x∞ ∈ R2

and that

|F (xk, tk)− F ∗|+ |Q(xk, tk)−N∗ +N0| ≥ δ′ for some δ′ > 0. (6.28)

Consider the sequence of functions (Fk, Qk) defined by

(Fk, Qk)(x, t) = (F,Q)(x, t+ tk).

By parabolic estimates, we can pass to a sequence and assume that

(Fk, Qk)(x, t)→ (F∞, Q∞)(x, t) locally uniformly for (x, t) ∈ R2 × R,

where (F∞, Q∞) is a solution of (6.4)-(6.5) in the whole space (x, t) ∈ R2×R
and satisfies

α0 ≤ F∞(x, t) ≤ K, 0 ≤ Q∞(x, t) ≤ λN
dN

K for x ∈ R2, t ∈ R. (6.29)

i.e. (F∞(x, t), Q∞(x, t)) ∈ P for each (x, t).
Let us consider, for each R > 0, the function t 7→ WR(t) defined by

WR(t) =

∫
R2

ρ
( x
R

)
V (F∞(x, t), Q∞(x, t)) dx,

where ρ : R2 → [0, 1] is a smooth cut-off function such that

ρ(x) = 1 for |x| ≤ 1, and ρ(x) = 0 for |x| ≥ 2.

The time derivative of WR can be computed as follows:

d

dt
WR(t) =

∫
R2

ρ
( x
R

)
∇V (F∞, Q∞) ·

(
∂F∞
∂t

,
∂Q∞
∂t

)
=

∫
R2

ρ
( x
R

) [
V ′1(F∞)δF∇2F∞ + V ′2(Q∞)δN∇2Q∞

]
dx

+

∫
R2

ρ
( x
R

)
∇V (F∞, Q∞) · ~H (F∞, Q∞) dx.
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Hence, using (6.27), we obtain

d

dt
WR(t) ≤ −α2WR(t) + I1

R(t) + I2
R(t), for all t ∈ R, (6.30)

where {
I1
R(t) := δF

∫
R2 ρ

(
x
R

)
V ′1(F∞)∇2F∞dx,

I2
R(t) := δN

∫
R2 ρ

(
x
R

)
V ′2(Q∞)δN∇2Q∞ dx.

Next we estimate I iR(t) by integration by parts:

I1
R(t) = −δF

R

∫
R2

∇ρ
( x
R

)
· ∇[V1(F∞)] dx− δF

∫
R2

ρ
( x
R

)
V ′′1 (F∞)|∇F∞|2 dx

=
δF
R2

∫
R2

∇2ρ
( x
R

)
V1(F∞) dx− δF

∫
R2

ρ
( x
R

) F ∗

(F∞)2
|∇F∞|2 dx

≤ δF
R2

∫
R2

∇2ρ
( x
R

)
V1 (F∞) dx.

Hence, we deduce that

I1
R(t) ≤ δF

R2
‖∇2ρ‖L∞(R2)

∫
B2R

V1(F∞) dx. (6.31)

Similarly, we can show that

I2
R(t) ≤ δN

R2
‖∇2ρ‖L∞(R2)

∫
B2R

V2(Q∞) dx. (6.32)

Recalling (6.29), it follows that

sup
(x,t)∈R2×R

V (F∞(x, t), Q∞(x, t)) = sup
(x,t)∈R2×R

[V1(F∞(x, t))+V2(Q∞(x, t))] <∞,

so that (6.31)-(6.32) implies the existence of M > 0 independent of R > 0
such that

I1
R(t) + I2

R(t) ≤M for all t ∈ R;

here we used our assumption that the spatial dimension is not larger than
two. Thus the inequality (6.30) implies, for each R > 1,

d

dt
WR(t) ≤ −α2WR(t) +M, for all t ∈ R.
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Solving above differential inequality, we deduce

WR(t) ≤ M

α2

for all t ∈ R, and R > 1. (6.33)

For each t ∈ R, we can let R→∞ to obtain

W (t) :=

∫
R2

V (F∞(x, t), Q∞(x, t)) dx ≤ M

α2

for all t ∈ R.

We can then improve the estimates (6.31)-(6.32) to

I1
R(t) + I2

R(t) ≤ C

R2

∫
B2R

V (F∞(x, t), Q∞(x, t)) dx ≤ C

R2
W (t) ≤ C

R2
· M
α2

.

Letting R → ∞, we obtain lim sup
R→∞

[I1
R(t) + I2

R(t)] ≤ 0 uniformly in t ∈ R.

Thus, we can let R→∞ and thenM ↘ 0 in (6.33) to deduce thatW (t) ≤ 0
for all t ∈ R. Since W (t) is nonnegative by construction, it follows that
W (t) ≡ 0. Hence, it follows that

(F∞(x, t), Q∞(x, t)) ≡ (F ∗, N∗ −N0) for all x ∈ R2, t ∈ R.

This is a contradiction to (6.28).

7 Part 2. The FNT model
In this section we extend the results of Sections 3 -6 to the model (2.1)-

(2.7) which includes the variable T . To prove Theorem 3.1 we write the
system (2.1)-(2.3) in a form similar to the system (3.4),

∂F̌
∂t
− δF R(t0)2

R(t)2
∇2F̌ − řṘ(t)R(t0)

R(t)
∂F̌
∂ř

= F̌
[
λF

(
1− F̌

K

)
− ηŇ − ζŤ

]
,

∂Ň
∂t
− δN R(t0)2

R(t)2
∇2Ň − řṘ(t)R(t0)

R(t)
∂Ň
∂ř

= λN F̂ − dN(Ň −N0),
∂Ť
∂t
− δT R(t0)2

R(t)2
∇2Ť − řṘ(t)R(t0)

R(t)
∂Ť
∂ř

= λT F̌ + λTN(Ň −N0)− dT (Ť − T0).

(7.1)
We can then use Schauder and Lp estimates as in the case of the system
(3.4) to establish global existence of a unique solution of (2.1)-(2.7) with

(F,N, T ) ∈ [C2+α,1+α/2(Ω∞)]3.
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Theorem 7.1. If R∞ <∞ then (3.6)-(3.8) hold and

lim
t→∞

sup
0≤r≤R(t)

|T (r, t)− T0| = 0. (7.2)

Proof. By Theorem 3.3, (3.6)-(3.8) hold as well as the inequalities (3.11)-
(3.12). By repeating the proof of Theorem 3.3, we deduce that for any ε > 0,
there exists a tε such that

|N(r, t)−N0| ≤
ε

dN
+ Ae−dN (t−tε) for 0 ≤ r ≤ R(t), t > tε. (7.3)

i.e. sup
0≤r≤R(t)

|N −N0| → 0 as t→∞. We can then derive, for any ε > 0, the

following inequality for T̃ (r, t) = T (r, t)− T0 :∣∣∣∣∣∂T̃∂t − δT∇2T̃ + dT T̃

∣∣∣∣∣ < ε for 0 ≤ r ≤ R(t), t� 1.

By comparison, we can then establish an inequality similar to (7.3) for T̃ .

Theorem 7.2. If ηN0 + ζT0 > λF then lim
t→∞

R(t) <∞, and hence, by Theo-
rem 7.1, the equations (4.1), (4.2) and (7.2) hold.

Proof. As in the proof of Theorem 4.1,

N(r, t) ≥ N0(1− e−dN t) for t ≥ 0,

so that for any small ε > 0,

∂T

∂t
− δT∇2T ≥ λTF − λTNN0e

−dN t − dT (T − T0)

>− dT (T − T0 + ε)

if t ≥ tε where tε is sufficiently large. Set

T̃ (r, t) = (T0 − ε) (1− e−dT (t−tε)).

Then, by comparison, T (r, t) ≥ T̃ (r, t) for t ≥ tε. Hence T (r, t) ≥ T0 − 2ε if
t ≥ t̄ε for some large t̄ε ∈ [tε,∞).

Taking ε sufficiently small and introducing the same function X(t) =∫ R(t)

0
rF (r, t) dr, we can now follow closely the proof of Theorem 4.1 to es-

tablish the estimate (4.4), with ηN0 replaced by ηN0 + ζT0, and complete
the proof of lim

t→∞
R(t) <∞.
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Corollary 7.3. Suppose ηN0 + ζT0 > λF . From the above proof we deduce,
analogously to Corollary 4.2, that for any ε > 0,

R(t)2 ≤ C

[
1 +R(0)2 +

| log(ηN0 + ζT0 − λF )|
ηN0 + ζT0 − λF

]
Theorem 7.4. If ηN0 + ζT0 < λF and

R(0) >

[
λF − ηN0 − ζT0

δF

]−1/2

j0,

then lim
t→∞

R(t) =∞.

Proof. The proof is the same as in the case of Theorem 5.1, by just replacing
ηN0 by ηN0 + ζT0. We omit the details.

We next consider an extension of Theorem 6.1, with the steady point
(F ∗, N∗, T ∗) given byN

∗ = N0 + λN
dN
F ∗, T ∗ = T0 +

(
λT + λTN

λN
dN

)
F ∗

dN
,

F ∗ = (λF − ηN0 − ζT0)
[
λF
K

+ η λN
dN

+ ζ
(
λT + λTN

λN
dN

)
1
dT

]−1

.

Theorem 7.5. Assume that

ηN0 + ζT0 < λF and ζλ2
TN < 4ηdTdN

λT
λN

. (7.4)

If R(∞) =∞, then

(F (r, t), N(r, t), T (r, t))→ (F ∗, N∗, T ∗) as t→∞

locally uniformly in r, for 0 ≤ r <∞.

Proof. The proof of Lemma 6.3 extends with small changes. Assuming for
contradiction that (6.12) holds, and setting S = T − T0, we can first estab-
lish that (6.13) holds and then, in a similar way, that Sn satisfies the same
estimate in BR × [0,∞). In addition, S is uniformly bounded, like Q. We
can then introduce lower solutions F n, similarly to (6.15)-(6.16), with

G(F n, QR,δ(x), SR,δ(x))F n
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for an appropriate function G, and proceed as in Steps 2 - 5 to derive a
contradicton.

The proof of Lemma 6.2 follows from Subsection 6.2 with just minor
changes, replacing Qn by (Qn, Sn) everywhere.

We next introduce a Lyapunov function V̂ (F,Q, S) = V1(F ) + V2(Q) +
V3(S), where V1, V2 are given in (6.24), and

V3(S) =
ζ

2λT
(S − T ∗ + T0)2.

The vector field Ĥ(F,Q, S) of the full system is

Ĥ(F,Q, S) =

 (λF − ηN0 − ηQ− ζT0 − ζS − λFF/K)F
λNF − dNQ

λTF + λTNQ− dTS


Then, writing F̃ = F − F ∗, Q̃ = Q− (N∗ −N0), S̃ = S − (T ∗ − T0),

∇V̂ (F,Q, S) · Ĥ(F,Q, S)

= F̃

[
−ηQ̃− ζS̃ − λF

K
F̃

]
+
ηQ̃

λN

[
λN F̃ − dNQ̃

]
+
ζS̃

λT

[
λT F̃ + λTNQ̃− dT S̃

]
= −λF

K
F̃ 2 − ηdN

λN
Q̃2 − ζdT

λT
S̃2 +

ζλTN
λT

S̃Q̃

≤ −α3(F̃ 2 + Q̃2 + S̃2)

= −α3[(F − F ∗)2 + (Q−N +N0)2 + (S − T + T0)2]

for some α3 > 0, where we used the second condition of (7.4) for the inequal-
ity. Hence, we may repeat the arguments in Subsection 6.3 to complete the
proof.

Remark 7.6. The second inequality in (7.4) was needed in the construction
of the Lyapunov function; without it we still have, from the proof of Lemma
6.2, that

lim inf
t→∞

inf
0≤r≤R(t)

F (r, t) ≥ F∗ > 0,

for some constant F∗ > 0. We also note, as explained in the introduction of
the dynamics (1.2), that λTN is small compared to λT , since the activation
of T cells is due primarily to dendritic cells, and we can also, if necessary,
decrease ζ so that the second inequality in (7.4) is satisfied and then conclude
that F∗ = F ∗ as asserted in Theorem 7.5.
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8 Conclusion
In this paper we considered a mathematical model of fungal infection, fo-

cusing on the interaction between the innate and adaptive immune responses.
Candidiasis is a class of fungal infection caused by Candida, a type of yeast.
The infection most commonly presents in the mouth and vagina, but if left
untreated it may spread to the esophagus, bronchi, trachea, or lung. Such
invasive fungal infection (IFI) is a cause of significant morbidity and mortal-
ity in immuno-compromised individuals [7,29,32]. The mathematical model
is presented by a system of PDEs in order to account for the spread of fungal
infection.

The model consists of three equations, for the densities of fungi (F ),
neutrophils (N), and CTL or CD8+ T cells (T ) in the infected domains
Ω(t), as t increases. The critical parameters in the model are the growth rate
λF of F , the killing rates of fungi by neutrophils (η) and by T cells (ζ), and
the "natural defense" in homeostasis N0 (for N) and T0 (for T ). We assume
that all variables are radially symmetric, that Ω(t) = {r ≤ R(t)}, and that
R(t) increases in proportion to the flux of F across the boundary r = R(t).
Our main results are:

• If ηN0 + ζT0 > λF , then lim
t→∞

R(t) <∞ and lim
t→∞

lim sup
0≤r≤R(t)

F (r, t) = 0.

• If ηN0 + ζT0 < λF and R(0) is large enough, then lim
t→∞

R(t) = ∞;
moreover, lim

t→∞
F (r, t) = F ∗ > 0 locally uniformly in r if one assumes

in addition that ζλ2
TN < 4ηdTdN

λT
λN
.

Common drugs for the treatment of IFI include antifungal agents that
either directly kill fungi or prevent their proliferation [29]. In our model
these treatments have the effect of reducing λF . Other more recent drugs
(mostly experimental or in early clinical trials) aim to strengthen the immune
response by (i) augmentation and activation of neutrophils (increasing N0);
(ii) making neutrophils more effective (increasing η); (iii) increasing T cells
immunity (increasing T0); and (iv) increasing antibody immunity (increasing
ζ) [29, 32]. Each of the above drugs increases the quantity ηN0 + ζT0 − λF ,
and once it becomes positive, the infection may be considered resolved.

In the present paper we used a simple model whereby the immune re-
sponse is represented explicitly only by neutrophils and CD8+ T cells. We
did not include macrophages and endocytosed fungi that proliferate within
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macrophages, dendritic cells (except tacitly), and other cells and cytokines
involved in the immune response. Including these additional species will lead
to a far more complicated model, for which mathematical analysis alone will
undoubtedly be insufficient to draw meaningful conclusions on the efficacy
of drugs.

We finally note that although we used C. albicans as a template for fungal
populations, both the mathematical model and the mathematical results are
actually applicable to general fungal species.

9 Acknowledgement
Authors would like to thank the Mathematical Biosciences Institute

(MBI) at Ohio State University, for helping initiate this research. MBI
receives its funding through the National Science Foundation grant DMS
1440386.

34



References
[1] Ardito, A., Ricciardi, P. (1995). Lyapunov functions for a generalized

Gause-type model. Journal of Mathematical Biology, 33(8), 816-828.

[2] Beauvillain, C., Delneste, Y., Scotet, M., Peres, A., Gascan, H., Guer-
monprez, P., Barnaba, V. & Jeannin, P. (2007). Neutrophils efficiently
cross-prime naive T cells in vivo. Blood, 110(8), 2965-2973.

[3] Boswell, G.P., Jacobs, H., Davidson, F. A., Gadd, G. M., & Ritz, K.
(2002). Functional consequences of nutritional translocation in mycelial
fungi. Journal of Theoretical Biology, 217, 459-477.

[4] Brand, A., & Gow, N. A. R. (2009). Mechanisms of pha orientation of
fungi. Current Opinion in Microbiology, 12(4), 350-357.

[5] Butcher, S., Chahel, H., & Lord, J. M. (2000). Ageing and the neu-
trophil: no appetite for killing?. Immunology, 100(4), 411-416.

[6] Carlile M.J. (1995) The Success of the Hypha and Mycelium. In: Gow
N.A.R., Gadd G.M. (eds) The Growing Fungus. Springer, Dordrecht.
https://doi.org/10.1007/978-0-585-27576-5_1

[7] Cichocki, M., The 4 most common fungal infections in people with HIV.
Very Well Health. https://www.verywellhealth.com/opportunistic-
fungal-infections-47932

[8] Davidson, F. A. (1998). Modelling the qualitative response of fungal
mycelia to heterogeneous environments. Journal of Theoretical Biology,
195, 281-292.

[9] Desai, J. V., & Lionakis, M. S. (2018). The role of neutrophils in host
defense against invasive fungal infections. Current clinical microbiology
reports, 5(3), 181-189.

[10] Du, Y., & Guo, Z. (2011). Spreading–vanishing dichotomy in a diffusive
logistic model with a free boundary, II. Journal of Differential Equations,
250(12), 4336-4366.

[11] Du, Y., & Hsu, S. B. (2004). A diffusive predator–prey model in hetero-
geneous environment. Journal of Differential Equations, 203(2), 331-364.

35



[12] Ducrot, A., Giletti, T., & Matano, H. (2019). Spreading speeds for mul-
tidimensional reaction–diffusion systems of the prey–predator type. Cal-
culus of Variations and Partial Differential Equations, 58(4), 137.

[13] Ducrot, A., & Guo, J. S. (2018). Asymptotic behavior of solutions to a
class of diffusive predator–prey systems. Journal of Evolution Equations,
18(2), 755-775.

[14] Edelstein, L. (1982). The propagation of fungal colonies: A model for
tissue growth. Journal of Theoretical Biology, 98, 679-701.

[15] Edelstein, L., & Segel, L. A. (1983). Growth and metabolism in mycelial
fungi. Journal of Theoretical Biology, 104, 187-210.

[16] Friedman, A. (1976). Analyticity of the free boundary for the Stefan
problem. Archive for Rational Mechanics and Analysis, 61(2), 97-125.

[17] Gilbert, A. S., Wheeler, R. T., & May, R. C. (2015). Fungal pathogens:
survival and replication within macrophages. Cold Spring Harbor per-
spectives in medicine, 5(7), a019661.

[18] Ivarsson, M., Drake, H., Bengtson, S., Rasmussen, B. (2020). A Cryp-
tic Alternative for the Evolution of Hyphae. BioEssays, 42, 1900183.
https://doi.org/10.1002/bies.201900183

[19] Joshi, K. R., Wheeler, E. E., & Gavin, J. B. (1973). Scanning electron
microscopy of colonies of six species of Candida. Journal of Bacteriology,
115(1), 341-348.

[20] Kobayashi, S. D., Malachowa, N., & DeLeo, F. R. (2017). Influence of
microbes on neutrophil life and death. Frontiers in Cellular and Infection
Microbiology, 7, 159.

[21] Kristin, A., Ohlsson, P., Martin, B., Hammer, E. C. (2021). Fungal
foraging behaviour and hyphal space exploration in micro-structured
Soil Chips, ISME J (2021). https://doi.org/10.1038/s41396-020-00886-7

[22] Kumar, K. P., Nicholls, A. J., & Wong, C. H. (2018). Partners in crime:
neutrophils and monocytes/macrophages in inflammation and disease.
Cell and tissue research, 371(3), 551-565.

36



[23] Kumaresan, P. R., da Silva, T. A., & Kontoyiannis, D. P. (2018). Meth-
ods of controlling invasive fungal infections using CD8+ T cells. Fron-
tiers in immunology, 8, 1939.

[24] Ladyženskaja, O. A., Solonnikov, V. A., & Ural’ceva, N. N. (1988).
Linear and quasi-linear equations of parabolic type (Vol. 23). American
Mathematical Soc.

[25] Li, Y., Wang, W., Yang, F., Xu, Y., Feng, C., & Zhao, Y. (2019). The
regulatory roles of neutrophils in adaptive immunity. Cell Communica-
tion and Signaling, 17(1), 147.

[26] Magal, P., & Zhao, X. Q. (2005). Global attractors and steady states for
uniformly persistent dynamical systems. SIAM journal on mathematical
analysis, 37(1), 251-275.

[27] Minns, D., Smith, K. J., & Findlay, E. G. (2019). Orchestration of
adaptive T cell responses by neutrophil granule contents. Mediators of
inflammation, 2019.

[28] Muñoz, J. F., Delorey, T., Ford, C. B., Li, B. Y., Thompson, D. A.,
Rao, R. P., & Cuomo, C. A. (2019). Coordinated host-pathogen tran-
scriptional dynamics revealed using sorted subpopulations and single
macrophages infected with Candida albicans. Nature communications,
10(1), 1-15.

[29] Nami, S., Aghebati-Maleki, A., Morovati, H., & Aghebati-Maleki, L.
(2019). Current antifungal drugs and immunotherapeutic approaches
as promising strategies to treatment of fungal diseases. Biomedicine &
Pharmacotherapy, 110, 857-868.

[30] Nanjappa, S. G., Heninger, E., Wüthrich, M., Sullivan, T., & Klein,
B. (2012). Protective antifungal memory CD8+ T cells are maintained
in the absence of CD4+ T cell help and cognate antigen in mice. The
Journal of clinical investigation, 122(3), 987-999.

[31] Nicolás-Ávila, J. Á., Adrover, J. M., & Hidalgo, A. (2017). Neutrophils
in homeostasis, immunity, and cancer. Immunity, 46(1), 15-28.

37



[32] Posch, W., Steger, M., Wilflingseder, D., & Lass-Flörl, C. (2017).
Promising immunotherapy against fungal diseases. Expert Opinion on
Biological Therapy, 17(7), 861-870.

[33] Qin, Y., Zhang, L., Xu, Z., Zhang, J., Jiang, Y. Y., Cao, Y., & Yan, T.
(2016). Innate immune cell response upon Candida albicans infection.
Virulence, 7(5), 512-526.

[34] Richardson, J. P., & Moyes, D. L. (2015). Adaptive immune responses
to Candida albicans infection. Virulence, 6(4), 327-337.

[35] Rosales, C. (2018). Neutrophil: a cell with many roles in inflammation
or several cell types?. Frontiers in physiology, 9, 113.

[36] Silvestre-Roig, C., Hidalgo, A., & Soehnlein, O. (2016). Neutrophil
heterogeneity: implications for homeostasis and pathogenesis. Blood,
127(18), 2173-2181.

[37] Smith, H. L., & Thieme, H. R. (2011). Dynamical systems and popula-
tion persistence (Vol. 118). American Mathematical Soc..

[38] Speakman, E. A., Dambuza, I. M., Salazar, F., & Brown, G. D. (2020). T
cell antifungal immunity and the role of C-type lectin receptors. Trends
in Immunology, 41(1), 61-76.

[39] Tanaka, R. J., Boon, N. J., Vrcelj, K., Nguyen, A., Vinci, C., Armstrong-
James, D., & Bignell, E. (2015). In silico modeling of spore inhalation
reveals fungal persistence following low dose exposure. Scientific reports,
5, 13958.

[40] Wang, M., & Zhao, J. (2017). A free boundary problem for the preda-
tor–prey model with double free boundaries. Journal of Dynamics and
Differential Equations, 29(3), 957-979.

[41] Wirkus, S., Camacho, E. T., & Marshall, P. A. (2015). Mathematical
modeling of fungal infection in immune compromised individuals: The
effect of back mutation on drug treatment. Journal of theoretical biology,
385, 66-76.

[42] Yang, C. W., & Unanue, E. R. (2013). Neutrophils control the magni-
tude and spread of the immune response in a thromboxane A2-mediated
process. Journal of Experimental Medicine, 210(2), 375-387.

38


