Critial Slope Lemmas

K.-Y. Lam

December 18, 2023

This note is the proof of the critical slope lemmas taken from Imbert and Monneau. The proof for the one-dimensional case is detailed in [1, Lemmas $2.9 \& 2.10]$. The multidimensional case, stated below, is contained in [2], but the proof is omitted. Here we supply the proof for the multi-dimensional case, which is essentially the same as the one-dimensional case.

Define X^{+}as the half space

$$
X^{+}=\{(t, x, y): y \geq 0\}
$$

Fix a point $(\bar{t}, \bar{x}, 0) \in X^{+}$, and define the 3 -dimensional half ball

$$
B_{r}^{+}=B_{r}^{+}(\bar{t}, \bar{x}, 0)=\left\{(t, x, y) \in X^{+}:|(t-\bar{t}, x-\bar{x}, y)|<r .\right.
$$

Lemma 0.1 ([2, Lemma A.9]). Let $u: B_{1}^{+} \rightarrow \mathbb{R}$ be a lower semicontinuous function and suppose $\phi(t, x, y)$ is a test function that touches $u(t, x, y)$ from below at some (\bar{t}, \bar{x}). Define the critical slope at $(\bar{t}, \bar{x}, 0)$

$$
\begin{equation*}
\underline{p}=\sup \left\{p: \exists r>0, u(t, x, y) \geq \phi(t, x, 0)+p y \quad \text { for all }(t, x, y) \in B_{\delta}^{+}(\bar{t}, \bar{x}, 0)\right\} . \tag{0.1}
\end{equation*}
$$

If $\underline{p}<+\infty$, and u and is a viscosity supersolution of

$$
\begin{equation*}
u_{t}+H\left(u_{x}, u_{y}\right)=0 \tag{0.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\phi_{t}(\bar{t}, \bar{x}, 0)+H\left(\phi_{x}(\bar{t}, \bar{x}, 0), \underline{p}\right) \geq 0 . \tag{0.3}
\end{equation*}
$$

Remark 0.2. Note that \underline{p} is well-defined as the existence of test function implies the set of subdifferential is nonempty.

Proof. By the definition of \underline{p}, there exists $\delta>0$ and $\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right) \in B_{\delta / 2}^{+}(\bar{t}, \bar{x}, 0)$ such that

$$
\begin{gather*}
u(t, x, y) \geq \phi(t, x, 0)+(\underline{p}-\varepsilon) y \quad \text { for all }(t, x, y) \in B_{\delta}^{+}(\bar{t}, \bar{x}, 0), \tag{0.4}\\
u\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right) \leq \phi\left(t_{\varepsilon}, x_{\varepsilon}, 0\right)+(\underline{p}+\varepsilon) y_{\varepsilon} . \tag{0.5}
\end{gather*}
$$

Now consider a smooth function $\Psi: \mathbb{R}^{3} \rightarrow[-1,0]$ such that

$$
\Psi(t, x, y)=0 \quad \text { in } B_{1 / 2}(0), \quad \Psi(t, x, y)=-1 \quad \text { in } \mathbb{R}^{3} B_{1}(0)
$$

and define

$$
\Phi(t, x, y)=\phi(t, x)+2 \varepsilon \Psi_{\delta}(t, x, y)+(\underline{p}+\varepsilon) y,
$$

where $\Psi_{\delta}(t, x, y)=\delta \Psi\left(\frac{t-\bar{t}}{\delta}, \frac{x-\bar{x}}{\delta}, \frac{y}{\delta}\right)$ is bounded in C^{1} uniformly in δ. Then we have

$$
\begin{equation*}
\Phi(t, x, y)=\phi(t, x, 0)-2 \varepsilon \delta+(\underline{p}+\varepsilon) y \leq u(t, x, y) \quad \text { on } \partial B_{\delta}^{+}(\bar{t}, \bar{x}, 0) \cap\{y>0\}, \tag{0.6}
\end{equation*}
$$

which is satisfied on the curved part of the boundary of $B_{\delta}^{+}(\bar{t}, \bar{x}, 0)$.

$$
\begin{equation*}
\Phi(t, x, 0) \leq \phi(t, x, 0) \leq u(t, x, 0) \text { on }\left\{(t, x, y) \in \partial B_{\delta}^{+} \bar{t}, \bar{x}, 0\right) \cap\{y>0\}, \tag{0.7}
\end{equation*}
$$

which is satisfied on the hyperplane part of the boundary of $B_{\delta}^{+}(\bar{t}, \bar{x}, 0)$.

$$
\begin{equation*}
\Phi\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right)=\phi\left(t_{\varepsilon}, x_{\varepsilon}\right)+(\underline{p}+\varepsilon) y_{\varepsilon}>u\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right) . \tag{0.8}
\end{equation*}
$$

It follows that $u-\Phi$ has an interior maximum point $\bar{P}_{\varepsilon}=\left(\bar{t}_{\varepsilon}, \bar{x}_{\varepsilon}, \bar{y}_{\varepsilon}\right) \in B_{\delta}^{+}(\bar{t}, \bar{x}, 0)$, which implies

$$
\phi_{t}\left(\bar{P}_{\varepsilon}\right)+2 \varepsilon\left(\Psi_{\delta}\right)_{t}\left(\bar{P}_{\varepsilon}\right)+H\left(\partial_{x} \phi\left(\bar{P}_{\varepsilon}\right)+2 \varepsilon\left(\Psi_{\delta}\right)_{x}\left(\bar{P}_{\varepsilon}\right), 2 \varepsilon\left(\Psi_{\delta}\right)_{y}\left(\bar{P}_{\varepsilon}\right)+\underline{p}+\varepsilon\right) \geq 0 .
$$

Since $\left|\left(\Psi_{\delta}\right)_{t}\right|+\left|\nabla \Psi_{\delta}\right|$ are uniformly bounded in δ, we may take $\varepsilon \rightarrow 0$ to deduce (0.3).
Lemma 0.3 ([2, Lemma A.9]). Let $u: B_{1}^{+} \rightarrow \mathbb{R}$ be a lower semicontinuous function and suppose $\phi(t, x, y)$ is a test function that touches $u(t, x, y)$ from below at some (\bar{t}, \bar{x}). Define the critical slope at $(\bar{t}, \bar{x}, 0)$

$$
\begin{equation*}
\underline{p}=\sup \left\{p: \exists r>0, u(t, x, y) \geq \phi(t, x, 0)+p y \text { for all }(t, x, y) \in B_{\delta}^{+}(\bar{t}, \bar{x}, 0)\right\} . \tag{0.9}
\end{equation*}
$$

If $\underline{p}<+\infty$, and u and is a viscosity supersolution of

$$
\begin{equation*}
u_{t}+H\left(u_{x}, u_{y}\right)=0 \tag{0.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\phi_{t}(\bar{t}, \bar{x}, 0)+H\left(\phi_{x}(\bar{t}, \bar{x}, 0), \underline{p}\right) \geq 0 . \tag{0.11}
\end{equation*}
$$

Lemma 0.4 ([2, Lemma A.10]). Let $u: B_{1}^{+} \rightarrow \mathbb{R}$ be a upper semicontinuous function and suppose $\phi(t, x, y)$ is a test function that touches $u(t, x, y)$ from above at some (\bar{t}, \bar{x}). Define the critical slope at $(\bar{t}, \bar{x}, 0)$

$$
\begin{equation*}
\bar{p}=\inf \left\{p: \exists r>0, u(t, x, y) \leq \phi(t, x, 0)+p y \quad \text { for all }(t, x, y) \in B_{\delta}^{+}(\bar{t}, \bar{x}, 0)\right\} \tag{0.12}
\end{equation*}
$$

If $\bar{p}>-\infty$, and u and is a viscosity subsolution of (0.10), then

$$
\begin{equation*}
\phi_{t}(\bar{t}, \bar{x}, 0)+H\left(\phi_{x}(\bar{t}, \bar{x}, 0), \bar{p}\right) \leq 0 \tag{0.13}
\end{equation*}
$$

Furthermore, if H is coercive and u satisfies the weak continuity assumption, namely,

$$
\begin{equation*}
\limsup _{(t, x, y) \rightarrow(\bar{t}, \bar{x}, 0)} u(t, x, y)=u(\bar{t}, \bar{x}, 0) \tag{0.14}
\end{equation*}
$$

then $\bar{p}>-\infty$.
Proof. We only prove that $\underline{p}>-\infty$ since this is the main difference with the proof of the previous lemma.

Assume that $\underline{p}=-\infty$, then there exists $p_{n} \rightarrow-\infty$ and $r_{n} \searrow 0$ such that

$$
\phi(t, x, 0)+p_{n} y \geq u(t, x, y) \quad \text { in } B_{n}=B_{r_{n}}^{+} .
$$

By replacing ϕ by $\phi+(t-\bar{t})^{2}+(x-\bar{x})^{2}+y^{2}$ if necessary, we may assume that

$$
\begin{equation*}
u(t, x, y)<\phi(t, x, 0)+p_{n} y \quad \text { in } B_{n}=B_{r_{n}}^{+} \backslash\{(\bar{t}, \bar{x}, 0)\} . \tag{0.15}
\end{equation*}
$$

In particular, there exists $\delta_{n}>0$ such that $\phi(t, x, 0)+p_{n} y \geq u+\delta_{n}$ on the curved part of $\partial B_{r_{n}}^{+}$. Since u satisfies (0.14), there exists $P_{\varepsilon}=\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right) \rightarrow \bar{P}=(\bar{t}, \bar{x}, 0)$ such that $y_{\varepsilon}>0$ and $u\left(P_{\varepsilon}\right) \rightarrow u(\bar{P})$.

We now introduce the following perturbed test function

$$
\Psi(t, x, y)=\phi(t, x, 0)+p_{n} y+\frac{\left|y_{\varepsilon}\right|^{2}}{y} .
$$

Fix n and observe that $\Psi>u$ on both the curved and flat part of $\partial B_{r_{n}}^{+}$. Let $P_{\varepsilon}^{\prime}=$ $\left(t_{\varepsilon}^{\prime}, x_{\varepsilon}^{\prime}, y_{\varepsilon}^{\prime}\right)$ be the minimum point of $\Psi-u$ in $\partial B_{r_{n}}^{+}$, then

$$
\left(\phi+p_{n} \cdot-u\right)\left(P_{\varepsilon}^{\prime}\right) \leq(\Psi-u)\left(P_{\varepsilon}^{\prime}\right) \leq(\Psi-u)\left(P_{\varepsilon}\right) \approx \phi\left(P_{\varepsilon}\right)-u\left(P_{\varepsilon}\right)+\frac{y_{\varepsilon}^{2}}{y_{\varepsilon}}+o(1)=o(1),
$$

since ϕ touches u from above at \bar{P}. It follows that the minimum point P_{ε}^{\prime} is achieved in the interior, so

$$
\phi_{t}\left(P_{\varepsilon}^{\prime}\right)+H\left(\phi_{x}\left(P_{\varepsilon}^{\prime}\right), p_{n}-\frac{y_{\varepsilon}^{2}}{y^{2}}\right) \leq 0
$$

Denote $p_{n}^{0}=\liminf _{\varepsilon \rightarrow 0}\left(p_{n}-\frac{y_{\varepsilon}^{2}}{y^{2}}\right) \in[-\infty, 0]$, then

$$
\phi_{t}(\bar{P})+H\left(\phi_{x}(\bar{P}), p_{n}^{0}\right) \leq 0,
$$

which in particular implies $p_{n}^{0}>-\infty$ and is bounded uniformly from below, independent of n. It follos that $\left\{p_{n}\right\}$ is also bounded from below, which is a contradiction. The proof is now complete.

1 Restating the lemmas using super/subdifferentials

This can be equivalently stated in terms of subdifferential.
Definition 1.1. Let $u: X^{+} \rightarrow \mathbb{R}$, be given. We say that the constant vector $(-\lambda, q, p)$ is an element of the set $D_{X^{+}}^{-} u\left(P_{0}\right)$ (which is called the set of subdifferential of u at $\left.P_{0}=\left(t_{0}, x_{0}, y_{0}\right)\right)$ provided that there exists $r_{0}>0$ such that
$u(t, x, y) \geq u\left(t_{0}, x_{0}, y_{0}\right)+(-\lambda, q, p) \cdot\left(t-t_{0}, x-x_{0}, y-y_{0}\right)+o\left(\left|t-t_{0}\right|+\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)$ for $(t, x, y) \in B_{r}\left(t_{0}, x_{0}, y_{0}\right) \cap X^{+}$.

Similarly, we define the set $D_{X^{+}}^{+} u\left(P_{0}\right)$ of superdifferential of u at P_{0} by reversing the inequality.

Lemma 1.2. Let $u: B_{1}^{+} \rightarrow \mathbb{R}$ be a lower semicontinuous function and suppose $D_{X^{+}}^{-} u(\bar{t}, \bar{x}, 0)$ is nonempty. Fix an element $\left(-\lambda_{0}, q_{0}, p_{0}\right) \in D_{X^{+}}^{-} u(\bar{t}, \bar{x}, 0)$ at $(\bar{t}, \bar{x}, 0)$, and define the critical slope

$$
\begin{equation*}
\underline{p}=\sup \left\{p: \quad\left(-\lambda_{0}, q_{0}, p\right) \in D_{X^{+}}^{-} u(\bar{t}, \bar{x}, 0)\right\} . \tag{1.1}
\end{equation*}
$$

If $\underline{p}<+\infty$, and u and is a viscosity supersolution of (0.10), then

$$
\begin{equation*}
-\lambda_{0}+H\left(q_{0}, \underline{p}\right) \geq 0 . \tag{1.2}
\end{equation*}
$$

Lemma 1.3. Let $u: B_{1}^{+} \rightarrow \mathbb{R}$ be a upper semicontinuous function and suppose $D_{X^{+}}^{+} u(\bar{t}, \bar{x}, 0)$ is nonempty. Fix an element $\left(-\lambda_{0}, q_{0}, p_{0}\right) \in D_{X^{+}}^{+} u(\bar{t}, \bar{x}, 0)$ at $(\bar{t}, \bar{x}, 0)$, and define the critical slope

$$
\begin{equation*}
\bar{p}=\inf \left\{p:\left(-\lambda_{0}, q_{0}, p\right) \in D_{X^{+}}^{+} u(\bar{t}, \bar{x}, 0)\right\} . \tag{1.3}
\end{equation*}
$$

If $\bar{p}>-\infty$, and u and is a viscosity subsolution of (0.10), then

$$
\begin{equation*}
-\lambda_{0}+H\left(q_{0}, \bar{p}\right) \leq 0 . \tag{1.4}
\end{equation*}
$$

Furthermore, $\bar{p}>-\infty$ is verified if u satisfies the weak continuity assumtion.

References

[1] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-convex HamiltonJacobi equations on networks. Ann. Sci. Éc. Norm. Supér. (4), 50(2):357-448, 2017.
[2] Cyril Imbert and Régis Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case. Discrete Contin. Dyn. Syst., 37(12):6405-6435, 2017.

