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This note is the proof of the critical slope lemmas taken from Imbert and Monneau.
The proof for the one-dimensional case is detailed in [1, Lemmas 2.9 & 2.10]. The multi-
dimensional case, stated below, is contained in [2], but the proof is omitted. Here we
supply the proof for the multi-dimensional case, which is essentially the same as the
one-dimensional case.

Define X+ as the half space

X+ = {(t, x, y) : y ≥ 0}.

Fix a point (t̄, x̄, 0) ∈ X+, and define the 3-dimensional half ball

B+
r = B+

r (t̄, x̄, 0) = {(t, x, y) ∈ X+ : |(t− t̄, x− x̄, y)| < r.

Lemma 0.1 ([2, Lemma A.9]). Let u : B+
1 → R be a lower semicontinuous function

and suppose ϕ(t, x, y) is a test function that touches u(t, x, y) from below at some (t̄, x̄).
Define the critical slope at (t̄, x̄, 0)

p = sup{p : ∃r > 0, u(t, x, y) ≥ ϕ(t, x, 0) + py for all (t, x, y) ∈ B+
δ (t̄, x̄, 0)}. (0.1)

If p < +∞, and u and is a viscosity supersolution of

ut +H(ux, uy) = 0 (0.2)

then
ϕt(t̄, x̄, 0) +H(ϕx(t̄, x̄, 0), p) ≥ 0. (0.3)

Remark 0.2. Note that p is well-defined as the existence of test function implies the set
of subdifferential is nonempty.

Proof. By the definition of p, there exists δ > 0 and (tε, xε, yε) ∈ B+
δ/2(t̄, x̄, 0) such that

u(t, x, y) ≥ ϕ(t, x, 0) + (p− ε)y for all (t, x, y) ∈ B+
δ (t̄, x̄, 0), (0.4)

u(tε, xε, yε) ≤ ϕ(tε, xε, 0) + (p+ ε)yε. (0.5)

Now consider a smooth function Ψ : R3 → [−1, 0] such that

Ψ(t, x, y) = 0 in B1/2(0), Ψ(t, x, y) = −1 in R3B1(0)

and define
Φ(t, x, y) = ϕ(t, x) + 2εΨδ(t, x, y) + (p+ ε)y,
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where Ψδ(t, x, y) = δΨ
(
t−t̄
δ
, x−x̄

δ
, y
δ

)
is bounded in C1 uniformly in δ. Then we have

Φ(t, x, y) = ϕ(t, x, 0)− 2εδ + (p+ ε)y ≤ u(t, x, y) on ∂B+
δ (t̄, x̄, 0) ∩ {y > 0}, (0.6)

which is satisfied on the curved part of the boundary of B+
δ (t̄, x̄, 0).

Φ(t, x, 0) ≤ ϕ(t, x, 0) ≤ u(t, x, 0) on {(t, x, y) ∈ ∂B+
δ t̄, x̄, 0) ∩ {y > 0}, (0.7)

which is satisfied on the hyperplane part of the boundary of B+
δ (t̄, x̄, 0).

Φ(tε, xε, yε) = ϕ(tε, xε) + (p+ ε)yε > u(tε, xε, yε). (0.8)

It follows that u−Φ has an interior maximum point P̄ε = (t̄ε, x̄ε, ȳε) ∈ B+
δ (t̄, x̄, 0), which

implies

ϕt(P̄ε) + 2ε(Ψδ)t(P̄ε) +H(∂xϕ(P̄ε) + 2ε(Ψδ)x(P̄ε), 2ε(Ψδ)y(P̄ε) + p+ ε) ≥ 0.

Since |(Ψδ)t|+ |∇Ψδ| are uniformly bounded in δ, we may take ε → 0 to deduce (0.3).

Lemma 0.3 ([2, Lemma A.9]). Let u : B+
1 → R be a lower semicontinuous function

and suppose ϕ(t, x, y) is a test function that touches u(t, x, y) from below at some (t̄, x̄).
Define the critical slope at (t̄, x̄, 0)

p = sup{p : ∃r > 0, u(t, x, y) ≥ ϕ(t, x, 0) + py for all (t, x, y) ∈ B+
δ (t̄, x̄, 0)}. (0.9)

If p < +∞, and u and is a viscosity supersolution of

ut +H(ux, uy) = 0 (0.10)

then
ϕt(t̄, x̄, 0) +H(ϕx(t̄, x̄, 0), p) ≥ 0. (0.11)

Lemma 0.4 ([2, Lemma A.10]). Let u : B+
1 → R be a upper semicontinuous function

and suppose ϕ(t, x, y) is a test function that touches u(t, x, y) from above at some (t̄, x̄).
Define the critical slope at (t̄, x̄, 0)

p = inf{p : ∃r > 0, u(t, x, y) ≤ ϕ(t, x, 0) + py for all (t, x, y) ∈ B+
δ (t̄, x̄, 0)}. (0.12)

If p > −∞, and u and is a viscosity subsolution of (0.10), then

ϕt(t̄, x̄, 0) +H(ϕx(t̄, x̄, 0), p) ≤ 0. (0.13)

Furthermore, if H is coercive and u satisfies the weak continuity assumption, namely,

lim sup
(t,x,y)→(t̄,x̄,0)

u(t, x, y) = u(t̄, x̄, 0) (0.14)

then p > −∞.

Proof. We only prove that p > −∞ since this is the main difference with the proof of the
previous lemma.

Assume that p = −∞, then there exists pn → −∞ and rn ↘ 0 such that

ϕ(t, x, 0) + pny ≥ u(t, x, y) in Bn = B+
rn .
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By replacing ϕ by ϕ+ (t− t̄)2 + (x− x̄)2 + y2 if necessary, we may assume that

u(t, x, y) < ϕ(t, x, 0) + pny in Bn = B+
rn \ {(t̄, x̄, 0)}. (0.15)

In particular, there exists δn > 0 such that ϕ(t, x, 0) + pny ≥ u + δn on the curved part
of ∂B+

rn . Since u satisfies (0.14), there exists Pε = (tε, xε, yε) → P̄ = (t̄, x̄, 0) such that
yε > 0 and u(Pε) → u(P̄ ).

We now introduce the following perturbed test function

Ψ(t, x, y) = ϕ(t, x, 0) + pny +
|yε|2

y
.

Fix n and observe that Ψ > u on both the curved and flat part of ∂B+
rn . Let P ′

ε =
(t′ε, x

′
ε, y

′
ε) be the minimum point of Ψ− u in ∂B+

rn , then

(ϕ+ pn · −u)(P ′
ε) ≤ (Ψ− u)(P ′

ε) ≤ (Ψ− u)(Pε) ≈ ϕ(Pε)− u(Pε) +
y2ε
yε

+ o(1) = o(1),

since ϕ touches u from above at P̄ . It follows that the minimum point P ′
ε is achieved in

the interior, so

ϕt(P
′
ε) +H(ϕx(P

′
ε), pn −

y2ε
y2

) ≤ 0.

Denote p0n = lim infε→0(pn − y2ε
y2
) ∈ [−∞, 0], then

ϕt(P̄ ) +H(ϕx(P̄ ), p0n) ≤ 0,

which in particular implies p0n > −∞ and is bounded uniformly from below, independent
of n. It follos that {pn} is also bounded from below, which is a contradiction. The proof
is now complete.

1 Restating the lemmas using super/subdifferentials

This can be equivalently stated in terms of subdifferential.

Definition 1.1. Let u : X+ → R, be given. We say that the constant vector (−λ, q, p)
is an element of the set D−

X+u(P0) (which is called the set of subdifferential of u at
P0 = (t0, x0, y0)) provided that there exists r0 > 0 such that

u(t, x, y) ≥ u(t0, x0, y0)+ (−λ, q, p) · (t− t0, x−x0, y− y0)+ o(|t− t0|+ |x−x0|+ |y− y0|)

for (t, x, y) ∈ Br(t0, x0, y0) ∩X+.
Similarly, we define the set D+

X+u(P0) of superdifferential of u at P0 by reversing the
inequality.

Lemma 1.2. Let u : B+
1 → R be a lower semicontinuous function and suppose D−

X+u(t̄, x̄, 0)
is nonempty. Fix an element (−λ0, q0, p0) ∈ D−

X+u(t̄, x̄, 0) at (t̄, x̄, 0), and define the crit-
ical slope

p = sup{p : (−λ0, q0, p) ∈ D−
X+u(t̄, x̄, 0)}. (1.1)

If p < +∞, and u and is a viscosity supersolution of (0.10), then

−λ0 +H(q0, p) ≥ 0. (1.2)
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Lemma 1.3. Let u : B+
1 → R be a upper semicontinuous function and suppose D+

X+u(t̄, x̄, 0)
is nonempty. Fix an element (−λ0, q0, p0) ∈ D+

X+u(t̄, x̄, 0) at (t̄, x̄, 0), and define the crit-
ical slope

p = inf{p : (−λ0, q0, p) ∈ D+
X+u(t̄, x̄, 0)}. (1.3)

If p > −∞, and u and is a viscosity subsolution of (0.10), then

−λ0 +H(q0, p) ≤ 0. (1.4)

Furthermore, p > −∞ is verified if u satisfies the weak continuity assumtion.
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