CORRIGENDUM: DYNAMICS OF A REACTION-DIFFUSION-ADVECTION MODEL FOR TWO COMPETING SPECIES

Xinfu Chen
Department of Mathematics University of Pittsburgh
Pittsburgh, PA 15260, USA
King-Yeung Lam
Mathematical Biosciences Institute
Ohio State University
Columbus, OH 43210, USA
YuAN Lou
Department of Mathematics and Mathematical Biosciences Institute Ohio State University
Columbus, OH 43210, USA

Abstract

We provide a corrected proof of [4, Theorem 2.2], which preserves the validity of the theorem exactly under those assumptions as stated in the original paper.

1. Corrigendum. This Corrigendum concerns the proof of [4, Theorem 2.2]. In the original proof we used [1, Theorem 2.4] and [3, Proposition 3.2], which require more restrictive conditions than necessary. We provide here an elementary maximum principle argument which preserves the validity of Theorem 2.2, exactly under the assumptions as appeared in [4]. For the reader's convenience we recall the statement of Theorem 2.2 and give its complete proof.

The result concerns the unique positive solution $\theta_{\mu, \alpha}(\mu>0, \alpha \geq 0)$ of (See [2] for existence and uniqueness results)

$$
\begin{cases}\nabla \cdot(\mu \nabla \theta-\alpha \theta \nabla m)+\theta(m-\theta)=0 & \text { in } \Omega \tag{1}\\ \mu \frac{\partial \theta}{\partial n}-\alpha \theta \frac{\partial m}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$, and $\frac{\partial}{\partial n}$ denotes the outward normal derivative. Denote the set of local maximum points of m by \mathfrak{M} and

$$
\begin{gathered}
\Sigma_{0}=\{x \in \Omega: \nabla m=0 \text { and } x \notin \mathfrak{M}\}, \\
\mathfrak{M}_{+}=\{x \in \mathfrak{M}: m(x)>0\}
\end{gathered}
$$

We recall the following non-degeneracy assumption on $m(x)$ contained in [4]:

[^0](M1) Every critical points of m are non-degenerate, and $\Delta m>0$ on Σ_{0}. Moreover, $\frac{\partial m}{\partial n}<0$ on $\partial \Omega$.
Theorem 2.2. Assume (M1). There exist some positive constants α_{1}, C, r, γ and $\delta^{*}<1$ such that for all $\mu>0$ and $\alpha \geq \alpha_{1}$,
\[

\theta_{\mu, \alpha}(x) \leq $$
\begin{cases}C e^{\alpha \delta^{*}\left[m(x)-m\left(x_{0}\right)\right] / \mu} & \text { in } B_{r}\left(x_{0}\right), \text { for any } x_{0} \in \mathfrak{M}_{+} \\ e^{-\gamma \alpha / \mu} & \text { in } \Omega \backslash \cup_{x_{0} \in \mathfrak{M}_{+}} B_{r}\left(x_{0}\right)\end{cases}
$$
\]

Proof of Theorem 2.2. Transform the equation by $w(x)=e^{-\alpha m(x) / \mu} \theta_{\mu, \alpha}$ which satisfies

$$
\begin{cases}\mu \nabla \cdot\left(e^{\alpha m / \mu} \nabla w\right)+e^{\alpha m / \mu} w\left[m(x)-e^{\alpha m / \mu} w\right]=0 & \text { in } \Omega \\ \frac{\partial w}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

If α / μ is bounded, by applying the maximum principle, we have

$$
\begin{equation*}
\left\|\theta_{\mu, \alpha}\right\|_{L^{\infty}(\Omega)} \leq\left\|e^{\alpha m / \mu}\right\|_{L^{\infty}(\Omega)}\|w\|_{L^{\infty}(\Omega)} \leq\left\|e^{\alpha m / \mu}\right\|_{L^{\infty}(\Omega)}\left\|m e^{-\alpha m / \mu}\right\|_{L^{\infty}(\Omega)} . \tag{2}
\end{equation*}
$$

Next we consider $\alpha / \mu \rightarrow \infty$. As a consequence of (M1), \mathfrak{M} consists of finitely many points. Denote

$$
\begin{aligned}
\{m(x): x \in \mathfrak{M}\} & =\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}, \quad m_{1}<m_{2}<\ldots<m_{k} \\
\mathfrak{M}_{i} & =\left\{x \in \mathfrak{M}: m(x)=m_{i}\right\}, \quad i=1, \ldots, k
\end{aligned}
$$

By the non-degeneracy of critical points of m, there exist $r>0, K>0$ such that for any $z \in \mathfrak{M}$,

$$
\left\{\begin{array}{l}
\frac{1}{K}|z-x|^{2} \leq m(z)-m(x) \leq K|z-x|^{2} \tag{3}\\
\frac{1}{K}|z-x| \leq|\nabla m(x)| \leq K|z-x|
\end{array}\right.
$$

for all $x \in B_{r}(z)$. Set $m_{0}=\min _{\bar{\Omega}} m$ and choose $0<\eta<\min _{1 \leq i \leq k}\left\{m_{i}-\right.$ $\left.m_{i-1}, r^{2} / K\right\}$ such that

$$
\begin{equation*}
m_{i}-\eta \quad \text { are regular values of } m \text { as well as }\left.m\right|_{\partial \Omega} \text { for all } i \tag{4}
\end{equation*}
$$

Fix $0<\delta_{1}<1$ and define recursively

$$
\begin{equation*}
\delta_{i+1}=\frac{\delta_{i} \eta}{m_{i+1}-m_{i}+\eta}, \quad i=1,2, \ldots, k-1 \tag{5}
\end{equation*}
$$

Then we have

$$
1>\delta_{1}>\delta_{2}>\cdots>\delta_{k} \equiv \delta^{*}=\delta_{1} \prod_{i=1}^{k-1} \frac{\eta}{m_{i+1}-m_{i}+\eta}>0
$$

Furthermore, by (3) and (M1) there exists a large constant K_{1} independent of μ, α such that

$$
\begin{equation*}
\frac{\delta^{*} \alpha}{\mu}|\nabla m|^{2}+\Delta m>0 \quad \text { in } \overline{\Omega \backslash D}, D=\cup_{z \in \mathfrak{M}} \overline{B_{\sqrt{\frac{\mu}{\alpha}} K_{1}}(z)} \tag{6}
\end{equation*}
$$

Define

$$
\Omega_{1}=\Omega, \quad \Omega_{i+1}=\left\{x \in \Omega: m(x)>m_{i}-\eta\right\} \backslash \cup_{z \in \mathfrak{M}_{i}} \overline{B_{r}(z)}
$$

By the choice of η as in (4) and the fact that $\left.\frac{\partial m}{\partial n}\right|_{\partial \Omega}<0$, the domains $\Omega_{i}, \Omega_{i} \backslash D$ are piecewise smooth. Moreover, $\Omega_{i+1} \subset \Omega_{i}$, since $\left\{x \in \Omega: m(x)>m_{i}-\eta\right\} \subset \Omega_{i}$. Define

$$
M=\left\|\theta_{\mu, \alpha}\right\|_{L^{\infty}(\Omega)}, \quad d=K K_{1}^{2}, \quad \phi_{i}=M e^{d} e^{\alpha \delta_{i}\left(m(x)-m_{i}\right) / \mu}
$$

and

$$
N[\phi]:=-\nabla \cdot(\mu \nabla \phi-\alpha \phi \nabla m)-\phi\left(m-\theta_{\mu, \alpha}\right) .
$$

Then we have

$$
\begin{equation*}
N\left[\phi_{i}\right] \geq \phi_{i}\left[\alpha\left(1-\delta_{i}\right)\left(\frac{\delta_{i} \alpha}{\mu}|\nabla m|^{2}+\Delta m\right)-m\right] \geq 0 \tag{7}
\end{equation*}
$$

in $\Omega_{1} \backslash D=\Omega \backslash D$ for $i=1, \ldots, k$ by (6) and by choosing $\alpha \geq \alpha_{1}$ large. Moreover, by (M1) we see that

$$
\begin{equation*}
\mu \frac{\partial \phi_{i}}{\partial n}-\alpha \phi_{i} \frac{\partial m}{\partial n}=\alpha\left(\delta_{i}-1\right) \phi_{i} \frac{\partial m}{\partial n}>0 \quad \text { on } \partial \Omega \tag{8}
\end{equation*}
$$

Note that in $D \cap \Omega_{i}, m(x)-m_{i} \geq-K\left(K_{1} \sqrt{\mu / \alpha}\right)^{2}$. Hence for all i,

$$
\begin{equation*}
\phi_{i}(x)=M e^{d} e^{\delta_{i} \alpha\left(m(x)-m_{i}\right) / \mu} \geq M e^{d} e^{\delta_{i} \alpha\left(-K K_{1}^{2} \mu / \alpha\right) / \mu} \geq M \geq \theta_{\mu, \alpha} \quad \text { in } D \cap \Omega_{i} . \tag{9}
\end{equation*}
$$

Now by (7), and the fact that $N\left[\theta_{\mu, \alpha}\right]=0$,

$$
\begin{equation*}
N\left[\phi_{i}-\theta_{\mu, \alpha}\right] \geq 0 \quad \text { in } \Omega_{i} \backslash D, \text { for } i=1,2, \ldots, k \tag{10}
\end{equation*}
$$

We shall show by induction that $\theta_{\mu, \alpha} \leq \phi_{i}$ in Ω_{i}, for $i=1, \ldots, k$. Consider ϕ_{1} on $\Omega_{1}=\Omega$. By (9), it remains to prove that $\phi_{1} \geq \theta_{\mu, \alpha}$ in $\Omega_{1} \backslash D$. We already have a differential inequality given in (10). Therefore, we proceed to look at the boundary condition satisfied by $\phi_{1}-\theta_{\mu, \alpha}$. Since $\Omega=\Omega_{1}$ and $\frac{\alpha}{\mu}$ is large, one may decompose $\partial\left(\Omega_{1} \backslash D\right)=\partial D \cup \partial \Omega$. By (9),

$$
\begin{equation*}
\phi_{1}-\theta_{\mu, \alpha} \geq 0 \quad \text { in } \partial\left(\Omega_{1} \backslash D\right) \cap \partial D \tag{11}
\end{equation*}
$$

while

$$
\begin{equation*}
\mu \frac{\partial}{\partial n}\left(\phi_{1}-\theta_{\mu, \alpha}\right)-\alpha\left(\phi_{1}-\theta_{\mu, \alpha}\right) \frac{\partial m}{\partial n} \geq 0 \quad \text { in } \partial\left(\Omega_{1} \backslash D\right) \cap \partial \Omega . \tag{12}
\end{equation*}
$$

Figure 1. Diagram illustrating the case when $\mathfrak{M}=\mathfrak{M}_{1} \cup \mathfrak{M}_{2}$.

Figure 2. Diagram illustrating $\Omega_{1} \backslash D$ when $\mathfrak{M}=\mathfrak{M}_{1} \cup \mathfrak{M}_{2}$.

Now ϕ_{1} is a supersolution which is strictly positive on $\partial \Omega$ and that $\phi_{1}, \theta_{\mu, \alpha} \in$ $C^{2}(\bar{\Omega})$. It is elementary that the maximum principle applies to yield that $\phi_{1} \geq \theta_{\mu, \alpha}$
on $\Omega_{1} \backslash D$. But for the sake of completeness, we include a proof here. Using the fact that $\phi>0$ in $\bar{\Omega}$, we define $z_{1}:=\frac{\phi_{1}-\theta_{\mu, \alpha}}{\phi_{1}}$, which satisfies

$$
\Delta z_{1}+\left(\frac{2 e^{\alpha m / \mu}}{\mu \phi_{1}} \nabla\left(e^{-\alpha m / \mu} \phi_{1}\right)+\frac{\alpha}{\mu} \nabla m\right) \cdot \nabla z_{1}-\frac{N\left[\phi_{1}\right]}{\mu \phi_{1}} z_{1} \leq 0
$$

Since $z_{1} \in C^{2}(\bar{\Omega}), \phi_{1}>0$ in $\bar{\Omega}$ and $N\left[\phi_{1}\right] \geq 0$ (by (7)), we easily deduce that $\inf _{\Omega_{1} \backslash D} z_{1}$ is attained on $\partial\left(\Omega_{1} \backslash D\right)=(\partial D) \cup(\partial \Omega)$.
Case (i). $\inf _{\Omega_{1} \backslash D} z_{1}=z_{1}\left(x_{0}\right)$ for some $x_{0} \in \partial D$.
Then $\inf _{\Omega_{1} \backslash D} z_{1}=z_{1}\left(x_{0}\right)=\frac{\phi_{1}-\theta_{\mu, \alpha}}{\phi_{1}}\left(x_{0}\right) \geq 0$ by (11).
Case (ii). $\inf _{\Omega_{1} \backslash D} z_{1}=z_{1}\left(x_{0}\right)$ for some $x_{0} \in \partial \Omega$.
Since $\partial \Omega$ is smooth, and $\partial\left(\Omega_{1} \backslash D\right)=\partial \Omega \cup \partial D$, the outer normal derivative $\frac{\partial}{\partial n}$ is well defined at x_{0},

$$
0 \leq-\frac{\partial z_{1}}{\partial n}=\left[\frac{1}{\mu \phi_{1}}\left(\mu \frac{\partial \phi_{1}}{\partial n}-\alpha \phi_{1} \frac{\partial m}{\partial n}\right)\right] z_{1}\left(x_{0}\right)
$$

Since the terms in the square bracket is strictly positive (by (8)), we deduce that $\inf _{\Omega_{1} \backslash D} z_{1} \geq 0$.

Therefore, in any case we have $\inf _{\Omega_{1} \backslash D} \frac{\phi_{1}-\theta_{\mu, \alpha}}{\phi_{1}} \geq 0$, and hence $\phi_{1} \geq \theta_{\mu, \alpha}$ in $\Omega_{1} \backslash D$. Combining with (9), we have proved that $\phi_{1} \geq \theta_{\mu, \alpha}$ in Ω_{1}.

Next, suppose for induction that for some $1 \leq i \leq k-1$,

$$
\begin{equation*}
\phi_{i} \geq \theta_{\mu, \alpha} \quad \text { in } \Omega_{i} \tag{13}
\end{equation*}
$$

By (9), it remains to show that $\phi_{i+1} \geq \theta_{\mu, \alpha}$ in $\Omega_{i+1} \backslash D$. By (7), we have $N\left[\phi_{i+1}-\right.$ $\left.\theta_{\mu, \alpha}\right] \geq 0$ in $\Omega_{i+1} \backslash D$. Again, ϕ_{i+1} satisfies a differential inequality given by (10). We turn to the boundary condition of $\phi_{i+1}-\theta_{\mu, \alpha}$. Firstly, by (8),

$$
\begin{equation*}
\mu \frac{\partial}{\partial n}\left(\phi_{i+1}-\theta_{\mu, \alpha}\right)-\alpha\left(\phi_{i+1}-\theta_{\mu, \alpha}\right) \frac{\partial m}{\partial n} \geq 0 \quad \text { in } \partial\left(\Omega_{i+1} \backslash D\right) \cap \partial \Omega \tag{14}
\end{equation*}
$$

(Note that by (4) and the fact that $\left.\frac{\partial m}{\partial n}\right|_{\partial \Omega}<0, \frac{\partial}{\partial n}\left(\phi_{i+1}-\theta_{\mu, \alpha}\right)$ is well-defined by values in $\Omega_{i+1} \backslash D$ even at $x_{0} \in\left\{y \in \partial \Omega: m(y)=m_{i}-\eta\right\}$. Here n denotes the unit outer normal of $\partial \Omega$ at x_{0}.) Secondly, observe that

$$
\partial\left(\Omega_{i+1} \backslash D\right)=\left[\partial\left(\Omega_{i+1} \backslash D\right) \cap \partial \Omega\right] \cup\left[\partial\left(\Omega_{i+1} \backslash D\right) \cap \Omega\right]
$$

and that

$$
\left[\partial\left(\Omega_{i+1} \backslash D\right) \cap \Omega\right] \subset\left[\Omega_{i+1} \cap(\partial D)\right] \cup\left[\left(\partial \Omega_{i+1}\right) \cap \Omega\right]
$$

We claim that $\phi_{i+1}-\theta_{\mu, \alpha} \geq 0$ in $\partial \Omega_{i+1} \cap \Omega$. By (9),

$$
\begin{equation*}
\phi_{i+1}-\theta_{\mu, \alpha} \geq 0 \quad \text { in } \Omega_{i+1} \cap(\partial D) \tag{15}
\end{equation*}
$$

Whereas in $\left(\partial \Omega_{i+1}\right) \cap \Omega$, we have $m(x) \geq m_{i}-\eta$. We either have (i) $x \in$ $\cup_{z \in \mathfrak{M}_{i}} \partial B_{r}(z)$; or (ii) $x \notin \cup_{z \in \mathfrak{M}_{i}} \partial B_{r}(z)$ and $m(x)=m_{i}-\eta$. But (i) is impossible, since on $\cup_{z \in \mathfrak{M}_{i}} \partial B_{r}(z)$,

$$
m(x) \leq m_{i}-\frac{1}{K}|x-z|^{2}=m_{i}-\frac{r^{2}}{K}<m_{i}-\eta
$$

So we must have (ii), i.e. $m(x)=m_{i}-\eta$. Consequently on $\partial \Omega_{i+1} \cap \Omega$,

$$
\begin{aligned}
\frac{\phi_{i+1}}{\phi_{i}} & =\exp \left\{\delta_{i+1} \alpha\left(m(x)-m_{i+1}\right) / \mu-\delta_{i} \alpha\left(m(x)-m_{i}\right) / \mu\right\} \\
& =\exp \left\{\alpha\left[\delta_{i+1}\left(m_{i}-\eta-m_{i+1}\right)+\delta_{i} \eta\right] / \mu\right\} \\
& =1 \quad \text { by }(5)
\end{aligned}
$$

Hence $\phi_{i+1}=\phi_{i}$ on $\partial \Omega_{i+1} \cap \Omega$. Also, $\left(\partial \Omega_{i+1} \cap \Omega\right) \subset \Omega_{i}$, so by (13)

$$
\begin{equation*}
\phi_{i+1}-\theta_{\mu, \alpha} \geq \phi_{i}-\theta_{\mu, \alpha} \geq 0 \quad \text { on } \partial \Omega_{i+1} \cap \Omega \tag{16}
\end{equation*}
$$

Now let $z_{i+1}:=\frac{\phi_{i+1}-\theta_{\mu, \alpha}}{\phi_{i+1}}$, then z_{i+1} satisfies
$\Delta z_{i+1}+\left(\frac{2 e^{\alpha m / \mu}}{\mu \phi_{i+1}} \nabla\left(e^{-\alpha m / \mu} \phi_{i+1}\right)+\frac{\alpha}{\mu} \nabla m\right) \cdot \nabla z_{i+1}-\frac{N\left[\phi_{i+1}\right]}{\mu \phi_{i+1}} z_{i+1} \leq 0 \quad$ in $\Omega_{i+1} \backslash D$.
Since $z_{i+1} \in C^{2}(\bar{\Omega})$ and $\frac{N\left[\phi_{i+1}\right]}{\mu \phi_{i+1}} \geq 0$, we deduce that $\inf _{\Omega_{i+1} \backslash D} z_{i+1}$ is attained on $\partial\left(\Omega_{i+1} \backslash D\right)$.
Claim 1. $\inf _{\Omega_{i+1} \backslash D} z_{i+1} \geq 0$.
Suppose to the contrary that

$$
\begin{equation*}
\inf _{\Omega_{i+1} \backslash D} z_{i+1}=\inf _{\partial\left(\Omega_{i+1} \backslash D\right)} z_{i+1}<0 \tag{17}
\end{equation*}
$$

Figure 3. Diagram illustrating Ω_{2} when $\mathfrak{M}=\mathfrak{M}_{1} \cup \mathfrak{M}_{2}$.

We decompose as before

$$
\partial\left(\Omega_{i+1} \backslash D\right)=\left[\partial\left(\Omega_{i+1} \backslash D\right) \cap \partial \Omega\right] \cup\left[\partial\left(\Omega_{i+1} \backslash D\right) \cap \Omega\right]
$$

Since by (15) and (16),
$z_{i+1} \geq 0 \quad$ in $\left[\partial\left(\Omega_{i+1} \backslash D\right)\right] \cap \Omega=\partial\left(\Omega_{i+1} \backslash D\right) \cap\left[\partial D \cup\left\{x \in \Omega: m(x)=m_{i}-\eta\right\}\right]$.
Hence necessarily $x_{0} \in\left[\partial\left(\Omega_{i+1} \backslash D\right)\right] \cap(\partial \Omega)$. Moreover, x_{0} is bounded away from $\left[\partial\left(\Omega_{i+1} \backslash D\right)\right] \cap \Omega$, and hence $\partial\left(\Omega_{i+1} \backslash D\right)$ contains a smooth neighborhood of x_{0} in $\partial \Omega$. Hence the outer normal derivative $\frac{\partial}{\partial n}\left(\left.z_{i+1}\right|_{\Omega_{i+1} \backslash D}\right)\left(x_{0}\right)$ is well-defined. Since the minimum of z_{i+1} is attaned at x_{0},

$$
0 \leq-\frac{\partial z_{i+1}}{\partial n}\left(x_{0}\right)=\left.\left[\frac{1}{\mu \phi_{i+1}}\left(\mu \frac{\partial \phi_{i+1}}{\partial n}-\alpha \phi_{i+1} \frac{\partial m}{\partial n}\right)\right]\right|_{x=x_{0}} z_{i+1}\left(x_{0}\right)
$$

This contradicts the strict positivity of the square bracket term (by (8)) and the hypothesis that $z_{i+1}\left(x_{0}\right)=\inf _{\partial\left(\Omega_{i+1} \backslash D\right)} z_{i+1}<0$. This contradiction establishes that $\inf _{\Omega_{i+1} \backslash D}\left(\phi_{i+1}-\theta_{\mu, \alpha}\right) \geq 0$. Combining with (9), we deduce that $\phi_{i+1} \geq \theta_{\mu, \alpha}$ in Ω_{i+1}.

By induction, $\phi_{i} \geq \theta_{\mu, \alpha}$ on $\Omega_{i}, i=1, \ldots, k$. Hence there exists $r_{1} \in(0, r]$ such that

$$
\begin{gather*}
\text { for all } i, \quad \theta_{\mu, \alpha}(x) \leq M e^{d} e^{\delta^{*} \alpha\left(m(x)-m_{i}\right) / \mu} \quad \text { in } \cup_{z \in \mathfrak{M}_{i}} B_{r_{1}}(z) \tag{18}\\
\quad \theta_{\mu, \alpha}(x) \leq M e^{d} e^{-\delta^{*} \alpha r_{1}^{2} /(\mu K)} \quad \text { in } \Omega \backslash \cup_{z \in \mathfrak{M}} B_{r_{1}}(z) \tag{19}
\end{gather*}
$$

It remains to show that M is bounded independent of $\mu>0$ and $\alpha \geq \alpha_{1}$. Firstly, there exists $R_{0}>0$ such that for each i and each $z \in \mathfrak{M}_{i}$, (by (3))

$$
d-\frac{\delta^{*} \alpha\left(m(x)-m_{i}\right)}{\mu}<d-\frac{\delta^{*} \alpha|x-z|^{2}}{\mu K}<-\log 2 \quad \text { in } B_{r_{1}}(z) \backslash B_{\sqrt{\frac{\mu}{\alpha}} R_{0}}(z) .
$$

Secondly, since $\alpha / \mu \rightarrow \infty$, we may assume $d-\frac{\delta^{*} \alpha r_{1}^{2}}{\mu K}<-\log 2$. Hence, by (18) and (19),

$$
\theta_{\mu, \alpha}(x) \leq \frac{M}{2} \quad \text { in } \Omega \backslash\left(\cup_{z \in \mathfrak{M}} B_{\sqrt{\frac{\mu}{\alpha}} R_{0}}(z)\right)
$$

and the maximum value $M=\left\|\theta_{\mu, \alpha}\right\|_{L^{\infty}(\Omega)}$ must be attained in $B \sqrt{\frac{\mu}{\alpha}} R_{0}\left(z_{\mu, \alpha}\right)$ for some $z_{\mu, \alpha} \in \mathfrak{M}$. Set $x=z_{\mu, \alpha}+\sqrt{\frac{\mu}{\alpha}} y$, then

$$
\mu\left(\frac{\alpha}{\mu} \Delta_{y} \theta_{\mu, \alpha}\right)-\alpha \sqrt{\frac{\alpha}{\mu}} \nabla_{x} m \cdot \nabla_{y} \theta_{\mu, \alpha}+\theta_{\mu, \alpha}\left(m-\theta_{\mu, \alpha}-\alpha \Delta_{x} m\right)=0 .
$$

Divide the above equation by α,

$$
\begin{equation*}
\Delta_{y} \theta_{\mu, \alpha}-\sqrt{\frac{\alpha}{\mu}} \nabla_{x} m \cdot \nabla_{y} \theta_{\mu, \alpha}+\left(\frac{m-\theta_{\mu, \alpha}-\alpha \Delta m}{\alpha}\right) \theta_{\mu, \alpha}=0 . \tag{20}
\end{equation*}
$$

By applying the maximum principle to $\theta_{\mu, \alpha}$ and using $\frac{\partial m}{\partial n} \leq 0$, we have $M=$ $\left\|\theta_{\mu, \alpha}\right\|_{L^{\infty}(\Omega)} \leq\|m\|_{L^{\infty}(\Omega)}+\alpha\|\Delta m\|_{L^{\infty}(\Omega)}$. Also, the middle term $\sqrt{\alpha / \mu} \nabla_{x} m\left(z_{\mu, \alpha}+\right.$ $\left.\sqrt{\frac{\mu}{\alpha}} y\right)$ in the above equation is bounded by $2\left\|D^{2} m\right\|_{L^{\infty}(\Omega)}\|y\|$. Hence the coefficients of (20) are bounded in $L^{\infty}\left(B_{4 R_{0}}(0)\right)$. By the Harnack Inequality (Theorem 8.20, [5]), there exists a constant $c=c\left(N, R_{0}\right)>0$ (N being the dimension) such that

$$
\theta_{\mu, \alpha}(x) \geq c M \quad \text { in } B \sqrt{\frac{\mu}{\alpha}} R_{0}\left(z_{\mu, \alpha}\right)
$$

Hence

$$
\begin{equation*}
c^{2} M^{2}\left(\frac{\mu}{\alpha}\right)^{N / 2} R_{0}^{N} \operatorname{Vol}\left(B_{1}(0)\right) \leq \int_{B \sqrt{\frac{\mu}{\alpha}} R_{0}}\left(z_{\mu, \alpha}\right)<\theta_{\Omega, \alpha}^{2} \leq \int_{\mu, \alpha}^{2} \tag{21}
\end{equation*}
$$

Moreover, by (18) and (19),

$$
\begin{equation*}
\int_{\Omega} \theta_{\mu, \alpha} m \leq\|m\|_{L^{\infty}(\Omega)} \int_{\Omega} \theta_{\mu, \alpha} \leq C M\left(\frac{\mu}{\alpha}\right)^{N / 2} \operatorname{Vol}\left(B_{1}(0)\right) . \tag{22}
\end{equation*}
$$

Now integrating the equation of $\theta_{\mu, \alpha}$ to obtain

$$
\begin{equation*}
\int_{\Omega} \theta_{\mu, \alpha}^{2}=\int_{\Omega} \theta_{\mu, \alpha} m \tag{23}
\end{equation*}
$$

Combining (21), (22) and (23) we infer that

$$
c^{2} M^{2}\left(\frac{\mu}{\alpha}\right)^{N / 2} R_{0}^{N} \leq C M\left(\frac{\mu}{\alpha}\right)^{N / 2}
$$

This gives the boundedness of M as $\alpha / \mu \rightarrow \infty$ and proves the theorem in the case $\mathfrak{M}=\mathfrak{M}_{+}$, i.e. $m(x)>0$ for all $x \in \mathfrak{M}$. If it is not the case, assume

$$
m_{1}<m_{2}<\ldots<m_{l-1} \leq 0<m_{l}<\ldots<m_{k}, \quad \text { for some } l \geq 2
$$

Then (18) and (19) can be obtained as before. Next, define $\phi_{0}=M e^{d} e^{\alpha(m(x)-\hat{\eta})} / \mu$ where $-\hat{\eta}$ is a regular value of both m and $\left.m\right|_{\partial \Omega}$, chosen such that $\mathfrak{M} \cap[-\hat{\eta}, 0)=\emptyset$ and

$$
\begin{equation*}
0<\hat{\eta}<\min \left\{\eta, \frac{\delta_{l} m_{l}}{2-\delta_{l}}\right\} \tag{24}
\end{equation*}
$$

Now consider $\Omega_{0}=\{x \in \Omega: m<-\hat{\eta}\} \cup\left(\cup_{z \in \mathfrak{M}_{0}} B_{r}(z)\right)$ where $\mathfrak{M}_{0}:=\{x \in \mathfrak{M}$: $m(x)=0\}$ (possibly empty). Note that by similar considerations as before $\partial \Omega_{0} \backslash$ $\partial \Omega \subset\{x \in \Omega: m(x)=-\hat{\eta}\}$ and it is smooth as $-\hat{\eta}$ is a regular value of m. Since $m \leq 0$ in Ω_{0}, it is easy to see that $N\left[\phi_{0}-\theta_{\mu, \alpha}\right] \geq 0$ in Ω_{0}. Define

$$
\mathcal{B}_{0} u= \begin{cases}\mu \frac{\partial u}{\partial n}-\alpha u \frac{\partial m}{\partial n} & \text { on } \partial \Omega_{0} \cap \partial \Omega \\ u & \text { on } \partial \Omega_{0} \backslash \partial \Omega\end{cases}
$$

Then $\mathcal{B}_{0}\left[\phi_{0}-\theta_{\mu, \alpha}\right]=0$ on $\partial \Omega_{0} \cap \partial \Omega$ by simple calculation, and on $\partial \Omega_{0} \cap \Omega \subset\{x \in$ $\Omega: m(x)=-\hat{\eta}\} \cap \Omega_{l}$,

$$
\begin{aligned}
\phi_{0} & =M e^{d} e^{\alpha(-\hat{\eta}-\hat{\eta}) / \mu} \\
& >M e^{d} e^{\delta_{l} \alpha\left(-\hat{\eta}-m_{l}\right) / \mu} \quad \text { by }(24) \\
& =\phi_{l} \geq \theta_{\mu, \alpha} .
\end{aligned}
$$

Therefore, by applying the maximum principle much as before, $\phi_{0}-\theta_{\alpha, \mu} \geq 0$ in Ω_{0}. This completes the proof of the general case.

References

[1] H. Amann and J. Lopez-Gomez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (2002), 336-374.
[2] F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quarterly, $\mathbf{3}$ (1995), 379-397.
[3] S. Cano-Casanova and J. Lopez-Gomez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eqns., 178 (2002), 123-211.
[4] X. Chen, K.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competiting species, Discrete Cont. Dyn. Sys. A, 32 (2012), 3841-3859.
[5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, $2^{\text {nd }}$ Ed., Springer-Verlag, Berlin, 1983.

Received December 2013; revised December 2013.

```
E-mail address: xinfu@pitt.edu
E-mail address: adrian@umn.edu
E-mail address: lou@math.ohio-state.edu
```


[^0]: 2010 Mathematics Subject Classification. Primary: 35J57, 35B40; Secondary: 92D40.
 Key words and phrases. Directed movement, competing species, reaction-diffusion-advection, exclusion, evolution of dispersal.

