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Abstract. We investigate a nonlocal reaction-diffusion-advection system modeling the popula-4
tion dynamics of two competing phytoplankton species in a eutrophic environment, where nutrients5
are in abundance and the species are limited by light only for their metabolism. We first demonstrate6
that the system does not preserve the competitive order in the pointwise sense. Then we introduce a7
special cone K involving the cumulative distributions of the population densities, and a generalized8
notion of super- and subsolutions of the nonlocal competition system where the differential inequal-9
ities hold in the sense of the cone K. A comparison principle is then established for such super- and10
subsolutions, which implies the monotonicity of the underlying semiflow with respect to the cone K11
(Theorem 2.1). As application, we study the global dynamics of the single species system and the12
competition system. The latter has implications for the evolution of movement for phytoplankton13
species.14
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1. Introduction. Phytoplankton are microscopic plant-like photosynthetic or-18

ganisms that drift in the water columns of lakes and oceans. They grow abundantly19

around the globe and are the foundation of the marine food chain. Since they trans-20

port significant amounts of atmospheric carbon dioxide into the deep oceans, they21

play a crucial role in climate dynamics. Nutrients and light are the essential resources22

for the growth of phytoplankton. There are three possible ways for phytoplankton23

to compete for nutrients and light. At one extreme, in oligotrophic ecosystems with24

an ample supply of light, species compete for limiting nutrients [22,27]. At the other25

extreme, in eutrophic ecosystems with ample nutrient supply, species compete for26

light [8, 16, 17, 33]. In some ecosystems of intermediate conditions, they compete for27

both nutrients and light [3, 4, 18, 21, 36]. In the water column, phytoplankton diffuse28

by water turbulence, and also sink or buoy, depending on whether they are heavier29

than water or not [8].30

In this paper, we study the two-species nonlocal reaction-diffusion-advection sys-31

tem proposed by Huisman et al. [16, 18]. The system models the growth of phyto-32

plankton species in a eutrophic vertical water column, where the species is limited by33

light only for their metabolism. Consider a water column with unit cross-sectional34

area and with two phytoplankton species. Let x denote the depth within the water35

column where x varies from 0 (the top) to L (the bottom), and let u(x, t), v(x, t) stand36

for the population densities of two phytoplankton species at the location x and time37
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t, respectively. The following system of reaction-diffusion-advection equations was38

proposed in [16] to describe the population dynamics of two phytoplankton species:39

(1.1)

{
ut = D1uxx − α1ux + [g1(I(x, t))− d1]u, 0 < x < L, t > 0,
vt = D2vxx − α2vx + [g2(I(x, t))− d2]v, 0 < x < L, t > 0,

40

with no-flux boundary conditions41

(1.2)

{
D1ux(x, t)− α1u(x, t) = 0, x = 0, L, t > 0,
D2vx(x, t)− α2v(x, t) = 0, x = 0, L, t > 0,

42

and initial conditions43

(1.3) u(x, 0) = u0(x) ≥, 6≡ 0, v(x, 0) = v0(x) ≥, 6≡ 0, 0 ≤ x ≤ L,44

where for i = 1, 2, Di > 0 is the diffusion coefficient, αi ∈ R is the sinking (αi > 0)45

or buoyant (αi < 0) velocity, di > 0 is the death rate, gi(I) represents the specific46

growth rate of phytoplankton species as a function of light intensity I(x, t).47

Light intensity is decreasing with depth due to light absorption via phytoplankton48

and water. By the Lambert-Beer law [23], the light intensity I(x, t) is given by49

(1.4) I(x, t) = I0 exp
(
− k0x−

∫ x

0

[k1u(s, t) + k2v(s, t)]ds
)
,50

where I0 > 0 is the incident light intensity, k0 > 0 is the background turbidity51

that summarizes light absorption by all non-phytoplankton components, and ki is52

the absorption coefficient of the corresponding phytoplankton species. In this model53

ample nutrient supply is assumed so that the phytoplankton growth is only limited54

by the light availability. We assume that gi(I) is a smooth function satisfying55

(1.5) gi(0) = 0 and g′i(I) > 0 for I ≥ 0.56

A typical example of gi(I) takes the Michaelis-Menten form

gi(I) =
miI

ai + I
,

where mi > 0 is the maximal growth rate and ai > 0 is the half saturation constant.57

Most existing mathematical literatures on phytoplankton are focused on a single58

species. The single species model was considered in [33] for the self-shading case (i.e.59

k0 = 0) and infinite long water column (L = ∞). The existence, uniqueness and60

global stability of the steady state are established in [20, 33]. It is shown in [24] that61

the self-shading model with any finite water column depth has a stable positive steady62

state, which means that the self-shading model has no critical water column depth63

beyond which the phytoplankton cannot persist.64

For the case k0 > 0, it is illustrated in [8] that the condition for phytoplankton65

bloom development can be characterized by critical water column depth and some66

critical values of the vertical turbulent diffusion coefficient. Du and Hsu [5] studied67

both single and two species competing for light with no advection. For the single68

species model, the existence, uniqueness, and global attractivity of a positive equilib-69

rium was established. Hsu and Lou [13] analyzed the critical death rate, critical water70

column depth, critical sinking or buoyant coefficient and critical turbulent diffusion71
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rate. Du and Mei [7] investigated the global dynamics of the single species model for72

the case D = D(x), α = α(x) and the asymptotic profiles of the positive steady states73

for small or large diffusion and deep water column when D,α are constants. Peng and74

Zhao [31,32] considered the effect of time-periodic light intensity I0 at the surface, due75

to diurnal light cycle and seasonal changes. Ma and Ou [28] further studied the model76

in [31,32] and assume that D(t), α(t) are time periodic functions. They obtained the77

uniqueness and the global attractivity of the positive periodic solution of the single78

species model, when it exists.79

Du et al. [6] studied the effect of photoinhibition on the single phytoplankton80

species, and they found that, in contrast to the case of no photoinhibition, where at81

most one positive steady state can exist, the model with photoinhibition possesses at82

least two positive steady states in certain parameter ranges. Hsu et al. [14] exam-83

ined the dynamics of a single species under the assumption that the amount of light84

absorbed by individuals is proportional to cell size, which varies for populations that85

reproduced by simple cell division into two equal-sized daughter cells.86

Although many mathematical theories have been developed for single species87

phytoplankton model, there are very few results for two or more phytoplankton species88

competing for light. The existence of positive steady state and uniform persistence for89

two-species model were proved in [5], where there is no sinking or buoyancy. In [29],90

Mei and Zhang studied a nonlocal reaction-diffusion-advection system modeling the91

growth of multiple competitive phytoplankton species and they found that when the92

diffusion of the system is large, there are no positive steady states, and when the93

diffusion is not large, there exists at least one positive steady state under proper94

conditions.95

Unlike two-species Lotka-Volterra competition model with diffusion, one main96

difficulty for system (1.1)-(1.4) is the lack of comparison principle, i.e.97

u1(x, 0) ≤ u2(x, 0), v1(x, 0) ≥ v2(x, 0) ∀x ∈ [0, L]98

6=⇒ u1(x, t) ≤ u2(x, t), v1(x, t) ≥ v2(x, t) ∀(x, t) ∈ [0, L]× (0,∞),99100

due to the nonlocal nature of the nonlinearity. See Remark 3.10.101

For order-preserving properties in the single species model, Shigesada and Okubo102

[33] observed that the cumulative distribution function U(x, t) :=
∫ x
0
u(s, t)ds satisfies103

a single reaction-diffusion equation without nonlocal terms. Subsequently, Ishii and104

Takagi [20] showed that the flow retains the natural order in U . For a related model105

with a water column of infinite depth, they made use of this fact to obtain a complete106

classification of the long-time behavior of the population. This fact was used again107

in Du and Hsu [5] to determine the long-time dynamics for a single species model108

with finite water depth. More recently, Ma and Ou [28] established the comparison109

principle for U in the single species model.110

For the competition model, we will show, by adapting arguments due to Du and
Hsu [5] and Ma and Ou [28], that the cumulative distribution functions

(U(x, t), V (x, t)) =

(∫ x

0

u(s, t) ds,

∫ x

0

v(s, t) ds

)
satisfy a nonlocal, strongly coupled system, with non-standard boundary condition111

(see (3.3)), and that the resulting system has the strong order-preserving property.112

Our main result (Theorem 2.1) says that system (1.1)-(1.4) forms a strongly113

monotone dynamical system with respect to the order induced by the special cone114
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K = K1 × (−K1), where115

(1.6) K1 =

{
φ ∈ C([0, L],R) :

∫ x

0

φ(s) ds ≥ 0 for x ∈ (0, L]

}
.116

The new features of this paper can be described as follows: First, Theorem 2.1117

is the first monotonicity result for the nonlocal competition system involving two118

phytoplankton species. Second, the definition of the relevant cone K facilitates the119

connection with general theory of monotone dynamical systems. Third, generalized120

notion of super- and subsolutions (see Definition 3.2), which is new even for the case of121

single species, are given. They can potentially be used to obtain qualitative properties122

of solutions for the nonlocal system (1.1)-(1.4).123

The rest of the paper is organized as follows: In Section 2, we state our main124

results. In Section 3, we first introduce the notion of super- and subsolutions of125

(1.1)-(1.4) with respect to the cone K, and establish the comparison principle for126

the super- and subsolutions. Then we apply the monotonicity result to establish the127

global dynamics of the single species model in a general setting. Section 4 is devoted to128

the spectral analysis of semi-trivial steady states, and the global dynamics of system129

(1.1)-(1.4) are established for three different biological scenarios. In Section 5, we130

present some numerical results and discussion.131

2. Main Results. Let X be a Banach space over R. We call a subset K ⊂ X132

a cone if (i) K is convex, (ii) µK ⊂ K for all µ ≥ 0, and (iii) K ∩ (−K) = {0}. A133

cone K is said to be solid if it has nonempty interior. Furthermore, for x, y ∈ X, we134

write x 6K y, x <K y and x�K y if y − x ∈ K, y − x ∈ K \ {0} and y − x ∈ IntK135

respectively.136

Let K1 be given by (1.6). It is straightforward to verify that K1 is a solid cone in
the Banach space C([0, L];R) with interior

Int K1 =
{
φ ∈ C([0, L];R) : φ(0) > 0,

∫ x

0

φ(s) ds > 0 for x ∈ (0, L]
}
.

Let K = K1×(−K1). Then K is likewise a solid cone in the Banach space C([0, L];R2)137

with interior given by Int K = Int K1 × (−Int K1). The cone K induces the partial138

order relations 6K, <K and �K in the usual way.139

We shall prove that (1.1)-(1.4) is a strongly monotone dynamical system with140

respect to the order induced by the cone K.141

Theorem 2.1. Suppose {(ui, vi)}i=1,2 are non-negative solutions of (1.1)-(1.4)142

such that u2(·, 0) ≥, 6≡ 0 and v1(·, 0) ≥, 6≡ 0 and143

(u1(·, 0), v1(·, 0)) <K (u2(·, 0), v2(·, 0)).144

Then (u1(·, t), v1(·, t))�K (u2(·, t), v2(·, t)) for all t > 0.145

By Theorem 2.1, system (1.1)-(1.4) is a strongly monotone dynamical system on146

C([0, L];R2
+) with respect to the order generated by K, which together with the theory147

of strongly monotone dynamical systems [2,12,15,25,34,37], provides a useful tool to148

investigate the global dynamics of two-species system (1.1)-(1.4). As a by-product of149

our monotonicity result, we also generalize the existing results for single species (see150

Subsection 3.2) and give a simple proof based on monotonicity arguments and the151

concept of subhomogeneous mappings.152

As application, we turn our attention to the effects of diffusion and advection on153

the global dynamics of (1.1)-(1.4).154
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Theorem 2.2. If D1 = D2, α1 < α2, g1 = g2, d1 = d2, and that both semi-trivial155

steady states exist, then the first species u drives the second species v to extinction,156

regardless of initial condition.157

Theorem 2.2 shows that the competitor with smaller advection rate has compet-158

itive advantages, i.e., smaller advection rate is selected. By the Lambert-Beer law,159

the deeper the water column, the weaker the light intensity. Therefore, it is more160

advantageous for phytoplankton species to move up.161

Theorem 2.3. If D1 < D2, α1 = α2 ≥ [g(1) − d]L, g1 = g2, d1 = d2, and that162

both semi-trivial steady states exist, then the faster diffuser v drives the slower diffuser163

u to extinction, regardless of initial condition.164

Theorem 2.3 implies that if sinking rate is large, competitor with faster diffusion165

will always displace the slower one, i.e., faster diffuser wins. Intuitively, when both166

species are sinking with equal and large velocity, faster diffusion can counter balance167

the tendency to sink and provide individuals with better access to light.168

Theorem 2.4. If D1 < D2, α1 = α2 ≤ 0, g1 = g2, d1 = d2, and that both169

semi-trivial steady states exist, then the slower diffuser u drives faster diffuser v to170

extinction, regardless of initial condition.171

Theorem 2.4 suggests that if the phytoplankton species are buoyant, the competi-172

tor with slower diffusion rate will always displace the faster one, i.e., slower diffusion173

rate will be selected. This is in sharp contrast to Theorem 2.3. The reason for this174

result is that when the phytoplankton are buoyant, turbulent diffusion actually dis-175

places individuals from the top of the water column, where the light intensity is the176

strongest.177

3. A General Model with Spatio-Temporally Varying Coefficients. We178

shall study a generalized version of system (1.1)-(1.4), which allows coefficients to vary179

explicitly with both space and time. We formulate the nonlocal reaction-diffusion-180

advection model as follows:181

(3.1)
ut = (D1ux − α1u)x + f1(x, t,

∫ x
0
u(s, t) ds,

∫ x
0
v(s, t) ds)u, 0 < x < L, t > 0,

vt = (D2vx − α2v)x + f2(x, t,
∫ x
0
u(s, t) ds,

∫ x
0
v(s, t) ds)v, 0 < x < L, t > 0,

D1ux − α1u = 0, x = 0, L, t > 0,
D2vx − α2v = 0, x = 0, L, t > 0,
u(x, 0) = u0(x) ≥, 6≡ 0, v(x, 0) = v0(x) ≥, 6≡ 0, 0 ≤ x ≤ L,

182

where, for i = 1, 2, Di = Di(x, t) > 0, αi = αi(x, t), and the functions fi(x, t, p, q) are183

smooth and satisfy184

(H)
∂fi
∂p

< 0,
∂fi
∂q

< 0 and
∂fi
∂x
≤ 0 for all x ∈ [0, L] and t, p, q ≥ 0.185

The assumption holds, e.g. when fi(x, t, p, q) = gi(I0 exp(−k0x − k1p − k2q)) −186

di(x, t) such that gi is non-decreasing, and di is non-decreasing in x. In particular, it187

includes (1.1)-(1.4), and the previous works [5, 29] as particular cases.188

3.1. Strong Monotonicity of (3.1). This subsection is devoted to proving the189

monotonicity of system (3.1) with respect to the order induced by cone K under the190

assumption (H). First, we state the following standard result (see, e.g. [10, Ch. 3]).191

Proposition 3.1. For continuous, non-negative initial data (u0(x), v0(x)), sys-
tem (3.1) has a unique solution

(u, v) ∈ C([0,∞);C([0, L];R2
+)) ∩ C1((0,∞);C∞([0, L];R2

+)),
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which depends continuously on initial data. Moreover, if u0(x) 6≡ 0, (resp. v0(x) 6≡ 0),192

then u(x, t) > 0 (resp. v(x, t) > 0) for (x, t) ∈ [0, L]× (0,∞).193

Next, we define the following super- and subsolution concepts for (3.1). Note that194

the differential inequalities appearing below are to be understood in the sense of cone195

K for each time t. These inequalities hold, in particular, if the differential inequalities196

hold in the pointwise sense everywhere.197

Definition 3.2. We say that

(u, v), (u, v) ∈ C([0, T ];C([0, L];R2
+)) ∩ C1((0, T ];C∞([0, L];R2

+))

form a pair of super- and subsolutions of (3.1) in the interval [0, T ], if198

(3.2)



ut >K1
(D1ux − α1u)x + f1(x, t,

∫ x
0
u(s, t) ds,

∫ x
0
v(s, t) ds)u, 0 < t ≤ T,

vt 6K1
(D2vx − α2v)x + f2(x, t,

∫ x
0
u(s, t) ds,

∫ x
0
v(s, t) ds)v, 0 < t ≤ T,

ut 6K1(D1ux − α1u)x + f1(x, t,
∫ x
0
u(s, t) ds,

∫ x
0
v(s, t) ds)u, 0 < t ≤ T,

vt >K1(D2vx − α2v)x + f2(x, t,
∫ x
0
u(s, t) ds,

∫ x
0
v(s, t) ds)v, 0 < t ≤ T,

D1ux − α1u ≤ 0 ≤ D1ux − α1u, x = 0, 0 < t ≤ T,
D1ux − α1u ≥ 0 ≥ D1ux − α1u, x = L, 0 < t ≤ T,
D2vx − α2v ≤ 0 ≤ D2vx − α2v, x = 0, 0 < t ≤ T,
D2vx − α2v ≥ 0 ≥ D2vx − α2v, x = L, 0 < t ≤ T,
(u(·, 0), v(·, 0)) >K (u(·, 0), v(·, 0)).

199

The main result of this section is200

Theorem 3.3. Assume that f1, f2 satisfy (H). Let (u, v) and (u, v) be a pair
of super- and subsolutions of (3.1) in the interval [0, T ]. If u > 0 and v > 0 in
[0, L]× [0, T ], then

(u(·, t), v(·, t)) >K (u(·, t), v(·, t)) for 0 ≤ t ≤ T.

Moreover, if there exists t0 ∈ (0, T ] such that u > 0 and v > 0 in [0, L]× (0, t0], and

(u(·, t0)− u(·, t0), v(·, t0)− v(·, t0)) 6∈ IntK,

then (u(x, t), v(x, t)) ≡ (u(x, t), v(x, t)) for x ∈ [0, L] and 0 ≤ t ≤ t0.201

A direct consequence of Theorem 3.3 is the strong monotonicity of the continuous202

semiflow generated by (3.1). It includes Theorem 2.1 as a particular case.203

Corollary 3.4. Assume that f1, f2 satisfy (H). Suppose {(ui, vi)}i=1,2 are two
non-negative solutions of (3.1), such that u1(·, 0) ≥, 6≡ 0, v2(·, 0) ≥, 6≡ 0, and

(u1(·, 0), v1(·, 0)) >K (u2(·, 0), v2(·, 0)).

Then (u1(·, t), v1(·, t))�K (u2(·, t), v2(·, t)) for all t > 0.204

The proof is postponed to later in the section.205

To show Theorem 3.3, we consider the cumulative distribution functions206

U(x, t) =

∫ x

0

u(s, t) ds, V (x, t) =

∫ x

0

v(s, t) ds.207

Then U(0, t) ≡ 0, V (0, t) ≡ 0 for t ≥ 0, and Ux(x, t) = u(x, t), Vx(x, t) = v(x, t). In208

this way, (3.1) is transformed into the following strongly coupled, non-local system of209

This manuscript is for review purposes only.
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(U, V ) (see also [28] for the single species case):210

(3.3)



Ut = D1Uxx − α1Ux +G1[U, V, Ux, Vx], 0 < x < L, t > 0,
Vt = D2Vxx − α2Vx +G2[U, V, Ux, Vx], 0 < x < L, t > 0,
U(0, t) = 0, D1Uxx(L, t)− α1Ux(L, t) = 0, t > 0,
V (0, t) = 0, D2Vxx(L, t)− α2Vx(L, t) = 0, t > 0,
U(x, 0) =

∫ x
0
u0(s) ds = U0(x), 0 ≤ x ≤ L,

V (x, 0) =
∫ x
0
v0(s) ds = V0(x), 0 ≤ x ≤ L,

211

where, letting F1(x, t, U, V ) =
∫ U
0
f1(x, t, z, V ) dz, F2(x, t, U, V ) =

∫ V
0
f2(x, t, U, z) dz,212

G1[U, V, Ux, Vx](x, t)213

=

∫ x

0

f1

(
s, t,

∫ s

0

u(y, t) dy,

∫ s

0

v(y, t) dy
)
u(s, t) ds214

=

∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds215

=

∫ x

0

{
d

ds

[
F1

(
s, t, U(s, t), V (s, t)

)]
− ∂F1

∂x

(
s, t, U(s, t), V (s, t)

)
216

−∂F1

∂V

(
s, t, U(s, t), V (s, t)

)
Vx(s, t)

}
ds217

= F1(x, t, U(x, t), V (x, t))−
∫ x

0

∂F1

∂x

(
s, t, U(s, t), V (s, t)

)
ds218

−
∫ x

0

∂F1

∂V

(
s, t, U(s, t), V (s, t)

)
Vx(s, t) ds(3.4)219

and220

G2[U, V, Ux, Vx](x, t)221

=

∫ x

0

f2

(
s, t,

∫ s

0

u(y, t)dy,

∫ s

0

v(y, t)dy
)
v(s, t)ds222

=

∫ x

0

f2

(
s, t, U(s, t), V (s, t)

)
Vx(s, t) ds223

= F2

(
x, t, U(x, t), V (x, t))−

∫ x

0

∂F2

∂x

(
s, t, U(s, t), V (s, t)

)
ds224

−
∫ x

0

∂F2

∂U

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds.(3.5)225

For (3.3), we define the Banach space

X1 = {φ ∈ C1([0, L],R) : φ(0) = 0}

with the usual C1 norm. The usual cone P1 in X1 is

P1 = {φ ∈ X1 : φ(x) ≥ 0 for x ∈ [0, L]},

with interior

IntP1 = {φ ∈ X1 : φ′(0) > 0, φ(x) > 0 for x ∈ (0, L]}.
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Let X = X1×X1, and P = P1× (−P1). Then P is a cone in X with interior given by226

Int P = Int P1× (−Int P1). The cone P generates the partial order relations 6P , <P227

and �P on X.228

By construction, the solutions (U, V ) of (3.3) live in the convex set E = E1×E1,
where

E1 = {φ ∈ C1([0, L]) : φ(0) = 0, and φ′(x) ≥ 0 for x ∈ [0, L]}.
From now on we assume the initial data of (3.3) to be in E. Under this assumption,229

the existence and uniqueness of the solution (U(x, t), V (x, t)) can be derived from230

those of (u(x, t), v(x, t)).231

Definition 3.5. We say that

(U, V ), (U, V ) ∈ C([0, T ];E) ∩ C1((0, T ];C∞([0, L];R2
+))

form a pair of super- and subsolutions of (3.3) in the interval [0, T ], if the derivatives232

(u, v) =
(
Ux, V x

)
and (u, v) =

(
Ux, V x

)
form a pair of super- and subsolutions of233

(3.1) in the interval [0, T ], in the sense of Definition 3.2.234

We now prove a strong maximum principle for the system (3.3), which is the key235

to proving the strong monotonicity of (3.3).236

Lemma 3.6. Assume that f1, f2 satisfy (H). Let (U, V ) and (U, V ) be a pair of237

super- and subsolutions of (3.3) in the interval [0, t∗] for some t∗ > 0, so that238

(3.6) Ux(x, t) > 0 and V x(x, t) > 0 for 0 ≤ x ≤ L, and 0 < t ≤ t∗,239

and

U(x, t) ≤ U(x, t), V (x, t) ≥ V (x, t) for 0 ≤ x ≤ L, and 0 ≤ t ≤ t∗.

If one of the following holds:240

(a) U(x∗, t∗) = U(x∗, t∗) or V (x∗, t∗) = V (x∗, t∗) for some x∗ ∈ (0, L];241

(b) (U − U)x(0, t∗) = 0 or (V − V )x(0, t∗) = 0,242

then243

(3.7) (U(x, t), V (x, t)) ≡ (U(x, t), V (x, t)) for 0 ≤ x ≤ L, 0 ≤ t ≤ t∗.244

Proof. In the following we improve upon the arguments of [28] to prove the strong
maxmimum principle for (3.3). We first consider the case when (a) holds. For defi-
niteness assume that U(x∗, t∗) = U(x∗, t∗) for some x∗ ∈ (0, L]. Denote

W (x, t) = U(x, t)− U(x, t).

Then by (3.2),

(u−u)t−[D1(u−u)x+α1(u−u)]x ≥K1
f1(x, t, U(x, t), V (x, t))−f1(x, t, U(x, t), V (x, t))

Fixing t, and integrating the above from 0 to x, we have, in terms of W ,245

Wt −D1(x, t)Wxx + α1(x, t)Wx246

≥
∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds−

∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds247

≥
∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds−

∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds248

(3.8)249
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where we used V (x, t) ≥ V (x, t) for (x, t) ∈ [0, L]× [0, t∗]. Integrating by parts as in250

(3.4), we have251

Wt −D1(x, t)Wxx + α1(x, t)Wx252

≥ F1

(
x, t, U(x, t), V (x, t)

)
− F1

(
x, t, U(x, t), V (x, t)

)
253

+

∫ x

0

[
∂F1

∂V

(
s, t, U(s, t), V (s, t)

)
− ∂F1

∂V

(
s, t, U(s, t), V (s, t)

)]
V x(s, t) ds254

+

∫ x

0

[
∂F1

∂x

(
s, t, U(s, t), V (s, t)

)
− ∂F1

∂x

(
s, t, U(s, t), V (s, t)

)]
ds255

≥ h(x, t)W +

∫ x

0

[
∂F1

∂V

(
s, t, U(s, t), V (s, t)

)
− ∂F1

∂V

(
s, t, U(s, t), V (s, t)

)]
V x(s, t) ds,256

(3.9)257

for x ∈ [0, L], t ∈ (0, t∗], where

h(x, t) =

∫ 1

0

f1

(
x, t, ξU(s, t) + (1− ξ)U(s, t), V (s, t)

)
dξ ∈ L∞loc([0, L]× R+).

Note that we have used ∂
∂U

(
∂F1

∂x

)
= ∂f1

∂x ≤ 0, i.e. ∂F1

∂x is non-increasing in U in the258

last inequality of (3.9). Summarizing, we have259

Wt −D1(x, t)Wxx + α1(x, t)Wx − h(x, t)W260

≥
∫ x

0

[
∂F1

∂V

(
s, t, U(s, t), V (s, t)

)
− ∂F1

∂V

(
s, t, U(s, t), V (s, t)

)]
V x(s, t) ds.(3.10)261

Since ∂
∂U

(
∂F1

∂V

)
= ∂f1

∂V < 0, i.e. ∂F1

∂V is non-increasing in U , U ≥ U , and V x > 0,262

the last integral is non-negative. Thus W = U − U satisfies the following linear263

differential inequality:264

Wt −D1(x, t)Wxx + α1(x, t)Wx − h(x, t)W ≥ 0, for x ∈ (0, L], t ∈ (0, t∗].(3.11)265

We claim that W ≡ 0 in [0, L]× [0, t∗]. If not, then the parabolic strong maximum
principle applied to (3.11) implies that W (x, t∗) > 0 for x ∈ (0, L). Therefore, if there
exists some x∗ ∈ (0, L] such that W (x∗, t∗) = 0, then x∗ = L, i.e., W (L, t∗) = 0, and
hence Wt(L, t

∗) ≤ 0. By the boundary conditions at (x, t) = (L, t∗),

D1Uxx − α1Ux ≥ 0 ≥ D1Uxx − α1Ux,

we have D1(L, t∗)Wxx(L, t∗)− α1(L, t∗)Wx(L, t∗) ≥ 0. Then by (3.10) we have266

0 ≥Wt(L, t
∗)267

≥
∫ L

0

[
∂F1

∂V

(
s, t∗, U(s, t∗), V (s, t∗)

)
− ∂F1

∂V

(
s, t∗, U(s, t∗), V (s, t∗)

)]
V x(s, t∗) ds.268

269

Since U(x, t∗) ≤ U(x, t∗) in [0, L], and V x > 0, we deduce that the above inequality
holds only if U(x, t∗) ≡ U(x, t∗) for all x ∈ [0, L], i.e., W (x, t∗) ≡ 0 for all x ∈ [0, L].
This is a contradiction and thus W = U − U ≡ 0 in [0, L] × [0, t∗]. It follows that
equality holds everywhere in (3.8) and (3.9), in particular,∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds ≡

∫ x

0

f1

(
s, t, U(s, t), V (s, t)

)
Ux(s, t) ds,
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for all x ∈ [0, L] and 0 < t ≤ t∗. Since Ux > 0 and ∂f1
∂V < 0, we deduce that270

V (x, t) ≡ V (x, t) in [0, L]× (0, t∗] and, by continuity, in [0, L]× [0, t∗].271

The remaining case V (x∗, t∗) = V (x∗, t∗) for some x∗ ∈ (0, L] can be handled272

similarly. This completes the proof in case (a) holds.273

Next, assume (b) holds. We claim that necessarily there is a sequence of tj ↗ t∗274

such that alternative (a) holds, so that we can deduce similarly that (U, V ) ≡ (U, V ) in275

[0, L]×[0, tj ] for all j, whence (3.7) holds as well upon letting tj ↗ t∗. To see the claim,276

assume for contradiction that U > U and V > V for (x, t) ∈ (0, L]×[t∗−δ′, t∗] for some277

δ′. Then, observe that the boundary condition ensures W (0, t∗) = U(0, t∗)−U(0, t∗) =278

0. Since W satisfies the differential inequality (3.11), we may apply Hopf’s Lemma [26,279

Lemma 2.8] to deduce that (U − U)x(0, t∗) > 0. Similarly, we can deduce that280

(V − V )x(0, t∗) > 0 as well, i.e. alternative (b) does not hold in this case. This281

establishes the claim and finishes the proof.282

Theorem 3.3 is a consequence of Lemma 3.6 and the following result:283

Lemma 3.7. Assume that f1, f2 satisfy (H). Let (U, V ) and (U, V ) be a pair of284

super- and subsolutions of (3.3) in the time interval [0, T ]. If285

(3.12) Ux(x, t) > 0, and V x(x, t) > 0 for (x, t) ∈ [0, L]× [0, T ],286

then287

(3.13) U(x, t) ≥ U(x, t) and V (x, t) ≤ V (x, t) for 0 ≤ x ≤ L, 0 ≤ t ≤ T.288

Proof. It is enough to prove the result for arbitrary but finite T > 0. Given a pair289

of super- and subsolutions (U, V ) and (U, V ) in a bounded interval [0, T ], we show290

(3.13) in two steps.291

Step 1. For each small δ > 0, define

(U
δ
, V δ) = (U + δρ1, V − δρ2), and (Uδ, V

δ
) = (U − δρ1, V + δρ2),

where ρi(x, t) :=
∫ x
0

exp
(
Mt+

∫ y
0
αi(s,t)
Di(s,t)

ds
)
dy for i = 1, 2. By (3.12), there exists292

δ0 > 0 such that for each δ ∈ (0, δ0],293

(3.14)


(U

δ
, V δ), (Uδ, V

δ
) ∈ E for t ∈ [0, T ],

U
δ

x > 0, V δx > 0, U δx > 0, V
δ

x > 0 for (x, t) ∈ [0, L]× [0, T ],

(U
δ
(·, 0), V δ(·, 0))�P (U δ(·, 0), V

δ
(·, 0)).

294

It is also clear that there is C0 > 0 (independent of δ) such that295

(3.15) max
i=1,2

‖ρi‖C([0,L]×[0,T ]) ≤ C0 min
i=1,2

inf
[0,L]×[0,T ]

(ρi)x(x, t).296

We claim that (U
δ
, V δ) and (Uδ, V

δ
) forms a pair of super- and subsolutions for297

(3.3) in the interval [0, T ], in the sense of Definition 3.5. It remains to show the298

differential inequalities (3.2) for δ small, as the initial and boundary conditions are299

clearly satisfied. A sufficient condition for the first one to hold is300

(3.16)
δ(ρ1)x,t >K1

[f1(x, t, U+δρ1, V −δρ2)−f1(x, t, U, V )]Ux+δρ1,xf1(x, t, U+δρ1, V −δρ2).301
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The inequality (3.16) holds since the following holds pointwisely in [0, L]× [0, T ]:302

δ(ρ1)x,t−[f1(x, t, U + δρ1, V − δρ2)−f1(x, t, U, V )]Ux−δρ1,xf1(x, t, U + δρ1, V − δρ2)303

≥ δ
(
ρ1,x

[
M +

∫ x

0

( α1(s, t)

D1(s, t)

)
t
ds− ‖f1‖∞

]
− ‖Df1‖∞(ρ1 + ρ2)‖Ux‖∞

)
,304

305

(note that Ux, V x ∈ C([0, L]× [0, T ]) by definition of super- and subsolutions) and, by306

(3.15), the term in the square bracket is non-negative provided the positive parameter307

M = M(C0, ‖f‖C1) is chosen large enough (but uniformly for δ ∈ (0, δ0]). In the same308

way, one can show the rest of the differential inequalities. In summary, there is M > 0309

so that for all δ ∈ (0, δ0], (U
δ
, V δ) and (Uδ, V

δ
) form a pair of super- and subsolutions310

for (3.3) in the interval [0, T ]. This proves our first claim.311

Step 2. Next, we claim that for all δ > 0,312

(3.17) U
δ
(x, t) > Uδ(x, t) and V δ(x, t) < V

δ
(x, t) for (x, t) ∈ (0, L]× [0, T ].313

Suppose not, then it follows from (3.14) that there exists a positive maximal time314

denoted by t∗ ∈ (0, T ] such that Uδ(x, t) < U
δ
(x, t), V

δ
(x, t) > V δ(x, t) hold for 0 <315

x ≤ L and 0 ≤ t < t∗, and U δ(x∗, t∗) = U
δ
(x∗, t∗) or V

δ
(x∗, t∗) = V δ(x∗, t∗) for some316

x∗ ∈ (0, L]. It follows from Lemma 3.6 that U δ(x, t) ≡ U δ(x, t) and V
δ
(x, t) ≡ V δ(x, t)317

for all 0 ≤ x ≤ L and 0 ≤ t ≤ t∗, which is a contradiction to (3.14). This shows (3.17).318

Letting δ → 0 in (3.17), we deduce that (3.13) holds for (x, t) ∈ [0, L]× [0, T ].319

Now we prove Corollary 3.4, which includes Theorem 2.1 as a special case.320

Proof of Corollary 3.4. For i = 1, 2, let321

(3.18) (Ui(x, t), Vi(x, t)) =

(∫ x

0

ui(s, t) ds,

∫ x

0

vi(s, t) ds

)
.322

If we assume in addition that323

(3.19) u2(x, 0) = U2,x(x, 0) > 0 and v1(x, 0) = V1,x(x, 0) > 0 in [0, L],324

then by applying the strong maximum principle to the first and second equations of
(3.1) separately, we deduce that

u2 = U2,x > 0 and v1 = V1,x > 0 in [0, L]× [0, T ].

Therefore, applying Lemma 3.7, we see that if (U1(·, 0), V1(·, 0)) >P (U2(·, 0), V2(·, 0))325

and (3.19) holds, then326

(3.20) (U1(·, t), V1(·, t)) >P (U2(·, t), V2(·, t)) for all t > 0.327

By the fact that initial data satisfying (3.19) is dense in E, we can show that for328

general initial data in E, if (U1(·, 0), V1(·, 0)) >P (U2(·, 0), V2(·, 0)), then (3.20) holds.329

It remains to show that if (U1(·, 0), V1(·, 0)) >P (U2(·, 0), V2(·, 0)) and that both
U1,x, V2,x are non-negative and non-trivial, then

(U1(·, t), V1(·, t))�P (U2(·, t), V2(·, t)) for all t > 0.

This follows from Lemma 3.6, provided it can be verified that

u1(x, t) = (U1)x(x, t) > 0, v2(x, t) = (V2)x(x, t) > 0 for 0 ≤ x ≤ L, 0 < t ≤ T.

But this is an immediate consequence of the strong maximum principle applied to the330

equations of u1 and v2 separately.331
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3.2. Global Dynamics of the Single Species Model. In this section, we gen-332

eralize some known results about the following single species model, which is obtained333

by setting v = 0 in (3.1):334

(3.21)

 θt = (D1θx − α1θ)x + f1(x, t,
∫ x
0
θ(s, t) ds, 0)θ, 0 < x < L, t > 0,

D1θx − α1θ = 0, x = 0, L, t > 0,
θ(x, 0) = θ0(x) ≥, 6≡ 0, 0 ≤ x ≤ L,

335

where D1 = D1(x, t) > 0, α1 = α1(x, t), and f1 are smooth and (H) holds.336

The equation (3.21) generates a continuous semiflow in C([0, L];R+) (see, e.g.337

[10]). Furthermore, by regarding the nonlocal term f1(x, t,
∫ x
0
θ(s, t) ds, 0) as a given338

coefficient, we can view (3.21) as a linear non-autonomous parabolic equation. It339

follows from the classical maximum principle that θ(x, t) > 0 for x ∈ [0, L] and t > 0.340

Define θ ∈ C([0,∞);C([0, L];R+)) ∩ C1((0,∞);C∞([0, L];R+)) to be a superso-341

lution of (3.21) if342

(3.22)

{
θt >K1

(D1θx − α1θ)x + f1
(
x, t,

∫ x
0
θ(s, t) ds, 0

)
θ, t > 0,

D1θx − α1θ = 0, x = 0, L, t > 0.
343

And define θ to be a subsolution of (3.21) if it satisfies the reverse inequality. As a344

by-product of the proofs of Lemmas 3.6 and 3.7, we can similarly show that the single345

species model is strongly monotone with respect to the order generated by cone K1.346

Corollary 3.8. Assume that f1 satisfies (H). Let θ and θ be super- and subso-
lution of (3.21) such that

θ(x, t) > 0, θ(x, t) > 0, in [0, L]× [0, T ], and θ(·, 0) >K1
θ(·, 0).

Then θ(·, t) >K1 θ(·, t) for all t > 0. Furthermore, if for some t0 > 0 we have347

θ(·, t0)− θ(·, t0) 6∈ IntK1, then θ(·, t) ≡ θ(·, t) for t ∈ [0, t0].348

In particular, the continuous semiflow generated by (3.21) is strongly monotone with349

respect to the order induced by the cone K1.350

In contrast to Corollary 3.8, we show here that the pointwise competitive order351

is not preserved by (3.21).352

Proposition 3.9. For i = 1, 2, let θi be a solution of (3.21), with initial condi-
tions θi,0 ∈ {ψ ∈ C2([0, L]) : D1ψx = α1ψ for x = 0, L}. If

θ1,0 ≤, 6≡ θ2,0 in [0, L], and θ1,0 ≡ θ2,0 in [L− δ, L] for some δ > 0,

then θ1(L, t) > θ2(L, t) for all 0 < t� 1.353

Proof. Since the initial conditions are C2 and consistent with the boundary con-354

dition, the solutions θi are of class C2,1
x,t in [0, L]× [0,∞). Hence, it is enough to show355

that (θ1)t(L, 0) > (θ2)t(L, 0). Precisely, at (x, t) = (L, 0),356

(θ1)t = [D1(θ1)x − α1θ1]x + f1(L, 0,

∫ L

0

θ1(s, 0) ds, 0)θ1357

> [D1(θ1)x − α1θ1]x + f1(L, 0,

∫ L

0

θ2(s, 0) ds, 0)θ1358

= [D1(θ2)x − α1θ2]x + f1(L, 0,

∫ L

0

θ2(s, 0) ds, 0)θ2 = (θ2)t.359
360
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To illustrate Proposition 3.9, we choose initial conditions {θi,0}i=1,2 so that

θ1,0 6P1 θ2,0 and θ1,0 6K1 θ2,0,

but only the order with respect to K1 is preserved by the semiflow; see Figure 1.
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Fig. 1. Numerical solution of (3.21), with D1 = 1, α1 = 0, L = 100, f1(x, t,Θ, 0) =
g(exp(−k0x − k1Θ)), where g(I) = I

10+I
and k0 = k1 = d = 0.001, and initial condition

θ1,0 = χ[0,L/2](cos(2πx/L) + 1) + 1 and θ2,0 = 1. Panels (a) and (c) are the population densi-
ties θi(x, t) (i = 1, 2) at times t = 0 and t = 10 resp.; Panels (b) and (d) are the initial cumulative
distribution functions of population densities Θi(x, t) =

∫ x
0 θi(s, t) ds (i = 1, 2) at times t = 0 and

t = 10. The first (resp. second) species is represented by the red/dotted line (resp. blue/solid line).361

Remark 3.10. By choosing ui(·, 0) = θi,0 for i = 1, 2, and v1(·, 0) ≡ v2(·, 0) ≡ ε,362

then (u1(·, 0), v1(·, 0)) ≤P (u2(·, 0), v2(·, 0)). However, it follows from the above result363

and continuous dependence on initial data that (u1(·, t), v1(·, t)) 6≤P (u2(·, t), v2(·, t))364

for some t > 0.365

As a consequence of monotone dynamical systems theory, one can show the366

uniqueness and global asymptotic stability of positive equilibria (in the case of au-367

tonomous semiflow) or positive periodic solution (in the case of time-periodic semi-368

flow). We will show the latter here, as the former follows as an easy consequence.369

The following eigenvalue problem will be useful for our later purposes:370

(3.23)


ϕt = (D1ϕx − α1ϕ)x + f1(x, t, 0, 0)ϕ+ µϕ, 0 < x < L, 0 < t < T,
D1ϕx − α1ϕ = 0, x = 0, L, 0 < t < T,
ϕ(x, 0) = ϕ(x, T ), 0 ≤ x ≤ L,
ϕ(x, t) > 0, 0 ≤ x ≤ L, 0 ≤ t ≤ T.

371

It is well known (see, e.g., [11]) that (3.23) has a principal eigenvalue, denoted by µ1,372

with the corresponding positive eigenfunction.373

Proposition 3.11. Assume that f1 satisfies (H), and let D1, α1, f1 be T -periodic374

in t, and there exists M1 > 0 such that375

(3.24) sup
[0,L]×[0,T ]

f1(x, t,M1, 0) < 0 and ‖f1(·, ·, ·, 0)‖L∞([0,L]×[0,T ]×[0,∞)) ≤M1.376
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Let µ1 be the principal eigenvalue of (3.23).377

(a) If µ1 ≥ 0, then every solution of (3.21) converges to zero;378

(b) If µ1 < 0, then (3.21) has a unique positive T -periodic solution. Furthermore,379

it attracts all non-negative, non-trivial solutions of (3.21).380

In case f1(x, t, p, 0) = g(I0 exp(−k0x − k1p)) − d(x, t) where g(·) satisfies (1.5), the381

condition (3.24) is clearly satisfied, and the above result generalizes all previous re-382

sults [5, 7, 28, 31, 32]. Our main contribution is a short proof of the boundedness of383

trajectories, which has not been proven when all coefficients vary periodically with384

time. This allows the use of the concept of subhomogeneity to show the existence,385

uniqueness and global stability of positive steady state simultaneously.386

Proof of Proposition 3.11. We will apply [37, Theorem 2.3.4] to prove this propo-387

sition. Let Q̃T be the Poincaré map of time T , generated by the T -periodic equation388

(3.21). It is obvious that the Poincaré map Q̃T is monotone by Corollary 3.8, and389

compact in C([0, L]) by parabolic estimate. Therefore, we need only to verify that ev-390

ery positive orbit of Q̃T in C([0, L];R+) is bounded, Q̃T is strongly subhomogeneous,391

and the Fréchet derivative DQ̃T (0) is compact and strongly positive.392

Claim 1. The semiflow is point dissipative, i.e. there exists M > 0, independent of
initial data, such that

lim sup
t→∞

‖θ(·, t)‖C([0,L]) ≤M.

By the fact that f1(x, t, p, 0) is uniformly bounded in L∞, Harnack inequality [19,
Theorem 2.5] applies, so that there is a uniform positive constant C ′ > 0 such that

sup
0<x<L

θ(x, t) ≤ C ′ inf
0<x<L

θ(x, t) for all t ≥ 1.

By (3.24), it is possible to choose a small constant δ2 > 0 such that393

(3.25) C ′
∫ δ2

0

max{f1(x, t, 0, 0), 0} dx+

∫ L

δ2

f1(x, t,M1, 0) dx < 0 for 0 ≤ t ≤ T.394

It suffices to show that lim supt→∞
∫ L
0
θ dx ≤ max{M1, C

′LM1/δ2}. To this end, it is395

enough to show the following claim.396

Claim 3.12. The differential inequality

d

dt

∫ L

0

θ(x, t) dx ≤ −δ3
∫ L

0

θ(x, t) dx

holds whenever
∫ L
0
θ(x, t) dx > max{M1, C

′LM1/δ2}.397

Now, denote θ∗(t) = infx θ(x, t) and θ∗(t) = supx θ(x, t), then

M1 <
δ2
C ′L

∫ L

0

θ(x, t) dx ≤ δ2
C ′
θ∗(t) ≤ δ2θ∗(t).
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Integrating the equation of θ over (0, L), we obtain398

d

dt

∫ L

0

θ(x, t) dx399

=

∫ L

0

f1

(
x, t,

∫ x

0

θ(s, t) ds, 0

)
θ(x, t) dx400

≤
∫ L

0

f1(x, t, xθ∗(t), 0)θ(x, t) dx401

≤
∫ δ2

0

f1(x, t, 0, 0)θ(x, t) dx+

∫ L

δ2

f1(x, t,M1, 0)θ(x, t) dx402

≤ θ∗(t)
∫ δ2

0

max{f1(x, t, 0, 0), 0} dx+

∫ L

δ2

f1(x, t,M1, 0) dx θ∗(t)403

≤

(
C ′
∫ δ2

0

max{f1(x, t, 0, 0), 0} dx+

∫ L

δ2

f1(x, t,M1, 0) dx

)
θ∗(t)404

≤

(
C ′
∫ δ2

0

max{f1(x, t, 0, 0), 0} dx+

∫ L

δ2

f1(x, t,M1, 0) dx

)
1

C ′L

∫ L

0

θ(x, t) dx .405

406

This proves the point dissipativity.407

Claim 2. The Poincaré map is strongly subhomogeneous.408

We will show that Q̃T is strongly subhomogeneous, i.e.409

(3.26) Q̃T (λθ0)�K1
λQ̃T (θ0) for all θ0 >P1

0 and λ ∈ (0, 1).410

Let θ(x, t) be solution to (3.21) with initial condition θ0. For (x, t) ∈ (0, L)× [0, T ],411

(λθ)t = (D1(λθ)x − α1(λθ))x + f1(x, t,

∫ x

0

θ(s, t) ds, 0)(λθ)412

< (D1(λθ)x − α1(λθ))x + f1(x, t,

∫ x

0

λθ(s, t) ds, 0)(λθ).413
414

i.e. λθ is a subsolution to the (3.21) with initial condition λθ0. Since the above415

inequality is strict, λθ is not identically equal to the solution of (3.21) with initial416

condition λθ0. By Corollary 3.8 and evaluate at time t = T , we deduce (3.26).417

Claim 3. The Fréchet derivative DQ̃T (0) is compact and strongly positive.418

This follows directly from the fact thatDQ̃T (0) = Z(T ), where Z(t) is the analytic419

semigroup generated by the linearized system of (3.21) at θ = 0:420

(3.27)

 θt = (D1θx − α1θ)x + f1(x, t, 0, 0)θ, 0 < x < L, t > 0,
D1θx − α1θ = 0, x = 0, L, t > 0,
θ(x, 0) = θ0 >, 6≡ 0, 0 < x < L.

421

That Z(T ) is strongly positive follows from standard parabolic maximum principle.422

Moreover, by standard parabolic Lp estimate, Z(T ) is a bounded map from C([0, L])423

to C2([0, L]). The map Z(T ) is thus compact, by the Arzelà-Ascoli Theorem.424

If µ1 ≥ 0, then r(DQ̃T (0)) = exp(−µ1T ) ≤ 1. By [37, Theorem 2.3.4(a)], every425

solution of (3.21) converges to zero. If µ1 < 0, then r(DQ̃T (0)) = exp(−µ1T ) > 1.426

By [37, Theorem 2.3.4(b)], the map Q̃T has a unique positive fixed point ϑ̃ such that427

every positive orbit with non-negative, non-trivial, continuous initial data converges428
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to ϑ̃. This means that system (3.21) has a unique positive T -periodic solution θ̃,429

determined by θ̃(·, 0) = θ̃(·, T ) = ϑ̃, which attracts all non-negative and non-trivial430

solutions of (3.21).431

Remark 3.13. Within the context of a single species, we improved previous results432

in [28] by showing a strong maximum principle (which implies strong monotonicity of433

the semiflow) for super- and subsolutions (which satisfies only differential inequalities),434

and by allowing the coefficients to be space-time heterogeneous.435

4. Global Dynamics for the Nonlocal Two-species Model. It is well436

known that diffusion and advection rates have significant effects on the outcome of437

competition. In this section, we apply Theorem 4.1 to analyze the global dynamics438

of two-species competition system. To obtain qualitative results, we restrict ourselves439

for the remainder of the paper to consider the autonomous case (1.1) - (1.3), when440

Di, αi, di are constants. In the introduction, the light intensity I(x, t) is given by441

(1.4), where the shading coefficients of the two species are given by k1, k2. However,442

by transforming (ũ, ṽ) = (k1u, k2v) and g̃i(I0·) = gi(·), and by observing that k1, k2443

do not affect the dynamics qualitatively, we may assume k1 = k2 = 1 and I0 = 1444

without loss of generality, so that the light intensity (1.4) can be simplified to445

(4.1) I(x, t) = exp
(
− k0x−

∫ x

0

[u(s, t) + v(s, t)]ds
)
.446

We focus on the following three different cases:447

(i) D1 = D2, α1 < α2;448

(ii) D1 < D2, α1 = α2 ≥ [g(1)− d]L > 0;449

(iii) D1 < D2, α1 = α2 ≤ 0.450

Due to the strongly monotonicity proved in Theorem 2.1, to a large extent, its451

dynamics can be determined by the stability/instability of the semi-trivial solution452

of the stationary problem [2,12,15,25,34,37]. For the convenience of the readers, we453

state the precise abstract theorem here.454

Theorem 4.1 ( [15, Theorem B] and [25, Theorem 1.3]). If the system (1.1)-455

(1.4) has no positive steady states, and the semi-trivial steady state (0, ṽ) (resp. (ũ, 0))456

is linearly unstable, then (ũ, 0) (resp. (0, ṽ)) is globally asymptotically stable among457

all non-negative, non-trivial solutions.458

Remark 4.2. Our setting is slightly more general than that outlined in [15]. In459

particular, the semiflow Qt generated by (3.1) is defined in Y + = Y +
1 × Y

+
1 , where460

Y +
1 = C([0, L];R+), but the semiflow only preserve the order generated by the weaker461

cone K = K1 × (−K1), with Y +
1 ( K1. However, it is straightforward to observe462

that [15, Propositions 2.1 and 2.4] are independent of the above assumption, and463

that the proofs of [15, Theorem B] and [25, Theorem 1.3] both stand in our setting.464

Therefore, we omit the proof of Theorem 4.1 here.465

In preparation to apply Theorem 4.1, we will demonstrate that the equation466

(4.2)

 θt = Dθxx − αθx + [g(e−k0x−
∫ x
0
θ(s,t) ds)− d]θ = 0, 0 < x < L,

Dθx − αθ = 0, x = 0, L,
θ(x, 0) = θ0(x) ≥ 0, 0 ≤ x ≤ L,

467

has a unique positive steady state θ̃, which is always linearly stable, and then char-468

acterize the stability of the two semi-trivial steady states in terms of two standard469

principal eigenvalue problems.470
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4.1. An Eigenvalue Problem for the Single Species Model. For constants471

D > 0, α ∈ R and h ∈ C([0, L]), consider the following standard eigenvalue problem:472

(4.3)

{
Dφxx − αφx + h(x)φ+ λφ = 0, 0 < x < L,
Dφx − αφ = 0, x = 0, L.

473

By setting ψ = e−(α/D)xφ, the problem (4.3) can be transformed into a self-adjoint474

problem475

(4.4)

{
−D(e(α/D)xψx)x − h(x)e(α/D)xψ = λe(α/D)xψ, 0 < x < L,
ψx(0) = ψx(L) = 0.

476

Therefore, all eigenvalues of (4.4) (and thus (4.3)) are real, and we can denote the
smallest eigenvalue by λ1(D,α, h). Define

d∗ = −λ1(D,α,−g(e−k0x)).

It is easy to show that d∗ is positive. In fact, d∗ is the critical death rate.477

Theorem 4.3 ( [5, Theorem 2.1], [13, Theorem 3.1]). If 0 < d < d∗, then (4.2)478

has a unique positive steady state, denoted by θ̃(x). If d ≥ d∗, then zero is the only479

nonnegative steady state of (4.2).480

We linearize (4.2) at θ̃ to obtain the following eigenvalue problem:481

(4.5)

{
Dφxx − αφx + [g(σ)− d]φ− θ̃σg′(σ)

∫ x
0
φ(s) ds+ µφ = 0, 0 < x < L,

Dφx − αφ = 0, x = 0, L,
482

where σ = e−k0x−
∫ x
0
θ̃(s) ds.483

Our result says that θ̃ is linearly stable. In fact, there is a real eigenvalue of (4.5)484

which is strictly less than the real part of all other eigenvalues of (4.5).485

Theorem 4.4. Let θ̃ be the unique positive steady state of (4.2). The eigenvalue486

problem (4.5) admits a real, simple eigenvalue µ1 and an eigenfunction φ�K1
0, such487

that µ1 < Re µ for all eigenvalues µ 6= µ1. It is characterized as the unique eigenvalue488

of (4.5) with the eigenfunction φ >K1
0. Furthermore, µ1 > 0.489

Proof. Assume θ̃(x) is a positive steady state of (4.2), and let θ0 ∈ C([0, L];R).490

Then θ(·, t) = Φ̂t(θ0), where Φ̂t denotes the continuous semiflow generated by (4.2).491

Then z(x, t) = DΦ̂t(θ̃)[θ0](x) satisfies the linear equation492

(4.6) zt + Lz = 0, z(0) = θ0.493

where the unbounded operator

L = −D∂xx + α∂x − [g(σ)− d] + θ̃σg′(σ)
(∫ x

0

·
)

is defined on the domain

Dom(L) = {z ∈ C2((0, L)) ∩ C1([0, L]) : Lz ∈ C([0, L]), Dzx − αz
∣∣
x=0,L

= 0}.

According to [30, Proposition 3.1.4], the linear equation (4.6) generates an analytic494

semigroup e−Lt on C([0, L]). Thus DΦ̂t(θ̃) = e−Lt.495
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For θ0 ∈ K1, ε > 0, the monotonicity of Φ̂t with respect to cone K1 implies496

θ(·, t; θ̃ + εθ0)− θ(·, t; θ̃)
ε

=
Φ̂t(θ̃ + εθ0)− Φ̂t(θ̃)

ε
>K1

0.497

Upon taking the limit as ε → 0, we get DΦ̂t(θ̃)[θ0] >K1
0. In other words, e−Lt =498

DΦ̂t(θ̃) is a positive operator with respect to the order generated by cone K1 in the499

sense that DΦ̂t(θ̃)K1 ⊂ K1 holds for t ≥ 0.500

Next, we show that the analytic semigroup e−Lt = DΦ̂t(θ̃) is strongly positive501

with respect to the order generated by K1. To prove this, we only need to show that502 ∫ x
0
z(s, t) ds > 0 and z(0, t) > 0 for all t > 0. Since e−Lt = DΦ̂t(θ̃) is a positive opera-503

tor with respect to cone K1, then
∫ x
0
z(s, t) ds ≥ 0. Therefore, if

∫ x
0
z(s, t) ds > 0 does504

not hold, then there exists some (x0, t0) ∈ (0, L]× (0,∞) such that
∫ x0

0
z(s, t0) ds = 0.505

Let
∫ x
0
z(s, t) ds = Z(x, t). Using the relation

[g(σ)− d]z − θ̃σg′(σ)Z = [(g(σ)− d)Z]′ + k0g
′(σ)σZ,

we may integrate (4.6) over (0, x) to obtain the differential inequality506

(4.7) Zt −DZxx + αZx − [g(σ)− d]Z = k0

∫ x

0

g′(σ)σZ ds ≥ 0 .507

Since θ0 6≡ 0 and Z(·, 0) 6≡ 0, then the strong maximum principle implies Z(x, t) >508

0 for all x ∈ (0, L) and t > 0, i.e., x0 = L and Z(L, t0) = 0. Then Zt(L, t0) ≤ 0,509

and by the boundary condition, we deduce DZxx(L, t0)− αZx(L, t0) = Dzx(L, t0)−510

αz(L, t0) = 0. It follows from (4.7) that511

0 ≥ Zt(L, t0) = k0

∫ L

0

g′(σ)σZ ds.(4.8)512

Since k0 > 0, σ > 0, g′(σ) > 0, then Z(x, t0) ≡ 0 for all x ∈ [0, L]. Contradiction.513

Hence, Z(x, t) =
∫ x
0
z(s, t) ds > 0 for all t > 0 and x ∈ (0, L]. Since Z(0, t) ≡ 0514

and Z(x, t) satisfies (4.7) for all t > 0, then z(0, t) = Zx(0, t) > 0 for all t > 0 by the515

Hopf boundary lemma.516

Therefore, for each t > 0, the operator e−Lt is compact and strongly positive on517

C([0, L]) with respect to the order generated by K1. It follows by standard arguments518

in [34, Ch. 7] that the elliptic eigenvalue problem (4.5) has a principal eigenvalue519

µ1 ∈ R with all the stated properties, except for µ1 > 0.520

To show µ1 > 0, we suppose to the contrary that µ1 ≤ 0 and use φ1 �K1
0 to get

θ̃σg′(σ)

∫ x

0

φ1(s) ds > 0 for x ∈ (0, L].

Then (4.5) yields that

Dφ1,xx − αφ1,x + [g(σ)− d]φ1 + µ1φ1 > 0 for 0 < x < L.

Next, we use the facts
∫ x
0
φ1(s) ds > 0 and θ̃ > 0 for x ∈ [0, L], to obtain the constant

c > 0 such that min[0,L](cθ̃ − φ1) = 0. Then ϕ = cθ̃ − φ1 satisfies Dϕxx − αϕx + [g(σ)− d]ϕ+ µ1ϕ < µ1cθ̃ ≤ 0 for 0 < x < L,
Dϕx = αϕ for x = 0, L,
min[0,L] ϕ = 0 .
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By the strict differential inequality and non-negativity of ϕ we must have ϕ > 0 in521

(0, L) and that ϕ(x0) = 0 for some x0 ∈ {0, L}. But the Hopf boundary lemma says522

ϕx(x0) 6= 0, which contradicts the boundary condition ϕx(x0) = α
Dϕ(x0) = 0.523

4.2. Eigenvalue Problems for the Two-species Model. In this subsection,524

we study the linear eigenvalue problem of the two-species model associated with the525

stability of semi-trivial steady states.526

We assume the parameters are chosen so that system (1.1)-(1.4) has two semi-527

trivial steady states (ũ, 0) and (0, ṽ) (e.g. if the death rates di are not too large). The528

associated linearized eigenvalue problem at (ũ, 0) is529

(4.9)
D1φxx − α1φx + [g1(σ1)− d1]φ− ũσ1g′1(σ1)[

∫ x
0
φ(s) ds +

∫ x
0
ϕ(s) ds] + Λφ = 0,

0 < x < L,
D2ϕxx − α2ϕx + [g2(σ1)− d2]ϕ+ Λϕ = 0, 0 < x < L,
D1φx − α1φ = D2ϕx − α2ϕ = 0, x = 0, L,

530

where σ1(x) = e−k0x−
∫ x
0
ũ(s) ds.531

We shall exploit the fact that the second equation is decoupled from the first.532

Consider the following eigenvalue problem:533

(4.10)

{
D2ϕxx − α2ϕx + [g2(σ1)− d2]ϕ+ λϕ = 0, 0 < x < L,
D2ϕx − α2ϕ = 0, x = 0, L.

534

As already discussed, (4.10) admits a real principal eigenvalue, denoted by λu =535

λ1(D2, α2, g2(σ1)− d2), which is simple, and its corresponding eigenfunction ϕ1 does536

not change sign, and λu < λ for all λ 6= λu. The stability properties of (ũ, 0) are537

determined by the sign of λu, as the next result shows.538

Proposition 4.5. The problem (4.9) has a principal eigenvalue Λ1 ∈ R, in the539

sense that Λ1 ≤ Re Λ for all eigenvalues Λ of (4.9) and that the corresponding eigen-540

function can be chosen in K \ {(0, 0)}. Furthermore, (denote Y +
1 = C([0, L];R+))541

(a) If the principal eigenvalue λu of (4.10) is positive, then Λ1 > 0.542

(b) If the principal eigenvalue λu of (4.10) is non-positive, then Λ1 = λu ≤ 0543

and the corresponding eigenfunction can be chosen in IntK1 × (−IntY +
1 ).544

Proof. By Theorem 2.1, the semiflow {Qt}t≥0, generated by the system (1.1)-545

(1.4) is strongly monotone with respect to the cone K. As a result, the linear problem546

at any steady state generates a semigroup that is monotone with respect to the cone547

K. Therefore, by standard arguments in [34, Ch. 7], we deduce that the elliptic548

problem (4.9), obtained by linearizing (1.1)-(1.4) at the steady state (ũ, 0), has a549

principal eigenvalue Λ1 with the stated properties. In particular, we can choose the550

eigenfunction corresponding to Λ1 from within K \ {(0, 0)}.551

Now, consider the case when the principal eigenvalue λu of (4.10) is positive. Let552

Λ1 ∈ R be the principal eigenvalue of (4.9) with eigenfunction (φ1, ϕ1) ∈ K \ {(0, 0)}.553

We claim that Λ1 > 0. There are two cases to consider: (i) ϕ1 6= 0; (ii) ϕ1 = 0.554

In Case (i), (Λ1, ϕ1) furnishes an eigenpair of problem (4.10), the latter of which555

as smallest eigenvalue λu > 0. Thus, Λ1 ≥ λu > 0.556

In Case (ii), (Λ1, φ1) furnishes an eigenpair of557

(4.11){
D1φxx − α1φx + [g1(σ1)− d1]φ− ũσ1g′1(σ1)

∫ x
0
φ(s) ds+ Λφ = 0, 0 < x < L,

D1φx − α1φ = 0, x = 0, L.
558

By Theorem 4.4, (4.11) has a positive principal eigenvalue µ1, and µ1 is always posi-559

tive. Hence, we must have Λ1 ≥ µ1 > 0. This finishes the proof in case λu > 0.560
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Next, let λu ≤ 0 and let ϕ1 ∈ (−IntY +
1 ) ⊂ (−IntK1) be the corresponding

principal eigenfunction of (4.10). It remains to construct φ1 ∈ IntK1 such that λu
is an eigenvalue of (4.9) with eigenfunction (φ1, ϕ1) ∈ IntK1 × (−IntY +

1 ). To that
end, define the operator L1 = −D1∂xx + α1∂x − [g1(σ1) − d1] + ũσ1g

′
1(σ1)(

∫ x
0
·). By

Theorem 4.4, the spectrum σ(L1) ⊂ {z ∈ C : Re z > 0}. And hence for λu ≤ 0, 0 is
not an eigenvalue of L1 − λuI, and the problem{

L1φ− λuφ = −ũσ1g′1(σ1)
∫ x
0
ϕ1(s) ds, 0 < x < L,

D1φx − α1φ = 0, x = 0, L,

has a unique solution φ1. In fact, let f = −ũσ1g′1(σ1)
∫ x
0
ϕ1(s) ds, then f > 0 and

φ1 = (L1 − λu)−1f =

∫ ∞
0

eλutStf dt,

where St = e−L1t is the analytic semigroup generated by L1 (see, e.g. [9, Theorem 3,
Sect. 7.4]). From the proof of Theorem 4.4, St is strongly positive with respect to
the order generated by cone K1. Therefore, Stf �K1

0 for all t > 0, and

φ1 >K1

∫ ∞
1

eλutStf dt�K1
0.

By construction, we conclude that λu ≤ 0 is an eigenvalue of (4.9) with eigenfunction561

(φ1, ϕ1) ∈ IntK1 × (−IntY +
1 ). Hence Λ1 ≤ λu ≤ 0. On the other hand, let (φ̃, ϕ̃)562

be the eigenfunction of Λ1, then ϕ̃ 6≡ 0, since otherwise (Λ, φ̃) is an eigenpair of563

(4.11), whence Λ ≥ µ1 > 0, contradictions. Therefore, ϕ̃ 6≡ 0 and (Λ1, ϕ̃) furnishes an564

eigenpair of (4.10). Thus Λ1 ≥ λu as well. This completes the proof.565

The linearized eigenvalue problem at semi-trivial steady state (0, ṽ) is566

(4.12)
D1φxx − α1φx + [g1(σ2)− d1]φ+ Λ̃φ = 0, 0 < x < L,

D2ϕxx − α2ϕx + [g2(σ2)− d2]ϕ+ Λ̃ϕ = ṽσ2g
′
2(σ2)[

∫ x
0
φ(s) ds+

∫ x
0
ϕ(s) ds],

0 < x < L,
D1φx − α1φ = 0, x = 0, L,
D2ϕx − α2ϕ = 0, x = 0, L,

567

where σ2(x) = e−k0x−
∫ x
0
ṽ(s) ds. Let λv = λ1(D1, α1, g1(σ2)− d1) denote the principal568

eigenvalue of the eigenvalue problem569

(4.13)

{
D1φxx − α1φx + [g1(σ2)− d1]φ+ λφ = 0, 0 < x < L,
D1φx − α1φ = 0, x = 0, L.

570

It follows analogously that the stability properties of (0, ṽ) are determined by λv.571

Proposition 4.6. The problem (4.12) has a principal eigenvalue Λ̃1 ∈ R, in572

the sense that Λ̃1 ≤ Re Λ̃ for all eigenvalues Λ̃ of (4.12) and that the corresponding573

eigenfunction can be chosen in K\{(0, 0)}. Furthermore, (denote Y +
1 = C([0, L];R+))574

(a) If the principal eigenvalue λv of (4.13) is positive, then Λ̃1 > 0.575

(b) If the principal eigenvalue λv of (4.13) is non-positive, then Λ̃1 = λv ≤ 0 and576

the corresponding eigenfunction can be chosen in IntY +
1 × (−IntK1).577

4.3. Auxilliary Eigenvalue Lemmas. In this subsection, we prove several578

useful lemmas concerning the principal eigenvalue λ1(D,α, h) of (4.3) with positive579
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eigenfunction φ1. It can be shown that λ1 and φ1 are smooth functions of α and D580

(see, e.g., [1, Lemma 1.2]).581

We will assume additionally the following:582

(A) h(x) ∈ C1([0, L]) such that h′(x) < 0 in [0, L].583

Set ψ1 = e−(α/D)xφ1. Then ψ1 satisfies584

(4.14)

{
Dψ1,xx + αψ1,x + h(x)ψ1 + λ1ψ1 = 0, 0 < x < L,
ψ1,x(0) = ψ1,x(L) = 0.

585

Lemma 4.7. If h(x) satisfies (A), then ψ1,x < 0 in (0, L).586

Proof. Multiplying (4.14) by e(α/D)x, we rewrite the resulting equation as587

(4.15)

{
D(e(α/D)xψ1,x)x + e(α/D)xψ1[h(x) + λ1] = 0, 0 < x < L,
ψ1,x(0) = ψ1,x(L) = 0.

588

Integrating (4.15) over (0, L), we have589 ∫ L

0

e(α/D)xψ1[h(x) + λ1] dx = 0,590

which implies that h(x) + λ1 changes sign in (0, L). Since h(x) is strictly decreasing591

in (0, L), then there exists a unique x0 ∈ (0, L) such that h(x)+λ1 > 0 for 0 < x < x0592

and h(x) + λ1 < 0 for x0 < x < L. Hence, by (4.15) we see that (e(α/D)xψ1,x)x < 0593

for 0 < x < x0 and (e(α/D)xψ1,x)x > 0 for x0 < x < L. That is, e(α/D)xψ1,x is strictly594

decreasing in (0, x0), and strictly increasing in (x0, L). Since ψ1,x(0) = ψ1,x(L) = 0,595

we have ψ1,x < 0 in (0, L).596

Lemma 4.8. If h(x) satisfies (A), then

∂λ1
∂α

(D,α, h) > 0 for any D > 0 and α ∈ R .

The proof of Lemma 4.8 is similar to [13, Lemma 5.2], and we omit it here. The597

proof of the following Lemma 4.9 is similar to [13, Lemma 7.1] with some modifica-598

tions. For the sake of completeness, we give the proof here in detail.599

Lemma 4.9. If h(x) satisfies (A), then the following hold:600

(a) ∂λ1

∂D (D,α, h) > 0 for D > 0 and α ≤ 0.601

(b) If α ≥ h(0)L and λ1(D∗, α, h) = 0 for some D∗ > 0, then ∂λ1

∂D (D∗, α, h) < 0.602

Proof. Recall that λ1 and ψ1 are smooth functions of D. For simplicity of nota-603

tion, we denote ∂ψ1

∂D by ψ′1, etc., where ψ1 satisfies (4.14). Differentiating (4.14) with604

respect to D, we have605

(4.16)

{
Dψ′1,xx + ψ1,xx + αψ′1,x + h(x)ψ′1 + λ′1ψ1 + λ1ψ

′
1 = 0, 0 < x < L,

ψ′1,x(0) = ψ′1,x(L) = 0.
606

Multiplying (4.16) by e(α/D)xψ1 and integrating the resulting equation in (0, L), we607

have608

−D
∫ L

0

e(α/D)xψ′1,xψ1,x dx+

∫ L

0

e(α/D)xψ1,xxψ1 dx+

∫ L

0

e(α/D)xh(x)ψ′1ψ1 dx609

+λ′1

∫ L

0

e(α/D)xψ2
1 dx+ λ1

∫ L

0

e(α/D)xψ′1ψ1 dx = 0.610

(4.17)611
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Similarly, multiplying (4.14) by e(α/D)xψ′1 and integrating it in (0, L), we have612

(4.18)

−D
∫ L

0

e(α/D)xψ′1,xψ1,x dx+

∫ L

0

e(α/D)xh(x)ψ′1ψ1 dx+ λ1

∫ L

0

e(α/D)xψ′1ψ1 dx = 0.613

It follows from (4.17) and (4.18) that614

(4.19) λ′1 =
−
∫ L
0
e(α/D)xψ1,xxψ1 dx∫ L
0
e(α/D)xψ2

1 dx
.615

By Lemma 4.7, we have ψ1,x < 0 in (0, L). Hence, if α 6 0, then616 ∫ L

0

e(α/D)xψ1,xxψ1dx = −
∫ L

0

ψ1,x(e(α/D)xψ1)x dx617

= −
∫ L

0

e(α/D)xψ1,x

[
ψ1,x + (α/D)ψ1

]
dx < 0.(4.20)618

Thus λ′1 > 0 for any α ≤ 0 and D > 0. This proves (a).619

On the other hand, if λ1(D∗, α, h) = 0 for some D∗ > 0, then the corresponding620

eigenfunction ψ1 satisfies621

(4.21)

{
D∗ψ1,xx + αψ1,x + h(x)ψ1 = 0, 0 < x < L,
ψ1,x(0) = ψ1,x(L) = 0.

622

Multiplying (4.21) by e(α/D
∗)x, and integrating over (0, L), we have∫ L

0

h(x)ψ1(x)e(α/D
∗)x dx = 0.

Thus the decreasing function h must change sign, i.e. h′(x) < 0, h(0) > 0. Combining623

with ψ1,x < 0, we have624 ∫ x

0

h(s)ψ1(s) ds <

∫ x

0

h(0)ψ1(s) ds < h(0)

∫ x

0

ψ1(0) ds < h(0)ψ1(0)L.625

Next, we integrate (4.21) in (0, x), to get626

D∗ψ1,x(x) + αψ1(x) = αψ1(0)−
∫ x

0

h(s)ψ1(s) ds > [α− h(0)L]ψ1(0) ≥ 0,627

provided that α ≥ h(0)L. By virtue of (4.20), we obtain628 ∫ L

0

e(α/D
∗)xψ1,xxψ1 dx = − 1

D∗

∫ L

0

e(α/D
∗)xψ1,x(D∗ψ1,x + αψ1) dx > 0.629

It follows then from (4.19) that ∂λ1

∂D (D∗, α, h) < 0. This proves (b).630

4.4. The Case D1 = D2, α1 < α2. To investigate whether stronger or weaker631

advection is more beneficial for species to win the competition in the two-species632

phytoplankton model, we assume the only phenotypic difference between them is the633

advection rate. To be more precise, we assume D1 = D2 ≡ D > 0, α1 < α2. For the634

rest of this paper, we assume two phytoplankton species have the same growth rates635

and death rates, i.e., g1(·) = g2(·) ≡ g(·) and d1 = d2 ≡ d.636

This manuscript is for review purposes only.



A NONLOCAL TWO-SPECIES PHYTOPLANKTON MODEL 23

Proof of Theorem 2.2. By Theorem 4.1, it suffices to establish, for system (1.1)-637

(1.4) (and that k1 = k2 = I0 = 1), the linear instability of (0, ṽ), and the non-existence638

of postive steady states.639

Step 1. (0, ṽ) is linearly unstable.640

Recall that ṽ is the unique positive solution to641 {
Dṽxx − α2ṽx + [g(σ2)− d]ṽ = 0, 0 < x < L,
Dṽx − α2ṽ = 0, x = 0, L,

642

where σ2(x) = e−k0x−
∫ x
0
ṽ(s) ds. Since ṽ > 0 is a positive eigenfunction of (4.3) with643

α = α2 and h(x) = g(σ2)− d, we have λ1(D,α2, g(σ2)− d) = 0.644

It follows from Proposition 4.6 that the stability of (0, ṽ) is determined by the
sign of the principal eigenvalue λ1(D,α1, g(σ2) − d). Since α1 < α2, we may apply
Lemma 4.8 to yield

λ1(D,α1, g(σ2)− d) < λ1(D,α2, g(σ2)− d) = 0.

Thus (0, ṽ) is linearly unstable.645

Step 2. The system (1.1)-(1.4) has no co-existence steady states.646

Suppose to the contrary that (u∗, v∗) be a co-existence steady state of (1.1)-(1.4),647

then we have648  Du∗xx − α1u
∗
x + [g(σ∗(x))− d]u∗ = 0, 0 < x < L,

Dv∗xx − α2v
∗
x + [g(σ∗(x))− d]v∗ = 0, 0 < x < L,

Du∗x − α1u
∗ = 0, and Dv∗x − α2v

∗ = 0, x = 0, L,
649

where σ∗(x) = exp(−k0x −
∫ x
0

[u∗(s) + v∗(s)] ds). Let h(x) = g(σ∗(x)) − d so that
h′(x) < 0. Since u∗(x) > 0, v∗(x) > 0, then

λ1(D,α1, h) = λ1(D,α2, h) = 0.

This is in contradiction with Lemma 4.8, which says that λ1 is strictly monotone650

increasing in α. Therefore, the system (1.1)-(1.4) has no co-existence steady state.651

4.5. The Case D1 < D2, α1 = α2 ≥ [g(1)−d]L. In this and the next subsection,652

we explore the effect of diffusion on the outcome of competition. According to Lemma653

4.9, the monotonicity of the principal eigenvalue λ1(D,α, h) with respect to D also654

depends on the advection rate α. Here, we first consider that both species have large655

sinking rates, i.e., α1 = α2 ≡ α ≥ [g(1)− d]L > 0. (Note that g(·) satisfies (1.5) and656

as we assume that the semi-trivial steady states exist, so we always have g(1)−d > 0.)657

Proof of Theorem 2.3. By Theorem 4.1, it suffices to establish, for system (1.1)-658

(1.4), the linear instability of (ũ, 0), and the non-existence of positive steady states.659

Step 1. (ũ, 0) is linearly unstable.660

First, we observe as before from the equation satisfied by ũ that λ1(D1, α, g(σ1)−661

d) = 0, where σ1(x) = e−k0x−
∫ x
0
ũ(s) ds.662

Since D1 < D2 and α ≥ [g(1)− d]L, we may apply Lemma 4.9(b) to yield

λ1(D2, α, g(σ1)− d) < λ1(D1, α, g(σ1)− d) = 0.

It follows from Proposition 4.5 that (ũ, 0) is linearly unstable.663

Step 2. The system (1.1)-(1.4) has no co-existence steady states.664
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Suppose to the contrary that (u∗, v∗) is a co-existence steady state of (1.1)-(1.4),
then we deduce as before,

λ1(D1, α, g(σ∗)− d) = λ1(D2, α, g(σ∗)− d) = 0 ,

where σ∗(x) = exp(−k0x −
∫ x
0

[u∗(s) + v∗(s)] ds). But this is in contradiction with665

Lemma 4.9(b), which says that D 7→ λ1(D,α, g(σ∗) − d) has at most one positive666

root. Therefore, the system (1.1)-(1.4) has no co-existence steady state.667

4.6. The Case D1 < D2, α1 = α2 ≤ 0. This subsection is devoted to studying668

whether stronger or weaker diffusion is more beneficial when both species have buoyant669

rates. Precisely, we assume that D1 < D2, α1 = α2 ≡ α ≤ 0.670

Proof of Theorem 2.4. By Theorem 4.1, it suffices to establish, for system (1.1)-671

(1.4), the linear instability of (0, ṽ), and the non-existence of positive steady states.672

Step 1. (0, ṽ) is linearly unstable.673

First, we observe as before from the equation satisfied by ṽ that λ1(D2, α, g(σ2)−674

d) = 0, where σ2(x) = e−k0x−
∫ x
0
ṽ(s) ds.675

Since D1 < D2 and α ≤ 0, we may apply Lemma 4.9(a) to yield

λ1(D1, α, g(σ2)− d) < λ1(D2, α, g(σ2)− d) = 0.

It follows from Proposition 4.6 that (0, ṽ) is linearly unstable.676

Step 2. The system (1.1)-(1.4) has no co-existence steady states.677

We omit the details here as this is similar to Step 2 of the proofs of Theorems 2.3,678

where we use part (a) of Lemma 4.9 instead of part (b). This completes the proof.679

5. Discussion and Numerical Results. We investigate a nonlocal reaction-680

diffusion-advection system modeling the growth of two competing phytoplankton681

species in a eutrophic environment, where nutrients are in abundance and the species682

are limited by light only for their metabolism. We first demonstrate that the system683

does not preserve the competitive order in the pointwise sense (Remark 3.10). We684

introduce a special cone K involving cumulative distributions of the population den-685

sities, and a generalized notion of super- and subsolutions of (1.1)-(1.4), where the686

differential inequalities hold in the sense of the cone K. A comparison principle is687

then established for the super- and subsolutions, which implies the monotonicity of688

the semiflow of (1.1)-(1.4) with respect to the cone K (Theorem 2.1). From a theo-689

retical point of view, this paper introduces a new class of reaction-diffusion models690

with order-preserving property, which may be of independent interest [35].691

A first application of the monotonicity result yields a simple proof of the existence692

and global attractivity of the unique positive steady state (or time-periodic solution)693

to the single species problem (Proposition 3.11). A second application concerns the694

dynamics of two competing phytoplankton species, as modeled by (1.1)-(1.4), in which695

sufficient conditions for local (Propositions 4.5 and 4.6) and global stability of semi-696

trivial steady states (Theorems 2.2-2.4) are obtained.697

Consider system (1.1)-(1.4) and fix D1 < D2 and α1 = α2 ≡ α. Theorems698

2.3 and 2.4 say that (ũ, 0) is globally asymptotically stable for α = 0, and (0, ṽ) is699

globally asymptotically stable for α = [g(1)− d]L, which means there is an exchange700

of stability between the semi-trivial steady states as α varies from 0 to [g(1) − d]L.701

In this particular case, we conjecture that there exist two constants αmin and αmax702

such that the following statements hold.703

• When α ≤ αmin, the semi-trivial steady state (ũ, 0) is globally asymptotically704

stable.705
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• When αmin < α < αmax, there exists a unique positive steady state (u∗, v∗)706

which is globally asymptotically stable.707

• When α ≥ αmax, the semi-trivial steady state (0, ṽ) is globally asymptotically708

stable.709

In the following, we present some numerical result in support of this conjecture. See710

Figure 2.711
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Fig. 2. A bifurcation diagram for steady states of (1.1)-(1.4). The blue curve shows the ratio
‖u∗‖L1/‖ũ‖L1 , and the red curve shows the ratio ‖v∗‖L1/‖ṽ‖L1 as α varies from 0 to 0.3, where
(u∗, v∗) is the stable steady state, and (ũ, 0) and (0, ṽ) are the two semi-trivial steady states. The
parameters are chosen as D1 = 1, D2 = 5, d1 = d2 = 0.001, g1(I) = g2(I) = mI

a+I
, m = 1, a = 10,

I0 = 1, k0 = k1 = k2 = 0.001, L = 100.
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