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Abstract. Understanding the evolution of dispersal is an important issue in evolu-
tionary ecology. For continuous time models in which individuals disperse through-
out their lifetime, it has been shown that a balanced dispersal strategy, which
results in an ideal free distribution, is evolutionary stable in spatially varying but
temporally constant environments. Many species, however, primarily disperse prior
to reproduction (natal dispersal) and less commonly between reproductive events
(breeding dispersal). These species include territorial species such as birds and reef
fish, and sessile species such as plants, and mollusks. As demographic and dispersal
terms combine in a multiplicative way for models of natal dispersal, rather than
the additive way for the previously studied models, we develop new mathematical
methods to study the evolution of natal dispersal for continuous-time and discrete-
time models. A fundamental ecological dichotomy is identified for the non-trivial
equilibrium of these models: (i) the per-capita growth rates for individuals in all
patches are equal to zero, or (ii) individuals in some patches experience negative
per-capita growth rates, while individuals in other patches experience positive per-
capita growth rates. The first possibility corresponds to an ideal-free distribution,
while the second possibility corresponds to a “source-sink” spatial structure. We
prove that populations with a dispersal strategy leading to an ideal-free distribu-
tion displace populations with dispersal strategy leading to a source-sink spatial
structure. When there are patches which can not sustain a population, ideal-free
strategies can be achieved by sedentary populations, and we show that these popula-
tions can displace populations with any irreducible dispersal strategy. Collectively,
these results support that evolution selects for natal or breeding dispersal strate-
gies which lead to ideal-free distributions in spatially heterogenous, but temporally
homogenous, environments.
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1. Introduction

Dispersal is an important aspect of the life histories of many if not most organisms.
However, it was shown by Hastings [1983] that selection generally favors slower rates
of dispersal in spatially varying but temporally constant environments. This is an
example of a widespread feature of spatial models in population dynamics and genetics
known as the reduction phenomenon, which is that movement or mixing generally
reduces growth [Altenberg, 2012]. Hastings considered types of dispersal such as
simple diffusion and symmetric discrete diffusion that did not allow organisms to
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perfectly match the distribution of resources in their environment. There are dispersal
strategies that do allow organisms to match the distribution of resources in their
environment, and it was shown by McPeek and Holt [1992] in numerical experiments
with discrete time models on two habitat patches that such strategies were favored
by selection. At equilibrium the populations using those strategies had equal fitness
in the two patches, which is one of the characteristics of an ideal free distribution.
The ideal free distribution was introduced by Fretwell and Lucas [1969] as a heuristic
theory of how organisms would distribute themselves if individuals could assess their
fitness in all locations and were free to move so as to optimize their fitness. In a
population that is at equilibrium and has an ideal free distribution all individuals
would have equal fitness and there would be no net movement of individuals, as a
change in local densities would lead to a reduction of fitness for some individuals. In
the context of population models it is natural to use the per capita growth rate as a
proxy for fitness, in which case the per-capita growth rates of all ideal-free individuals
equal zero at equilibrium. This observation can be used to characterize the ideal free
distribution in population models. It turns out that in many modeling contexts ideal
free dispersal strategies are evolutionarily stable in the sense that a population using
it cannot be invaded by an ecologically similar population using a dispersal strategy
that does not result in an ideal free distribution.

In his dissertation, Altenberg [1984] conjectured that strategies leading to an ideal
free distribution would be evolutionarily stable. It turns out that is indeed the case in
various types of models. One approach to modeling the evolution of dispersal, which
we shall not pursue here, is based directly on game theory. The implications of the
ideal free distribution in that context are described in [van Baalen and Sabelis, 1993,
Schreiber et al., 2000, Krivan, 2003, Cressman et al., 2004, Krivan et al., 2008]. The
approach that we will take is inspired by the theory of adaptive dynamics. We will
consider models of populations dispersing in patchy landscapes and perform what
amounts to a pairwise invasibility analysis to compare different dispersal strategies.
A dispersal strategy is evolutionarily stable if a population using it can resist invasion
by other populations using other strategies. In fact, we will show that in many cases
populations using dispersal strategies leading to an ideal free distribution can actu-
ally exclude ecologically similar competitors that are using other strategies. Results
on the evolutionary stability of ideal free dispersal have been obtained in various
modeling contexts, including reaction-diffusion-advection equations [Cantrell et al.,
2010, Averill et al., 2012, Korobenko and Braverman, 2014], discrete diffusion models
[Padrón and Trevisan, 2006, Cantrell et al., 2007, 2012a], nonlocal dispersal mod-
els [Cosner, 2014, Cantrell et al., 2012b], and discrete time models [Cantrell et al.,
2007, Kirkland et al., 2006]. All of these models, however, assume that individuals
are either semelparous, as in the case of the discrete-time models, or assume that
individuals disperse throughout their lifetime.

In many species, dispersing prior to reproducing (natal dispersal) is much more
common than dispersing between successive reproductive events (breeding dispersal)
[Harts et al., 2016]. Natal dispersal is the only mode of dispersal for sessile species
such as plants with dispersing seeds or sessile marine invertebrates with dispersing
larvae. Many territorial species, such as birds or reef fish, often exhibit long natal dis-
persal distances and little or no dispersal after establishing a territory [Greenwood and
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Harvey, 1982]. For example, Paradis et al. [1998] found that the mean natal dispersal
distance for 61 of 69 terrestrial bird species was greater than their mean breeding dis-
persal distance. For species exhibiting significant natal dispersal, the assumption of
individuals dispersing throughout their lifetime is inappropriate. A more appropriate
simplifying assumption is that these species only disperse a significant amount prior
to reproduction and negligible amounts after reproduction. Many continuous time
metapopulation models [Hanski and Ovaskainen, 2003, Mouquet and Loreau, 2002]
and discrete time models for iteroparous, as well as semelparous, populations [Hast-
ings and Botsford, 2006, Kirkland et al., 2006] have a structure consistent with this
assumption: individuals disperse between patches right after birth and settle on one
patch for the remainder of their lifetime.

In the present paper we will derive results on the evolutionary stability of ideal free
dispersal strategies for a general class of models accounting for natal dispersal. We
begin by examining the structure of their equilibria and their global stability. The
non-trivial equilibrium, when it exists, will be shown to exhibit a dichotomy: per-
capita growth rates are equal to zero in all patches (i.e. an ideal free distribution), or
some individuals experience negative per-capita growth rates while others experience
positive per-capita growth rates. We identify which density-independent dispersal
strategies give rise to the ideal-free distributions under equilibrium conditions and
show that populations employing these dispersal strategies exclude populations em-
ploying non-ideal free dispersal strategies. In the process, we verify a conjecture of
Kirkland et al. [2006] and extend some of the results of that paper. Furthermore,
we show that in models where some dispersing individuals are forced to disperse into
patches only supporting negative per-capita growth rates (sink patches), there is se-
lection for slower dispersal. (In such situations the only strategy that can produce an
ideal free distribution is the strategy of no dispersal at all.)

2. Sources, sinks, and single species dynamics

2.1. The general model and assumptions. We consider two types of models of
populations in patchy environments: (i) models which track population densities in
a network of patches, and (ii) patch occupancy models which track the frequencies
of occupied sites in a collection of patches , i.e. metapopulation models. For both
models, we assume that individuals only disperse shortly after reproduction, e.g.
plants via seeds, sessile marine invertebrates via larvae, territorial species such as
reef fish, etc. For these types of organisms, individuals can experience density- or
frequency-dependence in three demographic phases: fecundity (pre-dispersal), settle-
ment (post-dispersal), or survival (adults). Let ui(t) denote the population density
or frequency in patch i at time t, where t ∈ [0,∞) in continuous time and t = 0, 1, ...
in discrete time. Adults living in patch i produce offspring at a rate fi(ui) and expe-
rience mortality at a rate mi(ui). A fraction dji of offspring disperse from patch i to
patch j and only fraction sj(uj) of these offspring survive upon arriving in patch j.
If there are n patches, then the governing equation for ui is given by

(2.1) ∆ui = si(ui)
n∑

j=1

dijfj(uj)uj −mi(ui)ui, 1 ≤ i ≤ n,
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where ∆ui = dui

dt
in continuous time and ∆ui = u′i − ui in discrete time; u′i denotes

the population density in patch i in the next time step, i.e. u′i(t) = ui(t+ 1). Denote
R+ = [0,∞). Let S = R+ for the population density models and S = [0, 1] for the
population frequency models. Then Sn is the state space for the models. We make
the following assumptions.

(A1) Matrix (dij) is non-negative, column stochastic, and irreducible in the continu-
ous time case and primitive in the discrete time case. A square matrix is irreducible
if it is not similar via a permutation to a block upper triangular matrix. A primitive
matrix is a square nonnegative matrix some power of which is positive. Biologically,
no individuals are lost while dispersing and after enough generations, the descendants
of an adult from patch i can be found in all patches.

(A2) fi, si : S → R+ are continuous, positive, non-increasing functions, and mi : S →
R+ is continuous, positive, non-decreasing. Biologically, reproduction and survival
rates decrease with population density, while mortality increases with density.

(A3) uifi(ui) : S+ → R+ is strictly increasing. Biologically, as the population gets
larger in patch i, the more offspring are produced by the population in patch i. In
the discrete-time case, we require the stronger hypothesis that

∂

∂ui
(si(ui)diifi(ui) + (1−mi(ui))ui) > 0 for ui ∈ S, i = 1, 2, . . . , n.

This stronger hypothesis is needed to ensure monotonicity of the discrete time pop-
ulation dynamics.

For each i and population density ui, define

(2.2) gi(ui) :=
si(ui)fi(ui)

mi(ui)
.

If the population density were held constant at ui, then gi(ui) equals the mean number
of surviving offspring produced by an individual remaining in patch i during its life
time. Namely, gi(ui) is the reproductive number of individuals living in patch i
with the fixed local density ui. Hence, we view gi(ui) as the fitness of an individual
remaining in patch i. By (A2), gi are continuous, positive, decreasing functions. We
make the following stronger assumption on gi:

(A4) gi is strictly decreasing on S and limui→∞ gi(ui) < 1 for the population density
models and gi(1) < 1 for the population frequency models. Biologically, fitness within
a patch decreases with density and, at high enough densities, individual fitness is less
than one i.e. individuals don’t replace themselves.

The term gi(0) determines whether individuals remaining in patch i replace them-
selves during their lifetime under low-density conditions. If gi(0) > 1, individuals do
replace themselves and patch i is called a source patch. In the absence of dispersal,
source patches are able to sustain a persisting population. If gi(0) ≤ 1, individuals
at best just replace themselves and patch i is called sink patch. In the absence of
dispersal, sink populations go asymptotically extinct.

We describe two classes of models in the literature which satisfy our assumptions.
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2.1.1. The Mouquet-Loreau model. A particular example of the population frequency
models is due to Mouquet and Loreau [2002, 2003]. They introduced a model of
metapopulations incorporating spatial structure at two scales: the within-patch scale
and the between-patch scale. At the within-patch scale, the environment consists of a
collection of identical sites, each of which can be occupied at most by one individual.
For this population frequency model, the fraction of sites occupied in patch i is ui and
S = [0, 1]. Individuals within patch i produce offspring at rate bi of which a fraction
dji disperse to patch j. Offspring arriving in site i only survive if they colonize an
empty site. Assuming each offspring colonizes sites at random, the probability of
colonizing an empty site in patch i is 1 − ui. Offspring attempting to colonize an
occupied site die. Adults in site i experience a per-capita mortality rate of mi. Thus,
the dynamics in patch i are

(2.3)
dui
dt

= (1− ui)
n∑

j=1

dijbjuj −miui i = 1, 2, . . . , n.

In terms of (2.1), we have si(ui) = 1 − ui, fi(ui) = bi, mi(ui) = mi, and gi(ui) =
bi(1− ui)/mi. For this model, a patch is a source if bi > mi, and a sink otherwise.

2.1.2. The Kirkland et al. model. A particular example of the population density
models is due to Kirkland et al. [2006]. They described a metapopulation model
of semelparous populations (e.g. monocarpic plants, most insect species, certain fish
species) which compete for limited resources, reproduce, and disperse as offspring. For
these discrete-time models, all reproducing adults die and, consequently, mi(ui) = 1.
The number of surviving offspring produced per individual in patch i is given by a
decreasing function fi(ui) satisfying A3 and limui→∞ fi(ui) < 1. A standard choice
of fi is the Beverton and Holt [1957] model fi(ui) = λi/(1 + aiui) where λi is the
number of surviving offspring produced by an individual at low population densities,
and ai measures the strength of intraspecific competition. As all offspring are able
to colonize a patch, this model assumes si(ui) = 1 and, consequently, gi(ui) = fi(ui).
Source patches in this model satisfy λi > 1, while λi ≤ 1 for sink patches.

2.2. Global stability, ideal-free distributions, and source-sink landscapes. If
assumptions (A1) and (A2) hold, any non-zero equilibrium of (2.1) must be positive
in each component. Therefore, under these assumptions, (2.1) only has two types
of equilibria: the zero equilibrium u∗ = (0, 0, . . . , 0) and positive equilibria u∗ =
(u∗1, u

∗
2, . . . , u

∗
n) where u∗i > 0 for all i. See Lemma 2.1 below.

To determine whether the populations persist or not, we linearize (2.1) at the zero
equilibrium:

(2.4) ∆u = Lu where L = (Lij) with Lij = si(0)dijfj(0)−mi(0)δij.

Let ρ(L) denote the stability modulus of the matrix L i.e. the largest of the real parts
of the eigenvalues of L. The following lemma implies that persistence or extinction
of the population in (2.1) is determined by the sign of ρ(L).

Lemma 2.1. Suppose that (A1)-(A4) hold and let L be given by (2.4). If ρ(L) > 0,
then (2.1) has a unique positive equilibrium, which is globally asymptotically stable
among non-negative and not identically zero initial data in Sn. If ρ(L) ≤ 0, then the
zero equilibrium u∗ = 0 is globally stable among all non-negative initial data in Sn.
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The proof of Lemma 2.1 for discrete time is similar to that of Theorem 2.1 in Kirkland
et al. [2006]. The proof of Lemma 2.1 for continuous time is based upon the following
facts: (i) system (2.1) is strongly monotone and sublinear [(A1)-(A3)]; (ii) stability of
the zero equilibrium (0, ..., 0) of (2.1) is determined by ρ(L); (iii) all positive solution
trajectories of system (2.1) are bounded [(A1), (A2), (A4)]. We omit the proofs which
follow from standard monotone dynamical systems theory [Smith, 1995].

Whenever there is a positive equilibrium for (2.1), the following theorem proves
the existence of an ecological dichotomy.

Theorem 1. Suppose that (A1)-(A4) hold and u∗ is a positive equilibrium for (2.1).
Then either (i) gi(u

∗
i ) = 1 for all i, or (ii) there exist i and j such that gi(u

∗
i ) < 1

and gj(u
∗
j) > 1.

In this dichotomy, either the fitnesses of individuals equal one in all patches, or
there are patches where the fitness is greater than one, and other patches where it is
less than one. In the first case, individuals can not increase their fitness by moving to
any other patch and exhibit an ideal free distribution [Fretwell and Lucas, 1969]. In
the second case, fitness is greater than one in some patches and less than one in other
patches. As gi are decreasing functions, the patches where gi(u

∗
i ) > 1 are sources.

The patches where gi(u
∗
i ) < 1 can be either sinks or sources. In the latter case, they

are known as “pseudo-sinks” as they appear to be sinks, but populations in these
patches can persist in the absence of immigration [Watkinson and Sutherland, 1995].
Pseudo-sinks arise when immigration into a source patch increases the equilibrium
population density beyond the patch’s carrying capacity. As the fitness functions are
decreasing, only the second option is possible whenever there are “true” sinks in the
landscape (i.e. gi(0) < 1 for some i).

To prove Theorem 1 we need the following two lemmas which also are useful for
our later theorems. First, we need a property of the column sum norm of a matrix:
‖A‖∞ = max{

∑
i |Aij| : 1 ≤ j ≤ n}. As ‖A‖∞ = max‖u‖∞=1 ‖uTA‖∞ (where uT

denotes the transpose of u), ‖A‖∞ corresponds to an operator norm of A with respect
to the `∞ norm ‖u‖∞ = maxi |ui|.

Lemma 2.2. Let A be a non-negative, irreducible matrix. Then

ρ(A) ≤ ‖A‖∞
where equality implies that all of the column sums of A equal ρ(A).

Proof. Let u be a left eigenvector of A associated with the eigenvalue ρ(A). By the
Perron-Frobenius Theorem, u can be choosen to have strictly positive entries with
‖u‖∞ = 1. Let j be such that uj = 1. Then

(2.5) ρ(A) =
∑
i

Aijui ≤
∑
i

Aij ≤ ‖A‖∞

which gives the first assertion of the lemma. Now suppose that ρ(A) = ‖A‖∞. Define
B = A+ I where I denotes the identity matrix. As B is primitive, there exists n ≥ 1



EVOLUTION OF NATAL DISPERSAL 7

such that Bn has strictly positive entries. Then ρ(B) = ρ(A)+1 = ‖A‖∞+1 = ‖B‖∞
and

ρ(Bn) = ρ(B)n = (‖B‖∞)n ≥ ‖Bn‖∞ ≥ ρ(Bn)

where the first inequality follows from ‖ · ‖∞ being an operator norm and the second
inequality follows from (2.5) applied to Bn. Hence, ρ(Bn) = ‖Bn‖∞. Since Bn has
strictly positive entries, if ui < 1 for some i, then

ρ(Bn) =
∑
i

(Bn)ijui <
∑
i

(Bn)ij ≤ ‖Bn‖∞

contradicting that ρ(Bn) = ‖Bn‖∞. Therefore, u = (1, 1, . . . , 1). As uA = ρ(A)u, all
of the column sums of A equal ρ(A). �

We use Lemma 2.2 to prove the following crucial inequality.
Lemma 2.3. Let D be a column stochastic, non-negative, irreducible matrix and
S,Λ,M be diagonal matrices with positive diagonal entries. Then

ρ(SDΛ−M) ≤ ρ(SΛ−M)

with equality if and only if SΛ−M is a scalar matrix, i.e. a diagonal matrix with all
its main diagonal entries equal.

If D corresponds to a dispersal matrix, and Λ, S, and M have diagonal ele-
ments si(ui), fi(ui), and mi(ui), then this lemma implies that dispersal decreases
the “metapopulation” growth rate ρ(SDΛ−M). This is a type of reduction phenom-
ena that is similar to those described by Altenberg [2012].

Proof. Consider

S−1 (SDΛ−M + ρ(M)I)S = D ΛS︸︷︷︸
=A

+ ρ(M)I −M︸ ︷︷ ︸
=B

whose stability modulus equals ρ(SDΛ−M) + ρ(M). By definition, A is a diagonal
matrix with strictly positive diagonal entries ai and B is a diagonal matrix with
non-negative entries bi.

Define the matrix C by Cij = Dij
aj

aj+bj
for i 6= j and Cii = 1 −

∑
j Cji. C is

a column stochastic, irreducible, non-negative matrix. By definition of C, we have
C(A+B) = DA+B. Lemma 2.2 implies that

ρ(C(A+B)) ≤ ‖C(A+B)‖∞ = ρ(A+B)

with a strict inequality whenever A + B is non-scalar (as then the column sums of
C(A+B) are not all equal). Hence,

ρ(SDΛ−M) = ρ(C(A+B))− ρ(M) ≤ ρ(A+B)− ρ(M) = ρ(ΛS −M)

with a strict inequality whenever A+B is non-scalar. �

Proof of Theorem 1. Let u∗ be a positive equilibrium. Lemma 2.3 with D = (dij), S
with diagonal elements si(u

∗
i ), Λ with diagonal elements fi(u

∗
i ), and M with diagonal

elements mi(u
∗
i ) implies

max
i
{si(u∗i )fi(u∗i )−mi(u

∗
i )} = ρ(SΛ−M)

≥ ρ(SDΛ−M)(2.6)

= 0
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where the last line follows from u∗ being a positive equilibrium, and where the in-
equality in the second line is an equality if and only if SΛ−M is a scalar matrix.

Suppose SΛ−M is a scalar matrix. Then (2.6) implies si(u
∗
i )fi(u

∗
i )−mi(u

∗
i ) = 0

for all i. Equivalently, gi(u
∗
i ) = 1 for all i.

Suppose SΛ −M is not a scalar matrix. Then inequality (2.6) is strict and there
exists j such that sj(u

∗
j)fj(u

∗
j)−mj(u

∗
j) > 0. Equivalently, gj(u

∗
j) > 1. Furthermore,

as u∗ is an equilibrium,

0 =
∑
i

∆ui/si(ui)
∣∣∣
u=u∗

=
∑
i,`

f`(u
∗
`)di`u

∗
` −

∑
i

mi(u
∗
i )u
∗
i /si(u

∗
i )

=
∑
i

(fi(u
∗
i )−mi(u

∗
i )/si(u

∗
i )) u

∗
i .

As fj(u
∗
j)−mj(u

∗
j)/sj(u

∗
j) in this final sum is positive, there must be an i such that

fi(u
∗
i )−mj(u

∗
i )/si(u

∗
i ) < 0 i.e. gi(u

∗
i ) < 1. �

3. Evolution of ideal-free distributions

To study the evolution of dispersal, we consider two populations that have the same
population dynamics and differ only in their dispersal strategies. Let ui and vi be the
densities of two competing species in patch i. The governing equations for ui and vi
are

(3.7)

∆ui = si(ui + vi)
n∑

j=1

dijfj(uj + vj)uj −mi(ui + vi)ui,

∆vi = si(ui + vi)
n∑

j=1

Dijfj(uj + vj)vj −mi(ui + vi)vi,

where the matrix (Dij)ij is a non-negative, column stochastic matrix. The state space
for (3.7) is S2n.

We are interested in identifying classes of dispersal matrices (dij) such that pop-
ulations with this dispersal strategy displace populations with a different dispersal
strategy. Consistent with classical ecological theory, Theorem 1 suggests a solution.
Namely, assuming (dij) is irreducible, let u∗ be a positive equilibrium of the single
species model (2.1). There are two possibilities: there are patches with gi(u

∗
i ) > 1,

or there is an ideal free distribution with gi(u
∗
i ) = 1 for all i. Intuitively, for the first

option, another population where individuals prefer going to the source patch (i.e.
dij ≈ 1 for all j where i is such that gi(u

∗
i ) > 1) can invade the (u∗, 0) equilibrium.

Hence, the only candidates for the “unbeatable” strategy are those which lead to an
ideal-free distribution.

As equilibrium ideal-free distributions with an irreducible (dij) only occur if all
patches are sources, we begin by considering this case. Then we consider the case in
which there are sink patches.
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3.1. Landscapes of source patches. Assume there are only source patches i.e.
gi(0) > 1 for all i. For these landscapes, for each i, there is a unique u∗i > 0,
the carrying capacity of patch i, such that gi(u

∗
i ) = 1. Let u∗ = (u∗1, ..., u

∗
n) which

corresponds to an ideal free distribution. To understand which dispersal matrices
yield an ideal free distribution in the single species model (2.1), we have the following
lemma.

Lemma 3.1. Assume gi(0) > 1 for all i. If gi(u
∗
i ) = 1 for all i, then u∗ is an

equilibrium of (2.1) if and only if

(3.8)
n∑

j=1

dijfj(u
∗
j)u
∗
j = fi(u

∗
i )u
∗
i

for all i.

Proof. u∗ is an equilibrium of (2.1) if and only if gi(u
∗
i )
∑n

j=1 dijfj(u
∗
j)u
∗
j = fi(u

∗
i )u
∗
i

for every i, which is equivalent to (3.8) since gi(u
∗
i ) = 1 for every i. �

As the matrix (dij) is column stochastic, equation (3.8) implies the flux of individ-
uals coming into a patch equal the flux of individuals leaving a patch:

n∑
j=1

dijfj(u
∗
j)u
∗
j =

n∑
j=1

djifi(u
∗
i )u
∗
i .

Hence, an ideal free distribution implies that there is no net loss or gain of individuals
from dispersal, so there are no costs or benefits arising directly from dispersal. McPeek
and Holt [1992] call this “balanced dispersal”.

Definition 3.1. We say that (dij) is an ideal free dispersal strategy with respect to
u∗ if (3.8) holds for every i, and that (dij) is not an ideal free dispersal strategy if
(3.8) fails for some i.

There exists a close connection between an ideal free dispersal strategy and a line-
sum-symmetric matrix : a square matrix A such that the sum of the elements in the
i-th row of A equals the sum of the elements in the i-th column of A for every i.

Lemma 3.2. If matrix (dij) is an ideal free dispersal strategy with respect to u∗, then
matrix (dijfj(u

∗
j)u
∗
j) is line-sum-symmetric.

Proof. For each i,∑
j

dijfj(u
∗
j)u
∗
j = fi(u

∗
i )u
∗
i =

(∑
j

dji

)
fi(u

∗
i )u
∗
i =

∑
j

(djifi(u
∗
i )u
∗
i ) ,

i.e., matrix (dijfj(u
∗
j)u
∗
j) is line-sum-symmetric. �

The following classification result for line-sum-symmetric matrices is given in Eaves
et al. [1985] and plays important role in the proof of our first main result.

Theorem 2. Let A = (aij) be an n × n nonnegative matrix. Then A is line-sum-
symmetric if and only if

(3.9)
n∑

i,j=1

aij
xi
xj
≥

n∑
i,j=1

aij
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for all xi > 0, 1 ≤ i ≤ n. Moreover, if A is irreducible and line-sum-symmetric,
equality in (3.9) holds if and only if all the coordinates of x = (x1, ..., xn) coincide,
i.e., xi = xj for any 1 ≤ i, j ≤ n.

Our main result for sink-free landscapes is that ideal-free dispersal strategies al-
ways outcompete non-ideal-free strategies. This result provides a positive answer
to Conjecture 5.1 of Kirkland et al. [2006] for the Kirkland et al. model with
fi(ui) = λi/(1 + aiui). The proof is given in section 5.

Theorem 3. Suppose that (A1)-(A4) hold, the matrix (Dij) satisfies (A1), and gi(0) >
1 for all i. If (dij) is an ideal free dispersal strategy with respect to u∗ but (Dij) is not,
then (u∗, 0) is globally asymptotically stable among non-negative and not identically
zero initial data for (3.7).

Theorem 3 suggests that evolution selects for these ideal-free strategies. But what
happens when different ideal-free strategies compete? The following result implies
there are neutral dynamics with neither strategy outcompeting the other. Hence, one
would expect that genetic drift, which is not included in these deterministic models,
to play an important role. To state the theorem, recall the ω-limit set, ω(K), of a
compact set K ⊂ S2n is given by the closure of ∩T≥1∪t≥T {(u(t), v(t)) : (u(0), v(0)) ∈
K}. A compact set A ⊂ S2n is an attractor if there exists a compact neighborhood
K such that ω(K) = A. The basin of attraction of A is the set of points (u, v) ∈ S2n

such that ω({(u, v)}) ⊂ A.

Theorem 4. Suppose that (A1)-(A4) hold, the matrix (Dij) satisfies (A1), and gi(0) >
1 for all i. If (dij) and (Dij) are ideal free dispersal strategies with respect to u∗, then
the set of non-negative equilibria consists of (0, 0) and the line of equilibria given by

E = {(αu∗, (1− α)u∗) : 0 ≤ α ≤ 1} .
Furthermore, if fi, si, mi are continuously differentiable and satisfy f ′i(x) + s′i(x)−
m′i(x) < 0 for all x ∈ R+ and 1 ≤ i ≤ n, and, in addition, for the discrete-time case

∂

∂x
(si(x+ y)diifi(x+ y)x+ (1−mi(x+ y))x) > 0

for all x, y ∈ R+ and 1 ≤ i ≤ n, then E is an attractor and the ω-limit set for every
point in its basin of attraction consists of a single point in E .

Theorem 4 is a generalization of Kirkland et al. [2006, Proposition 5.3]. The proof is
given in section 6. The additional assumptions to ensure E is an attractor correspond
to a strengthening of our standing assumptions (A2) and (A3).

3.2. Source-sink landscapes. Now, let us consider landscapes with sink as well as
source patches. Specifically, assume for some 1 ≤ k < n, gi(0) ≤ 1 for k + 1 ≤ i ≤ n,
and gi(0) > 1 for 1 ≤ i ≤ k. For the source patches 1 ≤ i ≤ k, there exist unique
u∗i > 0 such that gi(u

∗
i ) = 1. Then u∗ = (u∗1, u

∗
2, . . . , u

∗
k, 0, . . . , 0) corresponds to an

ideal-free distribution as individuals (which only exist in the source patches) can not
increase their fitness by moving to any other patch. As u∗i = 0 for some i, the only
way this distribution can be realized as an equilibrium of (2.1) is if (dij) is reducible.
For example, if (dij) is the identity matrix i.e. the populations are sedentary, then
u∗ is a globally stable equilibrium of (2.1) for non-negative initial data whose first k
coordinates are positive.
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For a sedentary population competing with a dispersing population, the governing
dynamics are given by

(3.10)

∆ui = si(ui + vi)fi(ui + vi)ui −mi(ui + vi)ui,

∆vi = si(ui + vi)
n∑

j=1

Dijfj(uj + vj)vj −mi(ui + vi)vi.

The following theorem shows that these sedentary populations always outcompete
populations with an irreducible dispersal matrix. Intuitively, irreducibility of (Dij)
implies there is dispersal into sink habitats, resulting in a loss of individuals.

Theorem 5. Suppose that (A2)-(A4) hold, the matrix (Dij) satisfies (A1), and there
exists a k < n such that gi(0) > 1 if and only if 1 ≤ i ≤ k and gi(0) < 1 for some
i > k. Let u∗i > 0 be the unique solution to gi(ui) = 1 for 1 ≤ i ≤ k and u∗i = 0 for
i > k. Then (u∗, 0) is globally asymptotically stable among positive initial data for
(3.10).

A proof of Theorem 5 is given in section 7. We conjecture that there is a more
general class of reducible dispersal strategies that lead to exclusion of all irreducible
dispersal strategies. Specifically, if (dij) is a matrix which (i) restricted to patches
1 ≤ i ≤ k is an ideal-free dispersal strategy, and (ii) dij = 0 whenever i > k or j > k.

Conjecture 1. Suppose that (A2)-(A4) hold, the matrix (dij) is ideal-free in the
above sense, and the matrix (Dij) satisfies (A1). Let u∗i > 0 be the unique solution to
gi(ui) = 1 for 1 ≤ i ≤ k and u∗i = 0 for i > k. Then (u∗, 0) is globally asymptotically
stable among positive initial data for (3.7).

4. Conclusions

For populations dispersing prior to reproduction in a patchy landscape, we have
found a fundamental dichotomy about their equilibrium state: either the populations
have per-capita growth rates equal to zero in all occupied patches, or their per-
capita growth rates are positive in some patches and negative in others. The first
possibility corresponds to an ideal-free distribution in the sense of Fretwell and Lucas
[1969] as individual fitnesses are equal in all occupied patches. Under these ideal-
free equilibrium conditions, the populations also exhibit “balanced dispersal” as the
immigration rate into each patch is balanced by immigration out of the patch. The
second possibility in the dichotomy corresponds to a landscape, in the sense of Pulliam
[1988], containing source and sink patches (where sink patches may be pseudo-sinks
in the parlance of Watkinson and Sutherland [1995]). In source patches, births exceed
deaths and emigration exceeds immigration, while in sink patches the opposite occurs.
While this dichotomy has been the focus of a series empirical papers [Doncaster et al.,
1997, Diffendorfer, 1998, Tattersall et al., 2004], our Theorem 1 is, to the best of our
knowledge, the first mathematical demonstration of this dichotomy. While our proof
was for models with natal dispersal, the proof should apply to many more model
types including those with breeding dispersal as well as natal dispersal.

Given this ecological dichotomy, one can ask which one is favored by natural se-
lection acting on natal dispersal. For patchy landscapes, we have shown that natal
dispersal strategies leading to an ideal free distribution are evolutionarily stable. If
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all patches can support local populations, we observe that the strategies leading to
an ideal free distribution can be characterized in terms of the line sum symmetry
of certain matrices constructed from the dispersal matrices and the carrying capac-
ities of the patches in the models. In the case where some patches can not support
local populations and the dispersal matrix is irreducible we observe that the only
dispersal strategy that can produce an ideal free distribution is the strategy of no
movement at all. These results, together with similar results already known for mod-
els of semelparous populations or populations that continually disperse throughout
their lifetime, support the conclusion that in spatially varying but temporally con-
stant environments the dispersal strategies that are evolutionarily stable are those
that lead to an ideal free distribution of the population using them. An underlying
biological reason for this is that such strategies allow populations to perfectly match
the levels of resources across their environment.

Our analysis extends the reduction principle, in which movement or mixing gener-
ally reduces growth [Altenberg, 2012], to populations with natal dispersal. However,
beyond the “natal versus breeding dispersal” dichotomy [Greenwood and Harvey,
1982], populations are structured by other states such as size, age, gender, or stages,
and individuals in different states may have different dispersal propensities [Harts
et al., 2016]. Li and Schreiber [2006]’s analysis of discrete-time linear models demon-
strates that the reduction principle may not hold whenever two or more stages are
dispersing. More precisely, they proved whenever there are cycles in the population’s
dispersal graph that involve multiple stages, there exists a matrix model for which
this form of movement increases the population growth rate. Conversely, when no
such cycles exist, their analysis suggests that the reduction principle might hold. This
raises an interesting future challenge: what are evolutionarily stable strategies for dis-
persal for stage-structured populations? In particular, we conjecture that if only one
stage disperses, dispersal strategies of this stage leading to an ideal-free distribution
are evolutionarily stable.
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5. Proof of Theorem 3

One underlying mathematical difficulty in the proof of Theorem 3 is that (u∗, 0)
is neutrally stable, so even determining the local stability of (u∗, 0) seems to be of
interest. Our main idea is to establish the following lemma and apply the theory of
strongly monotone dynamical systems.

If assumptions (A1)-(A4) hold and (dij) is an ideal free dispersal strategy, (3.7) has
three special equilibria: the trivial equilibrium (0, 0), and two semi-trivial equilibria
(u∗, 0) and (0, v∗) assuming the latter exists. The following result ensures that these
are all possible non-negative equilibria of (3.7). Note that if (u, v) is a non-negative
equilibrium of (3.7) and (u, v) 6= (0, 0), (u∗, 0), (0, v∗), then by (A1) and (A2), all
components of u, v are positive, i.e., (u, v) is a positive equilibrium.
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Lemma 5.1. Suppose that (A1)-(A4) hold. If (dij) is an ideal free dispersal strategy
with respect with u∗ but (Dij) is not, then (3.7) has no positive equilibrium.

Proof. Suppose that (u, v) is a positive equilibrium of (3.7). Then

(5.11)

si(ui + vi)
n∑

j=1

dijfj(uj + vj)uj −mi(ui + vi)ui = 0,

si(ui + vi)
n∑

j=1

Dijfj(uj + vj)vj −mi(vi + vi)vi = 0

for every i. Dividing the first equation of (5.11) by si(ui + vi) and summing up in i
we obtain

(5.12)

n∑
i=1

mi(ui + vi)

si(ui + vi)
ui =

n∑
i,j=1

dijfj(uj + vj)uj

=
n∑

j=1

fj(uj + vj)uj

(
n∑

i=1

dij

)

=
n∑

j=1

fj(uj + vj)uj.

Similarly,

(5.13)
n∑

i=1

mi(ui + vi)

si(ui + vi)
vi =

n∑
j=1

fj(uj + vj)vj.

By (5.12) and (5.13), we obtain

(5.14)
n∑

i=1

mi(ui + vi)

si(ui + vi)
(ui + vi) =

n∑
j=1

fj(uj + vj)(uj + vj),

which can be rewritten as

(5.15)
n∑

i=1

(ui + vi)fi(ui + vi)
[
g−1i (ui + vi)− 1

]
= 0.

(Here g−1i denotes the reciprocal of gi; not the inverse function.)
Dividing the first equation of (5.11) by si(ui + vi)uifi(ui + vi)/[fi(u

∗
i )u
∗
i ] and sum-

ming up in i we obtain

(5.16)
∑
i,j

dij
fj(uj + vj)ujfi(u

∗
i )u
∗
i

fi(ui + vi)ui
=

n∑
i=1

u∗i fi(u
∗
i )mi(ui + vi)

si(ui + vi)fi(ui + vi)
.

By Lemma 3.2, matrix (dijfj(u
∗
j)u
∗
j) is line-sum-symmetric. Setting aij = dijfj(u

∗
j)u
∗
j

and

xi =
fi(u

∗
i )u
∗
i

fi(ui + vi)ui
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in Theorem 2, we obtain

(5.17)
∑
i,j

dijfj(u
∗
j)u
∗
j

fi(u
∗
i )u
∗
i /[fi(ui + vi)ui]

fj(u∗j)u
∗
j/[fj(uj + vj)uj]

≥
∑
i,j

djifi(u
∗
i )u
∗
i ,

which can be simplified as

(5.18)
∑
i,j

dij
fi(u

∗
i )u
∗
i fj(uj + vj)uj

fi(ui + vi)ui
≥
∑
i

fi(u
∗
i )u
∗
i .

By (5.16) and (5.18) we have

(5.19)
n∑

i=1

u∗i fi(u
∗
i )mi(ui + vi)

si(ui + vi)fi(ui + vi)
≥
∑
i

fi(u
∗
i )u
∗
i ,

which can be written as

(5.20)
n∑

i=1

u∗i fi(u
∗
i )
[
g−1i (ui + vi)− 1

]
≥ 0.

It follows from (5.15), (5.20) and gi(u
∗
i ) = 1 that∑

i

[(ui + vi)fi(ui + vi)− u∗i fi(u∗i )]
[
g−1i (ui + vi)− g−1i (u∗i )

]
≤ 0.

As uifi(ui) is strictly increasing and gi is strictly deceasing, we have ui + vi = u∗i
for every i and the inequality in (5.17) must be an equality. As (dij) is irreducible
and fi(u

∗
i )u
∗
i is positive for every i, (dijfi(u

∗
i )u
∗
i ) is irreducible. By Theorem 2, the

equality in (5.17) holds if and only if

(5.21)
fi(u

∗
i )u
∗
i

fi(ui + vi)ui
=

fj(u
∗
j)u
∗
j

fj(uj + vj)uj
, ∀1 ≤ i, j ≤ n.

As ui+vi = u∗i for each i, (5.21) implies that u∗iuj = uiu
∗
j for every i, j. Hence, ui = cu∗i

for some constant c > 0. Since ui + vi = u∗i and vi > 0, we have vi = (1 − c)u∗i for
some c ∈ (0, 1). Substituting ui = cu∗i and vi = (1 − c)u∗i into (5.11) and applying
gi(u

∗
i ) = 1 we have ∑

j

Dijfj(u
∗
j)u
∗
j = fi(u

∗
i )u
∗
i

for every i, which contradicts the assumption on (Dij). �

Next we study the stability of (0, v∗), where v∗ is a componentwise positive solution
of

(5.22) si(vi)
∑
j

Dijfj(vj)vj = mi(vi)vi, 1 ≤ i ≤ n.

Lemma 5.2. Suppose that (A1)-(A4) hold. If (dij) is an ideal free dispersal strategy
with respect to u∗ and (Dij) is not, then (0, v∗) is unstable.

Proof. The stability of (0, v∗) is determined by the dominant eigenvalue, denoted by
λ∗, of the linear problem

(5.23) λϕi = si(v
∗
i )
∑
j

dijfj(v
∗
j )ϕj −mi(v

∗
i )ϕi, 1 ≤ i ≤ n.
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Since matrix (dij) is non-negative and irreducible and fj(v
∗
j ) > 0 for each j, by the

Perron-Frobenius Theorem, the dominant eigenvalue of (5.23) exists, and the corre-
sponding ϕi can be chosen to be positive for every i. Multiply (5.23) by fi(u

∗
i )u
∗
i /[si(v

∗
i )fi(v

∗
i )ϕi]

and sum up the result in i. We have
(5.24)

λ∗
∑
i

fi(u
∗
i )u
∗
i

si(v∗i )fi(v∗i )
=
∑
i,j

dij
fj(v

∗
j )fi(u

∗
i )u
∗
iϕj

fi(v∗i )ϕi

−
∑
i

g−1i (v∗i )fi(u
∗
i )u
∗
i , 1 ≤ i ≤ n.

Since the matrix (dijfj(u
∗
j)u
∗
j) is line-sum-symmetric,

(5.25)

∑
i,j

dij
fj(v

∗
j )ϕjfi(u

∗
i )u
∗
i

fi(v∗i )ϕi

=
∑
i,j

dijfj(u
∗
j)u
∗
j

fj(v
∗
j )ϕjfi(u

∗
i )u
∗
i

fi(v∗i )ϕifj(u∗j)u
∗
j

≥
∑
i,j

dijfj(u
∗
j)u
∗
j

=
∑
j

fj(u
∗
j)u
∗
j ,

where we applied Theorem 2 by setting aij = dijfj(u
∗
j)u
∗
j and xi = fi(u

∗
i )u
∗
i /[fi(v

∗
i )ϕi].

Therefore,

(5.26) λ∗
∑
i

fi(u
∗
i )u
∗
i

si(v∗i )fi(v∗i )
≥
∑
i

fi(u
∗
i )u
∗
i [1− g−1(v∗i )].

Recall that v∗i satisfies

(5.27) si(v
∗
i )
∑
j

Dijfj(v
∗
j )v∗j −mi(v

∗
i )v∗i = 0, 1 ≤ i ≤ n.

Summing the equation of v∗i over i, we have

(5.28)
∑
i

fi(v
∗
i )v∗i

[
1− g−1i (v∗i )

]
= 0.

Hence, by (5.26) and (5.28) we have

(5.29)

λ∗
∑
i

fi(u
∗
i )u
∗
i

si(v∗i )fi(v∗i )
≥
∑
i

[1− g−1i (v∗i )] [fi(u
∗
i )u
∗
i − fi(v∗i )v∗i ]

=
∑
i

[g−1i (u∗i )− g−1i (v∗i )] [fi(u
∗
i )u
∗
i − fi(v∗i )v∗i ]

≥ 0,

as both g−1i and uifi(ui) are monotone increasing and gi(u
∗
i ) = 1. It suffices to show

that the last inequality of (5.29) is strict. If not, then u∗i = v∗i for every i. By (5.27)
and gi(u

∗
i ) = 1 for every i we see that

∑
j Dijfj(u

∗
j)u
∗
j = fi(u

∗
i )u
∗
i for every i, which

contradicts our assumption. Therefore, λ∗ > 0, i.e. (0, v∗) is unstable. �

Proof of Theorem 3. By (A1) and (A2), (3.7) is a strongly monotone dynamical
system. Theorem 3 follows from Lemmas 5.1 and 5.2 and Theorem A of Hsu et al.
[1996]. �
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6. Proof of Theorem 4

Let (ũ, ṽ) be a non-zero equilibrium for (3.7). Define w̃ = ũ + ṽ. Assume ũ 6= 0
(a parallel argument applies if ṽ 6= 0). The proof of Lemma 5.1 implies that w̃ = u∗.
Therefore, ũ must be a positive multiple of u∗; say ũ = αu∗ with α > 0. As ṽ =
w̃ − ũ = (1− α∗)u∗ ≥ 0, α must be ≤ 1. This completes the proof of the first claim.

To prove the second claim, we will show that E is a normally hyperbolic attractor in
the sense of Hirsch et al. [1977]. We present the proof of this claim in the discrete-time
case. The proof for the continuous-time case is similar. Define F,G : Rn

+×Rn
+ → Rn

+

by

Fi(u, v) = si(ui + vi)
n∑

j=1

dijfj(uj + vj)uj + (1−mi(ui + vi))ui

Gi(u, v) = si(ui + vi)
n∑

j=1

Dijfj(uj + vj)vj + (1−mi(vi + vi))vi.

The discrete-time dynamics of (3.7) are given by iterating the map H = (F,G). The
derivative matrix of H is of the form

J =

(
∂uF ∂vF
∂uG ∂vG

)
where ∂uF , ∂vF , ∂uG, and ∂vG denote the n × n matrices of partials ∂Fi

∂uj
, ∂Fi

∂vj
, ∂Gi

∂uj
,

and ∂Gi

∂vj
, respectively. Assumption (A3) implies that the off-diagonal elements of ∂uF

satisfy
∂Fi

∂uj
= si(ui + vi)dij(f

′
j(uj + vj)uj + fj(uj + vj)) ≥ 0 for j 6= i

with equality if and only if dij = 0. The on-diagonal terms, by assumption, satisfy

∂Fi

∂ui
=

∂

∂ui
(si(ui + vi)diifi(ui + vi)ui + (1−mi(ui + vi))ui) > 0.

By assumption, the entries of ∂vF satisfy

∂Fi

∂vj
= si(ui + vi)dijf

′
j(uj + vj)uj ≤ 0 for j 6= i

with equality if and only if dij = 0 or uj = 0, and

∂Fi

∂vi
= s′i(ui + vi)

n∑
j=1

dijfj(uj + vj)uj + si(ui + vi)diif
′
i(ui + vi)ui −m′i(ui + vi)ui ≤ 0.

Analogous statements apply for ∂uG and ∂vG with the d matrix being replaced by
the D matrix.

For points in E◦ = {(αu∗, (1 − α)u∗) : α ∈ (0, 1)}, J is primitive with respect to
the competitive ordering ≥K on Rn

+ × Rn
+ i.e. (ũ, ṽ) ≥K (u, v) if ũi ≥ ui and ṽi ≤ vi

for all i. Since E is a line of equilibria, J for any point on E has an eigenvalue of
one associated with the eigenvector (u∗,−u∗). The Perron Frobenius theorem (with
respect to the competitive ordering) implies that all the other eigenvalues of J for
points on E◦ are strictly less than one in absolute value.

Next consider a point on E \E◦ = {(0, u∗), (u∗, 0)}, say (0, u∗). At this point, J has
a lower triangular block structure as ∂vF is the zero matrix. Hence, the eigenvalues
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of J are determined by the matrices ∂uF and ∂vG evaluated at (0, u∗). We claim that
the dominant eigenvalue of ∂vG is strictly less than one in absolute value. To see why,
we can express the single strategy mapping v 7→ G(0, v) in the form v 7→ A(v)v and

∂vG(0, v) = A(v) +
n∑

i=1

∂A

∂vi
(v)diag(v)

where diag(v) denotes a diagonal matrix with diagonal entries v1, . . . , vn. By assump-
tion, the matrices of partial derivatives ∂A

∂vi
have entries that are non-positive with

some strictly negative. At the equilibrium v = u∗ for the single strategy dynamics, we
have A(u∗) = u∗ and, consequently, the dominant eigenvalue of A(u∗) equals one. As
∂vG(0, u∗) is a primitive matrix with some entries strictly smaller than the entries of
A(u∗) and none of the entries larger, the dominant eigenvalue of ∂vG(0, u∗) is strictly
less than one, as claimed. On the other hand, the matrix ∂Fu evaluated at (0, u∗) is
also primitive. Due to the line of equilibria E , this primitive matrix has a dominant
eigenvalue of 1 and the remaining eigenvalues are strictly less than one in absolute
value.

Hence, we have shown that E is a normally hyperbolic one dimensional attractor.
Theorem 4.1 of Hirsch et al. [1977] implies that there exists a neighborhood U ⊂ Rn

+×
Rn

+ of E and a homeomorphism h : [0, 1] × V → U with V = {z ∈ R2n−1 : ‖z‖ < 1}
such that h(α, 0) = (αu∗, (1− α)u∗), h(0, V ) = {(0, v) ∈ U}, h(1, V ) = {(u, 0) ∈ U},
and limn→∞H

n(u, v) = (αu∗, (1− αu∗)) for all (u, v) ∈ h({α} × V ).

7. Proof of Theorem 5

For 1 ≤ i ≤ k, let u∗i > 0 be the unique solution to gi(u
∗
i ) = 1. Define u∗ =

(u∗1, . . . , u
∗
k, 0, 0, . . . , 0). Provided it exists, let v∗ be the unique, positive equilibrium

to (2.1) for species v, else let v∗ = (0, 0, . . . , 0) be the zero equilibrium. To prove the
theorem, we prove two lemmas which imply there are no strongly positive equilibria
(ũ, ṽ) and all equilibria, except (u∗, 0), are linearly unstable. From the theory of
monotone dynamical systems [Smith, 1995] it follows that all solutions with strongly
positive initial conditions converge to (u∗, 0).

Lemma 7.1. Let (ũ, ṽ) be a component-wise non-negative equilibrium of (3.10).
Then one of the following statements holds: (i) (ũ, ṽ) = (0, 0), (ii) ũi = u∗i for some
1 ≤ i ≤ k and ṽ = 0, (iii) (ũ, ṽ) = (0, v∗), and (iv) ũi > 0 for some 1 ≤ i ≤ k, ṽj > 0
for some j, and ũ` = 0 and g`(ṽ`) > 1 for some 1 ≤ ` ≤ k.

Proof. (i)-(iii) describe all equilibria (ũ, ṽ) where either ũ = 0 or ṽ = 0. Consider an
equilibrium where ũ 6= 0 and ṽ 6= 0. Then ũi > 0 for some 1 ≤ i ≤ k, and ṽj > 0
for some j. In fact, irreducibility of D implies ṽi > 0 for all i. As gi are decreasing
functions and gi(0) ≤ 1 for i > k, ũi = 0 for i > k. Define S, Λ, M to be the diagonal
matrices with diagonal entries si(ũi + ṽi), fi(ũi + ṽi), mi(ũi + ṽi). The equilibrium
condition ∆v = 0 implies that 0 = ρ(SDΛ−M). Lemma 2.3 implies

0 = ρ(SDΛ−M) < ρ(SΛ−M) = max
i
{si(ũi + ṽi)f(ũi + ṽi)−mi(ũi + ṽi)}.

Hence, there exists some 1 ≤ i ≤ k such that gi(ṽi) ≥ gi(ũi + ṽi) > 1. �

Lemma 7.2. The equilibrium (u∗, 0) is linearly stable and all other equilibria (ũ, ṽ)
are unstable.
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Proof. We begin by showing (u∗, 0) is linearly stable. Let S, Λ, and M be the diagonal
matrices with diagonal entries si(u

∗
i ), fi(u

∗
i ), and mi(u

∗
i ). We have ρ(SΛ − M) =

maxi si(u
∗
i )f(u∗i ) − mi(u

∗
i ) = 0. As gi(0) < 1 for some i > k, Lemma 2.3 implies

ρ(SDΛ−M) < ρ(SΛ−M) = 0. Hence, (u∗, 0) is linearly stable.
To show the remaining types of equilibria are unstable, we consider the four cases

given by Lemma 7.1. For cases (i), (ii) with ũ 6= u∗, and (iv), ũi = 0 for some 1 ≤ i ≤ k
and, consequently, si(ũi)fi(ũi) −mi(ũi) > 0 for this i, ensuring instability. For case
(iii), define S, Λ, and M to be the diagonal matrices with diagonal entries si(v

∗
i ),

fi(v
∗
i ), and mi(v

∗
i ). Then 0 = ρ(SDΛ−M). Lemma 2.3 implies 0 = ρ(SDΛ−M) <

ρ(SΛ−M). Hence, (0, v∗) is linearly unstable. �

Lemma 7.3. If u0 and v0 are componentwise positive, then the ω-limit set ω((u0, v0)) =
{(u∗, 0)}.

Proof. Consider (ū, v̄), where (ū, v̄) is a componentwise nonnegative equilibrium of
(3.9). Note that if for some i, ūi 6= 0, then gi(ūi + v̄i) = 1, which implies that
gi(0) > 1.

Consequently, if gi(ūi + v̄i) 6= 1, ūi = 0. In particular, whenever gi(0) ≤ 1 and
v̄i 6= 0, ūi = 0. Note that v̄ satisfies

v̄i =
si(ūi + v̄i)

mi(ūi + v̄i)

n∑
j=1

Dijfj(ūj + v̄j)v̄j, 1 ≤ i ≤ n.

Since the matrix D = (Dij) is irreducible, either v̄ ≡ 0 or v̄i > 0 for i = 1, ..., n.
Suppose v̄ 6≡ 0. Let S, Λ and M be as in the proof of Lemma 6.1. By Lemma 2.2,

0 = ρ(SDΛ−M) ≤ ρ(SΛ−M).

Consequently, there is an i so that

si(ūi + v̄i)fi(ūi + v̄i)−m(ūi + v̄i) ≥ 0,

which implies that gi(ūi + v̄i) ≥ 1. Since gi(0) ≤ 1 for j > k, sj(ūj + v̄j)fj(ūj + v̄j)−
m(ūj + v̄j) < 0 for j > k. So SΛ−M is not a scalar matrix. Hence ρ(SDΛ−M) <
ρ(SΛ−M).

So there is an i so that

si(ūi + v̄i)fi(ūi + v̄i)−m(ūi + v̄i) > 0,

and thus gi(ūi + v̄i) > 1. Since gi(ūi + v̄i) 6= 1, ūi = 0 and gj(0) ≤ 1 for j > k, i ≤ k.
Hence if v̄ 6≡ 0, there is an i ∈ {1, ..., k} so that ūi = 0 and gi(v̄i) > 1. Note that

gi(v̄i) > 1 implies

si(v̄i)fi(v̄i)−mi(v̄i) > 0.

Now let (u(t), v(t)) be any trajectory (in either discrete or continuous time) corre-
sponding to (u(0), v(0)) = (u0, v0). (Here u0 and v0 are componentwise positive.) If
there is a sequence of times tn →∞ as n→∞ so that

(u(tn), v(tn))→ (ū, v̄),
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then there is an N so that for n ≥ N

(∆u)i(tn)

ui(tn)
= si(ui(tn) + vi(tn))fi(ui(tn) + vi(tn))−mi(ui(tn) + vi(tn))

>
si(v̄i)fi(v̄i)−mi(v̄i)

2
.

Consequently, ui(tn) 6→ 0. So there can be no (ū, v̄) with v̄ 6≡ 0 for which (ū, v̄) ∈
ω((u0, v0)). So it must be the case that v̄ ≡ 0 if (ū, v̄) ∈ ω((u0, v0)).

Suppose there is a sequence of times tn →∞ as n→∞ so that

(u(tn), v(tn))→ (ū, 0).

For i ∈ {1, ..., k}, we have ūi = 0 or ūi = u∗i . If ūi = 0, there is an N so that for
n ≥ N

(∆u)i(tn)

ui(tn)
= si(ui(tn) + vi(tn))fi(ui(tn) + vi(tn))−mi(ui(tn) + vi(tn))

>
si(v̄i)fi(v̄i)−mi(v̄i)

2
> 0.

Since g(u∗i ) = 1 implies gi(0) > 1, the only possibility is that ū = u∗. The upshot
is that (u∗, 0) is globally attracting relative to initial data which is componentwise
positive.
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