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Abstract: We study a Lotka-Volterra type reaction-diffusion-advection

system, which describes the competition for the same resources between

two aquatic species undergoing different dispersal strategies, as reflected

by their diffusion and/or advection rates. For the non-advective case, this

problem was solved by Dockery et al. [9], and recently He and Ni [14] pro-

vided a further classification on the global dynamics for a more general

model. However, the key ideas developed in [9, 14] do not appear to work

when advection terms are involved. By assuming the resource function

is decreasing in the spatial variable, we establish the non-existence of co-

existence steady state and perform sufficient analysis on the local stability

of two semi-trivial steady states, where new techniques were introduced

to overcome the difficulty caused by the non-analyticity of stationary so-

lutions as well as the diffusion-advection type operators. Combining these

two aspects with the theory of monotone dynamical systems, we finally

obtain the global dynamics, which suggests that the competitive exclusion

principle holds in most situations.

Résumé: Nous étudions un systéme de réaction-diffusion-advection de

type Lotka-Volterra, qui décrit la compétition pour les mêmes ressources

entre deux espéces aquatiques ayant différentes stratégies de dispersion,
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reflétées par leurs taux de diffusion et/ou d’advection. Le cas sans ad-

vection a été traité par Dockery et al. [9], et récemment He et Ni [14]

ont également donné une classification de la dynamique globale pour un

modéle plus général. Cependant, les idées clés développées dans [9, 14] ne

semblent pas fonctionner en présence de termes d’advection. En supposant

que les ressources sont décroissantes par rapport á la variable d’espace,

nous montrons la non-existence d’état stationnaire avec co-existence des

espéces et analysons la stabilité locale de deux états stationnaires semi-

triviaux. De nouvelles techniques sont introduites pour contourner la d-

ifficulté créée par la non-analyticité des solutions stationnaires et par des

opérateurs de type diffusion-advection. En combinant ces deux aspects

avec la théorie des systémes dynamiques monotones, nous obtenons fi-

nalement la dynamique globale, qui suggére que le principe d’exclusion

par compétition se produit dans la plupart des situations.

AMS subject classifications: 35K57, 35P05, 37C65, 92D25

Keywords: Competition-diffusion-advection; environmental heterogene-
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1 Introduction

In the past few decades, reaction-diffusion equations have been frequently utilized as

standard models to address problems related to spatial ecology and evolution, and

one of the most successful examples is the two-species Lotka-Volterra competition-

diffusion system; see for instance [12, 13, 15, 16, 24, 25] and the books [2, 31].

One well-known and widely accepted result on the evolution of dispersal, based on

a reaction-diffusion system, is due to Hastings [11], where he considered two competing

species with the only difference lying in their random diffusion rates, and showed that

the species can invade successfully when rare if and only if it is the slower diffuser

provided that the environment is spatially heterogeneous but temporally constant;

see also Dockery et al. [9]. A recent remarkable work, in this research direction, was

given by He and Ni [14], where they further investigated a more general model in the

sense that two populations are allowed to behave differently in their dispersal rates,

growth rates and competition abilities, and they successfully established a complete

classification on all possible long time dynamical behaviors. This success, to a large

extent, is attributed to a key a priori estimate on the co-existence steady state, which

says that every co-existence steady state, if exists, is linearly stable. Such a finding

is very powerful, since it, together with the theory of abstract competitive systems

[18, 19], enables one to conclude that the global dynamics could be determined by
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the local dynamics.

However, when advection terms are incorporated in these classical Lotka-Volterra

competition-diffusion systems, the global dynamics of the resulting reaction-diffusion-

advection systems is far from being completely understood. Some recent progress has

been made by Averill et. al [1] via a bifurcation approach. The main reason, from

the viewpoint of the operator theory, is that the linearized operator of the diffusion-

advection type is no longer self-adjoint, and hence, various methods developed in

the field of diffusive Lotka-Volterra models (without drifting terms) do not continue

to work well; for instance, the asymptotic behavior of the principal eigenvalue of

diffusion-advection operators for small diffusion coefficient can be very different [6].

In this connection, our current work may be partially viewed as a further exploration

and application of the spectral theory for non-self-adjoint operators.

In this paper, we aim to investigate the dynamical behaviors of the following two

species Lotka-Volterra reaction-diffusion-advection system:

ut = d1uxx − α1ux + u[r(x)− u− v], 0 < x < L, t > 0,
vt = d2vxx − α2vx + v[r(x)− u− v], 0 < x < L, t > 0,
d1ux(x, t)− α1u(x, t) = 0, x = 0, L, t > 0,
d2vx(x, t)− α2v(x, t) = 0, x = 0, L, t > 0,
u(x, 0) = u0(x) ≥, 6≡ 0, 0 < x < L,
v(x, 0) = v0(x) ≥, 6≡ 0, 0 < x < L.

(1.1)

Problem (1.1) can be used to describe the competition between two aquatic species,

whose population density are denoted, respectively, by u(x, t) and v(x, t) at location x

and time t > 0, in advective environments such as a stream/river with unidirectional

water flow, which is abstracted into a one-dimensional habitat and is represented by

the interval (0, L). Due to self-propelling and/or water turbulence, both populations

are subject to diffusive movements with rate di > 0, and meanwhile, under the effect of

unidirectional water flow, they are also experiencing some passive/directed movements

towards the downstream end (defined by x = L) with rate αi > 0, i = 1, 2. The

function r(x) accounts for the local carrying capacity or the intrinsic growth rate at

location x, which also reflects the spatial distribution of resources and is usually called

the resource function. The no-flux boundary conditions imposed above indicate that

both boundaries act as barriers and no individuals can move in or out through the

habitat ends, that is, the environment is closed. We note here that the unidirectional

water flow may produce different extent of drifting effects on different species, and so,

in general, the resulting effective advection speeds may be different, i.e., α1 6= α2. An

empirical support for this comes from Trimbee and Harris [35], where they designed

an experiment in a small reservoir, Guelph Lake, Ontario, which lasted 105 days, and

finally they detected that Stephanodiscus has an advection rate of 0.4 cm/s, while

Aphanizomenon has an advection rate of 0.2 cm/s, which illustrates that different
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algal species may undergo different advection speeds although they are living in the

same river. For the derivation details, based on a random-walk approach, of model

(1.1) and its variants, we refer the interested readers to [29, 30].

We remark here that system (1.1) above can also be applied to model the vertical

motion of nutrients or plankton species in a water column [27, 37], where as most of

these organisms are heavier than the water, under the action of gravity, they will sink

to the ocean floor. In such a situation, x = 0 and x = L represent the water surface

and bottom, respectively, and also the no-flux boundary conditions make sense since

no individuals can cross over the water surface and bottom.

Mathematically, system (1.1) can be studied in the following two cases

d1 6= d2 and α1, α2 > 0, (1.2)

and

d1 = d2, α1, α2 > 0, and α1 6= α2. (1.3)

Case (1.2), biologically, reflects a more reasonable and flexible situation since two

species are allowed to have different diffusion and advection rates, and case (1.3)

describes a special scenario with the only difference between two competitors lying in

their advection rates. This special case will enable us to explore whether strong or

weak advection is more beneficial for individuals to win the competition. Without loss

of generality, we may assume 0 < d1 < d2 in the general case (1.2) and 0 < α1 < α2

in the special case (1.3). Moreover, throughout this paper, we make the following

hypothesis:

(H) r(x) ∈ C1+ν([0, L]) is non-constant and positive on [0, L] for some ν ∈ (0, 1),

and r′(x) ≤, 6≡ 0 in [0, L].

The positivity of r(x) is used to guarantee the existence of semi-trivial steady states

for later discussion convenience. The decreasing monotonicity of r(x) comes from

the biological motivation. Specifically, in the context of river ecology, it means that

better resources are located along upstream direction, while in the context of water

column, this assumption seems to have more compelling biological interpretations as

plankton species depend on light for their metabolism which clearly decreases with

depth.

To understand the global dynamics of system (1.1), in view of the monotone dy-

namical system theory (see, e.g., [17, 32]), we need to figure out two things: (1)

the local stability of two semi-trivial steady states, and (2) whether there are co-

existence steady states; if so, whether they are all stable (and thus unique). Usually,

the second issue is highly challenging. The work of He and Ni [14] made an impor-

tant contribution to this issue by establishing the stability of all possible co-existence
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steady states for a class of Lotka-Volterra competition systems without advection,

but the techniques developed therein rely heavily on the self-adjoint property of the

diffusion-type operator and do not appear to work for the current advective case.

Moreover, the advection terms also bring new difficulty to studying the linear stabil-

ity of semi-trivial steady states, since the current diffusion-advection type operator

does not possess same good properties as the diffusion-type operators [9, 11]. For

example, the principal eigenvalue (guaranteed by the Krein-Rutman theorem [21]) of

the diffusion-advection type operator, generally, is not monotonic in diffusion rate or

advection rate.

As indicated in the above discussion, we need to introduce new ideas and tech-

niques to overcome the emerging difficulties caused by advection. Specifically, regard-

ing the co-existence steady state, we develop a technical analytic approach to directly

exclude the existence of any co-existence steady state for most situations of system

(1.1) (indeed, we treat a more general model including different types of boundary

conditions), in which the key point is to do sufficient analysis on the potential be-

haviors of two auxiliary functions T and S; see Theorem 1.1 and its proof. For the

linear stability of semi-trivial steady states, we introduce different kinds of ways to

address this issue. For instance, we derive a very useful characterization of the princi-

pal eigenvalue in terms of the semi-trivial steady state and the principal eigenfunction

(see, e.g., (4.31) and (5.10)), and then establish proper estimates on the steady state

and eigenfunction to determine the linear stability, where we employed some analytic

skills in PDE. Resting on these two aspects, we finally appeal to the theory of ab-

stract competitive systems developed in [18, 19, 22] to obtain the global dynamics.

It is expected that our work may be of interest to those researchers in the areas of

spectral theory, reaction-diffusion equations, and dynamical systems.

1.1 Developments and related works

System (1.1) can be regarded as a ramification of the following single species growth

model: 
ut = duxx − αux + u[r − u], 0 < x < L, t > 0,
dux(0, t)− αu(0, t) = 0, t > 0,
u(L, t) = 0, t > 0,

(1.4)

which was proposed by Speirs and Gurney [34] to describe certain hydrodynamical s-

cenarios and to study the biological phenomenon “drift paradox”. Here all parameters

in (1.4) can be understood similarly as that in (1.1), except the zero Dirichlet bound-

ary condition at the downstream end x = L, which means that the downstream area

is hostile for organisms to survive and can be applied to depict the situation “stream

to ocean”. Among other things, Speirs and Gurney proved that the trivial steady
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state u ≡ 0 is unstable if and only if α <
√

4dr and L > L∗, where

L∗ = 2d
π − arctan

(√
4dr−α2

α

)
√

4dr − α2
,

which suggests that the persistence of single species is only likely when advection

is weak relative to diffusion and the stream is long enough. In other words, suffi-

cient random movements, to some extent, can balance the negative effects incurred

by advection which always drives the species to the hostile environment—the right

boundary, and so the likelihood of persistence is enhanced. See also [36] and [28] for

the discussion of the same equation but with different boundary conditions at the

downstream end.

Recently, there are some works on the homogeneous version of system (1.1), that

is, {
ut = d1uxx − α1ux + u[r0 − u− v], 0 < x < L, t > 0,
vt = d2vxx − α2vx + v[r0 − u− v], 0 < x < L, t > 0,

(1.5)

where r0 is a positive constant. For instance, to study the evolution of random diffu-

sion, Lou and Lutscher [26] assumed α1 = α2 and prescribed the so-called Danckwerts

boundary condition, and they proved that the slower diffuser will always be wiped

out by the faster one, i.e., faster diffusion will evolve, which is in sharp contrast to the

non-advective case [9, 11]. This finding was further generalized by Lou and Zhou [28]

to a wide class of boundary conditions including the no-flux type. Later on, Lou, Xiao

and Zhou [27] applied the above system to the biological situation of water column,

where the advection is caused by the gravity. By assuming d1 = d2 and α1 6= α2

and imposing the no-flux boundary conditions, they demonstrated that weaker ad-

vection is more beneficial for the individuals to win the competition; indeed, they

finally showed that the movement without advection in homogeneous environment

is evolutionarily stable. The general case, d1 6= d2 and α1 6= α2, of system (1.5)

with no-flux type boundary conditions was recently studied by Zhou [38], where he

obtained two main results: (i) the strategy of a combination of faster diffusion and

slower advection is always favorable, which can be seen as a mixture of the main

conclusions in [28] and [27]; (ii) the strategy of faster diffusion together with much

stronger advection relative to diffusion is always selected against, which shows that

too much strong advection can counterbalance the positive effects of larger diffusion

and is thus disadvantageous for organisms.

When the spatial variations of the environment are taken into account, that is,

r = r(x), depending nontrivially on the spatial variable x, much less is known about

system (1.1). The case d1 6= d2 and α1 = α2 has been investigated by Lam, Lou and

Lutscher [23], where, by assuming both diffusion and advection rates are sufficiently
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small and comparable, they studied the existence and multiplicity of evolutionarily

stable strategies. Another case, d1 6= d2 and α1 = 0 < α2, which means that one

species undergoes random diffusion only (no advection) while the other one takes

both random and biased movements, has been recently studied by Zhao and Zhou

[37], where they found much richer phenomena than the corresponding homogeneous

case [27].

The current work aims to treat a more general situation. To be more specific,

if we look at the plane of the parameters α1-α2, then [23] addresses the dynamics

on the line α2 = α1 but nearby the origin, and [37] deals with the dynamics on the

line α1 = 0. Our setting (1.2) corresponds to the first quadrant of the α1-α2 plane.

We will regard the advection rate α1 (resp. α2) as the variable parameter to study

the global dynamics of system (1.1) under the assumption (H); see Theorem 1.3 and

Figure 1 below. In the last section, we will also make a comparison between the

current work and the homogeneous case [38].

1.2 Main results

In the sequel, we denote by (ũ, 0) and (0, ṽ) the two semi-trivial steady states of system

(1.1). In addition, by “g.a.s” we mean that the steady state is globally asymptotically

stable among all non-negative and not identically zero initial conditions.

Our first result concerns the non-existence of co-existence steady state, which plays

a significant role in determining the global dynamics of system (1.1). For independent

interest and potential applications, we present this result in a more general version

by considering more general boundary conditions at the downstream end:
d1uxx − α1ux + u[r(x)− u− v] = 0, 0 < x < L,
d2vxx − α2vx + v[r(x)− u− v] = 0, 0 < x < L,
d1ux(0)− α1u(0) = d2vx(0)− α2v(0) = 0,
d1ux(L)− α1u(L) = −bα1u(L),
d2vx(L)− α2v(L) = −bα2v(L),

(1.6)

where the parameter b is used to measure the relative rate of population loss at the

downstream end due to water flow [29]. In particular, for b = 0 we have the no-flux

type boundary conditions; for b = 1, we obtain the free-flow (Neumann) boundary

conditions; and for b→∞, we see the hostile boundary conditions.

Theorem 1.1 Assume that (H) holds. Then the following statements hold:

(1) If 0 < d1 ≤ d2, α2 ≥ d2
d1
α1 and (d1 − d2)

2 + (α1 − α2)
2 6= 0, then for any

b ∈ [0,∞), system (1.6) has no positive solution;

(2) If 0 < d1 < d2, α1 ≥ α2 and α1 ≥ 2
√
r(0)d1, then for any b ∈ [0,∞), system

(1.6) has no positive solution.
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Compared with the non-existence result [37, Theorem 1.1] (α1 = 0 < α2, no-flux

boundary condition), part (1) of the above theorem is much more general since it

holds for any b ≥ 0. Part (2) is also new. From the biological point of view, Theorem

1.1 above reveals that when the resource function is decreasing in space, very possibly

two species will not coexist eventually. We provide here a possible interpretation for

this phenomenon: advective force will not be favored as it always drives individuals

to move toward the downstream end, which is exactly the direction the resources

are declining; if b = 0, although there is no loss of individuals at the downstream

end, advection will cause overcrowding of the population at the downstream end

with the least amount of resource, which clearly is harmful for both population to

coexist; as b increases, as more individuals will be washed out of the habitat by the

water flow at the downstream end, it is even harder for two species to coexist. To

establish the above theorem, we note here that the arguments developed in [38] for

the homogeneous case of system (1.1) (i.e., r(x) ≡ r0 for some constant r0 > 0) do not

work anymore, since now the steady states of system (1.6) (if exist) are not analytic

in view of the Cauchy-Kowalevski theory [20]. This fact was ignored in our recent

work [37], but here we will introduce new analytic skills to fill this gap.

Our second result concerns the linear stability of semi-trivial steady states (ũ, 0)

and (0, ṽ).

Theorem 1.2 Assume that (H) holds. Then the following statements hold:

(1) Given 0 < d1 < d2. For each α1 ≥ 2
√
r(0)d1, there exists a unique α∗∗2 =

α∗∗2 (d1, d2, α1, r) > 0 such that (ũ, 0) is linearly stable for α2 > α∗∗2 and linearly

unstable for α2 < α∗∗2 . Furthermore, α∗∗2 satisfies

lim
α1→∞

α∗∗2
α1

=
d2
d1
. (1.7)

(2) Given 0 < d1 < d2. For each α2 ≥ 2
√
r(0)d2, there exists a unique α∗∗1 =

α∗∗1 (d1, d2, α2, r) > 0 such that (0, ṽ) is linearly stable for α1 > α∗∗1 and linearly

unstable for α1 < α∗∗1 . Furthermore, α∗∗1 satisfies

lim
α2→∞

α∗∗1
α2

=
d1
d2
. (1.8)

The asymptotic behaviors described in (1.7) and (1.8) will help us determine the

behaviors of the other two important critical values α∗2 and α∗1, which will be given

in Theorem 1.3 below. Besides the above theorem, we will also display other types of

sufficient conditions for the local stability; see subsection 4.3.

We now state the global dynamics of system (1.1). See Theorem 1.3 for case (1.2)

and Theorem 1.4 for case (1.3).
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Theorem 1.3 Assume that (H) holds and 0 < d1 < d2. Then the following state-

ments are valid:

(1) For each α1 > 0, there exists a critical number α∗2 = α∗2(d1, d2, α1, r) ∈ [0, d2d1α1)

such that for any α2 ∈ (α∗2,∞), (ũ, 0) is g.a.s. Moreover, α∗2 satisfies

α∗2 ≡ 0 for α1 ∈ (0, ε0) and lim
α1→∞

α∗2
α1

=
d2
d1
, (1.9)

where ε0 is a small positive number depending on d1, d2, r(x).

(2) For each α2 > 0, there exists a critical number α∗1 = α∗1(d1, d2, α2, r) ∈ (d1d2α2,∞)

such that for any α1 ∈ (α∗1,∞), (0, ṽ) is g.a.s. Moreover, α∗1 satisfies{
α∗1 ∈ (d1d2α2, 2

√
r(0)d1) for α2 ∈ (0, 2

√
r(0)d1),

α∗1 ∈ (d1d2α2, α2) for α2 ∈ [2
√
r(0)d1,∞).

(1.10)

(3) For each α1 > 0 such that α∗2(α1) > 0, there exists α2 ∈ (0, α∗2(α1)] such that

system (1.1) admits a co-existence steady state; Similarly, for each α2 > 0, there

exists α1 ∈ (0, α∗1(α2)] such that system (1.1) admits a co-existence steady state.

We make some comments on the above theorem. For given 0 < d1 < d2 and r(x)

satisfying assumption (H), we can regard α∗2 above as a function of α1 in (0,∞) and

α∗1 above as a function of α2 in (0,∞). Next, we use the parameter plane of α1-α2

to explain the above results. Let Θ :=
{

(α1, α2) : α1 > 0, α2 > 0
}

denote the

first quadrant of α1-α2 plane. Then statement (1) above is equivalent to saying that

species u will win the competition when (α1, α2) ∈ Σ1, where

Σ1 :=
{

(α1, α2) ∈ Θ : α2 > α∗2(α1)
}
,

which, particularly, includes the region{
(α1, α2) ∈ Θ : α2 ≥

d2
d1
α1

}
and the small square (0, ε0)× (0, ε0). Moreover, the limit in (1.9) illustrates that this

result is optimal when α1 � 1. In contrast, statement (2) above indicates that species

v will become a superior when (α1, α2) ∈ Σ2, where

Σ2 :=
{

(α1, α2) ∈ Θ : α1 > α∗1(α2)
}
,

which, in view of (1.10), particularly contains the region{
(α1, α2) ∈ Θ : α1 ≥ 2

√
r(0)d1, α1 ≥ α2

}
.
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Figure 1: Illustration of α∗2(α1) and α∗1(α2)

For reader’s convenience, we provide here, based on the estimates in (1.9) and (1.10),

two illuminating graphs of α∗2(α1) and α∗1(α2); see Figure 1 below. Basically speaking,

in the region above the curve of α2 = α∗2(α1), (ũ, 0) is g.a.s (statement (1)); in the

region below the curve of α1 = α∗1(α2), (0, ṽ) is g.a.s (statement (2)); and in the

region between these two curves, we observe the co-existence steady state (statement

(3)). The stability and uniqueness of these co-existence steady states is an open

problem. We suspect that the curve α1 = α∗1 also approaches the line α2/α1 = d2/d1
asymptotically as α2 →∞.

Theorem 1.4 Assume that (H) holds, d1 = d2 := d > 0. If 0 < α1 < α2, then (ũ, 0)

is g.a.s. Similarly, if 0 < α2 < α1, then (0, ṽ) is g.a.s.

Theorem 1.4 implies that, as d1 → d2, the two curves α1 = α∗1 and α2 = α∗2 will

converge to the line α1 = α2. It also makes precise the following intuition: when two

species only differ in their advection rates and the resource is distributed decreasingly

across space, the competitor with stronger advection will be completely wiped out

since it would be more likely driven to the most unfavorable region: the downstream

end.

The remainder of this paper is organized as follows. In Section 2, we establish

the non-existence result Theorem 1.1, which plays an important role in later analysis.

Section 3 is devoted to the investigation of a useful auxiliary problem, where the

diffusion and advection rates of two populations are supposed to be proportional. In
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Section 4, we mainly discuss the linear stability of two semi-trivial steady states and

verify Theorem 1.2. Based on these preparations, we exhibit the proof of the global

dynamics described in Theorems 1.3 and 1.4 in Section 5, and finally, a discussion is

included in Section 6.

2 Non-existence of co-existence steady state

In this section, we will focus on the elliptic system (1.6) and aim to establish the

non-existence result as described in Theorem 1.1. To this end, we need to make some

a priori estimates on the positive solution of system (1.6).

2.1 A priori estimates

Suppose that (u, v) is a positive solution of system (1.6) and define

T :=
ux
u

and S :=
vx
v
. (2.1)

Then by a series of straightforward computations, one can deduce
−d1Txx +

[
α1 − 2d1T

]
Tx + uT + vS = r′(x), 0 < x < L,

−d2Sxx +
[
α2 − 2d2S

]
Sx + uT + vS = r′(x), 0 < x < L,

T (0) = α1
d1
> 0, T (L) = (1− b)α1

d1
,

S(0) = α2
d2
> 0, S(L) = (1− b)α2

d2
.

(2.2)

Next, we present several properties about T and S, which will be frequently used

in later analysis.

The first one refers to the following useful identities whose proof can be found in

[38, Lemmas 3.2 and 4.3].

Lemma 2.1 Assume that d1, d2, α1, α2 > 0. Choose any two points 0 ≤ y1 < y2 ≤ L.

Then the following identities hold:

(1) If d1 6= d2, we have[
d1 − d2

] ∫ y2

y1

[
S − α2 − α1

d2 − d1

]
·
[
T − α1

d1

]
· e−

α1
d1
x · u · vdx

=

{[
d1
(
T − α1

d1

)
− d2

(
S − α2

d2

)]
· e−

α1
d1
x · u · v

}∣∣∣∣y2
y1

(2.3)

and [
d2 − d1

] ∫ y2

y1

[
T − α2 − α1

d2 − d1

]
·
[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=

{[
d2
(
S − α2

d2

)
− d1

(
T − α1

d1

)]
· e−

α2
d2
x · u · v

}∣∣∣∣y2
y1

;

(2.4)
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(2) If d1 = d2 := d, we have[
α2 − α1

] ∫ y2

y1

[
T − α1

d

]
· e−

α1
d
x · u · vdx

=
{
d ·
[(
T − α1

d

)
−
(
S − α2

d

)]
· e−

α1
d
x · u · v

}∣∣∣y2
y1

(2.5)

and [
α1 − α2

] ∫ y2

y1

[
S − α2

d

]
· e−

α2
d
x · u · vdx

=
{
d ·
[(
S − α2

d

)
−
(
T − α1

d

)]
· e−

α2
d
x · u · v

}∣∣∣y2
y1
.

(2.6)

(3) For any x ∈ [0, L], we have

−d1Tx + α1T − d1T 2 = −d2Sx + α2S − d2S2. (2.7)

The second property concerns the interior behaviors of T and S at the extreme

points.

Lemma 2.2 Assume that (H) holds. Then the following statements are valid:

(1) If T achieves a positive local maximum at x0 ∈ (0, L), then S(x0) < 0;

(2) If S achieves a positive local maximum at x0 ∈ (0, L), then T (x0) < 0.

Proof: By an inspection of the equations of T and S in (2.2), this result follows

immediately from the maximum principle. �

To get a picture of the boundary behaviors of T and S, we need to first study the

following two auxiliary functions

f(x) := d1ux − α1u and g(x) := d2vx − α2v. (2.8)

Lemma 2.3 Assume that (H) holds. Then the following statements about f and g

are true:

(1) f ′ and g′ have the same sign;

(2) f ′(0) < 0, and thus g′(0) < 0 due to statement (1);

(3) If b = 0 (no-flux boundary condition), then f ′(L) > 0, and thus g′(L) > 0 due

to statement (1).
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Proof: Statement (1) holds due to f ′(x)
u = g′(x)

v = −
[
r − u− v

]
.

We next prove statement (2). We claim that f ′(0) < 0. Otherwise, we must have

f ′(0) > 0 or f ′(0) = 0.

If f ′(0) > 0, then g′(0) > 0. Since f(L) = g(L) ≤ 0, without loss of generality, we

may assume there exists x∗ ∈ (0, L] such that

f(0) = f(x∗) = 0, f(x) > 0 in (0, x∗),

and

g(0) = 0 ≤ g(x∗), g(x) > 0 in (0, x∗).

This particularly implies that T achieves a positive local maximum in (0, x∗), say x∗∗,

at which, S is positive, contradicting Lemma 2.2. So f ′(0) > 0 cannot happen.

If f ′(0) = 0, then by the equation of u, we see[
r(x)− u− v

]∣∣∣
x=0

= 0,

which in turn gives

f ′′(0) =
{
− u
[
r′(x)− u′(x)− v′(x)

]}∣∣∣
x=0

> 0,

and

g′(0) = 0, g′′(0) =
{
− v
[
r′(x)− u′(x)− v′(x)

]}∣∣∣
x=0

> 0,

where the assumption and boundary conditions are used. This tells us that both f

and g will strictly increase when x becomes positive, so we can perform a similar

analysis as above to deduce a contradiction. Thus, statement (2) is proved.

Statement (3) can be established in the same spirit as in statement (2) since when

b = 0, the downstream end has the same no-flux conditions as the upstream end. We

omit the details here. �

By the above lemma and the definition in (2.8), one immediately obtains the

boundary behaviors of T and S as follows.

Corollary 2.1 Assume that (H) holds. Then the following statements are valid:

(1) T (resp. S) will firstly decrease strictly from the value α1
d1

(resp. α2
d2

) at x = 0;

(2) If, in addition, b = 0, then T (resp. S) will finally increase strictly to the value
α1
d1

(resp. α2
d2

) at x = L.
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2.2 Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1. For the sake of clarity, we divide the

proof into two parts; see below.

Proof of Theorem 1.1 (1): Suppose to the contrary that there is a positive solution

of system (1.6), denoted by (u, v). Recall T and S defined in (2.1). In what follows, we

aim to analyze the potential behaviors of T and S and try to deduce a contradiction.

We first claim that S − α2
d2

must change sign in [0, L].

Otherwise, in view of the function behaviors described in Corollary 2.1 and the

condition α2 ≥ d2
d1
α1, we have

S ≤, 6≡ α2

d2
≤ α2 − α1

d2 − d1
in [0, L]. (2.9)

If d1 6= d2, by restricting identity (2.3) at (y1, y2) = (0, L), we see[
d1 − d2

]
·
∫ L

0

[
S − α2 − α1

d2 − d1

]
·
[
T − α1

d1

]
· e−

α1
d1
x · u · vdx

= b ·
[
α2 − α1

]
· e−

α1
d1
L · u(L) · v(L)

≥ 0,

where the last inequality holds due to α2 ≥ d2
d1
α1 > α1, and so∫ L

0

[
S − α2 − α1

d2 − d1

]
·
[
T − α1

d1

]
· e−

α1
d1
x · u · vdx ≤ 0, (2.10)

which, by the virtue of (2.9) and Corollary 2.1, implies that T − α1
d1

must change sign

in [0, L]. This fact allows us to find a point x1 ∈ (0, L) such that

T (0) = T (x1) =
α1

d1
and T (x) <

α1

d1
in (0, x1),

where Corollary 2.1 is used once again. Now, let us use identity (2.4) and evaluate it

at (y1, y2) = (0, x1), then we observe

0 <
[
d2 − d1

] ∫ x1

0

[
T − α2 − α1

d2 − d1

]
·
[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=

{
d2 ·

(
S − α2

d2

)
· e−

α2
d2
x · u · v

}∣∣∣∣
x1

≤ 0.

This contradiction confirms the above claim under the assumption d1 6= d2.
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If d1 = d2 := d, we confine identity (2.6) at (y1, y2) = (0, L) to obtain

0 >

∫ L

0

[
S − α2

d

]
· e−

α2
d
x · u · vdx =

{
b · e−

α2
d
x · u · v

}∣∣∣
x=L
≥ 0,

where the first inequality used (2.9). Again, we obtain a contradiction. So, the above

claim is proved.

Based on the above claim and S(L) = (1 − b)α2
d2
≤ α2

d2
, we see that S must have

at least one local maximum in (0, L) with value bigger than α2
d2

, which enables us to

define

x2 := sup
{
y ∈ [0, L] : S(y) >

α2

d2
, S′(y) = 0 and S′′(y) ≤ 0

}
.

Clearly, x2 ∈ (0, L) due to the boundary conditions. Now, we have two cases:

case 1 : S(x2) =
α2

d2
and case 2 : S(x2) >

α2

d2
.

We first discuss case 1, i.e., S(x2) = α2
d2

holds.

Claim 1.1. S′(x2) = S′′(x2) = 0.

By the definition of x2, we have S′(x2) = 0 and S′′(x2) ≤ 0. Suppose for contra-

diction that S′′(x2) < 0, then there exists small δ > 0 such that

S(x) <
α2

d2
for x ∈ (x2 − δ, x2).

Using the definition of x2 again, the above inequality yields x2 ≤ x2− δ, a contradic-

tion. Thus claim 1.1 is true.

Claim 1.2. T (x2) < 0.

Evaluating the equation of S (see the second equation of (2.2)) at x = x2 and

using claim 1.1, one easily sees

T (x2) =
r′(x2)− v(x2)S(x2)

u(x2)
< 0,

as desired.

Claim 1.3. S(x) ≤ α2
d2

for x ∈ [x2, L].

Note S(x2) = α2
d2

. If b > 0, S(L) < α2
d2

; if b = 0, by Corollary 2.1, S will increase

to α2
d2

at x = L. So, for any b ≥ 0, if this claim is not true, then S must have one

local maximum in (x2, L) with value larger than α2
d2

, contradicting the definition of

x2. The proof of this claim is complete.

Claim 1.4. T − α1
d1

must change sign in (x2, L).

If not, T ≤ α1
d1

(≤ α2−α1
d2−d1 ) in [x2, L] since either T (L) < α1

d1
(b > 0) or T (x) < α1

d1

for x close to L (Corollary 2.1).
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If d1 6= d2, confining identity (2.4) at (x2, L), we attain

0 <
[
d2 − d1

] ∫ L

x2

[
T − α2 − α1

d2 − d1

]
·
[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=
{
b ·
[
α1 − α2

]
· e−

α2
d2
x · u · v

}∣∣∣
x=L

+

{
d1 ·

[
T − α1

d1

]
· e−

α2
d2
x · u · v

}∣∣∣∣
x=x2

≤ 0,

a contradiction.

If d1 = d2, we restrict identity (2.6) at (x2, L) to get

0 <
[
α1 − α2

] ∫ L

x2

[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=
{
b ·
[
α1 − α2

]
· e−

α2
d2
x · u · v

}∣∣∣
x=L

+

{
d1 ·

[
T − α1

d1

]
· e−

α2
d2
x · u · v

}∣∣∣∣
x=x2

≤ 0,

again, a contradiction.

Hence, claim 1.4 is established.

We are now able to deduce a contradiction for case 1.

Resting on claims 1.2 and 1.4, we can select a point x3 ∈ (x2, L) such that

T (x) <
α1

d1
(≤ α2 − α1

d2 − d1
) in [x2, x3) and T (x3) =

α1

d1
. (2.11)

If d1 6= d2, we evaluate identity (2.4) at (x2, x3) to obtain the following contradiction

0 <
[
d2 − d1

] ∫ x3

x2

[
T − α2 − α1

d2 − d1

]
·
[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=

{[
d2
(
S − α2

d2

)
− d1

(
T − α1

d1

)]
· e−

α2
d2
x · u · v

}∣∣∣∣x3
x2

=

{
d2 · (S −

α2

d2
) · e−

α2
d2
x · u · v

}∣∣∣∣
x=x3

+

{
d1 · (T −

α1

d1
) · e−

α2
d2
x · u · v

}∣∣∣∣
x=x2

< 0,

where claim 1.3 and (2.11) are used. While if d1 = d2, we apply (2.6) at (x2, x3) to

derive another contradiction

0 <
[
α1 − α2

] ∫ x3

x2

[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=

{
d2 · (S −

α2

d2
) · e−

α2
d2
x · u · v

}∣∣∣∣
x=x3

+

{
d1 · (T −

α1

d1
) · e−

α2
d2
x · u · v

}∣∣∣∣
x=x2

< 0,
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where claims 1.2 and 1.3 are used. In a word, we can derive a contradiction for case

1.

Next, we deal with case 2, i.e., S(x2) >
α2
d2

holds.

Claim 2.1. There exists x4 ∈ (x2, L) such that S′(x) ≤ 0 in [x2, x4], S(x4) = α2
d2

and S ≤ α2
d2

in [x4, L].

Recall the behaviors of S near x = L in claim 1.3. Since now S(x2) >
α2
d2

, S will

touch the value α2
d2

at some location in (x2, L). Denote the one that is closest to x2
by x4, and clearly, S(x4) = α2

d2
. Furthermore, we must have

S′(x) ≤ 0 in [x2, x4] and S ≤ α2

d2
in [x4, L]

since otherwise S will achieve a local maximum in (x2, L) with value greater than α2
d2

,

contradicting the definition of x2. Therefore, claim 2.1 is verified.

Claim 2.2. T − α1
d1

must change sign in (x4, L).

The proof of this claim is similar to that of claim 1.4.

Claim 2.3. T (x4) <
α1
d1

.

Suppose for contradiction that T (x4) ≥ α1
d1

. By the definition of x2, one can derive

from the equation of S that T (x2) < 0. Now we assert that T ′(x4) ≥ 0. Otherwise, T

will achieve a positive local maximum in (x2, x4), in which, S is positive, contradicting

Lemma 2.2. Restricting identity (2.7) at x = x4 and using the inequalities T (x4) ≥ α1
d1

and T ′(x4) ≥ 0 as well as claim 2.1, we find

0 ≥ − d1T ′(x4) + d1 · T (x4) ·
[α1

d1
− T (x4)

]
= − d2S′(x4) + d2 · S(x4) ·

[α2

d2
− S(x4)

]
= − d2S′(x4)
≥ 0,

which implies

T ′(x4) = S′(x4) = T (x4)−
α1

d1
= 0.

This identity allows us to further deduce from the equation of S in (2.2) that

S′′(x4) =
u(x4)T (x4) + v(x4)S(x4)− r′(x4)

d2
> 0,

which, together with S′(x4) = 0, leads to a contradiction with the behaviors of S

nearby x = x4 depicted in claim 2.1. Hence, claim 2.3 is proved.

We now derive a contradiction for case 2.

In view of claims 2.2 and 2.3, we can find a point x5 ∈ (x4, L) such that

T (x) <
α1

d1
(≤ α2 − α1

d2 − d1
) in [x4, x5) and T (x5) =

α1

d1
.
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Then we can perform a similar analysis as in the end of case 1 on the interval (x4, x5)

to get a contradiction.

In summary, based on the assumption at the beginning, logically we demonstrate

that either case 1 or case 2 happens. But no matter which case happens, we can

always deduce a contradiction, which shows that there is no positive solution. �

Remark 2.1 We include here a discussion about the possibility of case 1 and case 2.

First, the occurring of case 2 is easy to understand, e.g., if S has finitely many local

maximum points, then case 2 must happen. The interesting thing is that case 1 may

also happen for general smooth functions. We give a specific example below:

S(x) =

{
e

1
x−x2 sin 1

x−x2 + α2
d2
, x ∈ (x2 − δ, x2),

α2
d2
, x ∈ [x2, x2 + δ),

where δ is a small positive number. It is easy to see that S constructed above is a

smooth function in (x2 − δ, x2 + δ), and that there is a sequence of local maximum

points in (x2−δ, x2) with value bigger than α2
d2

converging to x2. For this example, we

have S(x2) = α2
d2

. So, in general, logically we cannot exclude case 1. Such details were

ignored in our recent work [37, Theorem 1.1], and we point out here that by using

the same arguments as above, one can make up for this gap. We also note that case

1 will not happen if the environment is spatially homogeneous since in that case one

can apply the Cauchy-Kowalevski theory [20] to prove the analyticity of the solution.

Proof of Theorem 1.1 (2): Again, we use the contradiction argument. Suppose

that there is a positive solution of system (1.6), denoted by (u, v).

By a transformation u = e
α1
2d1

x
w, we can derive from the equation of u that

d1wxx +
[
r − u− v − α2

1
4d1

]
w = 0, 0 < x < L,

d1wx = 1
2α1w, x = 0,

d1wx = (12 − b)α1w, x = L.

(2.12)

Since r′(x) ≤, 6≡ 0 in [0, L] and α1 ≥ 2
√
r(0)d1, we see from the equation of w that

wxx > 0 in (0, L), which together with the boundary condition wx(0) = 1
2
α1
d1
w(0) > 0,

yields wx > 0 in [0, L]. If b ∈ [12 ,∞), then we immediately obtain a contradiction by

looking at wx(L) = (12 − b)
α1
d1
w(L) ≤ 0.

Next, we consider the case b ∈ [0, 12).

Indeed, from the above analysis, we can further deduce that

ux = e
α1
2d1

x
[
wx +

α1

2d1
w
]
> 0 in [0, L]. (2.13)



19

Now, let us recall T and S defined in (2.1). By evaluating identity (2.4) at (0, L), we

find [
d2 − d1

] ∫ L

0

[
T +

α1 − α2

d2 − d1

]
·
[
S − α2

d2

]
· e−

α2
d2
x · u · vdx

=
{
b ·
[
α1 − α2

]
· e−

α2
d2
x · u · v

}∣∣∣
x=L

≥ 0,

where the last inequality used the condition α1 ≥ α2. By (2.13) and the assumptions

0 < d1 < d2 and α1 ≥ α2, we see that the term T + α1−α2
d2−d1 is non-negative and not

identically zero. Thus, the above inequality implies that S ≤ α2
d2

in [0, L] cannot

happen, and so S must be greater than α2
d2

somewhere in [0, L]. Recall the boundary

behaviors of S in Corollary 2.1 and the fact that S(L) < α2
d2

if b > 0, we then can

conclude that S must attain a positive local maximum in (0, L), say at x = x∗. By

Lemma 2.2, T (x∗) =
[
ux
u

]∣∣∣
x=x∗

< 0, i.e., ux(x∗) < 0. This leads to a contradiction

with (2.13). �

3 An auxiliary problem

In this section, we primarily focus on the following special case of setting (1.2):

d2
d1

=
α2

α1
:= k ( 6= 1), (3.1)

which indicates that the dispersal strategies of two competitors are proportional. For

this special case, we can reduce system (1.1) to

ut = d1uxx − α1ux + u
[
r(x)− u− v

]
, 0 < x < L, t > 0,

vt = k
[
d1vxx − α1vx

]
+ v
[
r(x)− u− v

]
, 0 < x < L, t > 0,

d1ux(x, t)− α1u(x, t) = 0, x = 0, L, t > 0,
d1vx(x, t)− α1v(x, t) = 0, x = 0, L, t > 0,
u(x, 0) = u0(x) ≥, 6≡ 0, 0 < x < L,
v(x, 0) = v0(x) ≥, 6≡ 0, 0 < x < L,

(3.2)

where one sees that the difference between two species is measured by the proportional

constant k.

It turns out that the population dynamics of the above auxiliary problem (3.2)

will be very useful in the establishment of our main results: Theorems 1.2 and 1.3

(see Sections 4 and 5). So, we study it here separately.

Our main goal is to investigate how the proportional constant k influences the

global dynamics of system (3.2) and the conclusion can be stated as follows.
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Theorem 3.1 Given d1, α1 > 0 and 0 < k 6= 1. Assume that r(x) is not in the form

of r(x) = C0 · e
α1
d1
x

for some positive constant C0. Then the following statements are

valid:

(1) If k > 1, then (ũ, 0) is g.a.s;

(2) If 0 < k < 1, then (0, ṽ) is g.a.s.

We note here that if r(x) = C0 ·e
α1
d1
x

for some positive constant C0, then there will

be the so-called ideal free distribution and the system is degenerate in the sense that

there is a continuum of positive steady states
(
k1 · e

α1
d1
x
, k2 · e

α1
d1
x)

with k1 + k2 = C0,

which consists of the global attractor. See [3, 4, 5] and references therein.

Our main approach to prove the above theorem is to use the concavity of the

principal eigenvalue with respect to k. So, we go first to consider the following two

linear eigenvalue problems:{
−k
[
d1ζxx − α1ζx

]
− h(x)ζ = µζ, 0 < x < L,

d1ζx(0)− α1ζ(0) = d1ζx(L)− α1ζ(L) = 0,
(3.3)

and {
−
[
d1ϑxx − α1ϑx

]
− τh(x)ϑ = νϑ, 0 < x < L,

d1ϑx(0)− α1ϑ(0) = d1ϑx(L)− α1ϑ(L) = 0,
(3.4)

where k, τ > 0 and h(x) ∈ C([0, L]). Denote by µ1(k) and ν1(τ), respectively, the

principal eigenvalue of problems (3.3) and (3.4). Then we have

Lemma 3.1 Assume that h(x) is nonconstant. Then ν1(τ) is strictly concave in τ .

Moreover, if ν1(1) = 0, then

ν1(τ)

{
> 0, for 0 < τ < 1,
< 0, for τ > 1.

(3.5)

As a consequence, µ1(k) is also concave in k and

µ1(k)

{
> 0, for k > 1,
< 0, for 0 < k < 1.

(3.6)

Proof: The concavity of ν1 in τ can be proved by standard arguments, see, e.g., [31].

The inequalities in (3.5) follow from the concavity and the fact ν1(0) = ν1(1) = 0.

The concavity of µ1 in k holds due to µ1(k) = k · ν1( 1k ) and µ′′1(k) = 1
k3
· ν ′′1 ( 1k ). The

inequalities in (3.6) follow from (3.5) and µ1(k) = k · ν1( 1k ). �

The above result is quite useful to determine the linear stability of semi-trivial

steady states.
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Lemma 3.2 Given d1, α1 > 0 and 0 < k 6= 1. Assume further that r(x) is not in the

form of r(x) = C0e
α1
d1
x

for some positive constant C0. Then the following statements

are true:

(1) If k > 1, then (ũ, 0) is linearly stable and (0, ṽ) is linearly unstable;

(2) If 0 < k < 1, then (ũ, 0) is linearly unstable and (0, ṽ) is linearly stable.

Proof: From the equation of ũ, we see ν1(1) = 0, where h(x) in (3.4) is chosen to be

r(x)− ũ(x), which is nonconstant due to the assumption on r(x). The desired results

would then follow by an application of (3.6) in Lemma 3.1. �

We can also employ the concavity of the principal eigenvalue to derive the following

non-existence result.

Lemma 3.3 Given d1, α1 > 0 and 0 < k 6= 1. Assume further that r(x) is not in

the form of r(x) = C0e
α1
d1
x

for some positive constant C0. Then system (3.2) has no

co-existence steady state.

Proof: Arguing indirectly, we suppose that there is a co-existence steady state

denoted by (u, v) which satisfies u, v > 0 in [0, L] and
0 = d1uxx − α1ux + u

[
r(x)− u− v

]
, 0 < x < L,

0 = k
[
d1vxx − α1vx

]
+ v
[
r(x)− u− v

]
, 0 < x < L,

d1ux(x)− α1u(x) = 0, x = 0, L,
d1vx(x)− α1v(x) = 0, x = 0, L.

(3.7)

If r(x) − u − v is nonconstant, then the first equation in (3.7) implies ν1(1) = 0,

where h(x) in (3.4) now is chosen as r(x) − u − v. By Lemma 3.1, µ1(k) 6= 0 for

any given 0 < k 6= 1, which causes a contradiction with the second equation of (3.7).

Thus r(x) − u − v ≡ C1 in [0, L] for some constant C1. A direct integration of the

first equation in (3.7) over (0, L) yields C1 = 0, that is, r(x) − u − v ≡ 0 in [0, L].

Substituting this fact into (3.7) and using the boundary conditions, we find{
d1ux − α1u ≡ 0, 0 < x < L,
d1vx − α1v ≡ 0, 0 < x < L,

i.e., {
u(x) = u(0) · e

α1
d1
x
, 0 < x < L,

v(x) = v(0) · e
α1
d1
x
, 0 < x < L.

Hence, r(x) = u+ v =
[
u(0) + v(0)

]
· e

α1
d1
x
, contradicting our assumption. Therefore,

there is no co-existence steady state. �
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Finally, we present the proof of Theorem 3.1 as follows.

Proof of Theorem 3.1: In view of the theory of abstract competitive systems

developed in [18, 19], this theorem follows directly from Lemmas 3.2 and 3.3. �

4 Stability of semi-trivial steady states

This section is devoted to the proof of Theorem 1.2, which will be displayed in sub-

sections 4.1 and 4.2 (two parts). Also, we exhibit some other sufficient conditions for

the local stability in subsection 4.3 that will be used in Section 5.

Throughout this section, we always assume that (H) holds and 0 < d1 < d2 even

it is not mentioned explicitly.

To analyze the linear stability of two semi-trivial steady states (ũ, 0) and (0, ṽ)

(the existence of such solutions is due to the positivity of r(x), see [37, Corollary 2.1]),

we introduce the following auxiliary linear eigenvalue problem:{ [
dϕx − αϕ

]
x

+ η(x)ϕ+ λϕ = 0, 0 < x < L,

dϕx(0)− αϕ(0) = dϕx(L)− αϕ(L) = 0,
(4.1)

where d, α > 0 and η(x) ∈ C([0, L]). It is well-known (see, e.g., [21, 32]) that problem

(4.1) admits a principal eigenvalue, denoted by λ1 = λ1(d, α, η), which is simple, and

the corresponding eigenfunction, denoted by ϕ1, can be chosen strictly positive in

[0, L]. Moreover, the linear stabilities of (ũ, 0) and (0, ṽ) are determined, respectively,

by the sign of λ1(d2, α2, r − ũ) and λ1(d1, α1, r − ṽ). Specifically, (ũ, 0) is linearly

stable (resp. linearly unstable) if λ1(d2, α2, r − ũ) > 0 (resp. < 0); (0, ṽ) is linearly

stable (resp. linearly unstable) if λ1(d1, α1, r − ṽ) > 0 (resp. < 0).

4.1 Proof of Theorem 1.2 (1)

We divide the proof of Theorem 1.2 (1) into two steps. Step 1: the stability of (ũ, 0)

(see Lemma 4.6), which is based on Lemmas 3.1-3.5. Step 2: estimate of α∗∗2 (see

Lemma 4.13), which is based on Lemmas 3.7-3.12.

Lemma 4.1 If α1 ≥ 2
√
r(0)d1, then ũx > 0 in [0, L].

Proof: The proof is similar to that of the claim in Theorem 1.1 (2).

Set ũ = e
α1
2d1

x
w. Then we find{

d1wxx +
[
r − ũ− α2

1
4d1

]
w = 0, 0 < x < L,

d1wx = 1
2α1w, x = 0, L.

(4.2)

By assumption (H) and α1 ≥ 2
√
r(0)d1, wxx > 0 in (0, L). Note wx(0) = 1

2
α1
d1
w(0) >

0, so wx > 0 in [0, L], that is, ũx = e
α1
2d1

x
[
wx + α1

2d1
w
]
> 0 in [0, L]. �
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Lemma 4.2 If α1 ≥ 2
√
r(0)d1, then

∫ L
0 ũ(x)dx <

∫ L
0 r(x)dx.

Proof: Dividing the equation of ũ by ũ and integrating the resulting equation over

(0, L), we arrive at∫ L

0
ũ(x)dx−

∫ L

0
r(x)dx = d1

∫ L

0

[ ũx
ũ
− α1

d1

]
· ũx
u

dx. (4.3)

Set p := ũx
ũ . Then by some straightforward computations, p satisfies{

−d1pxx +
[
α1 − 2d1p

]
px + ũp = r′(x), 0 < x < L,

p(0) = p(L) = α1
d1
> 0.

By assumption (H) and the maximum principle,

p :=
ũx
ũ
<
α1

d
in (0, L), (4.4)

which, together with Lemma 4.1, implies that the right side of (4.3) is strictly negative,

and so the desired result follows. �

Lemma 4.3 If α1 ≥ 2
√
r(0)d1, then ∂λ1

∂α2
> 0 for α2 > 0, where λ1 = λ1(d2, α2, r−ũ).

Proof: Recall the eigenfunction ϕ1 corresponding to λ1 and introduce the transfor-

mation ψ1 = e
−α2
d2
x
ϕ1. Then ψ1 satisfies{

d2ψ1xx + α2ψ1x +
(
r − ũ

)
ψ1 + λ1ψ1 = 0, 0 < x < L,

ψ1x = 0, x = 0, L.
(4.5)

We claim that ψ1x < 0 in (0, L).

Multiplying (4.5) by e
α2
d2
x

and integrating the result over (0, L), we obtain∫ L

0
e
α2
d2
x
ψ1

[
r − ũ+ λ1

]
dx = 0. (4.6)

Since rx ≤, 6≡ 0 and ũx > 0 (Lemma 4.1) in [0, L], we see that r− ũ+λ1 changes sign

exactly once, say, at x = x∗ ∈ (0, L), and

r − ũ+ λ1

{
> 0, for x ∈ [0, x∗),
< 0, for x ∈ (x∗, L).

that is, [
e
α2
d2
x
ψ1x

]
x

{
< 0, for x ∈ [0, x∗),
> 0, for x ∈ (x∗, L),
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As ψ1x = 0 at x = 0, L, we have e
α2
d2
x
ψ1x < 0 in (0, L), i.e., ψ1x < 0 in (0, L). Hence,

the above claim is verified.

Now, differentiating equation (4.5) with respect to α2, we get{
d2ψ1

′
xx + α2ψ1

′
x + ψ1x + (r − ũ)ψ1

′ + λ1ψ1
′ + λ′1ψ1 = 0, 0 < x < L,

ψ1
′
x = 0, x = 0, L,

(4.7)

where the prime notation denotes differentiating with respect to α2. Multiplying (4.7)

by e
α2
d2
x
ψ1 and (4.5) by e

α2
d2
x
ψ1
′, subtracting the results and integrating in (0, L), we

obtain

λ′1 = −
∫ L
0 e

α2
d2
x
ψ1ψ1xdx∫ L

0 e
α2
d2
x
ψ1

2dx
> 0, (4.8)

where the above claim is used. This completes the proof. �

Lemma 4.4 If α1 ≥ 2
√
r(0)d1, then λ1 = λ1(d2, α2, r − ũ)|α2=0 < 0, i.e., (ũ, 0) is

linearly unstable.

Proof: When α2 = 0, λ1 = λ1(d2, α2, r − ũ) satisfies{
d2ϕ1xx + (r − ũ)ϕ1 + λ1ϕ1 = 0, 0 < x < L,
ϕ1x(0) = ϕ1x(L) = 0.

(4.9)

Dividing equation (4.9) by ϕ1 and integrating the result over (0, L), we find

λ1 = −d2
L

∫ L

0

ϕ1
2
x

ϕ1
2

dx− 1

L

∫ L

0

(
r − ũ

)
dx < 0,

due to Lemma 4.2. �

Lemma 4.5 Given d1, d2, α1 > 0. Then for α2 > 0 large, (ũ, 0) is linearly stable.

Proof: We establish this result under a weaker condition than (H): rxr < α1
d1

in [0, L].

The essential idea is to analyze the behavior of ũ at the boundary x = L.

We first claim that if rx
r < α1

d1
in [0, L], then ũ(L) > r(L).

Suppose for contradiction that ũ(L) ≤ r(L). Let w = e
−α1
d1
x
ũ. Then w satisfies{

d1wxx + α1wx + e
α1
d1
x
w
[
e
−α1
d1
x
r(x)− w

]
= 0, 0 < x < L,

wx(0) = wx(L) = 0.

Define

h(x) := w(x)− e−
α1
d1
x
r(x) = e

−α1
d1
x
[
ũ(x)− r(x)

]
for x ∈ [0, L].
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Clearly, h(L) ≤ 0. Since rx
r < α1

d1
in [0, L], we have

h′(L) = w′(L)− e−
α1
d1
L
[
r′(L)− α1

d1
r(L)

]
> 0,

which implies

h(x) < 0 in (L− δ, L) for some δ > 0.

This leads us to deduce from the equation of w that

d1wxx + α1wx = d1e
−α1
d1
x
[
e
α1
d1
x
wx

]
x
< 0 in (L− δ, L),

which, together with wx(L) = 0, further yields

wx(x) > 0 in (L− δ, L).

Since wx(0) = 0, we can choose x0 ∈ [0, L) such that

wx(x0) = wx(L) = 0, wx(x) > 0 in (x0, L),

and consequently,

wxx(x0) ≥ 0 and hx(x) = wx(x)− e−
α1
d1
x
[
rx(x)− α1

d1
r(x)

]
> 0 in [x0, L],

which, in view of h(L) ≤ 0, implies h(x0) < 0. Evaluating the equation of w at the

position x = x0, we observe

0 ≤
[
d1wxx

]∣∣∣
x=x0

= −
{
e
α1
d1
x
w
[
e
−α1
d1
x
r(x)− w

]}∣∣∣
x=x0

< 0.

This contradiction confirms the above claim.

On the other hand, it follows from [6] that

λ1(d2, α2, r − ũ)→ ũ(L)− r(L) as α2 →∞.

By the virtue of the above claim, the desired result holds. �

Lemma 4.6 If α1 ≥ 2
√
r(0)d1, then there is a positive number α∗∗2 such that (ũ, 0)

is linearly stable for α2 > α∗∗2 and linearly unstable for α2 < α∗∗2 .

Proof: The existence of α∗∗2 directly follows from Lemmas 4.3, 4.4 and 4.5. �

In what follows, we make some preparations for determining the asymptotic be-

haviors of α∗∗2 in the sense of α1 →∞. The proof of the following result adopts some

idea from [7, Lemma 3.2].
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Lemma 4.7 If α1 ≥ 2
√
r(0)d1, then

e

(
α1
d1

+
ũ(L)
α1

)(
x−L
)
≤ ũ(x)

ũ(L)
≤ e

(
α1
d1
− 2r(0)

α1

)(
x−L
)

for x ∈ [0, L]. (4.10)

Proof: Set u(x) := ũ(L)e

(
α1
d1
− 2r(0)

α1

)(
x−L
)
. By direct calculations,

d1ux − α1u = ũ(L) · −2r(0)d1
α1

· e
(
α1
d1
− 2r(0)

α1

)(
x−L
)
,

which particularly implies
[
d1ux − α1u

]∣∣∣
x=0
≤ 0. Moreover,

[
d1ux − α1u

]
x
+u
(
r − ũ

)
= ũ(L)e

(
α1
d1
− 2r(0)

α1

)(
x−L
)[
r(x)− 2r(0) +

4r2(0)d1
α2
1

− ũ
]

< ũ(L)e

(
α1
d1
− 2r(0)

α1

)(
x−L
)[
− r(0) +

4r2(0)d1
α2
1

]
(as r(x) ≤ r(0))

≤ 0 (as α1 ≥ 2
√
r(0)d1).

In summary, u(x) satisfies{
d1uxx − α1ux + u

[
r − ũ

]
≤ 0, 0 < x < L,

d1ux(0)− α1u(0) ≤ 0, u(L) = ũ(L).

Now, let us set w = u(x)− ũ(x), which satisfies{
d1wxx − α1wx + w

[
r − ũ

]
≤ 0, 0 < x < L,

d1wx(0)− α1w(0) ≤ 0, w(L) = 0.

By a further transformation w = e
α1
2d1

x
z, we find{

d1zxx +
[
r − ũ− α2

1
4d1

]
z ≤ 0, 0 < x < L,

d1zx(0)− α1
2 z(0) ≤ 0, z(L) = 0.

(4.11)

Since r − ũ− α2
1

4d1
< r(0)− α2

1
4d1
≤ 0, by the maximum principle,

z > min{z(0), z(L), 0} = min{z(0), 0} in [0, L]. (4.12)

We claim that z(0) > 0. Otherwise, if z(0) < 0, then z attains the minimum at x = 0,

which implies that zx(0) ≥ 0. However, it follows from the boundary condition at

x = 0 that d1zx(0) ≤ (α1/2)z(0) < 0, which is a contradiction. Thus, our assertion

holds. Combining this claim with (4.12), we have

z ≥ 0 in [0, L],
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that is,

u(x) ≥ ũ(x) in [0, L].

This proves the second inequality in (4.10).

Next, set u := ũ(L)e

(
α1
d1

+
ũ(L)
α1

)(
x−L
)
. Then, for any x ∈ [0, L], we have

d1ux − α1u = u · d1ũ(L)

α1
,

and [
d1ux − α1u

]
x

+ u
(
r − ũ

)
= u

[
ũ(L) +

d1ũ
2(L)

α2
1

+ r(x)− ũ(x)
]

> 0 (as ũ(L) ≥ ũ(x)),

which allow us to use the same arguments as above to prove ũ(x)−u(x) ≥ 0 in [0, L],

that is, the first inequality in (4.10) holds. �

Lemma 4.8 If α1 ≥ 2
√
r(0)d1, then as α1 →∞, ũ(L)→ 2r(L).

Proof: We first illustrate that ũ(L) is uniformly bounded for α1 � 1. A direction

integration of the equation of ũ gives∫ L

0
ũ2(x)dx =

∫ L

0
ũ(x)r(x)dx. (4.13)

By Lemma 4.7,

ũ(L)

∫ L

0
e
2
(
α1
d1

+
ũ(L)
α1

)(
x−L
)
dx ≤

∫ L

0
r(x)e

(
α1
d1
− 2r(0)

α1

)(
x−L
)
dx,

which, in view of r(x) ≤ r(0) for all x ∈ [0, L], implies

ũ(L)
1− e2

(
α1
d1

+
ũ(L)
α1

)(
−L
)

2
(
α1
d1

+ ũ(L)
α1

) ≤ r(0)
α1
d1
− 2r(0)

α1

.

Clearly, for sufficiently large α1, we have 1 − e2
(
α1
d1

+
ũ(L)
α1

)(
−L
)
≥ 1

2 . Hence, we can

further deduce from the above inequality that for sufficiently large α1,

ũ(L) ≤ 4r(0) ·
α1
d1

+ ũ(L)
α1

α1
d1
− 2r(0)

α1

≤ 8r(0) ·
[
1 +

d1
α2
1

ũ(L)
]

(as
2r(0)

α1
≤ 1

2

α1

d1
).
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Therefore,

ũ(L) ≤ 8r(0)

1− 8r(0) d1
α2
1

≤ 16r(0), for α1 � 1.

Next, we show the desired limit. By introducing a new variable y = α1
d1

(L − x),

we observe from (4.13) that

ũ(L)

∫ α1
d1
L

0

[ ũ(L− d1
α1
y)

ũ(L)

]2
dy =

∫ α1
d1
L

0
r(L− d1

α1
y)
ũ(L− d1

α1
y)

ũ(L)
dy. (4.14)

Also, the inequality in Lemma 4.7 can be written as

e
−y
[
1+

ũ(L)d1
α21

]
≤

ũ(L− d1
α1
y)

ũ(L)
≤ e

−y
[
1− 2r(0)d1

α21

]
, y ∈ [0,

α1

d1
L], (4.15)

which, together with the above proved fact, implies that

ũ(L− d1
α1
y)

ũ(L)
→ e−y pointwisely as α1 →∞.

Passing to the limit in (4.14), we have

lim
α1→∞

ũ(L) =

∫∞
0 r(L)e−ydy∫∞

0 e−2ydy

= 2r(L).

We note here that thanks to the estimate in (4.15), the function
ũ(L− d1

α1
y)

ũ(L) is integrable

in (0,∞) uniformly for large α1. This together with the uniform boundedness of r(x)

allows us to directly take the above limit. �

Now, we give the upper bound for α∗∗2 .

Lemma 4.9 For α1 ≥ 2
√
r(0)d1, we always have

α∗∗2 6
d2
d1
α1. (4.16)

Proof: Suppose for contradiction that α∗∗2 > d2
d1
α1. Then for α2 = d2

d1
α1, by Lemma

4.6, (ũ, 0) is linearly unstable, but by Theorem 3.1 (1) (with k there be d2
d1
> 1), (ũ, 0)

is g.a.s, which, clearly, is impossible. So the inequality (4.16) holds. �

To establish the lower bound of α∗∗2 , we adopt some idea from [8] and define an

auxiliary function

F (τ) =

∫ L

0
eτx
[
r(x)− ũ(x)

]
dx, for any τ ≥ 0.
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Lemma 4.10 If α1 ≥ 2
√
r(0)d1, then F (τ) has a unique positive root, denoted by

τ∗, and we have

F (τ)

{
> 0, for τ ∈ [0, τ∗),
< 0, for x ∈ (τ∗,∞).

Proof: By Lemma 4.1, ũx > 0 in [0, L], so r− ũ is strictly decreasing in [0, L]. Note

that (4.13) can be written as
∫ L
0 ũ[r − ũ]dx = 0, which implies that r − ũ changes

sign exactly once, say, at x = x∗ ∈ (0, L). Hence, r − ũ > 0 in [0, x∗) and r − ũ < 0

in (x∗, L]. This leads us to further deduce the following inequality

d

dτ

(
e−τx

∗
F (τ)

)
=

d

dτ

{∫ L

0
eτ(x−x

∗)
[
r − ũ

]
dx

}
=

∫ L

0
eτ(x−x

∗)
[
r − ũ

](
x− x∗

)
dx

< 0.

So e−τx
∗
F (τ) has at most one positive root, i.e., F (τ) has at most one positive

root. Since F (0) =
∫ L
0

[
r(x) − ũ(x)

]
dx > 0 (Lemma 4.2), it remains to show that

F (τ) < 0 for sufficiently large τ . Notice that ũ(L) > r(L) always holds (due to their

monotonicity and the fact that r − ũ changes sign), we then have

lim
τ→∞

τe−τLF (τ) = lim
τ→∞

τ

∫ L

0
eτ(x−L)

[
r − ũ

]
dx

= r(L)− ũ(L)

< 0,

where the second equality used integration by parts and some straightforward com-

putations. Hence, F (τ) < 0 for τ � 1, as desired. �

Lemma 4.11 If α1 ≥ 2
√
r(0)d1, then α∗∗2 ≥ τ∗d2.

Proof: Recall α∗∗2 > 0 is uniquely determined in Lemma 4.6 and it satisfies{
d2ϕxx − α∗∗2 ϕx + (r − ũ)ϕ = 0, 0 < x < L,
d2ϕx − α∗∗2 ϕ = 0, x = 0, L,

for some positive function ϕ. Rewrite the above equation as

d2

[
e
α∗∗2
d2

x(
e
−α
∗∗
2
d2

x
ϕ
)
x

]
x

+ (r − ũ)ϕ = 0, 0 < x < L. (4.17)

Dividing equation (4.17) by e
−α
∗∗
2
d2

x
ϕ and integrating the result over (0, L), we see

d2

∫ L

0

e
α∗∗2
d2

x
[(
e
−α
∗∗
2
d2

x
ϕ
)
x

]2
(
e
−
α∗∗2
d2

x
ϕ
)2 dx+

∫ L

0
e
α∗∗2
d2

x
(
r − ũ

)
dx = 0,
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which implies
∫ L
0 e

α∗∗2
d2

x
(r − ũ)dx < 0, that is, F (

α∗∗2
d2

) < 0. By Lemma 4.10, we must

have
α∗∗2
d2

> τ∗. �

Lemma 4.12 The following estimate holds:

lim inf
α1→∞

τ∗

α1
≥ 1

d1
.

Proof: We show that for any ε > 0,

F
(α1

d1
(1− ε)

)
> 0, for α1 � 1. (4.18)

If this is true, by Lemma 4.10, τ∗ > α1
d1

(1− ε), i.e.,

lim inf
α1→∞

τ∗

α1
≥ 1

d1
(1− ε).

The desired result would then follow due to the arbitrariness of ε.

We next prove (4.18). Direct computations yield

α1

d1
· F
(α1

d1
(1− ε)

)
· e−

α1
d1

(
1−ε
)
L

=
α1

d1

∫ L

0
e
α1
d1

(
1−ε
)(
x−L
)[
r(x)− ũ(x)

]
dx

≥ α1

d1

∫ L

0
e
α1
d1

(
1−ε
)(
x−L
)[
r(x)− ũ(L)e

(
α1
d1
− 2r(0)

α1

)(
x−L
)]

dx

=

∫ α1
d1
L

0
e−
(
1−ε
)
y
[
r
(
L− d1

α1
y
)
− ũ(L)e

−
(
1− 2r(0)d1

α21

)
y]

dy (y =
α1

d1
(L− x))

→ r(L)ε

(1− ε)(2− ε)
> 0 (as α1 →∞),

where the first inequality used Lemma 4.7 and the last step used Lemma 4.8. Hence,

(4.18) holds true. �

Lemma 4.13 The following limits hold:

lim
α1→∞

α∗∗2
α1

=
d2
d1
. (4.19)

Proof: By Lemmas 4.9 and 4.11,

τ∗d2
α1
≤ α∗∗2

α1
6
d2
d1
,

which, in view of Lemma 4.12, immediately implies (4.19). �

Proof of Theorem 1.2 (1): This statement follows directly from Lemmas 4.6 and

4.13. �
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4.2 Proof of Theorem 1.2 (2)

Similar to the previous subsection, here we first discuss the stability of (0, ṽ) (see

Lemma 4.14), then make proper estimates on α∗∗1 (see Lemma 4.18), and finally

prove Theorem 1.2 (2).

Arguing in the same manner as in Lemma 4.6, one can obtain the following result:

Lemma 4.14 If α2 ≥ 2
√
r(0)d2, then there is a positive number α∗∗1 such that (0, ṽ)

is linearly stable for α1 > α∗∗1 and linearly unstable for α1 < α∗∗1 .

Next, we go to estimate α∗∗1 . We first display a lower bound for α∗∗1 .

Lemma 4.15 For any α2 ≥ 2
√
r(0)d2, we have α∗∗1 ≥ d1

d2
· α2.

Proof: Arguing indirectly, we suppose α∗∗1 < d1
d2
· α2 for α2 ≥ 2

√
r(0)d2. Then for

α1 = d1
d2
· α2, by Lemma 4.14, (0, ṽ) is linearly stable, but according to Theorem 3.1

(1), (ũ, 0) is g.a.s, which causes a contradiction. �

Note that α∗∗1 determined in Lemma 4.14 satisfies the following equation{
d1ϕxx − α∗∗1 ϕx + ϕ(r − ṽ) = 0, 0 < x < L,
d1ϕx − α∗∗1 ϕ = 0, , x = 0, L,

(4.20)

where ϕ > 0 in [0, L] and is normalized by ϕ(L) = 1. We then have the following

estimate for ϕ.

Lemma 4.16 For sufficiently large α2, we have

e

(
α∗∗1
d1

+
ṽ(L)
α∗∗1

)(
x−L
)
≤ ϕ(x) ≤ e

(
α∗∗1
d1
− 2r(0)
α∗∗1

)(
x−L
)

for x ∈ [0, L]. (4.21)

Proof: This lemma can be justified by using the same arguments as in Lemma 4.7.

We note here that when one goes to check the upper and lower bounds given in (4.21)

are, respectively, super- and sub-solution of system (4.20), keep in mind two things:

(1) α∗∗1 → ∞ if α2 → ∞ (Lemma 4.15); (2) for α2 ≥ 2
√
r(0)d2, one can prove as

before that ṽ is strictly increasing in (0, L) and so ṽ(L) is the global maximum. �

Lemma 4.17 ∀ ε > 0, for sufficiently large α2,

α∗∗1
α2

≤ d1
d2

(1 + ε).

Proof: We use the contradiction argument. Suppose that there is ε0 > 0 such that
α∗∗1
α2

> d1
d2

(1+ε0). A direction integration of (4.20) in (0, L) produces
∫ L
0 ϕ(r−ṽ)dx = 0.

By a variable transformation
α∗∗1
d1

(L− x) = y, we have

∫ α∗∗1
d1

L

0
ϕ
(
L− d1

α∗∗1
y
)
r
(
L− d1

α∗∗1
y
)
dy =

∫ α∗∗1
d1

L

0
ṽ
(
L− d1

α∗∗1
y
)
ϕ
(
L− d1

α∗∗1
y
)
dy. (4.22)
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Also, inequality (4.21) in Lemma 4.16 can be written as

e
−
[
1+

ṽ(L)d1
(α∗∗1 )2

]
y
≤ ϕ(L− d1

α∗∗1
y) ≤ e

−
[
1− 2r(0)d1

(α∗∗1 )2

]
y
. (4.23)

In addition, we can apply the same idea as in Lemma 4.7 to prove the following

inequality for ṽ

e

(
α2
d2

+
ṽ(L)
α2

)(
x−L
)
≤ ṽ(x)

ṽ(L)
≤ e

(
α2
d2
− 2r(0)

α2

)(
x−L
)

for x ∈ [0, L],

which, in term of y-variable, becomes

e
−y
[
α2d1
d2α
∗∗
1

+
ṽ(L)d1
α2α
∗∗
1

]
≤

ṽ(L− d1
α∗∗1

y)

ṽ(L)
≤ e

−y
[
α2d1
d2α
∗∗
1
− 2r(0)d1
α2α
∗∗
1

]
, (4.24)

for y ∈ [0,
α∗∗1
d1
L]. By our assumption

α∗∗1
α2

> d1
d2

(1 + ε0), passing to a subsequence if

necessary, we may assume that

as α2 →∞,
α2d1
α∗∗1 d2

→ δ ∈ [0,
1

1 + ε0
]. (4.25)

Moreover, based on the above estimates in (4.23) and (4.24), we can take a limit in

(4.22) to obtain ∫ ∞
0

r(L)e−ydy =

∫ ∞
0

2r(L)e−(1+δ)ydy, (4.26)

where the fact limα2→∞ ṽ(L) = 2r(L) (similar to Lemma 4.8) is used. By a direct

computation, we can derive from (4.26) that δ = 1, which contradicts (4.25). �

Lemma 4.18 As α2 →∞,
α∗∗1
α2
→ d1

d2
.

Proof: By Lemmas 4.15 and 4.17, we have for any ε > 0,

d1
d2
≤ α∗∗1

α2
≤ d1
d2

(1 + ε), ∀α2 � 1,

which implies the desired result due to the arbitrariness of ε. �

Proof of Theorem 1.2 (2): This statement follows directly from Lemmas 4.14 and

4.18. �
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4.3 Other sufficient conditions for stability

In this subsection, we aim to give several types of sufficient conditions for the stability

of semi-trivial steady states, which are useful in the proof of Theorem 1.3.

We first present, as a complement of Lemma 4.5, the linear stability of (0, ṽ) under

the effect of strong advection.

Lemma 4.19 Given d1, d2, α1 > 0. Then for α2 > 0 large, (0, ṽ) is always linearly

unstable.

Proof: Clearly, we need to determine the sign of λ1 = λ1(d1, α1, r − ṽ). Let ψ1 =

e
−α1
d1
x
ϕ1. Then ψ1 satisfies{

d1

[
e
α1
d1
x
ψ1x

]
x

+
[
r − ṽ

]
e
α1
d1
x
ψ1 + λ1e

α1
d1
x
ψ1 = 0, 0 < x < L,

ψ1x(0) = ψ1x(L) = 0.

Dividing the above equation by ψ1 and then integrating over (0, L), we finally attain

d1

∫ L

0

e
α1
d1
x
ψ1

2
x

ψ1
2 dx+

∫ L

0

[
r(x)− ṽ

]
e
α1
d1
x
dx+ λ1

∫ L

0
e
α1
d1
x
dx = 0,

which implies

λ1

∫ L

0
e
α1
d1
x
dx ≤ −

∫ L

0
r(x)e

α1
d1
x
dx+ e

α1
d1
L
∫ L

0
ṽdx.

By using the fact that
∫ L
0 ṽdx → 0 as α2 → ∞ (see, e.g., [23, Lemma 2.5]), we see

that λ1 < 0 provided α2 is large. Hence, the desired result follows. �

A symmetric version of the above lemma can be stated as follows.

Lemma 4.20 Given d1, d2, α2 > 0. Then for α1 > 0 large, (ũ, 0) is always linearly

unstable.

Remark 4.1 In the above two lemmas, the condition that we need on r(x) is the

positivity, more general than the assumption (H). Moreover, by an easy inspection,

the above two lemmas hold also for the special case d1 = d2 := d.

At the end of this subsection, we verify a very useful local stability result which

plays an important role in determining the global dynamics stated in Theorem 1.3

(2).

Lemma 4.21 Assume that assumption (H) holds, 0 < d1 < d2, α1 ≥ α2, and α1 ≥
2
√
r(0)d1. Then (ũ, 0) is always linearly unstable.
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Proof: Recall the equation of ũ{
d1ũxx − α1ũx +

[
r(x)− ũ

]
ũ = 0, 0 < x < L,

d1ũx(x)− α1ũ(x) = 0, x = 0, L,

and rewrite it as{
d2ũxx − α2ũx +

[
r(x)− ũ

]
ũ =

[
d2 − d1

]
ũxx +

[
α1 − α2

]
ũx, 0 < x < L,

d1ũx(x)− α1ũ(x) = 0, x = 0, L.
(4.27)

Also, recall the linearized problem (4.1) at (ũ, 0){
d2ϕ1xx − α2ϕ1x +

[
r(x)− ũ

]
ϕ1 + λ1ϕ1 = 0, 0 < x < L,

d2ϕ1(x)− α2ϕ1(x) = 0, x = 0, L.
(4.28)

Multiplying the first equation of (4.27) by e
−α2
d2
x
ϕ1 and integrating the result over

(0, L), we see{[
d2ũx−α2ũ

]
· e−

α2
d2
x · ϕ1

}∣∣∣L
0
− d2

∫ L

0
e
α2
d2
x ·
[
e
−α2
d2
x
ũ
]
x
·
[
e
−α2
d2
x
ϕ1

]
x
dx

+

∫ L

0

[
r(x)− ũ

]
· e−

α2
d2
x · ũ · ϕ1dx

=
{[

(d2 − d1)ũx + (α1 − α2)ũ
]
· e−

α2
d2
x · ϕ1

}∣∣∣L
0

−
∫ L

0

[
(d2 − d1)ũx + (α1 − α2)ũ

]
·
[
e
−α2
d2
x
ϕ1

]
x
dx,

from which we can deduce

−d2
∫ L

0
e
α2
d2
x ·
[
e
−α2
d2
x
ũ
]
x
·
[
e
−α2
d2
x
ϕ1

]
x
dx+

∫ L

0

[
r(x)− ũ

]
· e−

α2
d2
x · ũ · ϕ1dx

=−
∫ L

0

[
(d2 − d1)ũx + (α1 − α2)ũ

]
·
[
e
−α2
d2
x
ϕ1

]
x
dx.

(4.29)

On the other hand, multiply the first equation of (4.28) by e
−α2
d2
x
ũ and integrate the

result over (0, L), we then obtain

−d2
∫ L

0
e
α2
d2
x ·
[
e
−α2
d2
x
ũ
]
x
·
[
e
−α2
d2
x
ϕ1

]
x
dx+

∫ L

0

[
r(x)− ũ

]
· e−

α2
d2
x · ũ · ϕ1dx

+λ1

∫ L

0
e
α2
d2
x · ũ · ϕ1dx = 0.

(4.30)

Subtracting (4.29) from (4.30), we find

λ1 =

∫ L
0

[
(d2 − d1)ũx + (α1 − α2)ũ

]
·
[
e
−α2
d2
x
ϕ1

]
x
dx∫ L

0 e−
α1
d
x · ũ · ϕ1dx

. (4.31)
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Based on assumptions, we see from Lemma 4.1 that ũx > 0 in (0, L) and from Lemma

4.3 that
[
e
−α2
d2
x
ϕ1

]
x
< 0 in (0, L). Then, putting these facts into (4.31), one finds

λ1 < 0, that is, (ũ, 0) is linearly unstable. �

5 Global dynamics

In this section, we aim to study the global dynamics of system (1.1) under the assump-

tion (H). We first discuss the general case (1.2) in subsection 5.1, where Theorem 1.3

is proved. Then in subsection 5.2, we deal with the case (1.3) and establish Theorem

1.4.

5.1 General case (1.2)

In this subsection, we aim to prove Theorem 1.3. The whole proof is divided into the

following three parts.

Proof of Theorem 1.3 (1): We first establish the existence of α∗2 by the following

three steps.

Step 1. (ũ, 0) is g.a.s for any α2 ∈ (d2d1α1,∞).

We prove this step by further developing the arguments introduced in [37].

Let Λ = (d2d1α1,∞) and define the following three sets

Sα2 :=
{

(u0, v0) : 0 ≤ u0 ≤ ũ, 0 ≤ v0 ≤ ṽ, u0, v0 6≡ 0
}
,

A :=
{
α2 ∈ Λ : (ũ, 0) is g.a.s for any initial condition (u0, v0) in Sα2

}
,

B :=
{
α2 ∈ Λ : (0, ṽ) is g.a.s for any initial condition (u0, v0) in Sα2

}
.

Clearly, A∩B = ∅. Combining the non-existence result Theorem 1.1 and the general

result for abstract competitive systems [19, Theorem B] together, we see that Λ =

A ∪ B. Moreover, it can be proved by using the same arguments as in [37, Theorem

1.2] that both A and B are open.

We now illustrate that A is not empty. By Lemma 4.19, (0, ṽ) is linearly unstable

when α2 is large. Recall the non-existence result Theorem 1.1 (1). Then we can apply

[19, Theorem B] to conclude that all large α2 belong to A, and thus A is not empty.

We next claim that B must be empty. Otherwise, one observes that an open

interval Λ (which is connected) equals a union of two disjoint open sets, which clearly

is impossible.

The above analysis tells us that A = Λ = (d2d1α1,∞). Using the non-existence

result Theorem 1.1 again, we see that for any α2 ∈ (d2d1α1,∞), (0, ṽ) is either linearly
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unstable or neutrally stable. Next, no matter which case occurs, one can apply the

same arguments as in [37, Theorem 1.2] to further prove that (ũ, 0) is always g.a.s.

Thus, step 1 is established.

Step 2. (ũ, 0) is g.a.s for α2 = d2
d1
α1.

This step follows directly from Theorem 3.1.

Step 3. (ũ, 0) is g.a.s for α2 ∈ (d2d1α1 − ε, d2d1α1) for some small ε > 0.

For α2 = d2
d1
α1, in view of Lemmas 3.2 and 3.3, (ũ, 0) is linearly stable, (0, ṽ) is

linearly unstable, and there is no co-existence steady state. By using the perturbation

arguments (see, e.g., [33]), step 3 follows immediately.

Now, with all parameters fixed except α2, let us define

α∗2 := inf
{
γ > 0 : (ũ, 0) is g.a.s for any α2 ∈ [γ,∞)

}
.

Then we must have α∗2 ∈ [0, d2d1α1).

Next, we prove two properties of α∗2 descried in (1.9).

For the first one, it suffices to prove that there exists some ε = ε(d1, d2, r) > 0

small such that if α1 ∈ (0, ε), then for any α2 > 0, (ũ, 0) is g.a.s. If α1 = α2 = 0, it is

well known that (ũ, 0) is g.a.s (see [9]). By perturbation argument, there exists some

small positive constant ε1 = ε1(d1, d2, r) such that for α1, α2 ∈ (0, ε1), (ũ, 0) is g.a.s.

Set ε = (d1/d2)ε1. We consider two cases:

(i) 0 < α1 < ε and 0 < α2 < ε1 and (ii) 0 < α1 < ε and α2 ≥ ε1.

For case (i), since d1 < d2, we have ε < ε1, and thus (ũ, 0) is g.a.s. For case (ii), by

the definition of ε, we have α2 ≥ ε1 = (d2/d1)ε > (d2/d1)α1, which, in view of step 1

above, also gives that (ũ, 0) is g.a.s. Lastly, we define ε0 as the supremum of such ε.

For the second one, by the definitions of α∗2 and α∗∗2 , we have

α∗∗2 ≤ α∗2 <
d2
d1
α1, for any α1 ≥ 2

√
r(0)d1,

which, in view of limα1→∞
α∗∗2
α1

= d2
d1

(Theorem 1.2), implies the desired result. �

Proof of Theorem 1.3 (2): Based on Theorem 1.1 (2) and Lemma 4.21, we see

that under the conditions 0 < d1 < d2, α1 ≥ α2, α1 ≥ 2
√
r(0)d1 and (H), there

is no co-existence steady state and (ũ, 0) is always linearly unstable. In view of the

general result for abstract competitive systems [19, Theorem B], we can conclude

that (0, ṽ) is g.a.s under these conditions. In particular, for any α2 > 0, there exists

α̃1 = α̃1(α2) := max{2
√
r(0)d1, α2} > 0 such that (0, ṽ) is g.a.s for all α1 ≥ α̃1.

We claim that the above result continues to hold if α̃1 is replaced by α̃1 − ε for

some small ε > 0. In view of Lemma 4.21, (ũ, 0) is still linearly unstable under such
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small perturbations. So, to establish this claim, we just need to prove that for any

given α2 > 0, there is no co-existence steady state for α1 ∈ (α̃1 − ε, α̃1). Suppose

to the contrary that there is a sequence {α1
n}∞n=1 satisfying α1

n < α̃1 for all n and

α1
n → α̃1 as n→∞ such that system (1.1) with α1 = α1

n has a co-existence steady

state denoted by (un, vn). By elliptic regularity [10], we may assume, passing to a

subsequence if necessary, that as n → ∞, (un, vn) → (u∗, v∗) in C2([0, L]), where

u∗, v∗ ≥ 0 and satisfy
d1u
∗
xx − α̃1u

∗
x + u∗

[
r − u∗ − v∗

]
= 0, 0 < x < L,

d2v
∗
xx − α2v

∗
x + v∗

[
r − u∗ − v∗

]
= 0, 0 < x < L,

d1u
∗
x(0)− α̃1u

∗(0) = d1u
∗
x(L)− α̃1u

∗(L) = 0,
d2v
∗
x(0)− α2v

∗(0) = d2v
∗
x(L)− α2v

∗(L) = 0.

By Theorem 1.1 (2), u∗, v∗ > 0 in [0, L] cannot happen. Therefore,

either u∗ = v∗ = 0 or u∗ > 0 = v∗ or v∗ > 0 = u∗. (5.1)

If u∗ = v∗ = 0, let ûn = un
‖un‖L∞

and v̂n = vn
‖vn‖L∞

. Then, using the elliptic regularity

again, we may assume that (ûn, v̂n) → (û, v̂) in C2([0, L]) as n → ∞, where û, v̂ > 0

in [0, L] (due to ‖û‖L∞ = ‖v̂‖L∞ = 1 and the maximum principle) and satisfy
d1ûxx − α̃1ûx + ûr = 0, 0 < x < L,
d2v̂xx − α2v̂x + v̂r = 0, 0 < x < L,
no flux boundary conditions.

A direct integration of the above equation over (0, L) yields
∫ L
0 ûrdx = 0, which,

clearly, is impossible. If u∗ > 0 = v∗, using the same notations as above, we see
d1u
∗
xx − α̃1u

∗
x + u∗

[
r − u∗

]
= 0, 0 < x < L,

d2v̂xx − α2v̂x + v̂
[
r − u∗

]
= 0, 0 < x < L,

no flux boundary conditions,

(5.2)

which can be rearranged as d2u
∗
xx − α2u

∗
x + u∗

[
r − u∗

]
=
[
d2 − d1

]
u∗xx +

[
α̃1 − α2

]
u∗x, 0 < x < L,

d2v̂xx − α2v̂x + v̂
[
r − u∗

]
= 0, 0 < x < L.

(5.3)

Multiplying the first equation in (5.3) by e
−α2
d2
x
v̂ and the second one by e

−α2
d2
x
u∗,

subtracting the resulting equations and then integrating over [0, L], one finally obtains∫ L

0

[
(d2 − d1)u∗x + (α̃1 − α2)u

∗
]
·
[ v̂x
v̂
− α2

d2

]
· e−

α2
d2
x · v̂dx = 0. (5.4)
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Returning to the first equation in (5.2) and noting the definition of α̃1, one can firstly

prove similarly as Lemma 4.1 that u∗x > 0 in (0, L). Then applying this fact together

with the arguments in the proof of the estimate (4.4), one can further derive from the

second equation in (5.2) that v̂x
v̂ −

α2
d2
< 0 in (0, L). Finally, putting these estimates

into (5.4), one finds that the left side is negative, a contradiction. If u∗ = 0 < v∗,

then we have 
d1ûxx − α̃1ûx + û

[
r − v∗

]
= 0, 0 < x < L,

d2v
∗
xx − α2v

∗
x + v∗

[
r − v∗

]
= 0, 0 < x < L,

no flux boundary conditions.

Again, by using the definition of α̃1, one can justify ûx > 0 in (0, L). Then by using

the same arguments as in the proof of (4.4), one can directly verify v∗x
v∗ −

α2
d2
< 0 in

(0, L). Clearly, we can deduce a similar identity to (5.4) with u∗ and v̂ there replaced

by û and v∗, respectively, and then a similar contradiction can be derived. This

contradiction argument confirms the above claim.

With all parameters fixed except α1, now we can define

α∗1 := inf
{
γ > 0 : (0, ṽ) is g.a.s for any α1 ∈ [γ,∞)

}
.

Based on the above claim, α∗1 < α̃1. Moreover, by Theorem 3.1, α∗1 >
d1
d2
α2 for each

α2 > 0. Hence, (1.10) is confirmed. �

Proof of Theorem 1.3 (3): We continue to use some arguments in Theorem 1.3

(1) to prove this statement.

We first demonstrate that for any α1 > 0 with α∗2(α1) > 0, there must be a co-

existence steady state for some α2 ∈ (0, α∗2(α1)]. Define Γ1 := (0, d2d1α1) and recall

A and B defined in the proof of Theorem 1.3 (1). Suppose for contradiction that

for any α2 ∈ Γ1 := (0, d2d1α1), there is no co-existence steady state. Then in view

of Theorem 1.3 (1), (d2d1α1 − ε, d2d1α1) ⊂ A for some small ε > 0, so A is non-empty,

and so B must be empty, otherwise one sees that an open interval (0, d2d1α1) equals a

union of two disjoint open sets, which is impossible. In other words, A = (0, d2d1α1).

Arguing in the same spirit as in Theorem 1.3 (1), we can conclude that (ũ, 0) is

g.a.s for α2 ∈ (0, d2d1α1), and consequently for all α2 ∈ (0,∞), that is, α∗2(α1) = 0,

contradicting our assumption. Hence, there must be a co-existence steady state for

some α2 ∈ (0, d2d1α1). Indeed, by the definition of α∗2, such α2 must appear in (0, α∗2].

Similarly, by defining Γ2 := (0, α̃1(α2)) (note α̃1(α2) is defined in the proof of

Theorem 1.3 (2)), one can use the claim established in Theorem 1.3 (2) and the same

idea as above to verify the second part of this statement. �
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5.2 Special case (1.3)

We now treat the special case (1.3). For simplicity, let d1 = d2 := d > 0, and then

write system (1.1) as

ut = duxx − α1ux + u
[
r(x)− u− v

]
, 0 < x < L, t > 0,

vt = dvxx − α2vx + v
[
r(x)− u− v

]
, 0 < x < L, t > 0,

dux(x, t)− α1u(x, t) = 0, x = 0, L, t > 0,
dvx(x, t)− α2v(x, t) = 0, x = 0, L, t > 0,
u(x, 0) = u0(x) ≥, 6≡ 0, 0 < x < L,
v(x, 0) = v0(x) ≥, 6≡ 0, 0 < x < L.

(5.5)

Note that Theorem 1.1 (1) implies that system (5.5) above has no co-existence

steady state. So, for this case, the global dynamics can be simply determined by the

local stability of semi-trivial steady states.

We present the proof of Theorem 1.4 as follows.

Proof of Theorem 1.4: We first analyze the linear stability of (ũ, 0).

Recall the equation of ũ{
dũxx − α1ũx +

[
r(x)− ũ

]
ũ = 0, 0 < x < L,

dũx(x)− α1ũ(x) = 0, x = 0, L,
(5.6)

and rewrite the linearized problem (4.1) at (ũ, 0) as dϕ1xx − α1ϕ1x +
[
r(x)− ũ

]
ϕ1 + λ1ϕ1 =

[
α2 − α1

]
ϕ1x, 0 < x < L,

dϕ1(x)− α1ϕ1(x) =
[
α2 − α1

]
ϕ1(x), x = 0, L.

(5.7)

Multiply the first equation of (5.6) by e−
α1
d
xϕ1 and integrate over (0, L), we then see

−d
∫ L

0
e
α1
d
x·
[
e−

α1
d
xũ
]
x
·
[
e−

α1
d
xϕ1

]
x
dx+

∫ L

0

[
r(x)− ũ

]
· e−

α1
d
x · ũ · ϕ1dx

= 0,

(5.8)

where the no-flux boundary conditions are used. Similarly, multiplying the first e-

quation in (5.7) by e−
α1
d
xũ and then integrating over (0, L), we obtain[

(α2−α1) · e−
α1
d
xũ · ϕ1

]∣∣∣L
0
− d

∫ L

0
e
α1
d
x ·
[
e−

α1
d
xũ
]
x
·
[
e−

α1
d
xϕ1

]
x
dx

+

∫ L

0

[
r(x)− ũ

]
· e−

α1
d
x · ũ · ϕ1dx+ λ1

∫ L

0
e−

α1
d
xũ · ϕ1dx

=
[
α2 − α1

] ∫ L

0
e−

α1
d
xũ · ϕ1xdx

=
[
(α2 − α1) · e−

α1
d
xũ · ϕ1

]∣∣∣L
0
−
[
α2 − α1

] ∫ L

0

[
e−

α1
d
xũ
]
x
· ϕ1dx,



40

which can be reduced to

−d
∫ L

0
e
α1
d
x ·
[
e−

α1
d
xũ
]
x
·
[
e−

α1
d
xϕ1

]
x
dx+

∫ L

0

[
r(x)− ũ

]
· e−

α1
d
x · ũ · ϕ1dx

=− λ1
∫ L

0
e−

α1
d
xũ · ϕ1dx−

[
α2 − α1

] ∫ L

0

[
e−

α1
d
xũ
]
x
· ϕ1dx.

(5.9)

Combining (5.8) and (5.9) together, we find

λ1

∫ L

0
e−

α1
d
xũ · ϕ1dx =

[
α1 − α2

] ∫ L

0

[
e−

α1
d
xũ
]
x
· ϕ1dx. (5.10)

On the other hand, following the proof of (4.4), we can conclude that

p :=
ũx
ũ
<
α1

d
in (0, L),

which implies that the right side of (5.10) is positive. Hence, λ1 > 0, that is, (ũ, 0) is

linearly stable.

Following the above approach, one can prove that (0, ṽ) is linearly unstable.

In view of the non-existence result of co-existence steady state (Theorem 1.1) and

the theory of abstract competitive systems [18, 19], we can conclude that (ũ, 0) is

g.a.s. �

6 Discussion

In this paper, we studied a Lotka-Volterra type reaction-diffusion-advection system,

which can be applied to describe the competition between two aquatic species living

in a river/stream with unidirectional water flow or in a vertical water column. It is

assumed that two species are competing for the same resources that are distributed

decreasingly across space and undergoing different dispersal strategies as reflected

by their diffusion and/or advection rates. Under this assumption, we explore the

joint impact of movement strategy and environmental heterogeneity on the outcome

of competition. It turns out that the competitive exclusion principle holds in most

situations and which species has more competitive advantages depends on the size

relation between their advection speeds α1 and α2 with 0 < d1 < d2 fixed; more

precisely, we find two critical values α∗2(α1) (for given α1 > 0) and α∗1(α2) (for given

α2 > 0) to describe when species u or v is a superior one (Theorem 1.3); see also

Figure 1 for a geometric description of these results. In particular, we achieve a

thorough understanding when two population only differ in their advection speeds

(Theorem 1.4) and when the dispersal strategies of two competitors are proportional

(Theorem 3.1).
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Compared with the existing work [38], the new ingredient of our model lies in the

involvement of environmental heterogeneity, as described by the resource function.

Such a consideration, biologically, is more reasonable and meaningful since it reflects

a more realistic situation where the resources may vary from point to point, and math-

ematically, is much more difficult to deal with as many arguments used before can

not be equally applied. We need to develop new arguments to study the properties

of both semi-trivial steady states and co-existence steady states. Furthermore, by an

easy inspection, one immediately finds that dramatic changes in the dynamical be-

haviors may happen when the spatial variations are involved. Recall two observations

obtained in [38], as mentioned in our introduction section. Then the first observation

now may become invalid in some cases due to α∗2 ≡ 0 for all small α1 > 0 (Theorem

1.3).

We next discuss the other related work [37] (α1 = 0 < α2). Obviously, the

current work deals with a much more general situation than [37]. If we return to

Figure 1, then [37] analyzed the population dynamics on the special line α1 = 0,

while now we consider a more wider region: the first quadrant. Mathematically, our

main contribution lies in the generalization of the previous non-existence result to the

current version Theorem 1.1 (1) with very general boundary conditions, in which we

introduce new ingredients to overcome the difficulty caused by the non-analyticity of

stationary solutions, and also in the finding of a new observation Theorem 1.1 (2).

Moreover, by using a wide range of arguments, we provide a good understanding on

the global dynamics for this general situation.

We end this section by proposing several research problems. The first one refers

to the linear stability of semi-trivial steady states. Although now we obtain a clear

understanding on this problem under certain condition on α1 or α2 (see Theorem

1.2), it is not yet completely solved. We suspect that the principal eigenvalue of

the current diffusion-advection type operator is no longer monotonic in the advection

rate if the conditions given in Theorem 1.2 are removed. The other tough issue is

about the properties of co-existence steady state, say, existence/non-existence, local

stability, and uniqueness. Currently, we have made progress on the non-existence

property (Theorem 1.1), but for the latter two, so far there seems no effective ways

or techniques. Motivated by a recent work of He and Ni [14] (for reaction-diffusion

systems without advection), we may propose a conjecture for system (1.1): every co-

existence steady state, if exists, is linearly stable. If this conjecture holds true, then

we can say more about the region between α∗2 and α∗1. We leave these challenging

problems for future investigations.

Acknowledgement. The authors express their sincere gratitude to the anonymous

referee for careful reading and helpful suggestions which led to great improvements of



42

presentation of this paper. Y. Lou is supported in part by NSF grant DMS-1411476

and NSFC (11571363, 11571364), X.-Q. Zhao is supported in part by the NSERC of

Canada, and P. Zhou is supported in part by the Program for Professor of Special

Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and the

AARMS Postdoctoral Fellowship of Canada.

References

[1] I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition
model: A Bifurcation Approach. Memoirs of AMS, 245, #1161, 2017.

[2] R.S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Series in
Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.

[3] R.S. Cantrell, C. Cosner, and Y. Lou, Evolution of dispersal and ideal free distribution,
Math Bios., Eng., 7 (2010) 17-36.

[4] R.S. Cantrell, C. Cosner, and Y. Lou, Evolutionary stability of ideal dispersal strategies
in patchy environments, J. Math. Biol., 65 (2012) 943-965.

[5] R.S. Cantrell, C. Cosner, Y. Lou and S. Schreiber, Evolution of natal dispersal in spa-
tially heterogeneous environments, Math Biosciences, 283 (2017) 136-144.

[6] X.F. Chen, Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an
elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012) 45-80.

[7] R.H. Cui, K.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states
to an epidemic model in advective environments, J. Differential Equations, 263 (2017),
2343-2373.

[8] R.H. Cui, Y. Lou, Spatial SIS epidemic models in advective environments, J. Differential
Equations, 261 (2016), 3305-3343.

[9] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, The evolution of slow
dispersal rates: a reaction-diffusion model, J. Math. Biol., 37 (1998) 61-83.

[10] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, 2001.

[11] A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Popul.
Biol., 24 (1983), 244-251.

[12] X. He, W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra
competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations,
254 (2013), 528-546.

[13] X. He, W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra
competition-diffusion system II: The general case, J. Differential Equations, 254 (2013),
4088-4108.

[14] X. He, W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system:
Diffusion and spatial heterogeneity I, Comm. Pure. Appl. Math., 69 (2016), 981-1014.

[15] X. He, W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system
with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55
(2016), Art. 25, 20 pp.

[16] X. He, W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system
with equal amount of total resources, III, Calc. Var. Partial Differential Equations, 56
(2017), Art. 132, 26 pp.



43

[17] P. Hess, Periodic-parabolic boundary value problems and positivity. Pitman Research
Notes in Mathematics Series, 247. Longman, Harlow, UK; Wiley, New York, 1991.

[18] P. Hess, A.C. Lazer, On an abstract competition model and applications, Nonlinear
Analysis T.M.A., 16 (1991) 917-940.

[19] S.-B. Hsu, H. Smith, and P. Waltman, Competitive exclusion and coexistence for compet-
itive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996) 4083-4094.

[20] S. Kowalevski, Zur theorie der partiellen differentialgleichung, J. Reine Angew. Math.,
80 (1875) 1-32.

[21] M.G. Krein, M.A. Rutman, Linear operators leaving invariant a cone in a Banach space,
Uspekhi Mat. Nauk (N. S.), 3 (1948), 3-95.

[22] K.-Y. Lam and D. Munther, A remark on the global dynamics of competitive systems
on ordered Banach spaces, Proc. Amer. Math. Soc., 144 (2016), 1153-1159.

[23] K.-Y. Lam, Y. Lou, and F. Lutscher, Evolution of dispersal in closed advective environ-
ments, J. Biol. Dyn., 9 (2015), 188-212.

[24] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple
species, J. Differential Equations, 223 (2006), 400-426.

[25] Y. Lou, Some challenging mathematical problems in evolution of dispersal and popu-
lation dynamics, Tutorials in mathematical biosciences. IV, 171-205, Lecture Notes in
Math. 1922, Math. Biosci. Subser., Springer, Berlin, 2008.

[26] Y. Lou, F. Lutscher, Evolution of dispersal in open advective environments, J. Math.
Biol., 69 (2014), 1319-1342.

[27] Y. Lou, D.M. Xiao, and P. Zhou, Qualitative analysis for a Lotka-Volterra competition
system in advective homogeneous environment, Discrete Contin. Dyn. Syst. A, 36 (2016)
953-969.

[28] Y. Lou, P. Zhou, Evolution of dispersal in advective homogeneous environment: the
effect of boundary conditions, J. Differential Equations, 259 (2015) 141-171.

[29] F. Lutscher, M. A. Lewis, and E. McCauley, Effects of heterogeneity on spread and
persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.

[30] F. Lutscher, E. Pachepsky, and M.A. Lewis, The effect of dispersal patterns on stream
populations, SIAM Rev., 47 (2005), 749-772.

[31] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in
Applied Mathematics, 82, SIAM, Philedelphia, (2011).

[32] H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive
and Cooperative Systems, Math. Surveys Monogr., 41, Amer. Math. Soc., Providence,
RI, 1995.

[33] H.L. Smith, X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model, J. Differ-
ential Equations, 155 (1999), 368-404.

[34] D.C. Speirs, W.S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82
(2001), 1219-1237.

[35] A.M. Trimbee, G.P. Harris, Use of time-series analysis to demonstrate advection rates
of different variables in a small lake, J. Plankton Res., 5 (1983), 819-833.

[36] O. Vasilyeva, F. Lutscher, Population dynamics in rivers: analysis of steady states, Can.
Appl. Math. Quart., 18 (2011), 439-469.

[37] X.-Q. Zhao, P. Zhou, On a Lotka-Volterra competition model: the effects of advection
and spatial variation, Calc. Var. Partial Differential Equations, 55 (2016), Art. 73, 25
pp.

[38] P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var.
Partial Differential Equations, 55 (2016), Art. 137, 29 pp.


