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1 Introduction

We consider the problem
∆[(d1 + a11u+ a12v)u] + u(1− u− a1v) = 0, x ∈ Ω,

d2∆v + v(1− v − a2u) = 0, x ∈ Ω,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω,

(1.1)

in a bounded domain Ω ⊂ Rn, n ≥ 1, with smooth boundary, where d1 > 0, d2 > 0, a12 ≥ 0, a11 ≥
0, a1 ≥ 0 and a2 ≥ 0 are parameters, and where ν = νΩ denotes the outward normal vector field
on ∂Ω. Our goal consists in identifying parameter ranges within which the system (1.1) exclusively
possesses spatially homogeneous solutions. Thinking of u and v as representing population densities,
we will focus here on nonnegative solutions, where throughout the sequel by a nonnegative classical
solution of (1.1) we mean a pair (u, v) ∈ (C1(Ω) ∩ C2(Ω))2 which is such that u ≥ 0 and v ≥ 0 in Ω,
and that each identity in (1.1) is satisfied in the pointwise sense.

System (1.1) is a special case of the Shigesada-Kawasaki-Teramoto model (abbreviated as SKT hence-
forth), which was proposed in [13] to describe the spatial segregation of two competing species. There
have been extensive studies on the existence of non-constant positive steady states of the SKT model;
See [3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16]. Surveys of the SKT model can be found in [10, 11, 17]. Some of
these works also investigate the non-existence of non-constant positive steady states of the SKT model.
For instance, in the weak competition case (i.e., a1 < 1 and a2 < 1), it is shown in [5] that when
a11 = 0, system (1.1) has no non-constant positive solution if one of the following three quantities is
small: a12/d1, a12/d2, a12/

√
d1d2. The main goal of the paper is to provide explicit bounds for various

parameters such that system (1.1) has no non-constant positive solution. These results will facilitate
further understanding of the global dynamics of system (1.1).

Main results. The first class of our main results in this direction addresses the case when the
quantity u is not influenced by any self-diffusion in the sense that the coefficient a11 in the first equation
from (1.1) vanishes. In this situation, we shall establish two sufficient criteria for nonexistence of
inhomogeneous solutions in cases when one of the competition parameters exceeds the critical value 1,
whereas the other does not. According to the asymmetry in (1.1) induced by the assumption therein
that only the first population is capable of cross-diffusive migration, our respective assumptions (1.3)
and (1.6) on the further system parameters will be substantially different: When the second population
has a competitive advantage in that (1.2) holds, we will only require the smallness condition (1.3) on
its diffusion rate, without any restriction on the strength of cross-diffusion; in the opposite case
(1.5), however, our hypothesis (1.6) will additionally involve the cross-diffusion parameter a12. More
precisely:

Theorem 1.1 Suppose that a11 = 0, a12 ≥ 0, d1 > 0, d2 > 0, a1 ≥ 0 and a2 ≥ 0, and that (u, v) is a
nonnegative classical solution of (1.1).

i) If
a1 > 1 > a2, (1.2)

and if moreover
d1 ≥ d2, (1.3)
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then
either (u, v) ≡ (0, 0), or (u, v) ≡ (1, 0), or (u, v) ≡ (0, 1). (1.4)

ii) In the case when
a1 < 1 < a2 (1.5)

as well as
d1 + 2a12 ≤ d2, (1.6)

again (1.4) is valid.

Next addressing the full system possibly containing self-diffusion in the first component, we shall detect
an alternative set of conditions, essentially reflecting suitable smallness of cross-diffusion, as sufficient
for nonexistence of inhomogeneous solutions. In contrast to Theorem 1.1, the following statement
inter alia covers the case of weak competition when both a1 < 1 and a2 < 1 and hence coexistence of
both populations is possible already in the associated spatially homogeneous counterpart of (1.1).

Theorem 1.2 Let d1 > 0, d2 > 0, a11 ≥ 0, a12 ≥ 0, a1 > 0 and a2 > 0, and suppose that (u, v) ∈
(C1(Ω) ∩ C2(Ω))2 is a classical solution of (1.1) such that u ≥ 0 and v ≥ 0 in Ω.

i) If
a1 < 1 < a2 (1.7)

and
a12

d2
< 2− a1 + 2

√
1− a1, (1.8)

then (1.4) holds.

ii) In the case when
a1 < 1 and a2 < 1 (1.9)

as well as
a12

d2
< min

{
2− a1 + 2

√
a1 ,

a1(1− a1a2)

1− a2

}
, (1.10)

it follows that

either (u, v) ≡ (0, 0), or (u, v) ≡ (1, 0), or (u, v) ≡ (0, 1), or (u, v) ≡
( 1− a1

1− a1a2
,

1− a2

1− a1a2

)
.

(1.11)
iii) If

a1 > 1 > a2 (1.12)

and
a12

d2
<

1

a2
, (1.13)

then again (1.4) holds.
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Plan of the paper. Our analysis will follow two approaches which both are at their core based
on arguments from the context of the maximum principle for scalar elliptic equations, but which
substantially differ from each other in their overall view on (1.1): In order to establish Theorem 1.1,
we shall interpret (1.1) as actually determining the unknown (w, v), where w := (d1 + a11u + a12v)u
depends linearly on u precisely under the hypothesis a11 = 0 made in Theorem 1.1. In this situation,
it will turn out in Section 2 that under the respective assumptions, for a certain g : (0,∞) → (0,∞)
and any given nonconstant solution, the function ∇ · (g2(v)∇ w

g(v)) cannot attain any zero in Ω which

is impossible due to the boundary conditions in (1.1).
In the derivation of Theorem 1.2, the tridiagonal structure of (1.1) is used through the observation
that the first two equations therein are equivalent to the elliptic system given by

0 = (d1 + 2a11u+ a12v)∆u+ 2(a11∇u+ a12∇v) · ∇u
+u ·

{
(a2δv − 1)u+ 1− (a1 + δ)v + δv2

}
, x ∈ Ω,

0 = d2∆v + v(1− v − a2u), x ∈ Ω,

(1.14)

where
δ :=

a12

d2
≥ 0. (1.15)

Thereby rewritten in non-divergence form, the system becomes accessible to arguments based on the
use of the maximum principle in a rather elementary manner, followed by appropriate exploitation of
accordingly obtained algebraic inequalities (Section 3).

Before going into details, let us first observe that nonnegative classical solutions of (1.1) are actually
strictly positive in each of their components in which they are nontrivial:

Proposition 1.3 Let d1 > 0, d2 > 0, a11 ≥ 0, a12 ≥ 0, a1 ≥ 0 and a2 ≥ 0, and suppose that (u, v) is a
nonnegative classical solution of (1.1). Then if u 6≡ 0, we have u > 0 in Ω, and if v 6≡ 0, then v > 0
in Ω.

Proof. Using (1.14) we see that ũ(x, t) := u(x), x ∈ Ω, t ≥ 0, trivially solves ũt = A(x)∆ũ+B(x) ·
∇ũ+H(x)ũ in Ω× (0,∞) and ∂ũ

∂ν = 0 on ∂Ω× (0,∞) with A(x) := d1 + 2a11u(x) + a12v(x), B(x) :=
2a11∇u(x) + 2a12∇v(x) and H(x) := (a2δv(x)− 1)u(x) + 1− (a1 + δ)v(x) + δv2(x), x ∈ Ω. Assuming
u 6≡ 0, we moreover obtain that ũ(·, 0) ≡ u is nonnegative but nontrivial, so that by means of the
strong maximum principle for scalar parabolic equations ([2, Theorem 10.13]) we infer that ũ > 0 in
Ω × (0,∞), and that hence u > 0 in Ω. The corresponding property of v can be seen in a similar
manner. �

2 Proof of Theorem 1.1

Proof of Theorem 1.1. i) The proof is based on a contradiction argument. Assuming on the
contrary that (1.1) admits a nonnegative classical solution (u, v) such that u 6≡ 0 and v 6≡ 0, using
that a11 = 0 and that u and v are positive due to Proposition 1.3 we can rewrite (1.1) according to

∆[(d1+a12v)u]
u = −1 + u+ a1v, x ∈ Ω,
d2∆v
v = −1 + v + a2u, x ∈ Ω,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

(2.1)
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Writing

w := (d1 + a12v)u,

we thus see that thanks to (1.2),

∆w

w
=

∆[(d1 + a12v)u]

[(d1 + a12v)u]
=

1

d1 + a12v
· ∆[(d1 + a12v)u]

u

=
1

d1 + a12v
· (−1 + u+ a1v)

>
1

d1 + a12v
· (−1 + v + a2u)

=
1

d1 + a12v
· d2∆v

v

=
∆v

(d+ βv)v
, x ∈ Ω, (2.2)

where d := d1
d2

satisfies d ≥ 1 due to (1.3), and where β := a12
d2
≥ 0.

We now let

g(s) :=
( s

d+ βs

) 1
d
, s > 0,

and readily verify that
g(s) > 0 for all s > 0 (2.3)

and

g′(s) =
s

1
d
−1

(d+ βs)
1
d

+1
> 0 for all s > 0 (2.4)

as well as

g′′(s) = − [(d− 1) + 2βs] · s
1
d
−2

(d+ βs)
1
d

+2
< 0 for all s > 0, (2.5)

the latter relying on the inequalities d ≥ 1 and β ≥ 0. Thus, defining

ϕ :=
w

g(v)
,

upon a direct calculation using (2.2), (2.4) and (2.5), we find that

∇ · (g2(v)∇ϕ) = ∇ · (g(v)∇w − wg′(v)∇v)

= g(v)∆w − wg′(v)∆v − wg′′(v)|∇v|2

> g(v) · w

(d+ βv)v
∆v − wg′(v)∆v − wg′′(v)|∇v|2

= w∆v ·
( g(v)

(d+ βv)v
− g′(v)

)
− wg′′(v)|∇v|2

= −wg′′(v)|∇v|2

≥ 0 for all x ∈ Ω, (2.6)
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because g(v) = v(d+ βv)g′(v) by definition of g. On the other hand, for all x ∈ ∂Ω we have

∂ϕ

∂ν
=

1

g(v)

∂w

∂ν
− 1

g2(v)
g′(v)

∂v

∂ν
=

1

g(v)

[
a12u

∂v

∂ν
+ (d1 + a12v)

∂u

∂ν

]
− 1

g2(v)
g′(v)

∂v

∂ν
= 0

thanks to the zero Neumann boundary conditions in (2.1), and thus an integration by parts implies
that ∫

Ω
∇ · (g2(v)∇ϕ) =

∫
∂Ω
g2(v)

∂ϕ

∂ν
= 0.

This contradicts (2.6) and thereby readily establishes (1.4).

ii) The proof quite closely follows the above idea: If (1.1) had a nonnegative classical solution such
that u 6≡ 0 and v 6≡ 0, then introducing the functions w, g and ϕ as in part i) we could proceed as in
(2.2) to see that due to (1.5),

∆w

w
<

∆v

(d+ βv)v
for all x ∈ Ω, (2.7)

where d := d1
d2
> 0 and β := a12

d2
≥ 0. Accordingly,

∇ · (g2(v)∇ϕ) < −wg′′(v)|∇v|2 for all x ∈ Ω, (2.8)

where now the function g satisfies

g(s) > 0 and g′(s) > 0 for all s > 0 (2.9)

as well as

g′′(s) = − [(d− 1) + 2βs] · s
1
d
−2

(d+ βs)
1
d

+2
for all s > 0.

Here since v ≤ 1 by the maximum principle (cf. also Lemma 3.2 below), we see that

d− 1 + 2βv ≤ d− 1 + 2β =
d1 + 2a12 − d2

d2
≤ 0

thanks to the assumption (1.6), and thus

g′′(v) ≥ 0 in Ω. (2.10)

From this along with (2.8) we infer that

∇ · (g2(v)∇ϕ) < 0 for all x ∈ Ω, (2.11)

and that hence

0 >

∫
Ω
∇ · (g2(v)∇ϕ) =

∫
∂Ω
g2(v)

∂ϕ

∂ν
= 0,

which is impossible. �
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3 Analysis of (1.14). Proof of Theorem 1.2

We next focus on the interpretation (1.14) of (1.1), where throughout the sequel we shall suppose
without explicit further mentioning that d1 > 0, d2 > 0, a11 ≥ 0 and a12 ≥ 0, and where in most
parts of our analysis we will consider the number δ appearing therein as an independent nonnegative
parameter, not necessarily linked to a12 and d2 in the style of (1.15). In this general setting, we shall
separately obtain three results on nonexistence of inhomogeneous solutions to (1.14) which will finally
imply the respective statements from Theorem 1.2 i), ii) and iii).

3.1 An application of the scalar maximum principle

Let us prepare our analysis of (1.14) by stating the following general consequence of the scalar maxi-
mum principle when combined with the Hopf boundary point lemma.

Lemma 3.1 Let A ∈ C0(Ω) be positive in Ω, and let B ∈ C0(Ω;Rn), F ∈ C0(Ω) and z ∈ C1(Ω) ∩
C2(Ω) be such that {

A(x)∆z +B(x) · ∇z + F (x) = 0, x ∈ Ω,
∂z
∂ν = 0, x ∈ ∂Ω.

(3.1)

Then there exists x0 ∈ Ω such that
z(x0) = max

x∈Ω
z(x) (3.2)

and
F (x0) ≥ 0. (3.3)

Proof. The proof is similar to that of Proposition 2.2 in [5]. We write M := maxx∈Ω z(x) and first
consider the case when z < M inside Ω. Then there must exist x0 ∈ ∂Ω such that z(x0) = M , and since
Ω satisfies an interior sphere condition, we may pick y ∈ Ω and r > 0 such that Br(y) ∩ ∂Ω = {x0}.
Now if (3.3) was false, then F (x0) < 0, so that by continuity of F we could find ε ∈ (0, r) such that
F < 0 in Bε(x0)∩Ω. Since for y0 := x0+y

2 and r0 := ε
2 one can easily verify that B := Br0(y0) satisfies

B ⊂ Bε(x0)∩Ω and B ∩ ∂Ω = {x0}, it then follows from (3.1) that A(x)∆z+B(x) · ∇z = −F (x) > 0
for all x ∈ B, whence the fact that z|B < M = z(x0) allows for an application of the Hopf boundary
point lemma ([1, Lemma 3.4]) which asserts that ∂z

∂νB
(x0) > 0 and hence contradicts the zero Neumann

boundary condition from (3.1), because νB coincides with ν = νΩ at x0.
Thus knowing that actually (3.3) must hold in this situation, we are left with the case when M =
maxx∈Ω z(x), in which z(x0) = M for some x0 ∈ Ω. But at this interior maximum point we necessarily
have ∆z(x0) ≤ 0 and ∇z(x0) = 0, whence (3.1) directly yields (3.3). �

This firstly implies in quite a straightforward manner the following pointwise upper and lower bounds
for v in terms of the maximal and minimal values of u.

Lemma 3.2 Let a1 > 0, a2 > 0 and δ ≥ 0, and assume that (u, v) is a nonnegative classical solution
of (1.14) for which v 6≡ 0. Then

1− a2M1 ≤ v(x) ≤ 1− a2m1 for all x ∈ Ω, (3.4)

where M1 := maxx∈Ω u(x) and m1 := minx∈Ω u(x).
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Proof. In Lemma 3.1 taking A ≡ d2, B ≡ 0 and F (x) := v(x) · (1− v(x)− a2u(x)), x ∈ Ω, we infer
the existence of x0 ∈ Ω such that v(x0) = M := maxx∈Ω v(x) and M · (1 −M − a2u(x0)) ≥ 0. Since
M > 0 according to our assumption that v 6≡ 0, by definition of m1 this implies that

M ≤ 1− a2u(x0) ≤ 1− a2m1 (3.5)

and hence proves the second inequality in (3.4), whereas the first can be derived in quite a similar
manner by applying Lemma 3.1 to −v and relying on the strict positivity of v in Ω, as guaranteed by
Proposition 1.3. �

Due to the more complicated kinetic term in the first equation from (1.14) when compared to the
second, our respective conclusions from Lemma 3.1 for u naturally become more involved:

Lemma 3.3 Let a1 > 0, a2 > 0 and δ ≥ 0, and suppose that (u, v) is a nonnegative classical solution
of (1.14) fulfilling u 6≡ 0. Then there exists x0 ∈ Ω such that u(x0) = M1 and(

1− a2δv(x0)
)
·M1 ≤ 1− (a1 + δ)v(x0) + δv2(x0), (3.6)

where M1 := maxx∈Ω u(x).

Proof. On the basis of (1.14), an application of Lemma 3.1 to z(x) := u(x), A(x) := d1+2a11u(x)+

a12v(x), B(x) := 2a11∇u(x) + 2a12∇v(x) and F (x) := u(x) ·
{

(a2δv(x)− 1)u(x) + 1− (a1 + δ)v(x) +

δv2(x)
}

, x ∈ Ω, shows that there exists x0 ∈ Ω such that u(x0) = M1 and F (x0) ≥ 0. Since M1 is

assumed to be positive, the latter implies that (a2δv(x0) − 1)M1 + 1 − (a1 + δ)v(x0) + δv2(x0) ≥ 0,
which is equivalent to (3.6). �

Lemma 3.4 Let a1 > 0, a2 > 0 and δ ≥ 0, and let (u, v) be a nonnegative classical solution of (1.14)
such that u 6≡ 0. Then there exists x0 ∈ Ω such that writing m1 := minx∈Ω u(x) we have u(x0) = m1

and (
1− a2δv(x0)

)
·m1 ≥ 1− (a1 + δ)v(x0) + δv2(x0). (3.7)

Proof. Applying Lemma 3.1 to −u yields x0 ∈ Ω such that u(x0) = m1 and

m1 ·
{(
a2δv(x0)− 1

)
·m1 + 1− (a1 + δ)v(x0)− δv2(x0)

}
≤ 0.

As m1 must be positive by Proposition 1.3, this entails that in fact(
a2δv(x0)− 1

)
·m1 + 1− (a1 + δ)v(x0)− δv2(x0) ≤ 0,

and that hence (3.7) is valid. �
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3.2 Basic properties associated with the inequalities (3.6) and (3.7)

In order to prepare a suitable further exploitation of the inequalities from Lemma 3.2, Lemma 3.3 and
Lemma 3.4, let us state some useful properties of the terms in (3.6) and (3.7) containing v.

Firstly, the role of the condition appearing in (1.8) and also in (1.10) is predicated on the following
elementary but important observation on the quadratic polynomial appearing on the right-hand sides
of (3.6) and (3.7).

Lemma 3.5 Suppose that a1 ∈ (0, 1), and that δ ≥ 0 is such that

δ < 2− a1 + 2
√

1− a1. (3.8)

Then
ψ(s) := 1− (a1 + δ)s+ δs2, s ∈ R, (3.9)

satisfies
ψ(s) > 0 for all s ∈ [0, 1]. (3.10)

Proof. We evidently may assume that δ is positive and that hence ψ possesses two complex roots
s+ and s− which are given by

s± :=
a1 + δ ±

√
δ2 − 2(2− a1)δ + a2

1

2δ
, (3.11)

and which are both nonreal when δ2 − 2(2− a1)δ + a2
1 < 0, that is, when δ ∈ (δ−, δ+) with

δ± := 2− a1 ± 2
√

1− a1,

whence (3.10) is obvious for any such δ. We are thus left with the case when δ ∈ (0, δ−], in which we
first observe that necessarily δ ≤ a1 due to the fact that

a1 − δ− = 2
√

1− a1 − 2(1− a1) = 2
√

1− a1 · (1−
√

1− a1) ≥ 0.

Consequently, for such choices of δ the number s− from (3.11) satisfies

2δ · (s− − 1) = a1 − δ −
√
δ2 − 2(2− a1)δ + a2

1 > 0,

because then

(a1 − δ)2 −
√
δ2 − 2(2− a1)δ + a2

1

2

= (a2
1 − 2a1δ + δ2)− (δ2 − 4δ + 2a1δ + a2

1) = 4(1− a1)δ > 0

according to our assumption that a1 < 1. Whenever δ ∈ (0, δ−], we thus obtain that s+ ≥ s− > 1,
which in view of (3.9) implies (3.10) also in this case. �

Next, in view of (3.6) and (3.7) it is not surprising that a crucial role in our subsequent analysis will
be played by the function φ defined on (−∞, 1

a2δ
) by

φ(s) :=
1− (a1 + δ)s+ δs2

1− a2δs
≡ ψ(s)

1− a2δs
, s ∈

(
−∞, 1

a2δ

)
, (3.12)

9



which has its derivative φ′ given by

φ′(s) =
a2δ − a1 − δ + 2δs− a2δ

2s2

(1− a2δs)2
, s ∈

(
−∞, 1

a2δ

)
. (3.13)

Two elementary properties thereof are stated in the following.

Lemma 3.6 Let a1 > 0, a2 > 0 and δ ≥ 0, and let φ be as defined in (3.12).

i) If 1− a1a2 − a2δ + a2
2δ ≤ 0 or δ = 0, then φ′ has no zero in (−∞, 1

a2δ
).

ii) If 1− a1a2 − a2δ + a2
2δ > 0 and δ > 0, then φ′ possesses precisely one zero in (−∞, 1

a2δ
), which is

attained at

s? :=
1−

√
1− a1a2 − a2δ + a2

2δ

a2δ
. (3.14)

Proof. Both statements can be verified on the basis of (3.13) in a straightforward manner. �

3.3 The case a1 < 1 < a2

Now in the situation addressed in Theorem 1.2 i), the function φ defined in (3.12) enjoys a further
favorable property, asserting that its graph remains a certain decreasing line within a conveniently
large interval.

Lemma 3.7 Assume that a1 < 1, a2 > 1 and δ ≥ 0. Then the function φ from (3.12) satisfies

φ(s) >
1− s
a2

for all s ∈
[
0,

a2 − 1

(a1a2 − 1)+

)
. (3.15)

Proof. The elementary derivation of this may be left to the reader. �

By means of a contradictory argument based on Lemma 3.2 and Lemma 3.4, we can thereby exclude
the existence of inhomogeneous solutions in the framework described in Theorem 1.2 i).

Lemma 3.8 Let a1 < 1, a2 > 1 and δ ≥ 0 be such that δ < 2−a1 + 2
√

1− a1, and suppose that (u, v)
is a nonnegative classical solution of (1.14) satisfying v 6≡ 0. Then u ≡ 0 and v ≡ 1.

Proof. Let us assume on the contrary that u 6≡ 0. Then Lemma 3.4 provides x0 ∈ Ω such that
u(x0) = m1 := minx∈Ω u(x) and that(

1− a2δv(x0)
)
·m1 ≥ 1− (a1 + δ)v(x0) + δv2(x0), (3.16)

where in view of Lemma 3.2 we know that

0 ≤ v(x0) ≤ 1− a2m1 (3.17)

and that thus, in particular, v(x0) ≤ 1. Therefore Lemma 3.5 applies so as to warrant that the
right-hand side in (3.16) is positive, whence (3.16) necessarily requires that

v(x0) <
1

a2δ
, (3.18)
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and that consequently
m1 ≥ φ(v(x0)) (3.19)

by definition of φ. Now if 1− a1a2 − a2δ + a2
2δ ≤ 0 and hence

(a2 − 1)δ ≤ a1a2 − 1

a2
, (3.20)

then Lemma 3.6 says that φ′ has no zero in (−∞, 1
a2δ

), so that since

φ′(0) = (a2 − 1)δ − a1 ≤
a1a2 − 1

a2
− a1 = − 1

a2
< 0

by (3.20), it follows that φ decreases throughout (−∞, 1
a2δ

). As (3.20) additionally entails that

δ ≤ a1a2 − 1

a2(a2 − 1)
<

a2 − 1

a2(a2 − 1)
=

1

a2

due to our assumption that a1 < 1, we moreover see that [0, 1 − a2m1] ⊂ [0, 1] ⊂ (−∞, 1
a2δ

), which
means that φ is decreasing on [0, 1− a2m1] and that thus (3.19) together with (3.17) implies that

m1 ≥ φ(1− a2m1).

Again by definition of φ, this is equivalent to{
1− a2δ · (1− a2m1)

}
·m1 ≥ 1− (a1 + δ) · (1− a2m1) + δ(1− a2m1)2,

which in turn shows that

(1− a1a2)m1 ≥ 1− a1 > 0,

which is impossible because for (3.20) we necessarily must have 1 − a1a2 < 0.

We consequently see that (3.20) cannot hold, so that actually δ > a1a2−1
a2(a2−1) . Then however, in the case

a1a2 > 1 we have

1

a2δ
<

a2 − 1

a1a2 − 1
=

a2 − 1

(a1a2 − 1)+
,

which trivially extends so as to remain valid in fact regardless of the sign of a1a2 − 1. Therefore,
Lemma 3.7 may be applied and ensures that φ(s) > 1−s

a2
for all s ∈ [0, 1

a2δ
), so that again relying on

(3.17) and (3.18) we infer from (3.19) that

m1 ≥ φ(v(x0)) >
1− v(x0)

a2
,

which is absurd, for once more due to (3.17) we know that

m1 ≤
1− v(x0)

a2
.

In conclusion, we obtain that indeed u ≡ 0, whereupon Lemma 3.2 guarantees that according to our
hypothesis v 6≡ 0 we have v ≡ 1. �
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3.4 The case a1 < 1 and a2 < 1

Next, in the case of weak competition we will rely on the following counterpart of Lemma 3.7, the
proof of which is again straightforward and hence may be omitted here.

Lemma 3.9 Assume that a1 < 1, a2 < 1 and δ ≥ 0. Then the function φ from (3.12) satisfies

φ(s) >
1− s
a2

for all s >
a2 − 1

a1a2 − 1
(3.21)

and

φ(s) <
1− s
a2

for all s ∈
[
0,

a2 − 1

a1a2 − 1

)
. (3.22)

The following additional observation will enable us to avoid inconvenient case distinctions when ap-
plying Lemma 3.6 in the proof of Lemma 3.11 below.

Lemma 3.10 Let a1 < 1, a2 < 1 and δ ≥ 0 be such that δ < 2 − a1 + 2
√

1− a1. Then 1 − a1a2 −
a2δ + a2

2δ > 0.

Proof. Writing χ(ξ) := 1−a1ξ
ξ(1−ξ) , ξ ∈ (0, 1), we compute χ′(ξ) = −1+2ξ−a1ξ2

ξ2(1−ξ)2 for ξ ∈ (0, 1), and thus

see that χ′(ξ) = 0 if and only if ξ = ξ− := 1−
√

1−a1
a1

. Since

χ(ξ−) =

√
1− a1

1−
√

1−a1
a1

− 1−2
√

1−a1+1−a1
a21

=
a2

1

√
1− a1

(2− a1)
√

1− a1 + 2a1 − 2

=
a2

1

√
1− a1 ·

{
(2− a1)

√
1− a1 − 2a1 + 2

}
(2− a1)2(1− a1)− (2a1 − 2)2

=
2− 3a1 + a2

1 + 2(1− a1)
√

1− a1

1− a1

= 2− a1 + 2
√

1− a1,

and since χ = χ(ξ) → +∞ as ξ → 0 and as ξ → 1, it thus follows that χ(ξ) ≥ 2− a1 + 2
√

1− a1 for
all ξ ∈ (0, 1). Therefore, our assumption on δ ensures that

1− a1a2 − a2δ + a2
2δ = a2(1− a2) ·

(
χ(a2)− δ

)
> 0,

as claimed. �

By deriving mutually identical upper and lower pointwise bounds for both components of a given
nontrivial solution on the basis of Lemma 3.2, Lemma 3.4, Lemma 3.3 and, again, Lemma 3.5, we can
proceed to establish the second statement from Theorem 1.2.

Lemma 3.11 Let a1 < 1, a2 < 1 and δ ≥ 0 be such that δ < 2 − a1 + 2
√

1− a1 and δ < a1(1−a1a2)
1−a2 ,

and assume that (u, v) is a nonnegative classical solution of (1.14) fulfilling u 6≡ 0 and v 6≡ 0. Then

u ≡ 1− a1

1− a1a2
and v ≡ 1− a2

1− a1a2
. (3.23)
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Proof. We once more write m1 := minx∈Ω u(x) and M1 := maxx∈Ω u(x) and first claim that

m1 ≥
1− a1

1− a1a2
. (3.24)

To see this, we recall that Lemma 3.4 provides x0 ∈ Ω such that u(x0) = m1 and(
1− a2δv(x0)

)
·m1 ≥ ψ(v(x0)) = 1− (a1 + δ)v(x0) + δv2(x0), (3.25)

whereas Lemma 3.2 guarantees that

1− a2M1 ≤ v(x) ≤ 1− a2m1 for all x ∈ Ω. (3.26)

In particular, we have v(x0) ≤ 1 and hence ψ(v(x0)) > 0 due to Lemma 3.5 and our assumption that
δ < 2− a1 + 2

√
1− a1, whence (3.25) entails that

v(x0) <
1

a2δ
(3.27)

and
m1 ≥ φ(v(x0)). (3.28)

We next note that according to Lemma 3.10 the inequality δ < 2 − a1 + 2
√

1− a1 moreover implies
that 1−a1a2−a2δ+a2

2δ > 0, so that Lemma 3.6 says that in the case δ > 0, the derivative φ′ attains a

zero at s? :=
1−
√

1−a1a2−a2δ+a22δ
a2δ

. We now make use of our additional assumption that δ < a1(1−a1a2)
1−a2 ,

which namely warrants that√
1− a1a2 − a2δ + a2

2δ
2

− (1− a1a2)2 = a1a2 − a2
1a

2
2 − a2δ + a2

2δ = a2 ·
{
a1(1− a1a2)− (1− a2)δ

}
> 0.

Thus,
√

1− a1a2 − a2δ + a2
2δ

2
> (1− a1a2)2 and hence

√
1− a1a2 − a2δ + a2

2δ <

√
1− a1a2 − a2δ + a2

2δ
2

1− a1a2
= 1− a2(1− a2)δ

1− a1a2
,

so that

s? >
1−

(
1− a2(1−a2)δ

1−a1a2

)
a2δ

=
1− a2

1− a1a2
. (3.29)

Therefore, the number v(x0) must satisfy

v(x0) ≤ s?, (3.30)

for otherwise v(x0) > 1−a2
1−a1a2 , whence Lemma 3.9 would imply that φ(v(x0)) > 1−v(x0)

a2
, which together

with (3.26) and (3.28) would yield the absurd conclusion that

1− v(x0)

a2
≥ m1 ≥ φ(v(x0)) >

1− v(x0)

a2
.
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But now since φ′(0) = a2δ − a1 − δ < 0 and hence φ decreases on [0, s?] according to Lemma 3.6, a
combination of (3.28) and (3.30) shows that

1− a2m1 ≤ 1− a2φ(v(x0)) ≤ 1− a2φ(s?). (3.31)

By (3.29) we can directly check that 1 − a2φ(s?) ≤ s? holds true, which together with (3.31) implies

1− a2m1 ≤ s?. (3.32)

As φ decreases on [0, s?], a combination of (3.30) with (3.32), (3.26) and (3.28) shows that in the
considered case δ > 0 we have

m1 ≥ φ(v(x0)) ≥ φ(1− a2m1), (3.33)

which clearly continues to be valid also when δ = 0 due to the evident fact that then φ′ ≡ −a1 < 0.
In both cases δ = 0 and δ > 0 we thus obtain that m1 ≥ φ(1 − a2m1), which is equivalent to the
inequality {

1− a2δ · (1− a2m1)
}
·m1 ≥ 1− (a1 + δ) · (1− a2m1) + δ(1− a2m1)2

and thus to (3.24), because a1a2 < 1.

We next improve our knowledge on v by using (3.24) along with (3.26) to infer that since 1−a2· 1−a1
1−a1a2 =

1−a2
1−a1a2 , we actually have

v(x) ≤ 1− a2

1− a1a2
for all x ∈ Ω. (3.34)

Therefore, if now we invoke Lemma 3.3 to find x1 ∈ Ω such that u(x1) = M1 and(
1− a2δv(x1)

)
·M1 ≤ 1− (a1 + δ)v(x1) + δv2(x1), (3.35)

we particularly know that again since δ < a1(1−a1a2)
1−a2 ,

1− a2δv(x1) ≥ 1− a2δ ·
1− a2

1− a1a2
> 1− a2 ·

a1(1− a1a2)

1− a2
· 1− a2

1− a1a2
= 1− a1a2 > 0.

Consequently, (3.35) in conjunction with the left inequality in (3.26) shows that

1− v(x1)

a2
≤M1 ≤ φ(v(x1)) (3.36)

and that hence necessarily

v(x1) =
1− a2

1− a1a2
, (3.37)

because if this was false then (3.34) would require that v(x1) < 1−a2
1−a1a2 , so that Lemma 3.9 would say

that φ(v(x1)) < 1−v(x1)
a2

and thereby contradict (3.36).

Knowing that (3.37) holds, however, we may conclude from Lemma 3.9 that φ(v(x1)) = 1−v(x1)
a2

,
whence both inequalities in (3.36) must actually be identities and thus, in particular,

M1 =
1− a1

1− a1a2
. (3.38)
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In view of (3.26), this guarantees that also

v(x) ≥ 1− a2M1 =
1− a2

1− a1a2
for all x ∈ Ω,

so that collecting (3.24), (3.37), (3.34) and (3.38) establishes that both u ≡ 1−a1
1−a1a2 and v ≡ 1−a2

1−a1a2 . �

3.5 The case a1 > 1 > a2

We finally concentrate on the case when the second population possesses the substantially stronger
ability for competition formulated in Theorem 1.2 iii). Then the positivity properties of the right-hand
sides in (3.6) and (3.7), as expressed in Lemma 3.5, evidently can no longer be expected. In fact, the
following holds.

Lemma 3.12 Let a1 > 1, a2 < 1 and δ ≥ 0, and let φ be as given by (3.12).
i) If 1− a1a2 − a2δ + a2

2δ ≤ 0, then φ′ < 0 on [0, 1
a2δ

).

ii) If 1− a1a2 − a2δ + a2
2δ > 0, then with s? given by (3.14) we have

φ(s?) < 0. (3.39)

Proof. i) Since φ′ has no zero in (−∞, 1
a2δ

) by Lemma 3.6, the claim results upon the observation
that φ′(0) = a2δ − a1 − δ < 0 thanks to our assumption that a2 < 1.

ii) Using that a1 > 1, we first note that 0 < (δ+ a1− 2)2 + 4(a1− 1) = δ2 + (2a1− 4)δ+ a2
1 and hence

4δ < δ2 + 2a1δ+ a2
1. Multiplying both sides by a2

2 and then adding 4(1− a1a2− a2δ), we see that this
is equivalent to

4(1− a1a2 − a2δ + a2
2δ) < a2

2δ
2 + 2a1a

2
2δ + a2

1a
2
2 + 4(1− a1a2 − a2δ) = (2− a1a2 − a2δ)

2. (3.40)

Now since a1 > 1 moreover entails that

0 < (1− a2)2 < 1− 2a2 + a1a
2
2 = (2− a1a2)(1− a2)− (1− a1a2)

and thus

1− a1a2

a2(1− a2)
<

2− a1a2

a2
,

from our hypothesis on δ it follows that δ < 2−a1a2
a2

and that therefore 2−a1a2−a2δ > 0. Consequently,
(3.40) is equivalent to the inequality

2
√

1− a1a2 − a2δ + a2
2δ < 2− a1a2 − a2δ

and hence to

2(1− a1a2 − a2δ + a2
2δ) < (2− a1a2 − a2δ)

√
1− a1a2 − a2δ + a2

2δ,

so that (3.39) is a result of (3.12). �

In consequence of this and, again, of Lemma 3.2 and Lemma 3.3, we obtain the nonexistence feature
claimed in Theorem 1.2 iii).
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Lemma 3.13 Let a1 > 1, a2 < 1 and δ ≥ 0 be such that δ < 1
a2

, and let (u, v) be a nonnegative
classical solution of (1.14) satisfying v 6≡ 0. Then u ≡ 0 and v ≡ 1.

Proof. Assuming for contradiction that M1 := maxx∈Ω u(x) be positive, from Lemma 3.2 we know
that

(1− a2M1)+ ≤ v(x) ≤ 1 for all x ∈ Ω, (3.41)

which together with our assumption δ < 1
a2

in particular ensures that 1 − a2δv(x) ≥ 1 − a2δ > 0 for

all x ∈ Ω. Therefore, Lemma 3.3 shows that

M1 ≤ max
s∈[(1−a2M1)+,1]

φ(s), (3.42)

from which we derive a contradiction as follows:

Firstly, if M1 ≥ 1
a2

than (3.42) reduces to the inequality

M1 ≤ max
s∈[0,1]

φ(s). (3.43)

Since Lemma 3.6 and Lemma 3.12 warrant that regardless of the sign of 1 − a1a2 − a2δ + a2
2δ,

φ does not attain a maximum in (0, 1), (3.44)

and since

φ(1) =
1− a1

1− a2δ
< 0, (3.45)

it follows that maxs∈[0,1] φ(s) = φ(0) = 1, whence (3.43) entails that M1 ≤ 1, contrary to our assump-

tion that M1 ≥ 1
a2
> 1.

We therefore must have

M1 <
1

a2
(3.46)

and thus

M1 ≤ max
s∈[1−a2M1,1]

φ(s),

which again by (3.44) and (3.45) implies that

M1 ≤ φ(1− a2M1),

that is, {
1− a2δ · (1− a2M1)

}
·M1 ≤ 1− (a1 + δ) · (1− a2M1) + δ · (1− a2M1)2 (3.47)

according to the definition of φ. As (3.47) is equivalent to the inequality

(1− a1a2)M1 ≤ 1− a1 < 0,

in the case a1a2 ≤ 1 this is evidently absurd, whereas if a1a2 > 1 we obtain from the assumption
a2 < 1 that

M1 ≥
a1 − 1

a1a2 − 1
>

a1 − 1

a1a2 − a2
=

1

a2

which is impossible due to (3.46).

In conclusion, we infer that M1 = 0 and hence u ≡ 0 and, by (3.41), v ≡ 1. �
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3.6 Proof of Theorem 1.2

Proof of Theorem 1.2. All three statements readily result on collecting the respective outcomes
of Lemma 3.8, Lemma 3.11 and Lemma 3.13. �
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