Smooth Boundaries and Inward Normal Vectors

1. C^1 Boundary Manifold in \mathbb{R}^n

Let $\mathcal{K} \subset \mathbb{R}^n$ be a domain (an open set). We say that \mathcal{K} has a C^1 boundary if for every point $p \in \partial \mathcal{K}$, there exists:

- a neighborhood $U \subset \mathbb{R}^n$ of p,
- a C^1 function $\psi: \mathbb{R}^{n-1} \to \mathbb{R}$,

such that, after a suitable rotation of coordinates, we can write

$$\partial \mathcal{K} \cap U = \{ (x_1, x_2, \dots, x_n) \in U : x_1 = \psi(x_2, \dots, x_n) \},$$
 (1)

and

$$\mathcal{K} \cap U = \{ (x_1, x_2, \dots, x_n) \in U : x_1 > \psi(x_2, \dots, x_n) \}.$$
 (2)

Thus locally, the boundary $\partial \mathcal{K}$ is the graph of a C^1 function, and \mathcal{K} lies on one side of that graph.

2. Inward-Pointing Normal Vector

At a point

$$p = (\psi(x_2, \dots, x_n), x_2, \dots, x_n) \in \partial \mathcal{K},$$

we define a local defining function

$$g(x_1,\ldots,x_n):=x_1-\psi(x_2,\ldots,x_n).$$

Then:

$$\partial \mathcal{K} = \{g(x) = 0\}, \qquad \mathcal{K} = \{g(x) > 0\}.$$

The gradient of q is

$$\nabla g(x) = -(-1, \partial_{x_2} \psi(x_2, \dots, x_n), \dots, \partial_{x_n} \psi(x_2, \dots, x_n)).$$

Hence the inward-pointing unit normal vector at $p \in \partial \mathcal{K}$ is

$$\nu_{\text{in}}(p) = \frac{\nabla g(p)}{\|\nabla g(p)\|} = \frac{\left(-1, \, \partial_{x_2} \psi(p), \, \dots, \, \partial_{x_n} \psi(p)\right)}{\sqrt{1 + \sum_{j=2}^n \left(\partial_{x_j} \psi(p)\right)^2}}.$$

The outward-pointing normal is simply

$$\nu_{\rm out}(p) = -\nu_{\rm in}(p).$$

Theorem of trapping region: Easy version

Theorem 0.1 (4.2.2). Suppose that $\mathbf{F}: U \to \mathbb{R}^d$ is C^1 and that \mathcal{K} is a compact trapping region for

$$\mathbf{x}' = \mathbf{F}(\mathbf{x}).$$

If the initial data \mathbf{b} lies in the interior of \mathcal{K} , then the solution $\mathbf{x}(t)$ to equation (4.1) exists for all positive time and moreover lies in the interior of \mathcal{K} .

If the inequality (4.11) is replaced by strict inequality,

$$\forall \mathbf{x} \in \partial \mathcal{K}, \quad \langle N_{\mathbf{x}}, \mathbf{F}(\mathbf{x}) \rangle > 0,$$
 (4.12)

only a few lines suffice to prove this result:

Proof of Theorem 4.2.2 assuming (4.12). By Theorem 4.1.2, the solution may cease to exist only if it first leaves K. If, coming from inside K, the trajectory $\mathbf{x}(t)$ reaches a point on ∂K , then at that point the (outward) normal velocity must be nonnegative. Precisely, define

$$t_* = \sup\{t: x(s) \in \text{Int}\mathcal{K} \text{ for all } s \in [0, t]\}.$$

And use the local coordinate (1) and (2) in a neighborhood U containing the point $x_* = x(t_*) \in \partial \mathcal{K}$, then there is a $\delta > 0$ such that $x(t) \in U$ for $t \in (t_* - \delta, t_* + \delta)$. By definition of t_* ,

$$g(x(t)) > 0 \text{ for } t \in (t_* - \delta, t_*), \quad \text{and} \quad g(x(t_*)) = 0.$$

It follows that $\frac{d}{dt}g(x(t)) \leq 0$ at the time $t = t_*$. Since g is defining function of $\partial \mathcal{K}$, we have $N_x = \frac{\nabla g(x)}{|\nabla g(x)|}$. Hence,

$$0 \ge \frac{d}{dt} g(x(t))\big|_{t=t_*} = \nabla g(x(t_*)) \cdot \dot{x}(t_*) = |\nabla g(x)| \langle N_{x_*}, F(x_*) \rangle.$$

and this contradicts the trapping hypothesis (4.12).