
Smooth Boundaries and Inward Normal

Vectors

—

1. C1 Boundary Manifold in Rn

Let K ⊂ Rn be a domain (an open set). We say that K has a C1 boundary
if for every point p ∈ ∂K, there exists:

• a neighborhood U ⊂ Rn of p,

• a C1 function ψ : Rn−1 → R,

such that, after a suitable rotation of coordinates, we can write

∂K ∩ U =
{
(x1, x2, . . . , xn) ∈ U : x1 = ψ(x2, . . . , xn)

}
, (1)

and
K ∩ U =

{
(x1, x2, . . . , xn) ∈ U : x1 > ψ(x2, . . . , xn)

}
. (2)

Thus locally, the boundary ∂K is the graph of a C1 function, and K lies on
one side of that graph.

—

2. Inward-Pointing Normal Vector

At a point
p =

(
ψ(x2, . . . , xn), x2, . . . , xn

)
∈ ∂K,

we define a local defining function

g(x1, . . . , xn) := x1 − ψ(x2, . . . , xn).

Then:
∂K = {g(x) = 0}, K = {g(x) > 0}.
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The gradient of g is

∇g(x) = −
(
− 1, ∂x2ψ(x2, . . . , xn), . . . , ∂xnψ(x2, . . . , xn)

)
.

Hence the inward-pointing unit normal vector at p ∈ ∂K is

νin(p) =
∇g(p)

∥∇g(p)∥
=

(
− 1, ∂x2ψ(p), . . . , ∂xnψ(p)

)√
1 +

∑n
j=2

(
∂xj

ψ(p)
)2 .

The outward-pointing normal is simply

νout(p) = −νin(p).

—

Theorem of trapping region: Easy version

Theorem 0.1 (4.2.2). Suppose that F : U → Rd is C1 and that K is a
compact trapping region for

x′ = F(x).

If the initial data b lies in the interior of K, then the solution x(t) to equation
(4.1) exists for all positive time and moreover lies in the interior of K.

If the inequality (4.11) is replaced by strict inequality,

∀x ∈ ∂K, ⟨Nx,F(x)⟩ > 0, (4.12)

only a few lines suffice to prove this result:

Proof of Theorem 4.2.2 assuming (4.12). By Theorem 4.1.2, the solution may
cease to exist only if it first leaves K. If, coming from inside K, the trajectory
x(t) reaches a point on ∂K, then at that point the (outward) normal velocity
must be nonnegative. Precisely, define

t∗ = sup{t : x(s) ∈ IntK for all s ∈ [0, t]}.

2



And use the local coordinate (1) and (2) in a neighborhood U containing
the point x∗ = x(t∗) ∈ ∂K, then there is a δ > 0 such that x(t) ∈ U for
t ∈ (t∗ − δ, t∗ + δ). By definition of t∗,

g(x(t)) > 0 for t ∈ (t∗ − δ, t∗), and g(x(t∗)) = 0.

It follows that d
dt
g(x(t)) ≤ 0 at the time t = t∗. Since g is defining function

of ∂K, we have Nx = ∇g(x)
|∇g(x)| . Hence,

0 ≥ d

dt
g(x(t))

∣∣
t=t∗

= ∇g(x(t∗)) · ẋ(t∗) = |∇g(x)|⟨Nx∗ , F (x∗)⟩.

and this contradicts the trapping hypothesis (4.12).
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