September 29, 2025

LaSalle's Invariance Principle

1 Definition of Lyapunov function

Consider a DE

$$\dot{x} = F(x) \tag{1}$$

where $F: \bar{U} \to \mathbb{R}$ is C^1 is an open set containing the bounded set \bar{U} . For simplicity we assume:

(A1) \bar{U} has (piecewise) smooth boundary and a trapping region, so that

$$\langle \nabla N_x, F(x) \rangle \ge 0$$
 on ∂U . (2)

(For instance, let \bar{U} be the restriction to a sublevel set of L.) By Theorem, we see that for any $b \in U$, the corresponding trajectory $\varphi(t,b)$ exists for all $t \geq 0$ and stays in \bar{U} .

Definition 1. We say that $L:U\to\mathbb{R}$ is a Lyapunov function (of the DE (1) in U) if

$$\langle \nabla L(x), F(x) \rangle \le 0$$
 in U

Definition 2. Define

$$\mathcal{M}_0 = \left\{ x_0 \in \bar{U} : \langle \nabla L(x_0), F(x_0) \rangle = 0 \right\}.$$

Definition 3. Define \mathcal{M} to be the maximal invariant subset of \mathcal{M}_0 , i.e.

$$\mathcal{M} = \{x_0 \in \mathcal{M}_0 : \varphi(t, x_0) \text{ exists and belongs to } \mathcal{M}_0 \text{ for all } t \in \mathbb{R} \}.$$

Definition 4. For each $b \in U$, we already know $\varphi(t,b)$ exists for all $t \geq 0$ and is bounded uniformly in $t \geq 0$, define the *omega limit set* $\omega(b)$ to be the collection of all subsequential limits of $\varphi(t,b)$ as $t=t_n \to \infty$, i,e,

$$\omega(b) = \{ \bar{x} \in \bar{U} : \exists \{t_n\}_{n=1}^{\infty}, \ t_n \to \infty, \ \bar{x} = \lim_{n \to \infty} \varphi(t_n, b) \}.$$

2 LaSalle's Invariance Principle from the book

Theorem 2.1 (Thm 6.5.3). Consider the DE (1) and assume (A1). Suppose that

(A2) If $\tilde{b} \in \mathcal{M}_0 \setminus \{b^*\}$, then there exists T > 0 such that $\varphi(t, b) \notin \mathcal{M}_0$.

Then b^* is asymptotically stable.

Proof of LaSalle's principle assuming (A2). By (A1), if a trajectory $\mathbf{x}(t)$ starts in U, then it exists for all positive time and stays within \bar{U} . Suppose such a trajectory does not converge to \mathbf{b}_* . Then there exists a sequence $\{t_n\}$ tending to infinity such that $\{\mathbf{x}(t_n)\}$ is bounded away from \mathbf{b}_* . By invoking compactness and passing to a subsequence if necessary, we may assume without loss of generality that there exist $\tilde{b} \neq b$ such that

$$\varphi(t_n, b) \to \tilde{b} \quad \text{as } n \to \infty.$$
 (3)

Since L is continuous,

$$\lim_{n \to \infty} L(\varphi(t_n, b)) = L(\tilde{b}) = \lim_{t \to \infty} L(\varphi(t, b)), \tag{4}$$

the latter equality because $t\mapsto L(\varphi(t,b))$ is a decreasing function (for any $b\in U$).

Claim 2.1. There exists t > 0 such that

$$L(\varphi(t,\tilde{b})) < \varphi(\tilde{b}). \tag{5}$$

On the one hand, if $\tilde{b} \notin \mathcal{M}_0$, then

$$\frac{d}{dt}L(\varphi(t,\tilde{b}))|_{t=0} = \langle \nabla L(\tilde{b}), F(\tilde{b}) \rangle < 0,$$

so (5) holds for each t > 0.

On the other hand, if $b \in \mathcal{M}_0$, then by (A2), it follows that $\frac{d}{dt}L(\varphi(t,b)) < 0$ for some t > 0, so that again (5) holds for some t > 0. This proves the claim.

By continuity of φ and by semigroup property, we have

$$\varphi(s, \tilde{b}) = \lim_{n \to \infty} \varphi(s, \varphi(t_n, b)) = \lim_{n \to \infty} \varphi(s + t_n, b).$$

By continuous dependence on parameter, we have

$$L(\varphi(s,\tilde{b})) = \lim_{n \to \infty} L(\varphi(t_n + s, b)) = L(\tilde{b}), \tag{6}$$

the latter equality by (4). But (6) contradicts (5), which proves the theorem. \Box

A stronger version we discussed in class:

Theorem 2.2 (Thm 6.5.3'). Consider the DE (1) and assume (A1). Suppose that one of the following holds:

(A2') If $\tilde{b} \in \mathcal{M}_0$ has maximal interval of existence $\tilde{I} = (-\infty, \infty)$ and $\varphi(t, \tilde{b}) \in \mathcal{M}_0$ for all $t \in \mathbb{R}$, then $\tilde{b} = b^*$.

Then b^* is asymptotically stable.

Proof of LaSalle's principle assuming (A2'). Suppose there exists $b \in U$ such that $\varphi(t,b) \not\to b^*$, then we may argue as before to obtain $\{t_n\} \to \infty$ and $\tilde{b} \neq b$ such that (3) and (4) hold.

Claim 2.2. We claim that $\tilde{b} \in \mathcal{M}_0$ has maximal interval of existence $\tilde{I} = (-\infty, \infty)$ and $\varphi(t, \tilde{b}) \in \mathcal{M}_0$ for all $t \in \mathbb{R}$.

Now, by a diagonal trick, we may pass to a subsequence $\{t'_n\}$ such that for each $m \in \mathbb{N}$, there exists \tilde{b}_{-m} such that

$$\lim_{n\to\infty} \varphi(t'_n - m, b) = \tilde{b}_{-m} \quad \text{ for each } m \in \mathbb{N}.$$

Next, define $\gamma: \mathbb{R} \to \bar{U}$ by

$$\gamma(t) = \varphi(t+m, b_{-m}) \quad \text{where } m \ge |t| + 1. \tag{7}$$

The definition of $\gamma(t)$ is consistent (i.e. independent of choice of m) because for $m_2 > m_1 \ge |t| + 1$

$$\varphi(t + m_2, b_{-m_2}) = \lim_{n \to \infty} \varphi(t + m_2, \varphi(t'_n - m_2, b))$$

$$= \lim_{n \to \infty} \varphi(t + m_1, \varphi(m_2 - m_1, \varphi(t'_n - m_2, b)))$$

$$= \lim_{n \to \infty} \varphi(t + m_1, \varphi(t'_n - m_1, b)) = \varphi(t + m_1, b_{-m_1}).$$

Moreover, it is easy to see that for $-\infty < t_1 < t_2 < +\infty$, we have

$$\varphi(t_2 - t_2, \gamma(t_1)) = \gamma(t_2)$$

This shows that $\varphi(t, \tilde{b}) = \gamma(t)$ is an entire trajectory for $t \in \mathbb{R}$. Moreover, observe that (7) implies that

$$\gamma(t) = \varphi(t+m, b_{-m}) = \lim_{n \to \infty} \varphi(t'_n + t, b)$$
 for each $t \in \mathbb{R}$

so that (4) implies that

$$L(\gamma(t)) \equiv L(\tilde{b})$$
 for each $t \in \mathbb{R}$,

so that

$$0 = \frac{d}{dt}L(\gamma(t)) = \langle \nabla L(\gamma(t)), F(\gamma(t)) \rangle \quad \text{ for all } t \in \mathbb{R}.$$

This shows that $\gamma(t) = \varphi(t, \tilde{b}) \in \mathcal{M}_0$ for all $t \in \mathbb{R}$. This proves Claim 2.2.

Now, by (A2'), we must have $\tilde{b} = \gamma(0) = b^*$. But this is in contradiction with $\tilde{b} \neq b^*$.

3 General LaSalle's Invariance Principle

Theorem 3.1. Let $F: \overline{U} \to \mathbb{R}$ be C^1 and assume (A1). Suppose L is a Lyapunov function of (1) in U, then

- (a) \mathcal{M} is nonempty.
- (b) $\omega(b) \subset \mathcal{M}$ for each $b \in U$.

i.e.
$$\lim_{t\to\infty} \operatorname{dist}(\varphi(t,b),\mathcal{M}) = 0$$
 for each $b\in U$.

where $dist(x, S) = \inf_{y \in S} ||x - y||$.

Example. For the Duffing's equation

$$\dot{x} = y$$
, $\dot{y} = -\beta y + x - x^3$

with
$$L(x,y) = \frac{y^2}{2} - \frac{x^2}{2} - \frac{x^4}{4}$$
, let $\alpha > -\frac{1}{2}$ and take

$$\bar{U} = K_{\alpha} = \{(x, y) \in \mathbb{R}^2 : L(x, y) < \alpha\}$$

. Then L is a Lyapunov function in U and

$$\mathcal{M}_0 = \{(x, y) \in U : y = 0\},\$$

and

$$\mathcal{M} = \begin{cases} \{(1,0), (-1,0)\} & \text{when } -\frac{1}{2} < \alpha < 0 \\ \{(0,0), (1,0), (-1,0)\} & \text{when } \alpha \ge 0 \end{cases}$$