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LaSalle’s Invariance Principle

—

1 Definition of Lyapunov function

Consider a DE
ẋ = F (x) (1)

where F : Ū → R is C1 is an open set containing the bounded set Ū . For
simplicity we assume:

(A1) Ū has (piecewise) smooth boundary and a trapping region, so that

⟨∇Nx, F (x)⟩ ≥ 0 on ∂U. (2)

(For instance, let Ū be the restriction to a sublevel set of L.) By Theorem, we
see that for any b ∈ U , the corresponding trajectory φ(t, b) exists for all t ≥ 0
and stays in Ū .

Definition 1. We say that L : U → R is a Lyapunov function (of the DE (1)
in U) if

⟨∇L(x), F (x)⟩ ≤ 0 in U

Definition 2. Define

M0 =
{
x0 ∈ Ū : ⟨∇L(x0), F (x0)⟩ = 0

}
.

Definition 3. Define M to be the maximal invariant subset of M0, i.e.

M = {x0 ∈ M0 : φ(t, x0) exists and belongs to M0 for all t ∈ R} .

Definition 4. For each b ∈ U , we already know φ(t, b) exists for all t ≥ 0 and is
bounded uniformly in t ≥ 0, define the omega limit set ω(b) to be the collection
of all subsequential limits of φ(t, b) as t = tn → ∞, i,e,

ω(b) = {x̄ ∈ Ū : ∃{tn}∞n=1, tn → ∞, x̄ = lim
n→∞

φ(tn, b)}.
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2 LaSalle’s Invariance Principle from the book

Theorem 2.1 (Thm 6.5.3). Consider the DE (1) and assume (A1). Suppose
that

(A2) If b̃ ∈ M0 \ {b∗}, then there exists T > 0 such that φ(t, b) ̸∈ M0.

Then b∗ is asymptotically stable.

Proof of LaSalle’s principle assuming (A2). By (A1), if a trajectory x(t)
starts in U , then it exists for all positive time and stays within Ū . Suppose
such a trajectory does not converge to b∗. Then there exists a sequence {tn}
tending to infinity such that {x(tn)} is bounded away from b∗. By invoking
compactness and passing to a subsequence if necessary, we may assume without
loss of generality that there exist b̃ ̸= b such that

φ(tn, b) → b̃ as n → ∞. (3)

Since L is continuous,

lim
n→∞

L(φ(tn, b)) = L(b̃) = lim
t→∞

L(φ(t, b)), (4)

the latter equality because t 7→ L(φ(t, b)) is a decreasing function (for any
b ∈ U).

Claim 2.1. There exists t > 0 such that

L(φ(t, b̃)) < φ(b̃). (5)

On the one hand, if b̃ ̸∈ M0, then

d

dt
L(φ(t, b̃))|t=0 = ⟨∇L(b̃), F (b̃)⟩ < 0,

so (5) holds for each t > 0.

On the other hand, if b̃ ∈ M0, then by (A2), it follows that d
dtL(φ(t, b̃)) < 0 for

some t > 0, so that again (5) holds for some t > 0. This proves the claim.

By continuity of φ and by semigroup property, we have

φ(s, b̃) = lim
n→∞

φ(s, φ(tn, b)) = lim
n→∞

φ(s+ tn, b).

By continuous dependence on parameter, we have

L(φ(s, b̃)) = lim
n→∞

L(φ(tn + s, b)) = L(b̃), (6)

the latter equality by (4). But (6) contradicts (5), which proves the theorem.
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A stronger version we discussed in class:

Theorem 2.2 (Thm 6.5.3’). Consider the DE (1) and assume (A1). Suppose
that one of the following holds:

(A2’) If b̃ ∈ M0 has maximal interval of existence Ĩ = (−∞,∞) and φ(t, b̃) ∈
M0 for all t ∈ R, then b̃ = b∗.

Then b∗ is asymptotically stable.

Proof of LaSalle’s principle assuming (A2’). Suppose there exists b ∈ U
such that φ(t, b) ̸→ b∗, then we may argue as before to obtain {tn} → ∞ and
b̃ ̸= b such that (3) and (4) hold.

Claim 2.2. We claim that b̃ ∈ M0 has maximal interval of existence Ĩ =
(−∞,∞) and φ(t, b̃) ∈ M0 for all t ∈ R.

Now, by a diagonal trick, we may pass to a subsequence {t′n} such that for each
m ∈ N, there exists b̃−m such that

lim
n→∞

φ(t′n −m, b) = b̃−m for each m ∈ N.

Next, define γ : R → Ū by

γ(t) = φ(t+m, b−m) where m ≥ |t|+ 1. (7)

The definition of γ(t) is consistent (i.e. independent of choice of m) because for
m2 > m1 ≥ |t|+ 1

φ(t+m2, b−m2) = lim
n→∞

φ(t+m2, φ(t
′
n −m2, b))

= lim
n→∞

φ(t+m1, φ(m2 −m1, φ(t
′
n −m2, b)))

= lim
n→∞

φ(t+m1, φ(t
′
n −m1, b)) = φ(t+m1, b−m1).

Moreover, it is easy to see that for −∞ < t1 < t2 < +∞, we have

φ(t2 − t2, γ(t1)) = γ(t2)

This shows that φ(t, b̃) = γ(t) is an entire trajectory for t ∈ R. Moreover,
observe that (7) implies that

γ(t) = φ(t+m, b−m) = lim
n→∞

φ(t′n + t, b) for each t ∈ R

so that (4) implies that

L(γ(t)) ≡ L(b̃) for each t ∈ R,
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so that

0 =
d

dt
L(γ(t)) = ⟨∇L(γ(t)), F (γ(t))⟩ for all t ∈ R.

This shows that γ(t) = φ(t, b̃) ∈ M0 for all t ∈ R. This proves Claim 2.2.

Now, by (A2’), we must have b̃ = γ(0) = b∗. But this is in contradiction with
b̃ ̸= b∗.

3 General LaSalle’s Invariance Principle

Theorem 3.1. Let F : Ū → R be C1 and assume (A1). Suppose L is a
Lyapunov function of (1) in U , then

(a) M is nonempty.

(b) ω(b) ⊂ M for each b ∈ U.

i.e. lim
t→∞

dist(φ(t, b),M) = 0 for each b ∈ U.

where dist(x, S) = infy∈S ∥x− y∥.

Example. For the Duffing’s equation

ẋ = y, ẏ = −βy + x− x3

with L(x, y) = y2

2 − x2

2 − x4

4 , let α > − 1
2 and take

Ū = Kα = {(x, y) ∈ R2 : L(x, y) < α}

. Then L is a Lyapunov function in U and

M0 = {(x, y) ∈ U : y = 0},

and

M =

{
{(1, 0), (−1, 0)} when − 1

2 < α < 0

{(0, 0), (1, 0), (−1, 0)} when α ≥ 0
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