September 29, 2025

LaSalle’s Invariance Principle

1 Definition of Lyapunov function
Consider a DE

&= F(x) (1)
where F' : U — R is C! is an open set containing the bounded set U. For

simplicity we assume:

(A1) U has (piecewise) smooth boundary and a trapping region, so that

(VNy, F(z)) >0 on oU. (2)

(For instance, let U be the restriction to a sublevel set of L.) By Theorem, we
see that for any b € U, the corresponding trajectory p(t,b) exists for all t > 0
and stays in U.

Definition 1. We say that L : U — R is a Lyapunov function (of the DE (1)
in U) if
(VL(z), F(x)) <0 inU

Definition 2. Define

Mo ={z0 €U : (VL(20), F(z0)) =0} .

Definition 3. Define M to be the mazimal invariant subset of Mg, i.e.

M ={zg € Mpy: ¢(t,zo) exists and belongs to M for all t € R}.

Definition 4. For each b € U, we already know (¢, b) exists for all ¢ > 0 and is
bounded uniformly in ¢ > 0, define the omega limit set w(b) to be the collection
of all subsequential limits of ¢(t,b) as t = t,, — o0, i,e,

wb)={zcU: IHt,}22,, tn > o0, = lim @(t,,b)}.

n—oo



2 LaSalle’s Invariance Principle from the book

Theorem 2.1 (Thm 6.5.3). Consider the DE (1) and assume (A1). Suppose
that

(A2) Ifbe Mg\ {b*}, then there exists T > 0 such that ¢(t,b) & M.
Then b* is asymptotically stable.

Proof of LaSalle’s principle assuming (A2). By (A1), if a trajectory x(t)
starts in U, then it exists for all positive time and stays within U. Suppose
such a trajectory does not converge to b,. Then there exists a sequence {¢,}
tending to infinity such that {x(¢,)} is bounded away from b,. By invoking
compactness and passing to a subsequence if necessary, we may assume without
loss of generality that there exist b # b such that

©(tn,b) > b asn — oco. (3)
Since L is continuous,
Jim L(p(tn, b)) = L(b) = lim L(e(t,0)), (4)

the latter equality because ¢ — L(p(t,b)) is a decreasing function (for any
bel).

Claim 2.1. There exists t > 0 such that

L(p(t, b)) < p(b). (5)

On the one hand, if b Z My, then

S L(o(t5))im0 = (V) F(B) < 0.

so (5) holds for each ¢ > 0.

On the other hand, if b € My, then by (A2), it follows that 4L (p(t, b)) < 0 for
some ¢t > 0, so that again (5) holds for some ¢ > 0. This proves the claim.

By continuity of ¢ and by semigroup property, we have
©(s,0) = lim o(s, p(tn, b)) = Lim @(s+ t,,b).
n—oo n—oo
By continuous dependence on parameter, we have

n—oo

the latter equality by (4). But (6) contradicts (5), which proves the theorem. O



A stronger version we discussed in class:

Theorem 2.2 (Thm 6.5.3"). Consider the DE (1) and assume (A1). Suppose
that one of the following holds:

(A2) Ifb € My has mazximal interval of eristence I = (—o00,00) and ¢(t,b) €
My for allt € R, then b= b*.

Then b* is asymptotically stable.

Proof of LaSalle’s principle assuming (A2’). Suppose there exists b € U
such that ¢(t,b) /4 b*, then we may argue as before to obtain {t,} — oo and
b # b such that (3) and (4) hold.

Claim 2.2. We claim that b € Mg has mazimal interval of existence I =
(—00,00) and ¢(t,b) € Mg for all t € R.

Now, by a diagonal trick, we may pass to a subsequence {t! } such that for each
m € N, there exists b_,,, such that

lim @(t/, —m,b) =b_,, for each m € N.

n—oo
Next, define v : R — U by
~v(t) = ot +m,b_p,) where m > |t| + 1. (7)

The definition of v(t) is consistent (i.e. independent of choice of m) because for
mo > My > |t‘ +1

p(t+ma,bom,) = lim (t+ma, @(t;, —ma,b))
= lm ot +ma, p(ma —ma, p(t, —mo,b)))

= lim @(t + my, p(t, —mi,b)) = p(t +my,b_p,).
n—oo
Moreover, it is easy to see that for —oo < t; < t9 < 400, we have

o(ta — ta,y(t1)) = (t2)

This shows that ¢(t,b) = ~(t) is an entire trajectory for ¢ € R. Moreover,
observe that (7) implies that

v(t) =@t +m,b_,) = lim p(t, +t,b) foreachteR
n—oo
so that (4) implies that

L(y(t)) = L(b) foreachteR,



so that
0= %L(W(t)) = (VL(v(t)), F(v(t))) forallteRR.

This shows that ~(t) = ¢(t,b) € My for all t € R. This proves Claim 2.2.

Now, by (A2’), we must have b = ~(0) = b*. But this is in contradiction with
b # b*. O

3 General LaSalle’s Invariance Principle

Theorem 3.1. Let F : U — R be C' and assume (A1). Suppose L is a
Lyapunov function of (1) in U, then
(a) M is nonempty.
(b) w(b) Cc M for each b e U.
i.e.  lim dist(e(t,b), M) =0  for each b€ U.
t—oo

where dist(z, S) = inf eg |z — y|.

Example. For the Duffing’s equation

i=y, y=-By+z—2a°

U=FKq={(x,y) eR*: L(z,y) < a}
. Then L is a Lyapunov function in U and
MO = {(I7y) eU: y:O}v

and

M= {(170%(7170)} when 7% <a<0
~ 1{(0,0),(1,0),(~1,0)}  when a >0



