Note on omega limit sets

October 15, 2025

1 Property of limit sets

Consider F : U — R?, where U is an open set in R?, and consider the dynamical system (¢, z) defined on
Q:={(t,b): beU, I,=(—ab),s(b))}

with I, being the maximal interval of existence of the ODE & = F'(x) with initial data x(0) = z.

Definition of omega limit set. We define the omega limit set w(b) to be the collection of all subsequential
limits of (¢,b) as t = t, — o0, i,e,

wb)={zcU: It }22,, tn — 00, T= lim ¢(t,,b)}.

n=1»

n—r oo
It can also equivalently be defined as
0 if sup I < +o0,
w(b) = N ¢([k,00),b) if sup I = +oo.

keN

I want to discuss the following proposition in [Schaeffer and Cain|

Proposition 7.2.4. Every w-limit set w(b) is a closed invariant subset of U.

1.1 The proposition as it is stated is wrong

I think the above proposition is not true as it is stated: Counter example is the following:
1
U= {(n0):0 <7 < g} = {(mp) B¢ o] <11\ {(0.0))

The dynamical system is:

Then

e I(;9) = (—00,00) if and only if 0 < r < 1.

e Fix arbitrary initial data in the open unit disk (i.e. 0 <7 < 1, 8 € S!), we have w((r,0)) = S* N U.
(Remember the dynamical system is not defined outside of U.)

e Due to the first bullet point, S* N U is not invariant, since we have r = 1.
If you want an example of U = R2, simply consider
2
y(t) = ®(x(t)) where ®(x1,z2) = (tan <x1> ,T2)
T

which satisfies the ODE
§(t) = DO(x(t))i(t) = DO (@7 (y(1)) F (2 (y(1))) := F(y(t)) (1)

The orbits of x(¢) in U and that of y(¢) in R? are in one-one correspondence.
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Figure 1: The omega limit set of starting at (0,0.5). It consists of two disconnected pieces: wt =
{(y1,92) : @7 (y) = €" for some 0 < § < 7} and w™ = {(y1,2) : D~ (y) = €¥ for some —7 < 6 < 0}.

1.2 Where in the proof has a gap?

The gap in the proof of Proposition 7.2.4 in the textbook appears to be:
O(ts, 2n) = p(ts, 20) where 2z, = @(tn,b) = z0.

The application of “continuous dependence on initial data” (Theorem 4.5.1 in Schaeffer and Cains) requires
that ¢(t«,z0) is well-defined, i.e. [0,t.] C I, but that is what is needed to be proved! (To prove w(b) is
invariant, we need to show that I, = (—o0, 00) for every zg € w(b).)

1.3 How to make it right?
One way is to assume that
(A) ©([to,o0),b) is precompact in U. (i.e. its closure is compact set and is contained in the open set U.)

Contrast the following properties with the counter example in Figure[I] The following theorem is applicable
in particular if one consider the dynamical system within a trapping region (a forward-invariant region),
such as the region bounded by a limit cycle.

1.4 Useful results/properties of omega limit sets under assumption (A)

Theorem 1.1. Let & = F(z), F : U — R? be locally Lipschitz in the open set U and let b € U be fized.
Suppose (A) holds, then

a) w(b) is a compact set in U.

b) w

( )
( b) is connected.
)

b) is invariant; i.e. for each zg € w(b), I, = (—00,00) and (R, z9) C w(b).

(c

(d) w(b) is chain-recurrent. (Think of a homoclinic orbit. We won’t be proving it. See Figure fm" the
definition.)

S

)
)
)
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Remark. For the definition of chain-recurrence, see Figure [2] which is from P.6 in my note for complete
Lyapunov function.

Proof of compactness. Here trajectory initiating at b exists for all time according to (A). We first prove
the equivalent condition claimed earlier in the note:

w(b) = @(b), where  @(b) = ) #([k,),b). (2)
keN
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Let zo € w(b) then there exists a sequence t, — oo such that ¢(t,,b) — zo. Thus zy belongs to the closure
of ¢([k,o0),b) for each k. Thus zy € @(b). This proves one direction of inclusion.

For the opposite direction, let zy € @w(b), then zy € ¢([k, 00),b) for each k. Hence, for each k, we can choose
ty € [k, 00) such that [|¢(ty,b) — 20| < 1. This proves that zy € w(b).

Having proved .7 it is clear that w(b) is the intersection of decreasing sequence of compact (closed and
bounded) sets [k, 0),b), so it is closed and bounded itself and hence it is compact. O

Proof of connectedness. Suppose w(b) is not connected, i.e. there exists open sets A, B in R? such that

ANB=10
wb) CANB
ANw(®d)#0, and BnNwb) #0

Take z € ANw(b) and 2z’ € BNw(b). Then there exists two sequences t,,t), — oo such that
o(tn,b) =z and  @(t,,b) — 2.

Without loss of generality, we may assume

tn, <t <tpy1 foralln>1,
o(tn,b) € A and (t),,b) € B foralln>1.

Now, ¢([tn,t)],b), being the image of a continuous mapping from an interval, is connected and has nonempty
intersection with A and B, hence it cannot possibly be contained in A U B, so there exists s, € (t,,t,) that
©(sn,b) € R4\ (AU B). Note that s,, — oo since t,,t], — 0.

By (A), we can pass to a subsequence s, such that z” = lim, . ¢(s,,b) exists, and belongs to w(b).
However, it also belongs to the closed set (A U B)¢. This is a contradiction to the disconnectedness of
w(b). O
Proof of invariance of w(b); i.e. Proposition 7.2.4 holds assuming (A)

Suppose (A) holds.

Let zp € w(b) be given. Then there exists a sequence ¢, — oo such that

O(tn, b) = 2.

Step #1. Solvability forward in time. i.e. I, D [0,00)

To see this, suppose
sup I, = t«.

Then for each t € [0, ), we have by continuous dependence

o(t, z0) = li_>m o(t, o(tn, b)) = 1i_>m o(t +tn,b) €w(b) for any ¢ > 0 such that ¢t € .

Hence the trajectory initiating at zp never leave the compact subset w(b). (Here we used (A), otherwise
see the counter example with w(b) being noncompact and disconnected; see Figure ) This proves t, = +o0
and implies the claim.

Step #2. Solvability backward in time. i.e. I, D [-m,0] for all m > 1.

Claim 1.1. We claim that zo has mazimal interval of existence I, = (—o0,00) and ¢(t,z9) € w(b) for all
teR.



Now, by a diagonal trick, we may pass to a subsequence {t, } C {¢,} such that for each m € N, there exists
Z_m such that

lim o(t;, —m,b) =2_,, for each m € N.
n— o0

This part is due to (A).
It follows as above that for each m € N,

Z—m € w(b)v
Iz,m 2 [0700)7
90([07 OO)> me) C UJ(b)

Having shown that solutions initiating at z_,, exists forward in time, we can now apply continuous depen-
dence to obtain

This implies z_,, and zg lies on the same orbit, i.e.
I,=1,, —m2[-m,00) foreach meN.

—m

and
o([-m, 00), 20) = ¢([0,00), 2_p,) C w(b) for each m € N.

Since m € N is arbitrary, this shows that
I, = (—00,00) and that (R, zp) C w(b).

This completes the proof. O

Recall that a subset A of § is said to be internally chain transitive with respect to
the semiflow g if, for two points up, vg € A, and any 6 > 0, T > 0, there is a finite
sequence

Cs1 = (D =g, u®, ., u™ = vty s tmet}
withu/) € Aandt; > T, suchthat ||¢(t;, ) —uU*D|| < §forall1 <i < m—1.
The sequence Cs, 7 is called a (6, T')-chain connecting ug and vy. Define the chain
recurrent set R(S) to be the set of all uy € S such that forany 7 > 1, and 6 <« 1
there exists a (&, T)-chain connecting uy to itself.

Figure 2: Definition of chain-recurrence; taken rom P.6 in my note for complete Lyapunov function.

2 Existence of equilibrium for simply-connected trapping region

Theorem 2.1 (Brouwer’s Fixed Point Theorem). Let D¢ = {x € R : ||z|| < 1} be the closed unit ball in
Re. If f: DY — D is continuous (a continuous mapping from the closed ball and whose image is contained
in the closed ball), then there exists a point x* € D such that

fat) =",

Exercise. Suppose U C R? is a trapping region of & = F(z) with C* boundary, and with F : U — R? being
C'. Suppose there exists a diffeomorphism ® : U - D?. Use Brouwer’s fixed point theorem to prove that
& = F(z) has at least one equilibrium point z* in U.

[Hint_: Step 1. Use the procedure in Section to assume, WLOG, that U = D%; Step 2. For each n, let
fn: U — U be given by f,(z) = (27", ), then apply BFPT to get a fixed point z,,. Then ¢(t,z,) = x,, if
t =m2~" for any m > 1; Step 3. Pass to the limit x,, — «* and show that x* is an equilibrium point.]
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