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1 Property of limit sets

Consider F : U → Rd, where U is an open set in Rd, and consider the dynamical system φ(t, z) defined on

Ω := {(t, b) : b ∈ U, Ib = (−α(b), β(b))}

with Iz being the maximal interval of existence of the ODE ẋ = F (x) with initial data x(0) = z.

Definition of omega limit set. We define the omega limit set ω(b) to be the collection of all subsequential
limits of φ(t, b) as t = tn → ∞, i,e,

ω(b) = {x̄ ∈ Ū : ∃{tn}∞n=1, tn → ∞, x̄ = lim
n→∞

φ(tn, b)}.

It can also equivalently be defined as

ω(b) =

∅ if sup Ib < +∞,⋂
k∈N

φ([k,∞), b) if sup Ib = +∞.

I want to discuss the following proposition in Schaeffer and Cain.

1.1 The proposition as it is stated is wrong

I think the above proposition is not true as it is stated: Counter example is the following:

U = {(r, θ) : 0 < r <
1

| cos θ|
} = {(x, y) ∈ R2 : |x| < 1} \ {(0, 0)}.

The dynamical system is:
θ̇ = 1, ṙ = r(1− r).

Then

• I(r,θ) = (−∞,∞) if and only if 0 < r < 1.

• Fix arbitrary initial data in the open unit disk (i.e. 0 < r < 1, θ ∈ S1), we have ω((r, θ)) = S1 ∩ U .
(Remember the dynamical system is not defined outside of U .)

• Due to the first bullet point, S1 ∩ U is not invariant, since we have r = 1.

If you want an example of U = R2, simply consider

y(t) = Φ(x(t)) where Φ(x1, x2) = (tan

(
2

π
x1

)
, x2)

which satisfies the ODE

ẏ(t) = DΦ(x(t))ẋ(t) = DΦ
(
Φ−1(y(t))

)
F
(
Φ−1(y(t))

)
:= F̃ (y(t)) (1)

The orbits of x(t) in U and that of y(t) in R2 are in one-one correspondence.
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Figure 1: The omega limit set of (1) starting at (0, 0.5). It consists of two disconnected pieces: ω+ =
{(y1, y2) : Φ−1(y) = eiθ for some 0 < θ < π} and ω− = {(y1, y2) : Φ−1(y) = eiθ for some −π < θ < 0}.

1.2 Where in the proof has a gap?

The gap in the proof of Proposition 7.2.4 in the textbook appears to be:

φ(t∗, zn) = φ(t∗, z0) where zn = φ(tn, b) → z0.

The application of “continuous dependence on initial data” (Theorem 4.5.1 in Schaeffer and Cains) requires
that φ(t∗, z0) is well-defined, i.e. [0, t∗] ⊂ Iz0 , but that is what is needed to be proved! (To prove ω(b) is
invariant, we need to show that Iz0 = (−∞,∞) for every z0 ∈ ω(b).)

1.3 How to make it right?

One way is to assume that

(A) φ([t0,∞), b) is precompact in U . (i.e. its closure is compact set and is contained in the open set U .)

Contrast the following properties with the counter example in Figure 1. The following theorem is applicable
in particular if one consider the dynamical system within a trapping region (a forward-invariant region),
such as the region bounded by a limit cycle.

1.4 Useful results/properties of omega limit sets under assumption (A)

Theorem 1.1. Let ẋ = F (x), F : U → Rd be locally Lipschitz in the open set U and let b ∈ U be fixed.
Suppose (A) holds, then

(a) ω(b) is a compact set in U .

(b) ω(b) is connected.

(c) ω(b) is invariant; i.e. for each z0 ∈ ω(b), Iz0 = (−∞,∞) and φ(R, z0) ⊆ ω(b).

(d) ω(b) is chain-recurrent. (Think of a homoclinic orbit. We won’t be proving it. See Figure 2 for the
definition.)

Remark. For the definition of chain-recurrence, see Figure 2, which is from P. 6 in my note for complete
Lyapunov function.

Proof of compactness. Here trajectory initiating at b exists for all time according to (A). We first prove
the equivalent condition claimed earlier in the note:

ω(b) = ω̃(b), where ω̃(b) =
⋂
k∈N

φ([k,∞), b). (2)
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Let z0 ∈ ω(b) then there exists a sequence tn → ∞ such that φ(tn, b) → z0. Thus z0 belongs to the closure
of φ([k,∞), b) for each k. Thus z0 ∈ ω̃(b). This proves one direction of inclusion.

For the opposite direction, let z0 ∈ ω̃(b), then z0 ∈ φ([k,∞), b) for each k. Hence, for each k, we can choose
tk ∈ [k,∞) such that ∥φ(tk, b)− z0∥ < 1

k . This proves that z0 ∈ ω(b).

Having proved (2), it is clear that ω(b) is the intersection of decreasing sequence of compact (closed and
bounded) sets φ[k,∞), b), so it is closed and bounded itself and hence it is compact.

Proof of connectedness. Suppose ω(b) is not connected, i.e. there exists open sets A,B in Rd such that
A ∩B = ∅
ω(b) ⊂ A ∩B

A ∩ ω(b) ̸= ∅, and B ∩ ω(b) ̸= ∅

Take z ∈ A ∩ ω(b) and z′ ∈ B ∩ ω(b). Then there exists two sequences tn, t
′
n → ∞ such that

φ(tn, b) → z and φ(t′n, b) → z′.

Without loss of generality, we may assume{
tn ≤ t′n < tn+1 for all n ≥ 1,

φ(tn, b) ∈ A and φ(t′n, b) ∈ B for all n ≥ 1.

Now, φ([tn, t
′
n], b), being the image of a continuous mapping from an interval, is connected and has nonempty

intersection with A and B, hence it cannot possibly be contained in A∪B, so there exists sn ∈ (tn, t
′
n) that

φ(sn, b) ∈ Rd \ (A ∪B). Note that sn → ∞ since tn, t
′
n → ∞.

By (A), we can pass to a subsequence s′n such that z′′ = limn→∞ φ(s′n, b) exists, and belongs to ω(b).
However, it also belongs to the closed set (A ∪ B)c. This is a contradiction to the disconnectedness of
ω(b).

Proof of invariance of ω(b); i.e. Proposition 7.2.4 holds assuming (A)

Suppose (A) holds.

Let z0 ∈ ω(b) be given. Then there exists a sequence tn → ∞ such that

φ(tn, b) → z0.

Step #1. Solvability forward in time. i.e. Iz0 ⊇ [0,∞)

To see this, suppose
sup Iz0 = t∗.

Then for each t ∈ [0, t∗), we have by continuous dependence

φ(t, z0) = lim
n→∞

φ(t, φ(tn, b)) = lim
n→∞

φ(t+ tn, b) ∈ ω(b) for any t > 0 such that t ∈ Iz0 .

Hence the trajectory initiating at z0 never leave the compact subset ω(b). (Here we used (A), otherwise
see the counter example with ω(b) being noncompact and disconnected; see Figure 2.) This proves t∗ = +∞
and implies the claim.

Step #2. Solvability backward in time. i.e. Iz0 ⊇ [−m, 0] for all m ≥ 1.

Claim 1.1. We claim that z0 has maximal interval of existence Iz0 = (−∞,∞) and φ(t, z0) ∈ ω(b) for all
t ∈ R.
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Now, by a diagonal trick, we may pass to a subsequence {t′n} ⊂ {tn} such that for each m ∈ N, there exists
z−m such that

lim
n→∞

φ(t′n −m, b) = z−m for each m ∈ N.

This part is due to (A).

It follows as above that for each m ∈ N,
z−m ∈ ω(b),

Iz−m
⊇ [0,∞),

φ([0,∞), z−m) ⊂ ω(b).

Having shown that solutions initiating at z−m exists forward in time, we can now apply continuous depen-
dence to obtain

φ(m, z−m) = lim
n→∞

φ(m,φ(t′n −m, b)) = lim
n→∞

φ(t′n, b) = z0. (3)

This implies z−m and z0 lies on the same orbit, i.e.

Iz0 = Iz−m
−m ⊇ [−m,∞) for each m ∈ N.

and
φ([−m,∞), z0) = φ([0,∞), z−m) ⊂ ω(b) for each m ∈ N.

Since m ∈ N is arbitrary, this shows that

Iz0 = (−∞,∞) and that φ(R, z0) ⊂ ω(b).

This completes the proof.

Figure 2: Definition of chain-recurrence; taken rom P. 6 in my note for complete Lyapunov function.

2 Existence of equilibrium for simply-connected trapping region

Theorem 2.1 (Brouwer’s Fixed Point Theorem). Let Dd = {x ∈ Rd : ∥x∥ ≤ 1} be the closed unit ball in
Rd. If f : Dd → Dd is continuous (a continuous mapping from the closed ball and whose image is contained
in the closed ball), then there exists a point x∗ ∈ Dd such that

f(x∗) = x∗.

Exercise. Suppose U ⊂ Rd is a trapping region of ẋ = F (x) with C1 boundary, and with F : Ū → Rd being
C1. Suppose there exists a diffeomorphism Φ : U → Dd. Use Brouwer’s fixed point theorem to prove that
ẋ = F (x) has at least one equilibrium point x∗ in U .

[Hint: Step 1. Use the procedure in Section 1.1 to assume, WLOG, that U = Dd; Step 2. For each n, let
fn : Ū → Ū be given by fn(x) = φ(2−n, x), then apply BFPT to get a fixed point xn. Then φ(t, xn) = xn if
t = m2−n for any m ≥ 1; Step 3. Pass to the limit xn → x∗ and show that x∗ is an equilibrium point.]
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