Theorem 12. Suppose $||x|| \leq R$, $x \in \mathbb{R}^d$. Let \mathcal{F} be a class of rules described by (5.4). Then

$$V-C \text{ dimension of } \mathcal{F} \leq \min \left\{ \frac{R^2}{\delta^2}, d \right\} + 1.$$

Remark 9. What the above theorem says is that, for large enough margin δ, the V-C dimension of \mathcal{F} can be much smaller than $d + 1$. In high dimensional problems, this suggests a possibility of circumventing the curse of dimensionality.

5.3 Non-Separable Case

When the training data are not separable, some non-negative variables ξ_i's are introduced to relax the separability condition:

$$\xi_i + y_i (\beta' x_i + \beta_0) \geq 1, \quad \xi_i \geq 0 \quad \text{for } i = 1, \ldots, n. \quad (5.5)$$

These ξ_i's are often called slack variables in the optimization literature. Let $\xi = (\xi_1, \ldots, \xi_n)'$. Although introduction of the ξ_i's makes it possible to relax the separability condition, if they are too large, then many data points could be incorrectly classified. If the ith data point is misclassified by the hyperplane $\beta' x + \beta_0 = 0$, that is, $y_i (\beta' x_i + \beta_0) \leq 0$, then $\xi_i \geq 1$. So, $\sum_{i=1}^n \xi_i$ provides an upper bound of the misclassification error of $\beta' x + \beta_0 = 0$. To maximize the margin and at the same time to minimize the bound, the SVM formulation for the separable case is modified to seek (β_0, β, ξ) minimizing

$$\frac{1}{n} \sum_{i=1}^n \xi_i + \frac{\lambda}{2} ||\beta||^2$$

subject to (5.5). Here λ is a positive tuning parameter that controls a trade-off between the error bound and the margin. By noting that $(\min \xi \text{ subject to } \xi \geq 0 \text{ and } \xi \geq a) = \max\{a, 0\} := a_+$ given a, it can be shown that the above modification equivalently finds (β_0, β) that minimize

$$\frac{1}{n} \sum_{i=1}^n (1 - y_i (\beta' x_i + \beta_0))_+ + \frac{\lambda}{2} ||\beta||^2.$$

For a real-valued function $f(x) = \beta' x + \beta_0$ (instead of $f(x) = \text{sign}(\beta' x + \beta_0)$), $y_i (\beta' x_i + \beta_0)$ is called the functional margin of the individual point (x_i, y_i) differently from the geometric margin in the separable case. The functional margin of (x, y) is the product of a signed distance from x to the hyperplane $\beta' x + \beta_0 = 0$ and $||\beta||$. If $y(\beta' x + \beta_0) > 0$,

$$y f(x) = ||\beta' x + \beta_0|| \times \text{distance}(x, \text{the hyperplane } \beta' x + \beta_0 = 0),$$

and otherwise

$$y f(x) = -||\beta' x + \beta_0|| \times \text{distance}(x, \text{the hyperplane } \beta' x + \beta_0 = 0).$$

The modified linear SVM formulation brings a new loss function to measure a goodness of fit of a classifier, which is given by

$$L(f(x_i), y_i) = (1 - y_i (\beta' x_i + \beta_0))_+ + (1 - y_i f(x_i))_+ = \xi_i.$$
It is known as the *hinge loss* as shown in Figure 5 together with the 0-1 loss (misclassification loss). Recall that the 0-1 loss is $L_{0-1}(f(x), y) = I(yf(x) \leq 0)$ for a real-valued discriminant function that induces a classifier through $\text{sign}(f(x))$. The hinge loss is a convex upper bound of the 0-1 loss and is monotonically decreasing in $yf(x) = y(\beta'x + \beta_0)$, the functional margin. The hinge loss makes the SVM computationally more attractive than direct minimization of empirical error rate.

Figure 5: Comparison of the hinge and 0 – 1 loss

In the non-separable case, the geometric interpretation of $2/\|\beta\|$ as the separation margin between two classes no longer holds although $2/\|\beta\|$ is often treated as a ‘soft’ margin analogous to the ‘hard’ margin in the separable case. Rather, $\|\beta\|^2$ can be regarded as a penalty imposed on the linear discriminant function f.

Hence, the SVM procedure can be cast in the regularization framework where a function estimation method is formulated as an optimization problem of finding f

$$
\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(f(x_i), y_i) + \lambda J(f).
$$

Here $L(f(x), y)$ is a loss function, $J(f)$ is a regularizer or a penalty imposed on f, and $\lambda > 0$ is a tuning parameter which controls the trade-off between data fit and the complexity of f. There are numerous examples of regularization procedures in statistics. For example, consider the multiple linear regression with $\mathcal{F} = \{f(x) = \beta'x + \beta_0 : \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R}\}$ and the squared error loss $L(f(x), y) = (y - f(x))^2$. $J(f) = \|\beta\|^2$ defines the ridge regression procedure while the LASSO takes $J(f) = \sum_{j=1}^{d} |\beta_j|$ as a penalty for a sparse linear model. Note that the SVM uses the ridge-like ℓ_2 norm of β as a penalty, $J(f) = \|\beta\|^2$. In other words, the SVM can be viewed as a procedure for penalized risk minimization with respect to the hinge loss. This viewpoint also connects the V-C dimension, the theoretical notion of capacity of \mathcal{F} to more classical measure of complexity of a ‘model’ (or classifier) space implicitly. So, restriction of the model space by the size of $J(f)$ can be taken as a way of controlling the V-C dimension.
5.4 Constrained Optimization

For simplicity of discussion of optimization for the SVM, the separable case is considered first. The optimal hyperplane is determined by solving the following problem:

\[
\text{minimize } \frac{1}{2}||\beta||^2 \text{ subject to } y_i(\beta^T x_i + \beta_0) \geq 1, \ i = 1, \ldots, n.
\]

So, the primal problem has the objective function

\[
l_P(\beta, \beta_0) := \frac{1}{2} \beta^T \beta,
\]

which is free from \(\beta_0\), and \(n\) inequality constraints

\[
h_i(\beta, \beta_0) := 1 - y_i(\beta^T x_i + \beta_0) \leq 0, \ i = 1, \ldots, n.
\]

To handle the inequality constraints, the Lagrange multipliers or dual variables (\(\alpha_i\) for \(h_i(\beta, \beta_0) \leq 0\)) are introduced and the dual objective function is formed:

\[
l_D(\beta, \beta_0, \alpha) := l_P(\beta, \beta_0) + \sum_{i=1}^{n} \alpha_i h_i(\beta, \beta_0) = \frac{1}{2} \beta^T \beta + \sum_{i=1}^{n} \alpha_i (1 - y_i(\beta^T x_i + \beta_0)).
\]

Let \(\alpha = (\alpha_1, \ldots, \alpha_n)^T\). Then the dual problem becomes

\[
\text{maximize } l_D(\beta, \beta_0, \alpha)
\]

subject to \(\alpha_i \geq 0\) for all \(i = 1, \ldots, n\) and \(\nabla_{(\beta,\beta_0)} l_D(\beta, \beta_0, \alpha) = 0\). The equality constraints give

\[
\frac{\partial l_D}{\partial \beta} = \beta - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \Rightarrow \beta = \sum_{i=1}^{n} \alpha_i y_i x_i,
\]

\[
\frac{\partial l_D}{\partial \beta_0} = -\sum_{i=1}^{n} \alpha_i y_i = 0 \Rightarrow \sum_{i:y_i=1} \alpha_i = \sum_{i:y_i=-1} \alpha_i.
\]

Simplifying the objective function, we get

\[
l_D(\beta, \beta_0, \alpha) = \frac{1}{2} \left(\sum_{i=1}^{n} \alpha_i y_i x_i \right)' \left(\sum_{i=1}^{n} \alpha_i y_i x_i \right) + \sum_{i=1}^{n} \alpha_i - \left(\sum_{i=1}^{n} \alpha_i y_i x_i' \right) \left(\sum_{i=1}^{n} \alpha_i y_i x_i \right)
\]

\[
= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i' x_j
\]

\[
= l_D(\alpha) \quad \text{(say)}.
\]

Thus the dual SVM problem is

\[
\text{maximize } l_D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i' x_j
\]

subject to

\[
\alpha_i \geq 0 \text{ and } \sum_{i=1}^{n} \alpha_i y_i = 0.
\]