4.5 V-C Dimension and Shatter Coefficient

The relationship between the V-C dimension and the shatter coefficient is discussed in this section. The following lemma, which is generally attributed to Vapnik-Chervonenkis (1971) and Sauer (1972), shows that the V-C dimension provides a useful bound for the shatter coefficient.

Lemma 4. If \mathcal{A} is a class of sets with V-C dimension V_A, then for every n,

$$s(\mathcal{A}, n) \leq \sum_{i=0}^{V_A} \binom{n}{i}.$$

The lemma shows the dichotomy of the behavior of the shatter coefficient. For $n \leq V_A$, $s(\mathcal{A}, n) = 2^n$, which is the same as the upper bound $\sum_{i=0}^{V_A} \binom{n}{i} = \sum_{i=0}^{n} \binom{n}{i} = 2^n$. On the other hand, for $n > V_A$, the upper bound, the sum of binomial coefficients up to V_A, grows at most polynomially as indicated by the corollary below.

Corollary 1. If $n > V_A$, then

$$s(\mathcal{A}, n) < \left(\frac{e}{V_A} \right)^{V_A}.$$

Proof.

$$\sum_{i=0}^{V_A} \binom{n}{i} \leq \sum_{i=0}^{V_A} \binom{n}{i} \left(\frac{n}{V_A}\right)^{-i} = \left(\frac{n}{V_A}\right)^{V_A} \sum_{i=0}^{V_A} \binom{n}{i} \left(\frac{V_A}{n}\right)^i \leq \left(\frac{n}{V_A}\right)^{V_A} e^{V_A} = \left(\frac{en}{V_A}\right)^{V_A}.$$

For the last inequality, we have used the fact that $e^x \geq 1 + x$, which implies $x \geq \log(1 + x)$ for $x > -1$. Thus $\log(1 + V_A/n)^n = n \log(1 + V_A/n) \leq n \cdot V_A/n = V_A$ and $(1 + V_A/n)^n \leq e^{V_A}$.

Remark 8. If \mathcal{A} has a finite V-C dimension, $s(\mathcal{A}, n)$ grows exponentially until $n = V_A$ and then grows at a polynomial rate for $n > V_A$. So, the growth function defined as $\log_2 s(\mathcal{A}, n)$ is linear up to the V_A and becomes logarithmic afterwards as shown in Figure 3.

Example 2.

(a) $\mathcal{A} = \{(-\infty, x] : x \in \mathbb{R}\}$ with $V_A = 1$.

$$s(\mathcal{A}, n) \leq \sum_{i=0}^{V_A} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} = 1 + n.$$

However, we have checked that $s(\mathcal{A}, n) = n + 1$ for this example.
(b) $\mathcal{A} = \{x \in \mathbb{R}^2 : \beta_0 + \beta'x \geq 0\} : \beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^2$ with $V_\mathcal{A} = 3$.

$$s(\mathcal{A}, 4) = 14 < \sum_{i=0}^{3} \binom{4}{i} = 1 + 4 + 6 + 4 = 15.$$

Now we put together the properties of the shatter coefficient and the Vapnik-Chervonenkis inequality,

$$P\left(\sup_{f \in \mathcal{F}} |R_n(f) - R(f)| > \epsilon\right) \leq 8 s(\mathcal{F}, n) \exp(-n\epsilon^2/32),$$

to obtain the following. Let $V_\mathcal{A}$ be the V-C dimension of the class of sets induced by the decision rules in \mathcal{F}, $\{f^{-1}\{1\} | f \in \mathcal{F}\}$.

Theorem 10. If $V_\mathcal{A} < \infty$ then, for $n \geq V_\mathcal{A}$,

$$P\left(\sup_{f \in \mathcal{F}} |R_n(f) - R(f)| > \epsilon\right) \leq 8 \left(\frac{en}{V_\mathcal{A}}\right)^{V_\mathcal{A}} \exp(-n\epsilon^2/32).$$

Some implications of the theorem are discussed. For simplicity, assume $V_\mathcal{A} > 2$. Then,

$$\left(\frac{en}{V_\mathcal{A}}\right)^{V_\mathcal{A}} \leq n^{V_\mathcal{A}}.$$

First of all, setting the bound $8n^{V_\mathcal{A}} \exp(-n\epsilon^2/32)$ to δ and solving for ϵ, we have the following PAC-style result: with probability at least $1 - \delta$, for all $f \in \mathcal{F}$,

$$|R_n(f) - R(f)| \leq 4 \sqrt{\frac{2}{n} \left(V_\mathcal{A} \log n + \log \frac{8}{\delta}\right)}.$$
Furthermore, since $V_A \log n/n \to 0$, the infinite sum converges:

$$
\sum_{n=V_A}^{\infty} n^{V_A} e^{-ne^2/32} < \infty.
$$

Verify the statement by examining

$$
n^{V_A} \exp(-ne^2/32) = \exp\{V_A \log n - ne^2/32\} = \exp\{-n(e^2/32 - V_A \log n/n)\}.
$$

Hence by the Borel-Cantelli lemma,

$$
sup_{f \in \mathcal{F}} |R_n(f) - R(f)| \to 0 \quad \text{w.p.1.}
$$

From the fundamental inequality in Theorem 3,

$$
R(f_n^*) - \inf_{f \in \mathcal{F}} R(f) \leq 2 \sup_{f \in \mathcal{F}} |R_n(f) - R(f)|.
$$

This implies that

$$
P \left(R(f_n^*) - \inf_{f \in \mathcal{F}} R(f) > \epsilon \right) \leq 8n^{V_A} e^{-ne^2/128} \quad \text{for } n \geq V_A.
$$

As shown before, for a non-negative Z, $P(Z \geq \epsilon) \leq ce^{-2n^2}$ for all $\epsilon > 0$, implies

$$
EZ \leq \sqrt{\frac{\log(ce)}{2n}}.
$$

Hence the estimation error,

$$
ER(f_n^*) - \inf_{f \in \mathcal{F}} R(f) \leq \sqrt{\frac{\log(8n^{V_A}e)}{n/128}} = 16 \sqrt{\frac{\log(8e) + V_A \log n}{2n}} = O \left(\sqrt{\frac{V_A \log n}{n}} \right).
$$

The main message of the V-C inequality is that if the V-C dimension of the class \mathcal{F} is finite, then the estimation error converges to zero at the rate $O \left(\sqrt{\frac{V_A \log n}{n}} \right)$ for all distributions of (X, Y). This result is distribution-free and obtained through a combinatorial characterization of the capacity of \mathcal{F}.