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Pharmacogenomics is the co-development of a drug that targets a subgroup
of patients and a device that predicts whether a patient is in the subgroup
of responders to the drug. Such a development involves a training study,
followed by a validation study if warranted. This chapter discusses the design
of pharmacogenomic studies based on established statistical principles and
describes the analysis of data collected in these studies in a way that takes
the multitude of multiplicity issues into account. Both aspects are critical to
the success of pharmacogenomic development. A proof of concept experiment
is used to show how proper design and analysis can smooth the path from
discovery to clinical use.

7.1 Potential uses of biomarkers

A biological marker (a biomarker for short) is a characteristic that is objec-
tively measured and evaluated as an indicator of normal biologic processes,
pathogenic processes, or pharmacologic responses to a therapeutic interven-
tion (Biomarkers Definitions Working Group 2001, FDA 2005b).

Biomarkers can be based on a variety of technologies, and have different
uses. Our discussion will be for biomarkers based on microarray technology.

A DNA microarray is a chip with an array of microscopic spots of DNA
sequences. They are used to measure relative abundance of nucleic acid se-
quences in samples. This is done by hybridizing fluorophore-labeled cDNA or
cRNA samples to the microarrays, and then measuring the relative intensity
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of fluorescence emission at each spot.
One use of biomarkers is to determine whether a patient can benefit from a

drug. P450s are the major enzymes involved in drug metabolism. AmpliChip
CYP450, for example, uses microarray technology to test for variations in
the genes that code two of the enzymes (CYP2D6 and CYP2C19) in the
P450 family, to see if a patient will have difficulty in metabolizing certain
prescription drugs. This is an example of using biomarkers known to measure
an important aspect of the biological process, using microarrays as a device.

Another use of biomarker is to predict disease progression. MammaPrint,
for example, predicts the likelihood of breast caner recurrence of a patient
using the expression levels of 70 genes. As reported in van’t Veer et al (2002),
this 70-gene composite biomarker was developed by measuring the expression
levels of approximately 24,000 genes on 78 patients using microarray technol-
ogy. The 70 genes were selected using multiple testing and machine learning
techniques based on error rate control, sensitivity, and specificity considera-
tions. Whether these genes are biologically involved in the disease process, or
how they affect disease progression, was not part of the study. MammaPrint
itself uses multiplex microarrays that test eight patient samples per array,
probing the 70 genes three times per sample. This is an example of develop-
ing and using a biomarker based on microarray technology to predict disease
progression.

Note that MammaPrint’s disease prognosis is given with no reference to any
particular treatment. In the next section, we explain how pharmacogenomics
can go beyond mere disease prognosis, coupling a drug with a device predicting
which patients will respond to the drug.

7.2 Clinical uses of genetic profiling

Microarrays for clinical use as medical devices are subject to the regulation
of the Center for Device and Radiologic Health (CDRH) of the U.S. Food and
Drug Administration (FDA). In 2003, the FDA issued its guidance for dis-
ease prognostics based on multiplex testing of heritable markers (FDA, 2003).
In 2007, Agendia’s MammaPrint was approved by CDRH to be marketed
as a medical device for breast caner prognostics. Clinical use of microarray
technology is thus a reality. This technology also has potential in drug devel-
opment, making more efficacious compounds available to patients, with less
side effects.

It is well known that most drug development programs fail. However, even if
a compound development does not succeed for the entire patient population,
there is the possibility that it may still benefit a subgroup of the patient
population. In terms of efficacy, even when a pharmaceutical trial fails to
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show sufficient efficacy averaged over the entire patient population, there is
the potential that the compound is efficacious for a subgroup of the patient
population. In terms of safety, even if a compound causes serious adverse
events (SAEs) in some patients, there is the possibility that SAEs are confined
to a subgroup of the patients. These are the rationales for pharmacogenomics.

Analysis of efficacy and safety for certain subgroups based on criteria such
as sex and ethnicity is already routinely done. Technology such as microarrays
makes it possible to form such subgroups based on the genetic profiles of pa-
tients or tissue samples, allowing more refined subgroup analysis in principle.

Pharmacogenomics thus goes beyond mere disease prognosis in that it cou-
ples a drug with a device implementing an algorithm predicting which patients
will respond to the drug. It is the co-development of a drug that targets a
subgroup of the patient population, as well as a device that can be used to
predict whether a patient is in this subgroup of responders to the drug. Since
both drug and device are involved, pharmacogenomics is subject to the joint
approval by the Center for Drug Evaluation and Research (CDER) and by
the Center for Device and Radiologic Health (CDRH) of the FDA.

In 2005, the FDA issued its Voluntary Genomic Data Submission (VGDS)
guidance and drug-diagnostics co-development concept paper (FDA, 2005b;
FDA, 2005a). With the issuance of these documents, pharmaceutical compa-
nies have started banking blood and tissue samples from clinical trials (based
on informed consent) for potential pharmacogenomic use.

After highlighting the key statistical issues in these documents in the next
section, the rest of the chapter is devoted to a discussion of multiplicity issues
in pharmacogenomics.

7.3 Two stages of pharmacogenomic development

Pharmacogenomic development is a two-stage process. The first stage is
to identify a biomarker positive (G+) subgroup of patients for which the
compound is extra efficacious, compared to patients in its complement, the
biomarker negative (G−) subgroup.

In clinical trials for drug development, efficacy can be defined in terms of
higher average improvement (over the control group), or in terms of higher
responder rate (over the control group):

• In Alzheimer’s disease trials, efficacy is typically established by compar-
ing mean changes from baseline between treated and control groups.

• In schizophrenia trials, efficacy might be established by comparing mean
changes from baseline of the Positive and Negative Syndrome Scale
(PANSS) score between treated and control groups. Or it might be
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established by comparing responder rates between treated and control
groups. A responder for a schizophrenia drug might be one who experi-
ences at least a 30% reduction in total PANSS score from baseline.

• For hypertensive drugs, a responder might be one whose systolic blood
pressure has been reduced to no more than 120 mm Hg.

• For diabetes drugs, a responder might be one whose HbA1c (glycosy-
lated hemoglobin) is less than 7%.

One might look for a G+ subgroup based on genotypes already suspected
to affect disease outcome. In Alzheimer’s disease, for example, one might
compare efficacy between carriers and non-carriers of the ApoE “4” allele.
Alternatively, one might attemtp to discover a G+ subgroup by comparing
the genetic profiles of the responder (R+) patients with the profiles of the
non-responder (R−) patients. Using the banked biological samples, measure-
ments on typically a large number of biomarkers are obtained. These marker
measurements may be SNP categories obtained from blood samples, or gene
expression levels measured from tissue samples, for example. Biomarkers that
show substantial differences between the R+ and R− groups are selected, and
based on a combination of these selected biomarkers, which might be called a
composite biomarker or a gene signature, a prognostic classification algorithm
is constructed to predict whether a future patient will be a responder or a
non-responder to the compound.

At the end of this first stage, the sensitivity of the prognostic algorithm,
which is the probability that a patient is biomarker positive (G+) given that
the patient is a responder, and the specificity of the algorithm which is the
probability that a patient is biomarker negative (G-) given that the patient
is a non-responder, should be estimated. Provided that both the estimated
sensitivity and specificity are sufficiently high, pharmacogenomic development
proceeds. Otherwise, further pharmacogenomic development is likely to be
futile.

In Section 7.4, we discuss multiple testing for differential expressions and
for significant composite biomarkers.

If pharmacogenomic development proceeds to the second stage, a new clin-
ical trial is conducted to independently validate the efficacy and safety of the
compound for the target subgroup, and to prove that the composite biomarker
has sufficient sensitivity and specificity for clinical use.

One issue that is often overlooked is the process of developing a prognostic
device based on gene expressions involves a change of platform between the
training stage and the validation (and eventual clinical use) stage. As stated
in FDA (2005b):

A new test with fewer biomarkers developed for diagnostic pur-
poses (i.e., patient stratification) should be properly validated,
ideally in clinical trials that enrolled patients with the intended
indication.
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Whereas the training study might use microarrays probing many biomarkers,
the validation study uses the prognostic chip containing only the genes in
the signature that is intended for eventual clinical use. (For example, the
validation study of MammaPrint used microarrays probing 70 genes only.)

Another issue that has not been fully addressed is how to design and analyze
the training study in order to properly design the validation study. As stated
in FDA (2005b), it is important for a pharmacogenomics development plan
to be able to compute sample sizes required to meet validation requirements:

When validating a gene or expression pattern, instead of a set of
individual biomarkers, a rigorous statistical approach should be
used to determine the number of samples, and the methodology
used for validation. It is recommended that the validation strategy
be discussed in advance with FDA.

In this chapter, we discuss how to statistically design and analyze the train-
ing study in order to properly design the validation study. Determination of
sample sizes for the validation study will be elucidated in Rao, Lee and Hsu
(2009).

7.4 Multiplicity in pharmacogenomics

Two of the sources of multiplicity in pharmacogenomics are multiplicity of
individual biomarkers and multiplicity of subgroups. Individual biomarkers
(genes in our discussion) can be selected to form a composite biomarker.
Subgroups are defined by the multitude of prediction algorithms that can be
formed by the selected individual biomarkers.

To select biomarkers to form a composite biomarker, one can test for the
significance of the individual biomarkers controlling a multiple error rate such
as the Familywise Error Rate (FWER), generalized Familywise Error Rate
(gFWER) and False Discovery Rate (FDR). These error rate are defined in
Section 2.2.

Then, after proposing a prognostic algorithm based on the selected biomark-
ers, one can validate its discriminant power as follows. Each potential pre-
diction algorithm divides the patients into either the biomarker positive (G+)
group or the biomarker negative (G−) group. A patient in the G+ group is
predicted to be a responder, while a patient in the G− group is predicted to be
a non-responder. Therefore, one can account for the multiplicity of subgroups
by proving that the proposed prognostic algorithm has non-zero discriminant
power, even after taking into account the multiplicity of potential prediction
algorithms that can be formed by the selected biomarkers.
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7.4.1 Multiplicity of genes

In the first stage, genes are tested for differential expressions, as having too
many genes may hinder construction of an effective classification algorithm
and inflate its variability. At this stage, expression levels are measured using
microarrays that probe a large number of genes, perhaps the whole genome.
For example, the first stage in the training of MammaPrint used microarrays
that probe approximately 24,000 genes. With such a large number of genes, if
they are tested without adjusting for multiplicity, surely some will be found to
be differentially expressed even if genetic makeup has absolutely no bearing
on the response. This is the first multiplicity issue in pharmacogenomics.
To confidently select genes to train a classification algorithm within the first
stage, we control an appropriate multiple testing error rate, in agreement with
FDA (2005b):

Statistical considerations in deriving a small number of biomark-
ers from a large amount of parallel multiplexed data should be
properly addressed.

Two different definitions of Type I error rate

Suppose k genes are probed in comparing expression profiles between re-
sponder and non-responder groups. Let µRi, µNi, i = 1, . . . , k, denote the
expected (logarithms of) expression level of the ith gene of a randomly sam-
pled patient from the responder and non-responder group respectively. Let θi

denote the difference of the expected (logarithms of) expression levels of the
ith gene between the two groups, θi = µRi − µNi.

In the current bioinformatics literature, the (marginal) null hypotheses be-
ing tested are

H0i : θi = 0 (7.1)

for i = 1, . . . , k. Multiple testing then generally involves testing H0I : θi = 0
for all i ∈ I for I ⊆ {1, . . . , k}.

A Type I error of testing H0I can be defined two different ways. Let θ =
(θ1, . . . , θk), and let Σ denote generically all parameters that the observed
expression levels depend on (including variances, covariances, skewness, etc.).
Let θ0 = (θ0

1, . . . , θ
0
k), and let Σ0 be the collection of all (unknown) true

parameter values.
The traditional definition of the Type I error rate (Casella and Berger, 1990,

Definition 8.3.3), is
sup

θi=0,i∈I
P{Reject H0I |θ,Σ}, (7.2)

where the supremum is taken over all possible θ and Σ subject to θi = 0, i ∈ I.
In the analysis of gene expression levels, the supremum is taken over all possi-
ble joint distributions of expression levels under the null hypothesis (including
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all possible correlations and expression levels of the other genes with indices
not in I). The more realistic null hypotheses (which might become more
popular as bioinformatics evolves) is defined as

H0i : θi ≤ δ

and
H0i : θi ≥ −δ

with δ > 0 the Type I error rate of a test for H0I may well depend on the
values of θj , j /∈ I, in the presence of gene by gene interactions.

A different definition of the Type I error rate for testing H0I , given in
Pollard and van der Laan (2005) for example, is

P{Reject H0I |θ0,Σ0}. (7.3)

Note that θ0
i = 0 for i ∈ I under H0I , θ0

j , j /∈ I, and Σ0 are unknown. Thus
this probability is difficult to compute directly. Pollard and van der Laan
(2005)’s methods, implemented as the MTP function in the multtest package
in the bioconductor repository of R, estimate θ0

j , j /∈ I, and Σ0 by resampling.
Their methods control the Type I error rate asymptotically as the number of
microarrays goes to infinity.

In practice, statistical decision procedures are applied to different studies
over time. Therefore, error rate control is more useful if it controls the long
run relative frequency of incorrect decisions across different studies. Such a
claim is possible provided each test controls the Type I error rate at level α
according to the traditional definition (7.2). See Berger and Wolpert (1988,
pp. 71-2) and Berger (1985, p. 23, p. 44). In this sense, perhaps definition
(7.2) is more useful than definition (7.3).

Popular error rates to control in bioinformatics

Let V denote the number of false rejections and let R denote the total
number of rejections. The two most popular quantities to control in bioinfor-
matics are the false discovery number V and false discovery proportion V/R.
The rates of these errors are reported either as an exceedance probability (rel-
ative frequency of V or V/R exceeding a specification across many multiple
tests), or an expectation (average of V or V/R across many multiple tests).
Such reporting can either be unconditional, averaged over all studies, or con-
ditional on the data, restricted to studies with an observed number of total
rejections R = r, for example.

The FWER and gFWER are exceedance probabilities. The FDR is an
expectation error rate. The step-up test of Benjamini and Hochberg (1995)
is a popular FDR-controlling method.

Another popular method in bioinformatics is the Significance Analysis of
Microarrays (SAM) proposed by Tusher, Tibshirani, and Chu (2001). Instead
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of controlling the FDR, it aims to control E(V )/R, under the configuration
that all the null hypotheses are true.

Reporting of an error rate which is an expectation may be inadequate, if
the quantity being controlled (or a component of it) turns out to be highly
variable for a statistical method. Gordon et al (2007) showed that, in terms
of V , the number of false discoveries, the Benjamini and Hochberg (1995)
method is less stable than the Bonferroni method.

If controlling V guards against incorrect decision-making, and Type I error
rate is controlled according to the traditional definition (7.2), then FWER or
gFWER control of the exceedance probabilities of V implies control of the
long run relative frequency of incorrect decision across different studies, as
discussed at the end of the previous chapter.

Partitioning to control the gFWER

One approach to controlling the gFWER is to use a method that controls
the familywise error rate (i.e., controlling the gFWER at m = 0), and then
augments the rejections by automatically rejecting the null hypotheses as-
sociated with the next m extreme test statistics. This is the augmentation
approach of van der Laan, Dudoit, and Pollard (2004).

A different approach is to use the generalized partitioning principle of Xu
and Hsu (2007). It partitions the parameter space into disjoint subspaces Θ∗I
just like the partitioning principle introduced in Section 2.3.4, but adds the
concept of testing individual hypotheses H0i. Specifically, in each Θ∗I , it rejects
all H0i, i /∈ I, and test {H0i : θi ∈ Θi, i ∈ I} at gFWER level α. An Hi is
then rejected if it is rejected in Θ∗I for all I 3 i.

Note that the original partitioning principle can be viewed as a special
case of the generalized partitioning principle in that, when testing in ΘI , the
hypotheses H0i, i ∈ I, are either all accepted or rejected.

A particular application of the Generalized Partitioning Principle is to use
Markov’s inequality to provide a gFWER-controlling test for each Θ∗I . Sup-
pose the level of each marginal test is α. Then, in testing |I| true null hy-
potheses, Markov’s inequality states

P (V > m) ≤ |I|α
m + 1

.

Thus, one can control gFWER at level α when testing in Θ∗I by testing each
individual hypothesis at level α(m + 1)/|I|. The resulting multiple test is
the gFWER-controlling method of Hommel and Hoffmann (1988), which was
re-discovered by Lehmann and Romano (2005).

Conditional versus unconditional inference

FDR is an unconditional error rate. It may be tempting for investigators to
report conditional error rates in practice. Suppose that an investigator tested
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100,000 hypotheses, using a method which controls FDR unconditionally at
1%. Then, having rejected 1,000 hypotheses, the investigator might want to
state “10 out of these 1000 discoveries are expected to be false discoveries.”
Such a statement, conditional on the realized rejections, is misleading since
FDR is an unconditional expectation.

Step-down procedures that control the FWER and gFWER adjust for mul-
tiplicity conservatively, but only to the extent that some subset (but not all)
of the null hypotheses H0i, i = 1, . . . , k, might be true, conditional on how
many of them have been rejected. This is in contrast to a single-step proce-
dure which typically adjusts for multiplicity under the scenario that all the
null hypotheses are true. The critical value (threshold) used by a step-down
procedure, in effect, is the one corresponding to the maximum subset hypoth-
esis H0I that could be true, conditional on data. Such conditional tests keep
the true error rate as close to the desired error rate as possible, while still
guaranteeing conservatism.

A form of conditional FDR error rate reporting, discussed in Efron (2007)
for example, is to report an estimate of E(V )/r where r is the realized number
of rejections, R = r. Note that Efron’s method estimates E(V ) uncondition-
ally.

Taking dependence into account

Methods based on the Bonferroni inequality for FWER control (e.g., Holm’s
method), or Markov’s inequality for gFWER control (e.g., the method in
Lehmann and Romano (2005), do not take joint distribution of the test statis-
tics into account. They are generally conservative.

Some methods, such as Hochberg’s step-up method for FWER control, and
Benjamini and Hochberg’s (1995) step-up method for FDR control, set critical
values based on the assumption that the test statistics are independent. They
are conservative under certain positive dependence structures.

For FWER control, if the test statistics have a multivariate normal or a
multivariate t distributions under an intersection/partitioning hypothesis H0I ,
and the correlation structure has exactly or approximately a one-factor struc-
ture, then the factor analytic technique of Hsu (1992) is applicable. This
technique amounts to modeling dependence by a latent variable. Alterna-
tively, the variance-reduced Monte Carlo technique of Genz and Bretz (1999)
can be applied. If the joint distribution of the test statistics is not multivariate
normal or multivariate t, then resampling techniques can be used to compute
the thresholds.

For gFWER control, assuming the test statistics have an exchangeable dis-
tribution under an intersection/partitioning hypothesis, Xu and Hsu (2007)
constructed step-down methods that control gFWER while taking dependence
among the test statistics into account. In analogy to closed/partitioning pro-
cedures based on the maximum test statistic, they proposed using an order
statistic to test each intersection/partitioning hypothesis H0I . The technique
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for computing threshold proposed by Xu and Hsu (2007) is a special case of
the factor-analytic technique, as equal correlation can clearly be generated by
a single latent variable. Romano and Wolfe (2007) also proposed gFWER-
controlling methods based on order statistics, using a resampling technique
to compute the thresholds.

For Fdr reporting when the number of tests is large, Efron (2007) first
transforms the test statistics so that those corresponding to the true null
hypotheses become standard normal random variables. Then, to estimate
E(V ), assuming pairs of transformed test statistics are bivariate normal, he
extracts a one factor structure from the multinomial distribution of binned
counts from ordered transformed test statistics.

In summary, general strategies for taking dependence into account are

• Model dependence as arising from a latent variable,

• Estimate dependence by resampling.

7.4.2 Multiplicity of subgroups

In searching for a subgroup of the patients for which a compound is es-
pecially efficacious, one must guard against the possibilities that the more
subgroups are searched the more likely that one will “discover” such a sub-
group by chance.

Let X = (X1, . . . , Xk)′ represent measurements on the individual biomark-
ers from a typical patient. One might contemplate using a linear combination
of the biomarker measurements b′X = b1X1 + · · ·+ bkXk to place patients in
biomarker positive (G+) and biomarker negative (G−) groups. For example,
b′X > c puts the patient in the G+ group, while b′X ≤ c puts the patient in
the G− group.

Let Y be an appropriate measure of efficacy of the compound. To see
the danger of subgroup analysis without appropriate multiplicity adjustment,
consider the model Y = β1X1 + · · ·+βkXk +ε, where ε represents uncertainty
and assume that βi 6= 0 only if the ith biomarker correlates with efficacy.

Suppose none of the biomarkers correlates with efficacy (i.e., βi = 0, i =
1, . . . , k). Then, in testing whether individual biomarkers correlate with ef-
ficacy, H0i : βi = 0, the multiplicity of having k biomarkers needs to be
taken into account to avoid false positives. In testing whether any composite
biomarkers in the family

{H0b : b1β1 + · · ·+ bkβk = 0, b ∈ <k}

correlate with efficacy, if we assume uncertainty terms ε are i.i.d. with a
normal distribution with a known variance for simplicity, then the appropriate
multiplicity adjustment to control FWER can be made by using a threshold
based on a Chi-square distribution, not a normal distribution.
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Figure 7.1 shows how quickly the probability of incorrectly inferring at least
one composite biomarker as correlating with efficacy approaches 100% as k
increases, if each composite biomarker is tested at an error rate of α = 0.05.
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FIGURE 7.1: The probability of falsely finding a composite biomarker
significant without multiplicity adjustment

Even if a (composite) biomarker is found to be correlated with efficacy,
it does not mean that its discriminatory power would be high enough to be
practically useful. Whether a compound is sufficiently efficacious for the G+

group or not requires a test on the accuracy (sensitivity or specificity) of
the prediction rule based on the composite biomarker for the responder/non-
responder status. In general, composite biomarkers correlated with efficacy
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that define subgroups can be nonlinear in the biomarker measurements. Thus,
the multiplicity of subgroups can be far greater than what has been considered
in this section, and its proper adjustment would call for a different approach
to the problem.

7.5 Designing pharmacogenomic studies

Microarray experiments conducted for eventual clinical use are, in essence,
clinical trials in silica. As in clinical trials, designing microarray experiments
according to the statistical principles below helps to ensure that the prognos-
tic/diagnostic algorithm derived from expressions measured on the training
platform applies to expressions measured on the validation platform and in
its eventual clinical use.

7.5.1 Control for platform change using external reference
sample

To control for possible systematic shifts in measured expression levels chang-
ing from the training platform to the validation platform, one can normalize
expression levels between platforms using the expression levels measured from
samples that are available and homogeneous from the training experiment to
the validation experiment, and remain so for clinical use. An example of such
samples is the Universal Reference Sample from StrataGene.

In the case of MammaPrint, the training study placed a reference sample
pooled from 78 patients into one of the two channels on each of the microar-
rays, whereas the validation study placed a reference sample pooled from 307
patients into one of the two channels on every microarray. When the training
study and validation study utilize different reference samples, it is unclear
to us which is the appropriate reference sample in clinical use for individual
patients.

7.5.2 Design to discover group differences

Measurements on gene expression levels inherently contain variability. The
five sources of variability of measured gene expression levels are as follows.

1. Group: There may be differential gene expressions between risk groups
(averaged over infinitely many subjects).

2. Subject: Within each group, subjects may have the same alleles but still
have natural differences in expression levels (even for inbred mice).
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3. Sample: Different samples from the same subject, so-called technical
replicates, nevertheless will have some difference in expression levels.

4. Probe: The probes for each gene represent different parts of a gene, and
will have different amounts of RNA hybridized to them.

5. Noise: Noise could come from various non-biological sources such as ex-
perimental and technical settings which may not be identical in repeated
experiments.

Having replicate measurements from each level of each factor allows one
to estimate each effect, and their variabilities. One can then, in turn, not
only discover group differences more readily, but also estimate sensitivity and
specificity of prediction algorithms, as follows.

Replicate to estimate and remove variabilities

Figure 7.2 displays observed expression levels of 99 genes from five groups
of mice from our proof of concept experiment described in Section 7.7 (after
background correction and normalization). Separation of the groups cannot
be seen. The reason turns out to be that mouse and sample variabilities
overwhelm group differences.

In order to estimate the effect of each subject, and its variability, replicate
samples from each subject is needed. In order to estimate the effect of each
sample, and its variability, each sample needs to be probed multiple times.

To discover group differences, if subject and sample effects can be estimated
unbiasedly, then removing them may make group differences reveal themselves
more readily. By treating subject and sample as fixed effects (as one would
adjusting for covariate effects), one may more readily identify differentially
expressed genes. Multiple tests conducted in this fashion control error rates
conditionally, conditional on the subjects and the samples. Therefore, they
control error rates unconditionally as well.

In analyzing expression levels to discover genes differentially expressed be-
tween groups, expression level is the response variable while group, subject,
sample, and probe all are predictor variables. However, in training a classifica-
tion algorithm based on differentially expressed genes, their expression levels
then become predictors for treatment outcome. Sensitivity and specificity of
such an algorithm depends on how variable expressions are between subjects
within each group, and between samples within each subject. With replicate
samples from each subject, and replicate probes for each sample, the variabil-
ity of subject and sample can be estimated by considering them as random
effects in modeling expression level data. Analysis of gene expressions should
be cognizant of this distinction between the roles of expression levels. Figure
7.3 displays estimated expression levels of 99 genes, after estimated mouse and
sample effects are removed by modeling them as fixed effects. Clustering of 80
samples with the estimated gene expression levels rediscovered the five groups
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FIGURE 7.2: Observed expression levels of genes from inbred mice. Rows,
from top to bottom, represent gene 1 to gene 99. Columns correspond to
samples from five groups of mice, arranged from left to right: group A, B, C,
D, and W (wildtype). There are four mice per group, and four samples per
mouse. The 80 columns, from left to right, represent sample 1 of mouse 1
from group A, to sample 4 of mouse 4 from group W.

of mice, arranging the columns corresponding to the 80 samples perfectly into
five distinct groups.

Block to avoid confounding

Gene expression measurements from microarrays are potentially affected by
extraneous effects such as array or batch processing effects. Many microarray
experiments take only one sample from each subject, hybridizing it to one



Design and Analysis of Microarray Experiments for Pharmacogenomics 15

C
23

C
12

C
11

C
42

C
33

C
22

C
32

C
14

C
24

C
41

C
13

C
31

C
21

C
44

D
24

D
11

D
22

D
12

D
31

D
44

D
32

D
33

D
13

D
42

D
41

D
23

D
14

D
21

A
34

A
43

A
41

A
13

A
11

A
21

A
14

A
31

A
22

A
24

A
23

A
33

A
12

A
42

B
24

B
14

B
33

B
13

B
41

B
43

B
12

B
23

B
11

B
42

B
34

B
21

B
22

B
31

W
33

W
11

W
12

W
43

W
34

W
41

W
24

W
14

W
44

W
31

W
21

W
22

W
23

W
13

FIGURE 7.3: Estimated expression levels of genes from inbred mice, with
Mouse and Sample effects removed. Rows, from top to bottom, represent
gene 1 to gene 99. Arranging the columns by unsupervised machine learning
(clustering) results in five distinct groups: from left to right, groups C, D, A,
B, and W (wildtype).

microarray. Estimates of group differences are then potentially confounded
with array effects.

In microarray experiments, a statistical block is a condition under which
measured gene expressions are likely to be equally affected by confounding
factors. A block might, therefore, be a batch of arrays processed together.
Some microarrays, including those made with Agilent and NimbleGen tech-
nology, can have multiple biological samples hybridized on the same array, so
each array can conveniently form a block.
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Statistical analysis of a block design proceeds by first comparing different
risk groups within blocks, and then combining such comparisons across blocks.
Such an analysis not only avoids confounding due to extraneous effects, but
also increases sensitivity and specificity because it eliminates batch/array vari-
ability in the comparisons. Basic statistical design principles also suggest
keeping the proportions of samples from the groups to be compared the same
across blocks. Doing so not only facilitates statistical analysis by making the
effects orthogonal, but makes group comparisons more efficient as well.

Randomize sample hybridization to avoid bias

Randomization prevents bias. Within each block, if placement of the sam-
ples onto microarrays or processing of the biological samples over time is not
randomized, the observed differences in expression levels may contain biases
due to extraneous effects. To avoid such biases, we randomize the placement
of biological samples onto the microarrays and the order in which the samples
are hybridized.

Randomize probe placement to avoid change of platform issue

If placement of the probes on microarrays is not randomized, measurements
from the training platform and the validation platform may have different
biases. To avoid such biases in order to ensure a prediction algorithm derived
from the training platform applies to expressions measured on the validation
platform, we randomize the placement of probes on both platforms.

A good microarray experimental design balances the allocation of samples
from the groups to be compared to wells/sub-microarrays on each microarray,
and to microarrays within a batch, to avoid potential confounding array or
batch effects.

7.5.3 Permutation tests may not control error rates

Permuting raw data across groups to be compared is often used as a tool to
generate reference distributions under the null hypotheses to be tested. It is
thought of as capable of taking dependence into account, as well as producing
more exact inferences for small samples than methods based on asymptotics.

It turns out that, depending on application, there may be an assumption
needed for permutation tests to control multiple testing error rates. At issue
is, in comparing parameters of the marginal distributions of two sets of multi-
variate observations, the validity of permutation testing is affected by all the
parameters in the joint distributions of the observations.

Calian, Li, and Hsu (2008) showed the surprising fact that, in the case of
a linear model with i.i.d. errors, permuting raw data (instead of residuals)
across groups to be compared turns out to control the FWER, if the test
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statistic for each partitioning hypothesis is based on ordinary least squares
estimates and of the maximum test statistic form.

On the other hand, as shown in Xu and Hsu (2007), in comparing the mean
expression levels of genes between two groups of subjects, permuting raw
data across groups may not generate correct reference distributions under the
null hypotheses, unless equalities of mean expression levels for a set of genes
automatically imply equality of joint distributions of expressions levels for
this set of genes (including equalities of variances, covariances, and higher
cumulants).

Our view is, unless such an assumption can be made on biological ground, it
is safer to take a modeling approach, an example of which is described below.

7.6 Analyzing microarray data by modeling

Suppose that a microarray experiment is conducted properly, adhering to
the statistical design principles and addressing the issues on different sources
of variability in gene expression measurements discussed so far. We can ana-
lyze the microarray data by proper modeling. A concrete example of such a
design and experiment is to be given in the next section.

Let yigmspr denote the background corrected, log transformed and nor-
malized probe intensity for the ith gene (i = 1, ..., ni), sth sample (s =
1, ..., ns(m,g)) from the mth subject (m = 1, ..., nm(g)) in group g (g = 1, ..., ng),
pth probe (p = 1, ..., np(i)), and rth replicate (r = 1, ..., nr) from the experi-
ment.

We assume, for each i, yigmspr follows a linear effects model

Yigmspr = µi + τig + Mim(g) + Sis(m(g)) + πp(i) + εigmspr, (7.4)

where

µi = mean gene expression for ith gene
τig = group g effect on ith gene

Mim(g) = effect of subject m in group g on ith gene
Sis(m(g)) = effect of sth sample from mth subject in group g on ith gene

πp(i) = effect of pth probe on ith gene
εigmspr = measurement error.

Replicate measurement errors are assumed to be independent, identically
distributed with variance σ2

iε. If they are normally distributed, then estimated
group differences have a multivariate normal distribution, from which multiple
tests can be derived. If they are not normally distributed, then multiple tests
based on resampling of the residuals can be used.
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Subject and sample effects can be considered as either fixed or random
depending on the purpose of the microarray analysis. If the subject and
sample effects are random, their variances are assumed to be σ2

iM and σ2
iS

respectively. In this case, var(Yigmspr) = σ2
iε + σ2

iM + σ2
iS , the covariance

between gene expressions for different replicates from the same sample is σ2
iM+

σ2
iS and the covariance between gene expressions for different samples from

the same subject is σ2
iM .

Model (7.4) is a marginal model in the sense that it does not specify the
joint distribution of yigmspr across the genes. Modelling expression levels
from all genes simultaneously with subject by gene interaction included would
generally require too much computer memory.

Other models exist for gene expression data from cDNA spotted arrays and
stock Affymetrix arrays (e.g., Wolfinger et al., 2001, Chu et al., 2002, 2004,
Smyth, 2004, Lee et al., 2002). However, the model (7.4) differs significantly
from the existing models in that the design underlying it allows for the sepa-
rate estimation of the subject and sample effects.

Consider, for example, the model Chu et al. (2004) used to analyze the
ionizing radiation data in Tusher, Tibshironi, and Chu (2001). Each of two
samples from each of four groups (treatment and cell line combinations with
two levels each) was hybridized to a stock Affymetrix array. On a gene-by-gene
basis, their linear mixed effects model was:

Yigpl = µi + τig + πp(i) + Al(g) + εigpl (7.5)

where Yigpl is the log transformed perfect match values for probe-level data
from the ith gene, µi is the mean gene expression for the ith gene, τig is the
gth group (treatment and cell line combination) effect on the ith gene, πp(i)

is the pth probe effect in the ith gene, Al(g) is a random array effect, and εigpl

is measurement error.
Comparing model (7.5) with model (7.4), we see the array effect Al(g) in

model (7.5) includes both the subject effect Mim(g) and sample effect Sis(m(g))

in model (7.4). That is, with stock Affymetrix arrays, sample and subject
effects are completely confounded with array effects, and cannot be estimated.
Therefore, treatment or group effect is confounded with array effect in this
case.

Smyth (2004) applied the following simple linear fixed effect model to fit
log-transformed intensities. For the ith gene, assume

E(Y i) = Xαi (7.6)
var(Y i) = Wiσ

2
i , (7.7)

where Y i is a vector containing all the transformed intensities from different
samples for the ith gene, X is the design matrix and αi is a vector containing
all the parameters µ, τ and π for the ith gene. Wi is assumed to be a known
non-negative definite matrix. It is not entirely clear how to set values for the
matrix Wi in real applications.
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Models (7.6) and (7.4) have difference in the variance matrix of the vector
Y i. In particular, the variances of the elements of Y i in the model (7.6) are σ2

i

times the diagonals of the matrix Wi, while they are given by σ2
iε+σ2

iM +σ2
iS (a

combination of separate variance components from subject effects, sample ef-
fects, and measurement error) in the model (7.4). Also, the covariances among
gene expression levels are modelled differently in (7.4) and (7.6). Model (7.4)
specifies the covariance between gene expression levels of different samples
from the same subject to be σ2

iM and the covariance between gene expres-
sion levels of the same sample to be σ2

iM + σ2
iS . In other words, (7.4) models

the additional covariance due to measurements being from the same sample
additively. Model (7.6), on the other hand, assumes both of the covariance
between gene expression levels from the same subject and that from the same
sample to be multiples of σ2

i . These multiples are to be specified in the ma-
trix Wi. However, proper specification of the multiples does not seem to be
straightforward, especially when the sample and subject effects are additive.

In order to borrow information from the ensemble of genes to assist in
estimation of variance of each individual gene, Smyth (2004) assumes a prior
distribution on σ2

i ,

1
σ2

i

∼ 1
d0s2

0

χ2
d0

.

With this prior specification, (7.6) is not a gene-by-gene model any more. The
unknown variance σ2

i in model (7.6) can then be estimated by the posterior
mean of σ2

i given s2
i , i.e.

σ̂2
i =

d0

d0 + di
s2
0 +

di

d0 + di
s2

i .

The estimate σ̂2
i shrinks the observed variances s2

i towards the prior values s2
0

with the extent of shrinkage determined by the relative sizes of the observed
and the prior degrees of freedom di and d0. This is similar in principle to
Tusher, Tibshirani, and Chu (2001)’s idea in SAM of modifying the estimate
of σi by an offset parameter, i.e. σ̂i = si + s0. Smyth’s offset estimate is
motivated by a hierarchical model, whereas s0 in SAM is empirically chosen
to be a particular percentile of all si values without a model or an associated
distribution theory.

The two-stage ANOVA model in Lee et al. (2002) is basically the same as
model (7.5) except that all effects are assumed to be fixed. They also adjust
the mean square error by an offset quantity in testing for significance using
F -statistics.
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7.7 A proof of concept experiment

We executed a microarray experiment to prove the concept that a train-
ing experiment can be designed statistically to reliably estimate the variance
components of subject, sample, and noise separately, and that marker genes
can be selected for the validation study by multiple testing with a properly
controlled error rate.

To simulate the comparison of phenotype groups, our experiment compared
tissues from normal mice (wild type, labeled group W) with tissues from four
groups of mice (labeled groups A, B, C and D) with four different mutations
of the microphthalmia transcription factor (Mitf) gene.

Four mice were sampled from each of the five groups. From each mouse,
four cRNA samples were prepared after total RNA was isolated and biotin
labeled cDNA was synthesized from a spleen tissue sample.

To prove the concept that external reference samples can be used to control
for the platform change, we also prepared 16 samples of Universal Mouse
Reference Sample (UMRS) from StrataGene.

To demonstrate statistical design of hybridization of samples to microarrays,
we utilized NimbleGen microarrays with 12 mini-microarrays on each array.
The 96 samples were hybridized to eight arrays, with the samples placed in the
mini-microarrays according to the three rows by four columns patterns shown
in Figure 7.4, following the statistical principles of randomization, replication,
and blocking.

A total of 99 genes thought to be regulated by the Mitf gene were selected
as probes. The probe set for each gene consisted of thirty-two 24-mer probes.
To demonstrate the utility of statistically designing microarrays according to
the principles of randomization and replication, each probe set was replicated
twice in each of the mini-microarrays, and placements of the probes were
completely randomized in each mini-microarray.

Normalization using an external reference sample

Gene expression measurements from microarrays are subject to array and
other processing effects, and are usually “normalized” before group compar-
isons are made. To “normalize” is to pre-process data to ensure observations
from different sources are compatible before inferences are made.

Internal normalization uses samples within a study as controls, while ex-
ternal normalization uses samples external to the study as controls.

Some internal normalization techniques such as quantile normalization have
been shown to be reliable within a study. However, how well inferences (such
as prognostic algorithms) based on internal normalization carry across differ-
ent studies is less clear.
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FIGURE 7.4: Hybridization design in the proof of concept experiment.
(samples from different groups and UMRS are represented by different shades
of gray, for example, MA23 is the third cRNA sample from the second mouse
from group A, while UMRS2 is the second UMRS).

External normalization uses reference samples that are homogeneous inde-
pendent of platforms. Such external normalization can control for platform
changes, provided it is as reliable within each platform as proven by internal
normalization techniques. We demonstrate the viability of external normal-
ization by showing that internal and external normalizations produce almost
identical results in our study. After correcting probe level measurements for
background as described in Irizarry et al. (2003), we applied both normaliza-
tion techniques, as described below.

With microarrays that allow only one biological sample to be placed on each
array, it is unclear whether arrays from different groups should be normalized
together or separately, due to confounding of array and group effects.

In our proof of concept experiment, however, the number of samples from
each of the six groups is the same across all eight arrays. Specifically, every
group of mice (groups A, B, C, D and W) and the external reference sample,
UMRS, appear exactly twice on each array. It is thus reasonable to expect
the distribution of the probe intensities to be the same across the arrays. We
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applied quantile normalization to equalize the distributions of the vectors of
intensities from the eight arrays.

We propose an array-by-array external normalization process:

1. For each array, first generate a “reference” mini-microarray by averag-
ing, for each probe, the intensities for that probe measured from UMRSs.

2. Then subtract the probe intensities in the reference mini-microarray
from the corresponding probe intensities in every other (non-reference)
mini-microarray.

To make an analogy to clinical trials, external normalization uses UMRS as a
control.

We compared estimated differences between mutated types and wild type
(A vs W, B vs W, C vs W and D vs W), after fitting the data normalized
by the two techniques to the marginal model (7.4), using PROC MIXED of
the SAS System. (Array 5 data was excluded due to bad quality.) Figure 7.5
shows that these two normalization techniques produce practically the same
results. As quantile normalization is considered reliable, our study shows that
normalization via external reference samples is a viable technique for coping
with platform change issues.

Multiple testing for differential expressions

To discover genes differentially expressed between each mutated group (A,
B, C, D) and wildtype (W), consider testing the 4× 99 hypotheses

{Hig : τig = τiW , g = A,B, C, D}, i = 1, 2, ..., 99}. (7.8)

in the model (7.4).
For a particular gene i, estimates of τig−τiW , g = A,B, C, D, are correlated

due to estimating a common τiW . For a balanced design, if the errors are i.i.d.
with normal, this correlation is 0.5, not negligible, and it should be taken into
account in multiple testing.

For a particular group g, estimates of τig − τiW , i = 1, . . . , 99, may have
some correlation. Since there are 99×98/2 correlations, the correlation struc-
ture is not easy to infer given the typical amount of data from a microarray
experiment. Therefore, one can take either a conservative approach regarding
these correlations or a resampling approach to adjust for the correlations.

However, for a pair of τig− τiW and τjh− τjW involving different genes and
different groups, i 6= j and g 6= h, correlation between estimates is expected
to be small because the only dependence comes from the correlation between
the estimates of τiW and τjW . Suppose this correlation equals ρ. Then, for
a balanced design, the correlation between the estimates of τig − τiW and
τjh − τjW equals ρ/2.

Therefore, a practical approach to controlling the error rate in testing the
4 × 99 hypotheses (7.8) is to take dependence into account in adjusting for
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FIGURE 7.5: Difference estimates between mutated types and wild type
under quantile normalization and UMRS-based normalization.

multiplicity of testing {Hig : τig = τiW , g = A,B, C, D} for each gene i (in
computing raw p-values). That is, apply the Bonferroni correction adjusting
for multiplicity of the four sets of hypotheses

{Hig : τig = τiW , i = 1, 2, ..., 99}, g = A,B, C, D, (7.9)

and finally apply an appropriate method to control in testing each set of 99
hypotheses in (7.9).

Table 7.1 gives the number of genes discovered to be differentially expressed
between each mutated group and wildtype, controlling gFWER at 5%, based
on the linear model (7.4) with both mouse and sample effects as fixed effects.
Reported are the results of applications of the Holm method, partition method
using Markov’s inequality, and the augmentation method for testing each set
of 99 hypotheses in (7.9) at gFWER of 5%/4 under the assumption that the
errors are i.i.d. normal. Alternatively, without the normal assumption, the
residuals from least squares estimates were resampled for 10,000 times, and
the results of the resampling method are also reported.
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All methods find that groups C and W are most different, and groups
B and W are closest in terms of the measured gene expression levels. It
confirms the findings in Figure 7.3. When FWER was controlled, Holm’s
procedure and resampling method gave very similar results. When the number
of mistakes allowed increased to 5, resampling method came out to be much
less conservative than other gFWER-controlled methods, especially for the
comparison between group B and group W .

TABLE 7.1: Number of rejections by the step-down method
controlling the gFWER at 5%, Holm method, partition method
using Markov’s inequality, augmentation method, and resampling
method.

m Method A vs. W B vs. W C vs. W D vs. W
0 Holm 94 18 99 92
5 Markov 94 27 99 95
5 Augmentation 99 23 99 97
0 Resampling 94 17 99 92
5 Resampling 97 48 99 96

7.8 Software Implementation

This section illustrates software implementation with SAS (linear mixed
effects modeling) and R (multiple testing) for the modeling-based analyses of
microarray data described in previous sections.

7.8.1 SAS Procedures

Sensitivity and specificity of a classification algorithm depend on how vari-
able expressions are between subjects within each group and between samples
within each subject, the variability of subject and sample can be estimated
by considering them as random effects in modeling expression level data. In
this case, the background corrected, log transformed and normalized probe
level expressions for each gene are fitted by a linear mixed effect model with
subject and sample effects as random:

proc mixed data=bcnorm;
class group probe mice sample;
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model response= group probe/DDFM=SATTERTH solution;
random mice(group) sample(group mice)/solution;
lsmeans group/diff=control(’W’) adjust=dunnett;
run;

Group effects estimates, and variance components estimates for subject effect,
sample effect and measurement error for each gene are saved for sample sizes
calculation in validation trial.

On the other hand, to discover group differences, if subject and sample
effects can be estimated unbiasedly, then removing them may make group
differences reveal themselves more readily. By treating subject and sample
as fixed, one may more readily identify differentially expressed genes. In this
case, the background corrected and normalized probe level expressions for
each gene are fitted by a linear fixed effect model. The residuals for each gene
are saved for multiple testing procedure by resampling, without assuming the
errors are normally distributed.

7.8.2 R Functions

To discover differentially expressed genes between two groups, multiple test-
ing procedure by resampling the residual is applied to control the gFWER at
level 5%/4. It is implemented by the following steps:

1. Resample independently with replacement the residual vectors after lin-
ear fixed effect modeling. To account for potential dependence among
the measurement errors across genes, the residuals are resampled vector
at a time, with each vector consisting of residuals from within each sam-
ple. For each re-sampled data set, we compute the test statistic for each
gene, which is the difference of the average intensities, averaging within
each mouse and then averaging over the mice within each group. After
repeated resampling B times, we have an estimated null distribution for
the test statistic of each gene.

2. Calculate p-values for each gene by comparing the observed test statis-
tics with the estimated null distribution T.mat.

p<-(abs(T.mat)- abs(t)>0)%*%rep(1,B)/B

3. Build null distribution for the p-values. Independently generate another
matrix as we did in step 1. The null distribution for p-values is then
estimated by comparing this new matrix a.T.mat with the matrix T.mat.

nullP<- 1- apply(T.mat,2,fn.rawp.T, a.T.mat)

fn.rawp.T<-function(nullT, obsT)
{
return((abs(nullT)- abs(obsT)>0)%*%rep(1,B)/B )
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}

4. Calculate the adjusted p-value based on the generalized partitioning
principal in Xu and Hsu (2007), to control the gFWER with m = 5.

# sort the matrix nullP so that the corresponding raw
# p-values are increasing
ind<-sort(p,index.return=T)$ix
p.H.sort<-p.H[ind, ]
P.mat.sort<-nullP[ind, ]

# step-down gFWER control
m<-5
adjp<-rep(NA,99)
# step 0
adjp[1:m]<-0
P.mat1<-P.mat.sort
# step 1
# minp here is actually p(m+1)
minp<-apply(P.mat1,2,function(x) x[(sort(x,index.return=T)$ix)[m+1]])
adjp[m+1]<-sum(minp<p.H.sort[m+1,1])/B
# step 2 and etc.
for (i in (m+2):99)
{
P.mat1<-P.mat1[-1,]
minp<-apply(P.mat1,2, function(x) x[(sort(x,index.return=T)$ix)[m+1]])
adjp[i]<-sum(minp<p.H.sort[i,1])/B
# enforce adjp to be increasing
adjp[i]<-max(adjp[i-1], adjp[i])
}

# present the raw p-values, adj p-values
# and the corresponding gene No.
adjp.H<-cbind(adjp, p.H.sort)
colnames(adjp.H)<-c("adjp","rawp","gene")
adjp.sd.gfwer<-adjp
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