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Regularization of Case-Specific Parameters
for Robustness and Efficiency
Yoonkyung Lee, Steven N. MacEachern and Yoonsuh Jung

Abstract. Regularization methods allow one to handle a variety of inferen-
tial problems where there are more covariates than cases. This allows one
to consider a potentially enormous number of covariates for a problem. We
exploit the power of these techniques, supersaturating models by augmenting
the “natural” covariates in the problem with an additional indicator for each
case in the data set. We attach a penalty term for these case-specific indicators
which is designed to produce a desired effect. For regression methods with
squared error loss, an �1 penalty produces a regression which is robust to out-
liers and high leverage cases; for quantile regression methods, an �2 penalty
decreases the variance of the fit enough to overcome an increase in bias. The
paradigm thus allows us to robustify procedures which lack robustness and
to increase the efficiency of procedures which are robust.

We provide a general framework for the inclusion of case-specific param-
eters in regularization problems, describing the impact on the effective loss
for a variety of regression and classification problems. We outline a com-
putational strategy by which existing software can be modified to solve the
augmented regularization problem, providing conditions under which such
modification will converge to the optimum solution. We illustrate the bene-
fits of including case-specific parameters in the context of mean regression
and quantile regression through analysis of NHANES and linguistic data sets.

Key words and phrases: Case indicator, large margin classifier, LASSO,
leverage point, outlier, penalized method, quantile regression.

1. INTRODUCTION

A core part of regression analysis involves the ex-
amination and handling of individual cases (Weisberg,
2005). Traditionally, cases have been removed or
downweighted as outliers or because they exert an
overly large influence on the fitted regression surface.
The mechanism by which they are downweighted or
removed is through inclusion of case-specific indica-
tor variables. For a least-squares fit, inclusion of a
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case-specific indicator in the model is equivalent to
removing the case from the data set; for a normal-
theory, Bayesian regression analysis, inclusion of a
case-specific indicator with an appropriate prior dis-
tribution is equivalent to inflating the variance of the
case and hence downweighting it. The tradition in ro-
bust regression is to handle the case-specific decisions
automatically, most often by downweighting outliers
according to an iterative procedure (Huber, 1981).

This idea of introducing case-specific indicators also
applies naturally to criterion based regression proce-
dures. Model selection criteria such as AIC or BIC
take aim at choosing a model by attaching a penalty for
each additional parameter in the model. These criteria
can be applied directly to a larger space of models—
namely those in which the covariates are augmented
by a set of case indicators, one for each case in the data
set. When considering inclusion of a case indicator for
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a large outlier, the criterion will judge the trade-off be-
tween the empirical risk (here, negative log-likelihood)
and model complexity (here, number of parameters)
as favoring the more complex model. It will include
the case indicator in the model, and, with a least-
squares fit, effectively remove the case from the data
set. A more considered approach would allow differen-
tial penalties for case-specific indicators and “real” co-
variates. With adjustment, one can essentially recover
the familiar t-tests for outliers (e.g., Weisberg, 2005),
either controlling the error rate at the level of the indi-
vidual test or controlling the Bonferroni bound on the
familywise error rate.

Case-specific indicators can also be used in conjunc-
tion with regularization methods such as the LASSO
(Tibshirani, 1996). Again, care must be taken with
details of their inclusion. If these new covariates are
treated in the same fashion as the other covariates in
the problem, one is making an implicit judgment that
they should be penalized in the same fashion. Alter-
natively, one can allow a second parameter that gov-
erns the severity of the penalty for the indicators. This
penalty can be set with a view of achieving robustness
in the analysis, and it allows one to tap into a large,
extant body of knowledge about robustness (Huber,
1981).

With regression often serving as a motivating theme,
a host of regularization methods for model selec-
tion and estimation problems have been developed.
These methods range broadly across the field of statis-
tics. In addition to traditional normal-theory linear re-
gression, we find many methods motivated by a loss
which is composed of a negative log-likelihood and a
penalty for model complexity. Among these regulariza-
tion methods are penalized linear regression methods
[e.g., ridge regression (Hoerl and Kennard, 1970) and
the LASSO], regression with a nonparametric mean
function, [e.g., smoothing splines (Wahba, 1990) and
generalized additive models (Hastie and Tibshirani,
1990)], and extension to regression with nonnormal
error distributions, namely, generalized linear models
(McCullagh and Nelder, 1989). In all of these cases,
one can add case-specific indicators along with an ap-
propriate penalty in order to yield an automated, robust
analysis. It should be noted that, in addition to a dif-
ferent severity for the penalty term, the case-specific
indicators sometimes require a different form for their
penalty term.

A second class of procedures open to modification
with case-specific indicators are those motivated by
minimization of an empirical risk function. The risk

function may not be a negative log-likelihood. Quan-
tile regression (whether linear or nonlinear) falls into
this category, as do modern classification techniques
such as the support vector machine (Vapnik, 1998) and
the ψ-learner (Shen et al., 2003). Many of these pro-
cedures are designed with the robustness of the analy-
sis in mind, often operating on an estimand defined to
be the population-level minimizer of the risk. The pro-
cedures are consistent across a wide variety of data-
generating mechanisms and hence are asymptotically
robust. They have little need of further robustification.
Instead, scope for bettering these procedures lies in im-
proving their finite sample properties. The finite sam-
ple performance of many procedures in this class can
be improved by including case-specific indicators in
the problem, along with an appropriate penalty term
for them.

This paper investigates the use of case-specific in-
dicators for improving modeling and prediction proce-
dures in a regularization framework. Section 2 provides
a formal description of the optimization problem which
arises with the introduction of case-specific indicators.
It also describes a computational algorithm and condi-
tions that ensure the algorithm will obtain the global
solution to the regularized problem. Section 3 explains
the methodology for a selection of regression methods,
motivating particular forms for the penalty terms. Sec-
tion 4 describes how the methodology applies to sev-
eral classification schemes. Sections 5 and 6 contain
simulation studies and worked examples. We discuss
implications of the work and potential extensions in
Section 7.

2. ROBUST AND EFFICIENT MODELING
PROCEDURES

Suppose that we have n pairs of observations de-
noted by (xi, yi), i = 1, . . . , n, for statistical modeling
and prediction. Here xi = (xi1, . . . , xip)� with p co-
variates and the yi ’s are responses. As in the standard
setting of regression and classification, the yi ’s are as-
sumed to be conditionally independent given the xi ’s.
In this paper, we take modeling of the data as a pro-
cedure of finding a functional relationship between xi

and yi , f (x;β) with unknown parameters β ∈ R
p that

is consistent with the data. The discrepancy or lack of
fit of f is measured by a loss function L(y, f (x;β)).
Consider a modeling procedure, say, M of finding f

which minimizes (n times) the empirical risk

Rn(f ) =
n∑

i=1

L(yi, f (xi;β))
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or its penalized version, Rn(f )+λJ (f ) = ∑n
i=1 L(yi,

f (xi;β)) + λJ (f ), where λ is a positive penalty pa-
rameter for balancing the data fit and the model com-
plexity of f measured by J (f ). A variety of common
modeling procedures are subsumed under this formu-
lation, including ordinary linear regression, general-
ized linear models, nonparametric regression, and su-
pervised learning techniques. For brevity of exposition,
we identify f with β through a parametric form and
view J (f ) as a functional depending on β . Extension
of the formulation presented in this paper to a nonpara-
metric function f is straightforward via a basis expan-
sion.

2.1 Modification of Modeling Procedures

First, we introduce case-specific parameters, γ =
(γ1, . . . , γn)

�, for the n observations by augmenting
the covariates with n case-specific indicators. For con-
venience, we use γ to refer to a generic element of γ ,
dropping the subscript. Motivated by the beneficial ef-
fects of regularization, we propose a general scheme
to modify the modeling procedure M using the case-
specific parameters γ , to enhance M for robustness or
efficiency. Define modification of M to be the proce-
dure of finding the original model parameters, β , to-
gether with the case-specific parameters, γ , that mini-
mize

L(β,γ ) =
n∑

i=1

L(yi, f (xi;β) + γi)

(1)
+ λβJ (f ) + λγ J2(γ ).

If λβ is zero, M involves empirical risk minimization,
otherwise penalized risk minimization. The adjustment
that the added case-specific parameters bring to the
loss function L(y, f (x;β)) is the same regardless of
whether λβ is zero or not.

In general, J2(γ ) measures the size of γ . When
concerned with robustness, we often take J2(γ ) =
‖γ ‖1 = ∑n

i=1 |γi |. A rationale for this choice is that
with added flexibility, the case-specific parameters can
curb the undesirable influence of individual cases on
the fitted model. To see this effect, consider minimiz-
ing L(β̂, γ ) for fixed β̂ , which decouples to a mini-

mization of L(yi, f (xi; β̂) + γi) + λγ |γi | for each γi .
In most cases, an explicit form of the minimizer γ̂

of L(β̂, γ ) can be obtained. Generally γ̂i’s are large
for observations with large “residuals” from the cur-
rent fit, and the influence of those observations can
be reduced in the next round of fitting β with the γ̂ -
adjusted data. Such a case-specific adjustment would

be necessary only for a small number of potential out-
liers, and the �1 norm which yields sparsity works to
that effect. The adjustment in the process of sequen-
tial updating of β is equivalent to changing the loss
from L(y, f (x;β)) to L(y, f (x;β) + γ̂ ), which we
call the γ -adjusted loss of L. The γ -adjusted loss is
a re-expression of L in terms of the adjusted resid-
ual, used as a conceptual aid to illustrate the effect
of adjustment through the case-specific parameter γ

on L. Concrete examples of the adjustments will be
given in the following sections. Alternatively, one may
view Lλγ (y, f (x;β)) := minγ∈R{L(y, f (x;β)+γ )+
λγ |γ |} = L(y, f (x;β) + γ̂ ) + λγ |γ̂ | as a whole to be
the “effective loss” in terms of β after profiling out γ̂ .
The effective loss replaces L(y, f (x;β)) for the mod-
ified M procedure. When concerned with efficiency,
we often take J2(γ ) = ‖γ ‖2

2 = ∑n
i=1 γ 2

i . This choice
has the effect of increasing the impact of selected,
nonoutlying cases on the analysis.

In subsequent sections, we will take a few stan-
dard statistical methods for regression and classifica-
tion and illustrate how this general scheme applies.
This framework allows us to see established proce-
dures in a new light and also generates new procedures.
For each method, particular attention will be paid to the
form of adjustment to the loss function by the penal-
ized case-specific parameters.

2.2 General Algorithm for Finding Solutions

Although the computational details for obtaining the
solution to (1) are specific to each modeling proce-
dure M, it is feasible to describe a common compu-
tational strategy which is effective for a wide range of
procedures that optimize a convex function. For fixed
λβ and λγ , the solution pair of β̂ and γ̂ to the mod-
ified M can be found with little extra computational
cost. A generic algorithm below alternates estimation
of β and γ . Given γ̂ , minimization of L(β, γ̂ ) is done
via the original modeling procedure M. In most cases
we consider, minimization of L(β̂, γ ) given β̂ entails
simple adjustment of “residuals.” These considerations
lead to the following iterative algorithm for finding β̂

and γ̂ :

1. Initialize γ̂
(0) = 0 and β̂(0) = arg minβ L(β,0) (the

ordinary M solution).
2. Iteratively alternate the following two steps, m =

0,1, . . .:

• γ̂
(m+1) = arg minγ∈Rn L(β̂(m), γ ) modifies

“residuals.”
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• β̂(m+1) = arg minβ∈Rp L(β, γ̂
(m+1)

). This step
amounts to reapplying the M procedure to
γ̂

(m+1)-adjusted data although the nature of the
data adjustment would largely depend on L.

3. Terminate the iteration when ‖β̂(m+1) − β̂(m)‖2 < ε,
where ε is a prespecified convergence tolerance.

In a nutshell, the algorithm attempts to find the joint
minimizer (β, γ ) by combining the minimizers β and
γ resulting from the projected subspaces. Convergence
of the iterative updates can be established under appro-
priate conditions. Before we state the conditions and
results for convergence, we briefly describe implicit as-
sumptions on the loss function and the complexity or
penalty terms, J (f ) and J2(γ ). L(y, f (x;β)) is as-
sumed to be nonnegative. For simplicity, we assume
that J (f ) of f (x;β) depends on β only, and that it is
of the form J (f ) = ‖β‖k

k and J2(γ ) = ‖γ ‖k
k for k ≥ 1.

The LASSO penalty has k = 1 while a ridge regression
type penalty sets k = 2. Many other penalties of this
form for J (f ) can be adopted as well to achieve better
model selection properties or certain desirable perfor-
mance of M. Examples include those for the elastic
net (Zou and Hastie, 2005), the grouped LASSO (Yuan
and Lin, 2006) and the hierarchical LASSO (Zhou and
Zhu, 2007).

For certain combinations of the loss L and the
penalty functionals, J (f ) and J2(γ ), more efficient
computational algorithms can be devised, as in Hastie
et al. (2004), Efron et al. (2004a) and Rosset and Zhu
(2007). However, in an attempt to provide a general
computational recipe applicable to a variety of model-
ing procedures which can be implemented with simple
modification of existing routines, we do not pursue the
optimal implementation tailored to a specific procedure
in this paper.

Convexity of the loss and penalty terms plays a pri-
mary role in characterizing the solutions of the iterative
algorithm. For a general reference to properties of con-
vex functions and convex optimization, see Rockafellar
(1997). Nonconvex problems require different opti-
mization strategies.

If L(β,γ ) in (1) is continuous and strictly con-
vex in β and γ for fixed λβ and λγ , the mini-
mizer pair (β, γ ) in each step is properly defined.
That is, given γ , there exists a unique minimizer
β(γ ) := arg minβ L(β, γ ), and vice versa. The as-
sumption that L(β,γ ) is strictly convex holds if the
loss L(y, f (x;β)) itself is strictly convex. Also, it is
satisfied when a convex L(y, f (x;β)) is combined

with J (f ) and J2(γ ) strictly convex in β and γ , re-
spectively.

Suppose that L(β,γ ) is strictly convex in β and γ

with a unique minimizer (β∗, γ ∗) for fixed λβ and
λγ . Then, the iterative algorithm gives a sequence
of (β̂(m), γ̂

(m)
) with strictly decreasing L(β̂(m), γ̂

(m)
).

Moreover, (β̂(m), γ̂
(m)

) converges to (β∗, γ ∗). This re-
sult of convergence of the iterative algorithm is well
known in convex optimization, and it is stated here
without proof. Interested readers can find a formal
proof in Lee, MacEachern and Jung (2007).

3. REGRESSION

Consider a linear model of the form yi = x�
i β + εi .

Without loss of generality, we assume that each covari-
ate is standardized. Let X be an n × p design matrix
with x�

i in the ith row and let Y = (y1, . . . , yn)
�.

3.1 Least Squares Method

Taking the least squares method as a baseline mod-
eling procedure M, we make a link between its modi-
fication via case-specific parameters and a classical ro-
bust regression procedure.

The least squares estimator of β = (β1, . . . , βp)� is
the minimizer β̂ ∈ R

p of L(β) = 1
2(Y − Xβ)�(Y −

Xβ). To reduce the sensitivity of the estimator to in-
fluential observations, the p covariates are augmented
by n case indicators. Let zi be the indicator variable
taking 1 for the ith observation and 0 otherwise, and
let γ = (γ1, . . . , γn)

� be the coefficients of the case in-
dicators. The additional design matrix Z for zi is the
identity matrix, and Zγ becomes γ itself. The pro-
posed modification of the least squares method with
J2(γ ) = ‖γ ‖1 = ∑n

i=1 |γi | leads to a well-known ro-
bust regression procedure. For the robust modification,
we find β̂ ∈ R

p and γ̂ ∈ R
n that minimize

L(β,γ ) = 1
2{Y − (Xβ + γ )}�{Y − (Xβ + γ )}

(2)
+ λγ ‖γ ‖1,

where λγ is a fixed regularization parameter constrain-
ing γ . Just as the ordinary LASSO with the �1 norm
penalty stabilizes regression coefficients by shrinkage
and selection, the additional penalty in (2) has the same
effect on γ , whose components gauge the extent of
case influences.

The minimizer γ̂ of L(β̂, γ ) for a fixed β̂ can be
found by soft-thresholding the residual vector r = Y −
Xβ̂ . That is, γ̂i = sgn(ri)(|ri |−λγ )+. For observations
with small residuals, |ri | ≤ λγ , γ̂i is set equal to zero
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(a) (b)

(c) (d)

FIG. 1. Modification of the squared error loss with a case-specific parameter. (a) γ versus the residual r , (b) the adjusted residual r∗ versus
the ordinary residual r , (c) a truncated squared error loss as the γ -adjusted loss and (d) the effective loss.

with no effect on the current fit, and for those with
large residuals, |ri | > λγ , γ̂i is set equal to the resid-
ual ri = yi − x�

i β̂ offset by λγ toward zero. Combin-
ing γ̂ with β̂ , we define the adjusted residuals to be

r∗
i = yi − x�

i β̂ − γ̂i ; that is, r∗
i = ri if |ri | ≤ λγ , and

r∗
i = sgn(ri)λγ , otherwise. Thus, introduction of the

case-specific parameters along with the �1 penalty on
γ amounts to winsorizing the ordinary residuals. The
γ -adjusted loss is equivalent to truncated squared error
loss which is (y − x�β)2 if |y − x�β| ≤ λγ , and is λ2

γ

otherwise. Figure 1 shows (a) the relationship between
the ordinary residual r and the corresponding γ , (b) the
residual and the adjusted residual r∗, (c) the γ -adjusted
loss as a function of r , and (d) the effective loss.

The effective loss is Lλγ (y, x�β) = (y −x�β)2/2 if
|y−x�β| ≤ λγ , and λ2

γ /2+λγ (|y−x�β|−λγ ) other-
wise. This effective loss matches Huber’s loss function
for robust regression (Huber, 1981). As in robust re-
gression, we choose a sufficiently large λγ so that only
a modest fraction of the residuals are adjusted. Simi-
larly, modification of the LASSO as a penalized regres-

sion procedure yields the Huberized LASSO described
by Rosset and Zhu (2004).

3.2 Location Families

More generally, a wide class of problems can be cast
in the form of a minimization of L(β) = ∑n

i=1 g(yi −
x�
i β) where g(·) is the negative log-likelihood derived

from a location family. The assumption that we have a
location family implies that the negative log-likelihood
is a function only of ri = yi − x�

i β . Dropping the sub-
script, common choices for the negative log-likelihood,
g(r), include r2 (least squares, normal distributions)
and |r| (least absolute deviations, Laplace distribu-
tions).

Introducing the case-specific parameters γi , we wish
to minimize

L(β,γ ) =
n∑

i=1

g(yi − x�
i β − γi) + λγ ‖γ ‖1.

For minimization with a fixed β̂ , the next result applies
to a broad class of g(·) (but not to g(r) = |r|).

PROPOSITION 1. Suppose that g is strictly convex
with the minimum at 0, and limr→±∞ g′(r) = ±∞, re-
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spectively. Then,

γ̂ = arg min
γ∈R

g(r − γ ) + λγ |γ |

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r − g′−1(λγ ),

for r > g′−1(λγ ),

0, for g′−1(−λγ ) ≤ r ≤ g′−1(λγ ),

r − g′−1(−λγ ),

for r < g′−1(−λγ ).

The proposition follows from straightforward alge-
bra. Set the first derivative of the decoupled minimiza-
tion equation equal to 0 and solve for γ . Inserting these
values for γ̂i into the equation for L(β,γ ) yields

L(β̂, γ̂ ) =
n∑

i=1

g(ri − γ̂i) + λγ ‖γ̂ ‖1.

The first term in the summation can be decomposed
into three parts. Large ri contribute g(ri − ri +
g′−1(λγ )) = g(g′−1(λγ )). Large, negative ri contribute
g(g′−1(−λγ )). Those ri with intermediate values have
γ̂i = 0 and so contribute g(ri). Thus a graphical de-
piction of the γ -adjusted loss is much like that in Fig-
ure 1, panel (c), where the loss is truncated above. For
asymmetric distributions (and hence asymmetric log-
likelihoods), the truncation point may differ for posi-
tive and negative residuals. It should be remembered
that when |ri | is large, the corresponding γ̂i is large,
implying a large contribution of ‖γ ‖1 to the over-
all minimization problem. The residuals will tend to
be large for vectors β that are at odds with the data.
Thus, in a sense, some of the loss which seems to dis-
appear due to the effective truncation of g is shifted
into the penalty term for γ . Hence the effective loss
Lλγ (y, f (x;β)) = g(y − f (x;β) − γ̂ ) + λγ |γ̂ | is the
same as the original loss, g(y − f (x;β)) when the
residual is in [g′−1(−λγ ), g′−1(λγ )] and is linear be-
yond the interval. The linearized part of g is joined
with g such that Lλγ is differentiable.

Computationally, the minimization of L(β, γ̂ ) given
γ̂ entails application of the same modeling proce-
dure M with g to winsorized pseudo responses y∗

i =
yi − γ̂i , where y∗

i = yi for g′−1(−λγ ) ≤ ri ≤ g′−1(λγ ),
y∗
i = g′−1(λγ ) for r > g′−1(λγ ), and y∗

i = g′−1(−λγ )

for r < g′−1(−λγ ). So, the γ̂ -adjusted data in Step 2
of the main algorithm consist of (xi, y

∗
i ) pairs in

each iteration. A related idea of subsetting data and
model-fitting to the subset iteratively for robustness
can be found in the computer vision literature, the ran-
dom sample consensus algorithm (Fischler and Bolles,
1981) for instance.

3.3 Quantile Regression

Consider median regression with absolute deviation
loss L(y, x�β) = |y − x�β|, which is not covered in
the foregoing discussion. It can be verified easily that
the �1-adjustment of L is void due to the piecewise lin-
earity of the loss, reaffirming the robustness of median
regression. For an effectual adjustment, the �2 norm
regularization of the case-specific parameters is con-
sidered. With the case-specific parameters γi , we have
the following objective function for modified median
regression:

L(β,γ ) =
n∑

i=1

|yi − x�
i β − γi | + λγ

2
‖γ ‖2

2.(3)

For a fixed β̂ and residual r = y − x�β̂ , the γ̂ mini-
mizing |r − γ | + λγ

2 γ 2 is given by

sgn(r)
1

λγ

I

(
|r| > 1

λγ

)
+ rI

(
|r| ≤ 1

λγ

)
.

The γ -adjusted loss for median regression is

L(y, x�β+ γ̂ ) =
∣∣∣∣y−x�β− 1

λγ

∣∣∣∣I
(
|y−x�β| > 1

λγ

)
,

as shown in Figure 3(a) below. Interestingly, this �2-
adjusted absolute deviation loss is the same as the so-
called “ε-insensitive linear loss” for support vector re-
gression (Vapnik, 1998) with ε = 1/λγ .

With this adjustment, the effective loss is Huberized
squared error loss. The �2 adjustment makes median
regression more efficient by rounding the sharp cor-
ner of the loss, and leads to a hybrid procedure which
lies between mean and median regression. Note that,
to achieve the desired effect for median regression, one
chooses quite a different value of λγ than one would
when adjusting squared error loss for a robust mean re-
gression.

The modified median regression procedure can be
also combined with a penalty on β for shrinkage and/or
selection. Bi et al. (2003) considered support vector re-
gression with the �1 norm penalty ‖β‖1 for simulta-
neous robust regression and variable selection. These
authors relied on the ε-insensitive linear loss which
comes out as the γ -adjusted loss of the absolute de-
viation. In contrast, we rely on the effective loss which
produces a different solution.

In general, quantile regression (Koenker and Bassett,
1978; Koenker and Hallock, 2001) can be used to es-
timate conditional quantiles of y given x. It is a useful
regression technique when the assumption of normal-
ity on the distribution of the errors ε is not appropriate,
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for instance, when the error distribution is skewed or
heavy-tailed. For the qth quantile, the check function
ρq is employed:

ρq(r) =
{

qr, for r ≥ 0,

−(1 − q)r, for r < 0.
(4)

The standard procedure for the qth quantile regres-
sion finds β that minimizes the sum of asymmetrically
weighted absolute errors with weight q on positive er-
rors and weight (1 − q) on negative errors:

L(β) =
n∑

i=1

ρq(yi − x�
i β).

Consider modification of ρq with a case-specific pa-
rameter γ and �2 norm regularization. Due to the asym-
metry in the loss, except for q = 1/2, the size of reduc-
tion in the loss by the case-specific parameter γ would
depend on its sign. Given β̂ and residual r = y − x�β̂ ,
if r ≥ 0, then the positive γ would lower ρq by qγ ,
while if r < 0, the negative γ with the same absolute
value would lower the loss by (q − 1)γ . This asym-
metric impact on the loss is undesirable. Instead, we
create a penalty that leads to the same reduction in
loss for positive and negative γ of the same magni-
tude. In other words, the desired �2 norm penalty needs
to put qγ+ and (1 − q)γ− on an equal footing. This
leads to the following penalty proportional to q2γ 2+ and
(1 − q)2γ 2−:

J2(γ ) := {q/(1 − q)}γ 2+ + {(1 − q)/q}γ 2−.

When q = 1/2, J2(γ ) becomes the symmetric �2 norm
of γ .

With this asymmetric penalty, given β̂ , γ̂ is now de-
fined as

arg min
γ∈R

Lλγ (β̂, γ ) := ρq(r − γ ) + λγ

2
J2(γ ),(5)

and is explicitly given by

− q

λγ

I

(
r < − q

λγ

)
+ rI

(
− q

λγ

≤ r <
1 − q

λγ

)

+ 1 − q

λγ

I

(
r ≥ 1 − q

λγ

)
.

The effective loss ρ
γ
q is then given by

ργ
q (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(q − 1)r − q(1 − q)

2λγ

,

for r < − q

λγ

,

λγ

2

1 − q

q
r2,

for − q

λγ

≤ r < 0,

λγ

2

q

1 − q
r2,

for 0 ≤ r <
1 − q

λγ

,

qr − q(1 − q)

2λγ

,

for r ≥ 1 − q

λγ

,

(6)

and its derivative is

ψγ
q (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q − 1, for r < − q

λγ

,

λγ

1 − q

q
r, for − q

λγ

≤ r < 0,

λγ

q

1 − q
r, for 0 ≤ r <

1 − q

λγ

,

q, for r ≥ 1 − q

λγ

.

(7)

We note that, under the assumption that the density is
locally constant in a neighborhood of the quantile, the
quantile remains the 0 of the effective ψ

γ
q function.

Figure 2 compares the derivative of the check loss
with that of the effective loss in (6). Through penaliza-
tion of a case-specific parameter, ρq is modified to have
a continuous derivative at the origin joined by two lines
with a different slope that depends on q . The effec-
tive loss is reminiscent of the asymmetric squared error
loss (q(r+)2 + (1−q)(r−)2) considered by Newey and
Powell (1987) and Efron (1991) for the so-called ex-
pectiles. The proposed modification of the check loss
produces a hybrid of the check loss and asymmetric
squared error loss, however, with different weights than
those for expectiles, to estimate quantiles. The effective
loss is formally similar to the rounded-corner check
loss of Nychka et al. (1995) who used a vanishingly
small adjustment to speed computation. Portnoy and
Koenker (1997) thoroughly discussed efficient compu-
tation for quantile regression.

Redefining J2(γ ) as the sum of the asymmetric
penalty for the case-specific parameter γi , i = 1, . . . , n,
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FIG. 2. The derivative of the check loss in the left panel, ψq , and that of the modified check loss in the right panel, ψ
γ
q , for q = 0.2, 0.5

and 0.7.

modified quantile regression is formulated as a proce-
dure that finds β and γ by minimizing

L(β,γ ) =
n∑

i=1

ρq(yi − x�
i β − γi) + λγ

2
J2(γ ).(8)

In extensive simulation studies (Jung, MacEachern
and Lee, 2010), such adjustment of the standard quan-
tile regression procedure generally led to more accurate
estimates. See Section 5.1.1 for a summary of the stud-
ies. This is confirmed in the NHANES data analysis in
Section 6.1.

For large enough samples, with a fixed λγ , the bias
of the enhanced estimator will typically outweigh its
benefits. The natural approach is to adjust the penalty
attached to the case-specific covariates as the sample
size increases. This can be accomplished by increasing
the parameter λγ as the sample size n grows.

Let λγ := cnα for some constant c and α > 0. The
following theorem shows that if α is sufficiently large,
the modified quantile regression estimator β̂

γ
n , which

minimizes
∑n

i=1 ρ
γ
q (yi − x�

i β) or equivalently (8), is
asymptotically equivalent to the standard estimator β̂n.
Knight (1998) proved the asymptotic normality of the
regression quantile estimator β̂n under some mild reg-
ularity conditions. Using the arguments in Koenker
(2005), we show that β̂

γ
n has the same limiting distri-

bution as β̂n, and thus it is
√

n-consistent if α is suffi-
ciently large.

Allowing a potentially different error distribution for
each observation, let Y1, Y2, . . . be independent random
variables with c.d.f.’s F1,F2, . . . and suppose that each
Fi has continuous p.d.f. fi . Assume that the qth con-
ditional quantile function of Y given x is linear in x

and given by x�β(q), and let ξi(q) := x�
i β(q). Now

consider the following regularity conditions:

(C-1) fi(ξ), i = 1,2, . . . , are uniformly bounded
away from 0 and ∞ at ξi .

(C-2) fi(ξ), i = 1,2, . . . , admit a first-order Tay-
lor expansion at ξi , and f ′

i (ξ) are uniformly
bounded at ξi .

(C-3) There exists a positive definite matrix D0 such
that limn→∞ n−1 ∑

xix
�
i = D0.

(C-4) There exists a positive definite matrix D1 such
that limn→∞ n−1 ∑

fi(ξi)xix
�
i = D1.

(C-5) maxi=1,...,n ‖xi‖/√n → 0 in probability.

(C-1) and (C-3) through (C-5) are the conditions con-
sidered for the limiting distribution of the standard re-
gression quantile estimator β̂n in Koenker (2005) while
(C-2) is an additional assumption that we make.

THEOREM 2. Under the conditions (C-1)–(C-5), if
α > 1/3, then

√
n
(
β̂γ

n − β(q)
) d→ N

(
0, q(1 − q)D−1

1 D0D
−1
1

)
.

The proof of the theorem is in the Appendix.

4. CLASSIFICATION

Now suppose that yi ’s indicate binary outcomes.
For modeling and prediction of the binary responses,
we mainly consider margin-based procedures such as
logistic regression, support vector machines (Vapnik,
1998), and boosting (Freund and Schapire, 1997).
These procedures can be modified by the addition of
case indicators.

4.1 Logistic Regression

Although it is customary to label a binary outcome as
0 or 1 in logistic regression, we instead adopt the sym-
metric labels of {−1,1} for yi ’s. The symmetry facili-
tates comparison of different classification procedures.
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(a) (b) (c)

FIG. 3. Modification of (a) absolute deviation loss for median regression with �2 penalty, (b) negative log-likelihood for logistic regression
with �1 penalty, and (c) hinge loss for the support vector machine with �2 penalty. The solid lines are for the effective loss, the dashed lines
are for the γ -adjusted loss, and the dotted lines are for the original loss in each panel.

Logistic regression takes the negative log-likelihood as
a loss for estimation of logit f (x) = log[p(x)/(1 −
p(x))]. The loss, L(y, f (x)) = log[1 + exp(−yf (x))],
can be viewed as a function of the so-called margin,
yf (x). This functional margin of yf (x) is a pivotal
quantity for defining a family of loss functions in clas-
sification similar to the residual in regression.

As in regression with continuous responses, case in-
dicators can be used to modify the logit function f (x)

in logistic regression to minimize

L(β0, β, γ )

=
n∑

i=1

log
(
1 + exp

(−yi{f (xi;β0, β) + γi}))(9)

+ λγ ‖γ ‖1,

where f (x;β0, β) = β0 + x�β . When it is clear in
context, f (x) will be used as abbreviated notation for
f (x;β0, β), a discriminant function, and the subscript
i will be dropped. For fixed β̂0 and β̂ , the minimization
decouples, and γi is determined by minimizing

log
(
1 + exp

(−yi{f (xi; β̂0, β̂) + γi})) + λγ |γi |.
First note that the minimizer γi must have the same
sign as yi . Letting τ = yf (x) and assuming that 0 <

λγ < 1, we have arg minγ≥0 log(1 + exp(−τ − γ )) +
λγ |γ | = log{(1−λγ )/λγ }−τ if τ ≤ log{(1−λγ )/λγ },
and 0 otherwise. This yields a truncated negative log-
likelihood given by

L(y, f (x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
(
1 + λγ /(1 − λγ )

)
,

if yf (x) ≤ log{(1 − λγ )/λγ },
log

(
1 + exp(−yf (x))

)
,

otherwise,

as the γ -adjusted loss. This adjustment is reminiscent
of Pregibon’s (1982) proposal tapering the deviance
function so as to downweight extreme observations,
thereby producing a robust logistic regression. See Fig-
ure 3(b) for the γ -adjusted loss (the dashed line), where
ηλ := log{(1 −λγ )/λγ } is a decreasing function of λγ .
λγ determines the level of truncation of the loss. As
λγ tends to 1, there is no truncation. Figure 3(b) also
shows the effective loss (the solid line) for the �1 ad-
justment, which linearizes the negative log-likelihood
below ηλ.

4.2 Large Margin Classifiers

With the symmetric class labels, the foregoing char-
acterization of the case-specific parameter γ in lo-
gistic regression can be easily generalized to various
margin-based classification procedures. In classifica-
tion, potential outliers are those cases with large nega-
tive margins. Let g(τ) be a loss function of the margin
τ = yf (x). The following proposition, analogous to
Proposition 1, holds for a general family of loss func-
tions.

PROPOSITION 3. Suppose that g is convex and
monotonically decreasing in τ , and g′ is continuous.
Then, for λγ < − limτ→−∞ g′(τ ),

γ̂ = arg min
γ∈R

g(τ + γ ) + λγ |γ |

=
{

g′−1(−λγ ) − τ, for τ ≤ g′−1(−λγ ),

0, for τ > g′−1(−λγ ).

The proof is straightforward. Examples of the
margin-based loss g satisfying the assumption include
the exponential loss g(τ) = exp(−τ) in boosting, the
squared hinge loss g(τ) = {(1 − τ)+}2 in the sup-
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port vector machine (Lee and Mangasarian, 2001), and
the negative log-likelihood g(τ) = log(1 + exp(−τ))

in logistic regression. Although their theoretical tar-
gets are different, all of these loss functions are trun-
cated above for large negative margins when ad-
justed by γ . Thus, the effective loss Lλγ (y, f (x)) =
g(yf (x) + γ̂ ) + λγ |γ̂ | is obtained by linearizing g for
yf (x) < g′−1(−λγ ).

The effect of γ̂ -adjustment depends on the form of
g, and hence on the classification method. For boost-
ing, γ̂ = − logλγ − yf (x) if yf (x) ≤ − logλγ , and is
0 otherwise. This gives L(β0, β, γ̂ ) = ∑n

i=1 exp(−yi ·
f (xi;β0, β) − γ̂i) = ∑n

i=1 exp(−γ̂i) exp(−yif (xi;
β0, β)). So, finding β0 and β given γ̂ amounts to
weighted boosting, where the positive case-specific pa-
rameters γ̂i downweight the corresponding cases by
exp(−γ̂i). For the squared hinge loss in the support
vector machine, γ̂ = 1 − yf (x) − λγ /2 if yf (x) ≤
1 − λγ /2, and is 0 otherwise. A positive case-specific
parameter γ̂i has the effect of relaxing the margin re-
quirement, that is, lowering the joint of the hinge for
that specific case. This allows the associated slack vari-
able to be smaller in the primal formulation. Accord-
ingly, the adjustment affects the coefficient of the linear
term in the dual formulation of the quadratic program-
ming problem.

As a related approach to robust classification, Wu
and Liu (2007) proposed truncation of margin-based
loss functions and studied theoretical properties that
ensure classification consistency. Similarity exists be-
tween our proposed adjustment of a loss function with
γ and truncation of the loss at some point. However,
it is the linearization of a margin-based loss function
on the negative side that produces its effective loss,
and minimization of the effective loss is quite differ-
ent from minimization of the truncated (i.e., adjusted)
loss. Linearization is more conducive to computation
than is truncation. Application of the result in Bartlett,
Jordan and McAuliffe (2006) shows that the linearized
loss functions satisfy sufficient conditions for classi-
fication consistency, namely Fisher consistency, which
is the main property investigated by Wu and Liu (2007)
for truncated loss functions.

Xu, Caramanis and Mannor (2009) showed that reg-
ularization in the standard support vector machine
is equivalent to a robust formulation under distur-
bances of x without penalty. In contrast, under our
approach, robustness of classification methods is con-
sidered through the margin, which is analogous to the
residual in regression. This formulation can cover out-
liers due to perturbation in x as well as mislabeling
of y.

4.3 Support Vector Machines

As a special case of a large margin classifier, the lin-
ear support vector machine (SVM) looks for the opti-
mal hyperplane f (x;β0, β) = β0 + x�β = 0 minimiz-
ing

Lλ(β0, β) =
n∑

i=1

[1−yif (xi;β0, β)]+ + λ

2
‖β‖2

2,(10)

where [t]+ = max(t,0) and λ > 0 is a regularization
parameter. Since the hinge loss for the SVM, g(τ) =
(1 − τ)+, is piecewise linear, its linearization with
‖γ ‖1 is void, indicating that it has little need of fur-
ther robustification. Instead, we consider modification
of the hinge loss with ‖γ ‖2

2. This modification is ex-
pected to improve efficiency, as in quantile regression.

Using the case indicators zi and their coefficients γi ,
we modify (10), arriving at the problem of minimizing

L(β0, β, γ ) =
n∑

i=1

[1 − yi{f (xi;β0, β) + γi}]+
(11)

+ λβ

2
‖β‖2

2 + λγ

2
‖γ ‖2

2.

For fixed β̂0 and β̂ , the minimizer γ̂ of L(β̂0, β̂, γ ) is
obtained by solving the decoupled optimization prob-
lem of

min
γi∈R

[1−yif (xi; β̂0, β̂)−yiγi]+ + λγ

2
γ 2
i for each γi.

With an argument similar to that for logistic regression,
the minimizer γ̂i should have the same sign as yi . Let
ξ = 1 − yf . A simple calculation shows that

arg min
γ≥0

[ξ − γ ]+ + λγ

2
γ 2

=
⎧⎪⎨
⎪⎩

0, if ξ ≤ 0,

ξ, if 0 < ξ < 1/λγ ,

1/λγ , if ξ ≥ 1/λγ .

Hence, the increase in margin yiγ̂i due to inclusion of
γ is given by

{1 − yif (xi)}I
(

0 < 1 − yif (xi) <
1

λγ

)

+ 1

λγ

I

(
1 − yif (xi) ≥ 1

λγ

)
.

The γ -adjusted hinge loss is L(y, f (x)) = [1−1/λγ −
yf (x)]+ with the hinge lowered by 1/λγ as shown in
Figure 3(c) (the dashed line). The effective loss (the
solid line in the figure) is then given by a smooth func-
tion with the joint replaced with a quadratic piece be-
tween 1 − 1/λγ and 1 and linear beyond the interval.
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5. SIMULATION STUDIES

We present results from various numerical experi-
ments to illustrate the effect of the proposed modifica-
tion of modeling procedures by regularization of case-
specific parameters.

5.1 Regression

5.1.1 �2-adjusted quantile regression. The effec-
tiveness of the �2-adjusted quantile regression de-
pends on the penalty parameter λγ in (6), which yields
(−q/λγ , (1 − q)/λγ ) as the interval of quadratic ad-
justment.

We undertook extensive simulation studies (avail-
able in Jung, MacEachern and Lee, 2010) to establish
guidelines for selection of the penalty parameter λγ in
the linear regression model setting. The studies encom-
passed a range of sample sizes, from 102 to 104, a va-
riety of quantiles, from 0.1 to 0.9, and distributions ex-
hibiting symmetry, varying degrees of asymmetry, and
a variety of tail behaviors. The modified quantile re-
gression method was directly implemented by specify-
ing the effective ψ-function ψ

γ
q , the derivative of the

effective loss, in the rlm function in the R package.
An empirical rule was established via a (robust) re-

gression analysis. The analysis considered λγ of the
form cqn

α/σ̂ , where cq is a constant depending on q

and σ̂ is a robust estimate of the scale of the error distri-
bution. The goal of the analysis was to find λγ which,
across a broad range of conditions, resulted in an MSE
near the condition-specific minimum MSE. Here MSE
is defined as mean squared error of estimated regres-
sion quantiles at a new X integrated over the distribu-
tion of the covariates.

After initial examination of the MSE with a range of
α values, we made a decision to set α to 0.3 for good fi-
nite sample performance across a wide range of condi-
tions. With fixed α, we varied cq to obtain the smallest
MSE by grid search for each condition under consid-
eration. For a quick illustration, Figure 4 shows the in-
tervals of adjustment with such optimal cq for various
error distributions, q values, and sample sizes. Wider
optimal intervals indicate that more quadratic adjust-
ment is preferred to the standard quantile regression for
reduction of MSE. Clearly, Figure 4 demonstrates the
benefit of the proposed quadratic adjustment of quan-
tile regression in terms of MSE across a broad range of
situations, especially when the sample size is small.

In general, MSE values begin to decrease as the size
of adjustment increases from zero and increase after
hitting the minimum, due to an increase in bias. There

is an exception of this typical pattern when estimat-
ing the median with normally distributed errors. MSE
monotonically decreases in this case as the interval of
adjustment widens, confirming the optimality proper-
ties of least squares regression for normal theory re-
gression. The comparisons between sample mean and
sample median can be explicitly found under the t error
distributions using different degrees of freedom. The
benefit of the median relative to the mean is greater for
thicker tailed distributions. We observe that this qual-
itative behavior carries over to the optimal intervals.
Thicker tails lead to shorter optimal intervals, as shown
in Figure 4.

Modeling the optimal condition-specific cq as a
function of q through a robust regression analysis led
to the rule, with α = 0.30, of cq ≈ 0.5 exp(−2.118 −
1.097q) for q < 0.5 and cq ≈ 0.5 exp(−2.118 −
1.097(1−q)) for q ≥ 0.5. The simulation studies show
that this choice of penalty parameter results in an ac-
curate estimator of the quantile surface.

5.1.2 Robust LASSO. We investigated the sensitiv-
ity of the LASSO (or LARS) and its robust version
(obtained by the proposed �1 modification) to contam-
ination of the data through simulation.

For the robust LASSO, the iterative algorithm in
Section 2 was implemented by using LARS (Efron
et al., 2004a) as the baseline modeling procedure and
winsorizing the residuals with λγ as a bending con-
stant. The bending constant was taken to be scale in-
variant, so that λγ = kσ̂ , where k is a constant and σ̂

is a robust scale estimate. The standard robust statistics
literature (Huber, 1981) suggests that good choices of
k lie in the range from 1 to 2.

For brevity, we report only that portion of the re-
sults pertaining to accuracy of the fitted regression sur-
face and inclusion of variates in the model when k = 2.
Similar results were obtained for k near 2. The results
differ for extreme values of k. Throughout the simula-
tion, the standard linear model y = x�β + ε was as-
sumed. Following the simulation setting in Tibshirani
(1996), we generated x = (x1, . . . , x8)

� from a multi-
variate normal distribution with mean zero and stan-
dard deviation 1. The correlation between xi and
xj was set to ρ|i−j | with ρ = 0.5. Three scenarios
were considered with a varying degree of sparsity
in terms of the number of nonzero true coefficients:
(i) sparse: β = (5,0,0,0,0,0,0,0), (ii) intermediate:
β = (3,1.5,0,0,2,0,0,0) and (iii) dense: βj = 0.85
for all j = 1, . . . ,8. In all cases, the sample size was
100. For the base case, εi was assumed to follow



REGULARIZATION OF CASE-SPECIFIC PARAMETERS 361

FIG. 4. “Optimal” intervals of adjustment for different quantiles (q), sample sizes (n), and error distributions. The intervals range from
the quantile minus q/λγ to the quantile plus (1 − q)/λγ , with λγ minimizing MSE. The vertical lines in each distribution indicate the true
quantiles. The stacked horizontal lines for each quantile are corresponding optimal intervals. Five intervals at each quantile are for n = 102,
102.5, 103, 103.5 and 104, respectively, from the bottom.

N(0, σ 2) with σ = 3. For potential outliers in ε, the
first 5% of the εi ’s were tripled, yielding a data set with
more outliers. We also investigated sensitivity to high
leverage cases. For this setting, we tripled the first 5%
of the values of x1. Thus the replicates were blocked
across the three settings. The Cp criterion was used to
select the model.

Figure 5 shows mean squared error (MSE) between
the fitted and true regression surfaces, omitting inter-
cepts. MSE is integrated across the distribution of a
future X, taken to be that for the base case of the sim-

ulation. Over the m = 100 replicates in the simulation,
MSE = m−1 ∑m

i=1(β̂
i − β)��(β̂i − β), where β̂i is

the estimate of β for the ith replicate, and � is the co-
variance matrix of X. LARS and robust LARS perform
comparably in the base case, with the MSE for robust
LARS being greater by 1 to 6 percent. For both LARS
and robust LARS, MSE in the base case increases as
one moves from the sparse to the dense scenario. MSE
increases noticeably when ε is contaminated, by a fac-
tor of 1.31 to 1.41 for LARS. For robust LARS, the
factor for increase over the base case with LARS is
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FIG. 5. Mean squared error (MSE) of β̂ for LARS and its robust
version under three different scenarios in the simulation study. In
each scenario, o, e, and x indicate clean data, data with contam-
inated measurement errors, and data with mismeasured first co-
variate. The dotted lines are for LARS while the solid lines are for
robust LARS. The points are the average MSE for 100 replicates.

1.12 to 1.22. For contamination in X, results under
LARS and robust LARS are similar in the intermediate
and dense cases, with increases in MSE over the base
case. For the sparse case, the coefficient of the contam-
inated covariate, x1, is large relative to the other co-
variates. Here, robust LARS performs noticeably better
than LARS, with a smaller increase in MSE.

Table 1 presents results on the difference in num-
ber of selected variables for pairs of models. In each
pair, a contaminated model is contrasted with the cor-
responding uncontaminated model. The top half of the
table presents results for contamination of ε. The dis-
tribution of the differences in the number of selected
variables for the pairs of fitted models has a mode at
0 in each scenario for both LARS and robust LARS.
There is, however, substantial spread around 0. The fit-
ted models for the data with contaminated errors tend
to have fewer variables than those for the original data,
especially in the dense scenario. This may well be at-

tributed to inflated estimates of σ 2 used in Cp for the
contaminated data, favoring relatively smaller models.
The effect is stronger for LARS than for robust LARS,
in keeping with the lessened impact of outliers on the
robust estimate of σ 2.

The bottom half of Table 1 presents results for con-
tamination of X. Again, the distributions of differences
in model size have modes at 0 in all scenarios. The dis-
tributions have substantial spread around 0. Under the
sparse scenario in which the contamination has a sub-
stantial impact on MSE, the distribution under robust
LARS is more concentrated than under LARS.

The simulation demonstrates that the proposed ro-
bustification is successful in dealing with both con-
taminated errors and contaminated covariates. As ex-
pected, in contrast to LARS, robust LARS is effective
in identifying observations with large measurement er-
rors and lessening their influence. It is also effective at
reducing the impact of high leverage cases, especially
when the high leverage arises from a covariate with a
large regression coefficient. The combined benefits of
robustness to outliers and high leverage cases render
robust LARS effective at dealing with influential cases
in an automated fashion.

5.2 Classification

A three-part simulation study was carried out to ex-
amine the effect of the proposed modification of loss
functions for classification. The primary focus is on
(i) the efficiency of the modified SVM relative to the
SVM with hinge loss and its smoothed version with
quadratically modified hinge loss, and (ii) the robust-
ness of logistic regression relative to modified logistic
regression (via the linearized deviance). The secondary

TABLE 1
Distribution of difference in the number of selected variables for the fitted model to contaminated data from that to clean data

LARS Robust LARS

Scenario −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

ε contamination
Sparse 5* 6 21 48 13 5 2* 1* 4 12 71 7 5 0
Intermediate 5 10 14 46 21 3 1 1 3 14 64 14 4 0
Dense 2 1 16 80 1 0 0 0 0 8 89 3 0 0

X contamination
Sparse 7* 5 15 34 20 7 12* 5* 3 16 36 22 12 6
Intermediate 1* 5 13 55 21 3 2 1 3 18 50 23 4 1
Dense 0 0 5 93 2 0 0 0 0 4 94 2 0 0

Note: The entries with * are the cumulative counts of the specified case and more extreme cases.
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focus is on ensuring that robustness does not signifi-
cantly degrade as efficiency is improved, and that ef-
ficiency does not suffer too much as robustness is im-
proved.

All three parts of the simulation begin with n = 100
cases generated from a pair of five-dimensional multi-
variate normal distributions, with identical covariance
matrices and equal proportions for two classes (y =
±1). Without loss of generality, the covariance matri-
ces were taken to be the identity. For the first part of
the simulation, the separation between the two classes
is fixed. The separation is determined by the difference
in means of the multivariate normals, which, in turn,
determine the Bayes error rate for the underlying prob-
lem. Throughout, once a method was fit to the data
(i.e., a discriminant function was obtained), the error
rate was calculated analytically. Each part of the simu-
lation consisted of 400 replicates.

Six methods were considered in this study: LDA
(linear discriminant analysis) as a baseline method for
the normal setting, the standard SVM, its variant with
squared hinge loss (called Smooth SVM in Lee and
Mangasarian, 2001), another variant with quadratically
modified hinge loss (referred to as Huberized SVM
in Rosset and Zhu, 2007), logistic regression, and the
method with linearized binomial deviance (referred to
as linearized LR in this study). The Huberized SVM
and linearized LR were implemented through the fast
Newton–Armijo algorithm proposed for Smooth SVM
in Lee and Mangasarian (2001). To focus on the effect
of the loss functions on the classification error rate, no
penalty was imposed on the parameters of discriminant
functions.

For the first part of the study, the mean vectors were
set with a difference of 2.7 in the first coordinate and 0
elsewhere, yielding a Bayes error rate of 8.851%. Fig-
ure 6 compares the SVM and its variants in terms of
the average excess error from the Bayes error rate. The
k on the x-axis corresponds to the bending constant,
1 − 1/λγ in the Huberized SVM. When k is as small
as −1, we see that quadratic modification in the Huber-
ized SVM effectively yields the same result as Smooth
SVM. As k tends to 1, the Huberized SVM becomes
the standard SVM. Clearly, there is a range of k values
for which the mean error rate of the Huberized SVM
is lower than that of the standard SVM, demonstrating
improved efficiency in classification. In fact, the im-
proved efficiency of smooth versions of the hinge loss
in the normal setting can be verified theoretically for
large sample cases, where the relative efficiency is de-
fined as the ratio of mean excess errors. See Lee and
Wang (2011) for details.

FIG. 6. Mean excess error of the SVM variant with quadrati-
cally modified hinge loss (Huberized SVM) and the method with
linearized deviance loss (linearized LR) as the bending constant k

varies. The gray band indicates a one standard error bound around
the mean estimate for Huberized SVM from 400 replicates. The
standard error for comparison of the Huberized SVM to another
method varies, but is considerably smaller, due to the simulation
design. The horizontal lines from top to bottom are for SVM, logis-
tic regression and Smooth SVM, respectively.

Figure 6 also displays a comparison between logis-
tic regression and the linearized LR of Section 4, with
bending constant k = log{(1 − λγ )/λγ }. There is no
appreciable difference in the excess error between lo-
gistic regression and its linearized version for negative
values of k. Enhancing the robustness of logistic re-
gression (shown in part two of the study) sacrifices al-
most none of its efficiency.

The value of the bending constant k leading to the
minimum error rate depends on the underlying prob-
lem itself, and the range of best k values may differ for
the Huberized SVM and linearized LR. The results in
Figure 6 suggest that values of k ranging from −1 to 0
yield excellent performance for both procedures in this
setting.

The second part of the study focuses on robustness.
To study this, we perturbed each sample by flipping the
class labels of a certain proportion of cases selected
at random, and applied the six procedures to the per-
turbed sample. The estimated discriminant rules were
evaluated in the same way as in the setting without per-
turbation.

Figure 7(a) highlights increased robustness of lin-
earized LR (with k = −0.5) compared to logistic re-
gression when some fraction of labels are flipped. As
the proportion of mislabeled data increases, excess er-
ror rises for all of the procedures, including the base-
line method of LDA. However, the rate of increase in
error is slower for the modified logistic regression, as
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(a) (b)

FIG. 7. Mean excess errors of (a) logistic regression and linearized LR, and (b) SVM and its variants, as the proportion of perturbation
varies. The gray band indicates a one standard error bound around the mean estimate for (a) linearized LR and (b) Huberized SVM from
400 replicates. The standard errors for comparisons are considerably smaller than indicated by the bands.

the linearized deviance dampens the influence of mis-
labeled cases on the discriminant rule.

Comparison of the SVM and its variants in the same
setting reveals a trade-off between efficiency and ro-
bustness. Figure 7(b) shows that the squared hinge loss
yields a lower error rate than hinge loss when the per-
turbation fraction is less than 6%. The trend is reversed
when the fraction is higher than 6%. This trade-off is
reminiscent of that between the sample mean and me-
dian as location parameter estimators. The Huberized
SVM (with k = −0.5) as a hybrid method strikes a bal-
ance between the two. We note that the robustness of
the SVM, compared with its variants, is more visible
when two classes have less overlap (not shown here).

The third part of the study provides a comprehen-
sive comparison of the methods. Three scenarios with
differing degree of difficulty were considered; “easy,”
“intermediate” and “hard” settings refer to the mul-
tivariate normal setting with the Bayes error rates of
2.275%, 8.851% and 15.866%, respectively. In addi-
tion, for scenarios with mislabeled cases, 5% and 10%
of labels were flipped under each of the three settings.
Two values of the bending constant (k = −0.5 and −1)
were used for the Huberized SVM and the linearized
LR. The results of comparison under nine scenarios are
summarized in Table 2. The tabulated values are the
mean error rates of the discriminant rules under each
method.

When there are no mislabeled cases, the smooth vari-
ants of the SVM improve upon the performance of the
standard SVM. As the separation between classes in-
creases, the reduction in error due to modification of

the hinge loss with fixed k diminishes. Linearization of
deviance in logistic regression does not appear to affect
the error rate. In contrast, when there are mislabeled
cases, linearization of the deviance renders logistic re-
gression more robust across all the scenarios with dif-
fering class separations. Similarly, the standard SVM
is less sensitive to mislabeling than its smooth variants.
This makes the SVM more preferable as the proportion
of mislabeled cases increases. However, in the difficult
problem of little class separation, the quadratic modifi-
cation in the Huberized SVM performs better than the
SVM.

6. APPLICATIONS

6.1 Analysis of the NHANES Data

We numerically compare standard quantile regres-
sion with modified quantile regression for analysis of
real data. The Centers for Disease Control and Pre-
vention conduct the National Health and Nutrition Ex-
amination Survey (NHANES), a large-scale survey de-
signed to monitor the health and nutrition of residents
of the United States. Many are concerned about the
record levels of obesity in the population, and the sur-
vey contains information on height and weight of indi-
viduals, in addition to a variety of dietary and health-
related questions. Obesity is defined through body
mass index (BMI) in kg/m2, a measure which adjusts
weight for height. In this analysis, we describe the re-
lationship between height and BMI among the 5938
males over the age of 18 in the aggregated NHANES
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TABLE 2
Mean error rates of classification methods under various settings of mean difference and perturbation fraction. The lowest error rates are in

bold when compared among the methods of the same type (either SVM or LR) for each scenario

Huberized SVM Linearized LR

Scenario SVM k = −0.5 k = −1 Smooth SVM k = −0.5 k = −1 LR

Easy 0.0385 0.0376 0.0376 0.0376 0.0362 0.0363 0.0363
Intermediate 0.1028 0.1009 0.1008 0.1008 0.1014 0.1013 0.1013
Hard 0.1753 0.1727 0.1726 0.1726 0.1730 0.1729 0.1728

Easy + 5% flip 0.0348 0.0362 0.0371 0.0372 0.0383 0.0395 0.0411
Intermediate + 5% flip 0.1063 0.1050 0.1057 0.1059 0.1054 0.1061 0.1071
Hard + 5% flip 0.1790 0.1769 0.1773 0.1774 0.1772 0.1773 0.1778

Easy + 10% flip 0.0370 0.0415 0.0423 0.0421 0.0445 0.0465 0.0481
Intermediate + 10% flip 0.1107 0.1117 0.1127 0.1127 0.1125 0.1136 0.1150
Hard + 10% flip 0.1846 0.1833 0.1839 0.1840 0.1836 0.1841 0.1848

data sets from 1999, 2001, 2003 and 2005. Our anal-
yses do not adjust for NHANES’ complex survey de-
sign. In particular, no adjustment has been made for
oversampling of selected groups or nonresponse. Since
BMI is weight adjusted for height, the null expectation
is that BMI and height are unrelated.

We fit a nonparametric quantile regression model to
the data. The model is a six-knot regression spline us-
ing the natural basis expansion. The knots (held con-
stant across quantiles) were chosen by eye. The rule
for selection of the penalty parameter λγ described in
Section 5.1.1 was used for the NHANES data analysis.

Figure 8 displays the fits from standard (QR) and
modified (QR.M) quantile regressions for the quantiles
between 0.1 and 0.9 in steps of 0.05. The fitted curves
show a slight upward trend, some curvature overall,
and mildly increasing spread as height increases. There
is a noticeable bump upward in the distribution of BMI
for heights near 1.73 meters. The differences between
the two methods of fitting the quantile regressions are
most apparent in the tails, for example the 0.6th and
0.85th quantiles for large heights.

The predictive performances of the standard and
modified quantile regressions are compared in Fig-
ure 9. To compare the methods, 10-fold cross-
validation was repeated 500 times for different splits
of the data. Each time, a cross-validation score was
computed as

CV = 1

n

n∑
i=1

ρq(yi − ŷi),(12)

where yi is the observed BMI for an individual in the
hold-out sample, ŷi is the fitted value under QR or
QR.M, and the sum runs over the hold-out sample. The

figure contains plots of the 500 CV scores. The great
majority of CV scores are to the lower right side of the
45 degree line, indicating that the modified quantile re-
gression outperforms the standard method—even when
the QR empirical risk function is used to evaluate per-
formance. Mean and 1000 times standard deviation of
the CV scores for the methods are summarized in Ta-
ble 3.

The pattern shown in these panels is consistent
across other quantiles (not shown here). The pattern
becomes a bit stronger when the QR.M empirical risk
function is used to evaluate performance.

Quantile regression has the property that 100 · q%
of the responses fall at or below the fitted qth quantile
surface. This does not have to hold for the modified
quantile regression fit. However, as the cross-validation
shows, QR.M does provide a better quantile regression
surface than QR.

Modified quantile regression has an additional ad-
vantage which is apparent for small and large heights.
The standard quantile regression fits show several
crossings of estimated quantiles, while crossing behav-
ior is reduced considerably with modified quantile re-
gression. Crossed quantiles correspond to a claim that a
lower quantile lies above a higher quantile, contradict-
ing the laws of probability. Figure 10 shows this behav-
ior. Fixes for this behavior have been proposed (e.g.,
He, 1997), but we consider it desirable to lessen cross-
ing without any explicit fix. The reduction in crossing
holds up across other data sets that we have examined
and with regression models that differ in their details.

In addition, we compare both methods with �1

parameter-penalized quantile regression (QR.L1),
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FIG. 8. Regression spline estimates of conditional BMI quantiles in steps of 0.05, from 0.1 to 0.9 for the NHANES data. Natural spline
bases and six knots are used in each fitted curve.

where the estimator β̂ is defined as the minimizer of

n∑
i=1

ρq(yi − x�
i β) + λβ

p∑
j=1

|βj |.

The rq.fit.lasso function in the quantreg R

package was used for QR.L1. Keeping the same split

of data into 90% of training and 10% of testing for

each replicate, we have chosen λβ among 100 candi-

FIG. 9. Scatterplots of 10-fold CV scores from standard quantile regression (QR) and modified quantile regression (QR.M) at 0.25th, 0.5th
and 0.9th quantiles. Regression splines with natural spline bases and six knots are fitted to the NHANES data. Each of 500 points represents
a pair of CV scores as in (12).
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TABLE 3
Mean and (1000 times standard deviation) of CV scores at

selected quantiles based on 500 replicates from NHANES data

Method q = 0.25 q = 0.5 q = 0.9

QR 1.5040 (0.6105) 2.0405 (0.7272) 1.1267 (1.0714)
QR.M 1.5039 (0.5855) 2.0402 (0.6576) 1.1263 (1.0030)
QR.L1 1.5039 (0.8963) 2.0393 (0.5140) 1.1289 (0.8569)

date values by 9-fold cross-validation. The results are
in Table 3.

The effect of parameter penalization differs from
modification of the loss function. Figure 10 illustrates
the difference. The quantiles estimated under QR.L1
(with λβ chosen by 10-fold cross-validation) show less
variation across x relative to the fitted median line, due
to the shrinkage of each βj toward 0. This effect is
more visible for large quantiles. Such nondifferential
penalty can degrade performance, unless the parame-
ters are of comparable size. This adverse effect is nu-
merically evidenced in the large CV score of QR.L1
for q = 0.9 in Table 3. For q = 0.25 and 0.5, QR.L1
yields similar results to the other two methods in terms
of the CV scores.

6.2 Analysis of Language Data

Balota et al. (2004) conducted an extensive lexical
decision experiment in which subjects were asked to
identify whether a string of letters was an English word

or a nonword. The words were monosyllabic, and the
nonwords were constructed to closely resemble words
on a number of linguistic dimensions. Two groups were
studied—college students and older adults. The data
consist of response times by word, averaged over the
thirty subjects in each group. For each word, a num-
ber of covariates was recorded. Goals of the exper-
iment include determining which features of a word
(i.e., covariates) affect response time, and whether the
active features affect response time in the same fash-
ion for college students and older adults. The authors
make a case for the need to conduct and analyze studies
with regression techniques in mind, rather than simpler
ANOVA techniques.

Baayen (2007) conducted an extensive analysis of
a slightly modified data set which is available in his
languageR package. In his analysis, he creates and
selects variables to include in a regression model, ad-
dresses issues of nonlinearity, collinearity and interac-
tion, and removes selected cases as being influential
and/or outlying. He trims a total of 87 of the 4568
cases. The resulting model, based on “typical” words,
is used to address issues of linguistic importance. It
includes seventeen basic covariates which enter the
model as linear terms, a nonlinear term for the writ-
ten frequency of a word (fit as a restricted cubic spline
with five knots), and an interaction term between the
age group and the (nonlinear) written frequency of the
word.

FIG. 10. Differences between fitted median line and the other fitted quantiles for standard quantile regression (QR), modified quantile
regression (QR.M), and �1 penalized quantile regression (QR.L1) for the NHANES data. The dashed lines are the minimum and maximum of
the observed heights.
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We consider two sets of potential covariates for the
model. The small set consists of Baayen’s 17 basic co-
variates and three additional covariates representing a
squared term for written frequency and the interaction
between age group and the linear and squared terms for
written frequency. Age group has been coded as ±1 for
the interactions. The large set augments these covari-
ates with nine additional covariates that were not in-
cluded in Baayen’s final model. Baayen excluded some
of these covariates for a lack of significance, others be-
cause of collinearity.

To investigate the performance of the LASSO and
robust LASSO, a simulation study was conducted on
the 4568 cases in the data set. For a single replicate in
the simulation, the data were partitioned into a train-
ing data set and a test data set. The various methods
were fit to the training data, with evaluation conducted
on the test data. The criteria for evaluation were sum of
squared differences between the fitted and observed re-
sponses, either over all cases in the test data or over the
test data with the cases identified by Baayen as outliers
removed. We refer to these criteria as predictive mean
squared error (PMSE).

The simulation investigated several factors, includ-
ing the amount of training data (10% of the full data,
20%, 30%, etc.), the regularization parameter λγ =
kσ̂ , and the method used to select the model. Three
methods were used to select the model (i.e., the frac-
tion of the distance along the solution path): minimum
Cp , generalized cross-validation, and 10-fold cross-
validation on the training data.

The results of a 300 replicate simulation show a con-
vincing benefit to use of the robust LASSO. The ben-

efit of the robust LASSO is most apparent when k is
in the “sweet spot” ranging from 1.4 or so to well
above 2.0. As expected, for very small k (near 1),
the robust LASSO may not perform as well as the
LASSO. The reduction in PMSE for moderate values
of k, both absolute and percent, is slightly larger when
the evaluation is conducted after outliers (as identi-
fied by Baayen—not by the fitted model) have been
dropped from the test data set. The benefit is largest
for small training data sets and decreases as the size of
the training data set increases. For large training data
sets (e.g., 90% of the data), little test data remains for
calculation of PMSE and the evaluation is less stable.
These patterns were apparent over all three methods
of model selection. Figure 11 shows the results for a
training sample size of 1827 cases (40% of the data),
with model selected by cross-validation, for a variety
of values of k. The PMSE for the robust LASSO dips
below the mean PMSE for the LASSO for a wide range
of k. The figure also presents 95% confidence inter-
vals, based on the 300 replicates in the simulation, for
the difference between mean PMSE under the robust
LASSO and the LASSO. The intervals are indicated
by the vertical lines, and statistical significance is indi-
cated where the lines do not overlap the mean PMSE
under the LASSO. The narrowing of the intervals is a
consequence of the greater similarity of LASSO and
robust LASSO fits as the bending constant increases.
The patterns just described hold for both the small set
of covariates and the large set of covariates.

In addition to using the test data as a target, we
studied how well the two methods could reproduce

(a) (b)

FIG. 11. Predictive mean squared error (PMSE) for the test data in the simulation study, after removal of cases identified by Baayen as
outliers. The horizontal line is the mean PMSE for the LASSO while the points represent the mean of PMSEs for the robust LASSO. The
vertical lines have the width of approximate 95% confidence intervals for the difference in mean PMSE under the LASSO and robust LASSO.
Panel (a) presents results for the small set of covariates and panel (b) presents results for the large set of covariates.
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(a) (b)

FIG. 12. Sum of squared deviations (SSD) from Baayen’s fits in the simulation study. The horizontal line is the mean SSD for the LASSO
while the points represent the mean of SSDs for the robust LASSO. The vertical lines have the width of approximate 95% confidence intervals
for the difference in mean SSD under the LASSO and robust LASSO. Panel (a) presents results for the small set of covariates and panel (b)
presents results for the large set of covariates.

Baayen’s expert fit. This makes a good target for in-
ference, as there is evidence that humans can produce
a better fit than automated methods (Yu, MacEachern
and Peruggia, 2011). Taking a fitted surface as a tar-
get allows us to remove the noise inherent in data-
based out-of-sample evaluations. The results from a
5000 replicate simulation study with a training sam-
ple size of 400 appear in Figure 12. The criterion is
sum of squared deviations (SSD) between the (robust)
LASSO fit and Baayen’s fit, with the sum taken over
only those covariate values contained in the test data
set. The results presented here are for models selected
with the minimum Cp criterion. The robust LASSO
outperforms the LASSO over a wide range of values
for k for both the small and large sets of covariates.

Figures 11 and 12 reveal an interesting difference
across targets in the behavior of the small and large
sets of covariates. When the target is an expert fit, as
in the second study, adding covariates not present in
the expert’s model to the pool of potential covariates
allows the LASSO and robust LASSO to produce a
near-equivalent fit to the data, but with different co-
efficients for the regressors. An examination of the
variables present in the fitted models and their coef-
ficients uncovers patterns. As an example, the two co-
variates “WrittenFrequency” and “Familiarity” appear
in nearly all of the models for both the LASSO and the
robust LASSO, while Baayen includes only “Written-
Frequency” in his model, and these covariate(s) have
negative coefficients. Subjects are able to decide that a
familiar word is a word more quickly (and more accu-
rately) than an unfamiliar word. Although there seems
to be no debate on whether this conceptual effect of

similarity exists, there are a variety of viewpoints on
how to best capture the effect. Regularization methods
allow one to include a suite of covariates to address
a single conceptual effect, and this produces a differ-
ence between the LASSO and robust LASSO fits on
one hand and a least-squares, variable-selection style
fit on the other hand. The end result is that the regu-
larized fits with the large set of covariates show greater
departures from Baayen’s fit than do regularized fits
with the small set of covariates. In contrast, under the
data-based target of the first study, the large set of co-
variates results in a smaller PMSE.

7. DISCUSSION

In the preceding sections, we have laid out an ap-
proach to modifying modeling procedures. The ap-
proach is based on the creation of case-specific co-
variates which are then regularized. With appropriate
choices of penalty terms, the addition of these covari-
ates allows us to robustify those procedures which lack
robustness and also allows us to improve the efficiency
of procedures which are very robust, but not partic-
ularly efficient. The method is fully compatible with
regularized estimation methods. In this case, the case-
specific covariates are merely included as part of the
regularization. The techniques are easy to implement,
as they often require little modification of existing soft-
ware. In some cases, there is no need for modification
of software, as one merely feeds a modified data set
into existing routines.

The motivation behind this work is a desire to move
relatively automated modeling procedures in the direc-
tion of traditional data analysis (e.g., Weisberg, 2004).
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An important component of this type of analysis is the
ability to take different looks at a data set. These dif-
ferent looks may suggest creation of new variates and
differential handling of individual cases or groups of
cases. Robust methods allow us to take such a look,
even when data sets are large. Coupling robust regres-
sion techniques with the ability to examine an entire
solution path provides a sharper view of the impact
of unusual cases on the analysis. A second motivation
for the work is the desire to improve robust, relatively
nonparametric methods. This is accomplished by intro-
ducing case-specific parameters in a controlled fashion
whereby the finite sample performance of estimators is
improved.

The perspective provided by this work suggests sev-
eral directions for future research. Adaptive penalties,
whether used for robustness or efficiency, can be de-
signed to satisfy specified invariances. The asymmet-
ric �2 penalty for modified quantile regression was de-
signed to satisfy a specified invariance. For a locally
constant residual density, it keeps the 0 of the ψ

γ
q func-

tion invariant as the width of the interval of adjust-
ment varies. Specific, alternative forms of invariance
for quantile regression are suggested by consideration
of parametric driving forms for the residual distribu-
tion. A motivating parametric model, coupled with in-
variance of the 0 of the ψ

γ
q function to the size of

the penalty term λγ , yields a path of penalties. In-
creasing the size of the covariate-specific penalty at an
appropriate rate leads to asymptotic equivalence with
the quantile regression estimator. This allows one to
fit the model nonparametrically while tapping into an
approximate parametric form to enhance finite sam-
ple performance. Similarly, when case-specific penal-
ties are applied to a model such as the generalized
linear model, the asymmetry of the likelihood, cou-
pled with invariance, suggests an asymmetric form for
the �1 penalty used to enhance robustness of infer-
ence.

Following development of the technique for quantile
regression, one can apply the adaptive loss paradigm
for model assessment and selection. For example, in
cross-validation, a summary of a model’s fit is com-
puted as an out-of-sample estimate of empirical risk
and the evaluation is used for choosing the model (pa-
rameter value) with the smallest estimated risk. For
model averaging, estimated risks are converted into
weights which are then attached to model-specific
predictions that are then combined to yield an over-
all prediction. The use of modified loss functions

for estimation of risks is expected to improve sta-
bility and efficiency in model evaluation and selec-
tion.

APPENDIX

Proof of Theorem 2. Let ui := yi −x�
i β(q) and con-

sider the objective function

Zγ
n (δ) :=

n∑
i=1

{
ργ

q

(
ui − x�

i δ/
√

n
) − ρq(ui)

}
.(13)

Note that Z
γ
n (δ) is minimized at δ̂n := √

n(β̂
γ
n −β(q)),

and the limiting distribution of δ̂n is determined by
the limiting behavior of Z

γ
n (δ). To study the limit of

Z
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n (δ), decompose Z

γ
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where Zn(δ) := ∑n
i=1{ρq(ui −x�

i δ/
√

n)−ρq(ui)}. By
showing that the first sum converges to zero in proba-
bility up to a sequence of constants that do not depend
on δ, we will establish the asymptotic equivalence of
β̂

γ
n to β̂n.
Given λγ = cnα , first observe that
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Using a first-order Taylor expansion of fi at ξi from
the condition (C-2) and the expression above, we have

E
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Note that
∑n

i=1 f ′
i (ξi)x

�
i δ/

√
n = O(

√
n) as f ′

i (ξi),
i = 1, . . . , n, are uniformly bounded from the condi-
tion (C-2), and |x�

i δ| ≤ ‖xi‖2‖δ‖2 ≤ (‖xi‖2
2 + ‖δ‖2

2)/2
while

∑n
i=1 ‖xi‖2

2 = O(n) from the condition (C-3).
Taking Cn := −q(1 − q)/(2cnα−1) + q(1 − q)/

(6c2n2α)
∑n

i=1 fi(ξi), we have that

E

n∑
i=1

{
ργ

q

(
ui − x�

i δ/
√

n
) − ρq

(
ui − x�

i δ/
√

n
)} − Cn

→ 0 if α > 1/4.

Similarly, it can be shown that

Var
n∑

i=1

{
ργ

q

(
ui − x�

i δ/
√

n
) − ρq

(
ui − x�

i δ/
√

n
)}

=
n∑

i=1

q2(1 − q)2fi(ξi)

20c3n3α
+ o(n−3α+1)

→ 0 if α > 1/3.

Thus, if α > 1/3,

n∑
i=1

ργ
q

(
ui − x�

i δ/
√

n
) − ρq

(
ui − x�

i δ/
√

n
) − Cn

→ 0 in probability.

This implies that the limiting behavior of Z
γ
n (δ) is the

same as that of Zn(δ). From the proof of Theorem 4.1

in Koenker (2005), Zn(δ)
d→ −δ�W + 1

2δ�D1δ, where
W ∼ N(0, q(1 − q)D0). By the convexity argument in
Koenker (2005) (see also Pollard, 1991; Hjort and Pol-
lard, 1993; Knight, 1998), δ̂n, the minimizer of Z

γ
n (δ),

converges to δ̂0 := D−1
1 W , the unique minimizer of

−δ�W + 1
2δ�D1δ in distribution. This completes the

proof.
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