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Abstract

This paper investigates the theoretical relation between loss criteria and the optimal ranking
functions driven by the criteria in bipartite ranking. In particular, the relation between AUC
maximization and minimization of ranking risk under a convex loss is examined. We characterize
general conditions for ranking-calibrated loss functions in a pairwise approach, and show that the
best ranking functions under convex ranking-calibrated loss criteria produce the same ordering
as the likelihood ratio of the positive category to the negative category over the instance space.
The result illuminates the parallel between ranking and classification in general, and suggests
the notion of consistency in ranking when convex ranking risk is minimized as in the RankBoost
algorithm for instance. For a certain class of loss functions including the exponential loss and
the binomial deviance, we specify the optimal ranking function explicitly in relation to the
underlying probability distribution. In addition, we present an in-depth analysis of hinge loss
optimization for ranking and point out that the RankSVM may produce potentially many ties
or granularity in ranking scores due to the singularity of the hinge loss, which could result in
ranking inconsistency. The theoretical findings are illustrated with numerical examples.

Keywords: Bipartite ranking, Convex loss, RankBoost, RankSVM, Ranking calibration, Rank-
ing consistency

1 Introduction

How to order a set of given objects or instances reflecting their underlying utility, relevance or
quality is a long standing problem. It has been a subject of interest in various fields, for example,
the theory of choices or preferences in economics, and the theory of responses in psychometrics.
Ranking as a statistical problem regards how to learn a real-valued scoring or ranking function from
observed order relationships among the objects. Recently the ranking problem has gained great
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interest in the machine learning community for information retrieval, web search, and collaborative
filtering; see, for example, Goldberg et al. (1992), Shardanand and Maes (1995), Crammer and
Singer (2001), Freund et al. (2003), Cao et al. (2006) and Zheng et al. (2008).

As a special form of ranking, bipartite ranking involves instances from two categories (say,
positive or negative), and given observed instances from the two categories, the goal is to learn
a ranking function which places positive instances ahead of negative instances; see Agarwal et al.
(2005). For example, in document retrieval, documents are categorized as either relevant or irrele-
vant, and from the observed documents one wants to find a ranking function over the documents
space which ranks relevant documents higher than irrelevant documents.

There exists notable similarity between bipartite ranking and binary classification. However,
ranking aims at correct ordering of instances rather than correct prediction of the categories associ-
ated with them. This distinction is clear in the loss criterion used to measure the error of a ranking
function as opposed to classification error; the former is the bipartite ranking loss indicating the
misordering of a pair of instances with known preference or order relationship while the latter is
the misclassification loss. As a result, while a given discriminant function for classification can be
used as a ranking function, specification of a threshold or a cut-off value is not needed for ranking.

The performance of a ranking function is closely connected to the so-called Receiver Operating
Characteristic (ROC) curve of the function, which has been used in radiology, psychological diag-
nostics, pattern recognition and medical decision making. Minimization of the expected bipartite
ranking loss is shown to be equivalent to maximization of the Area Under the ROC Curve (AUC) by
using the link between the AUC criterion and the Wilcoxon-Mann-Whitney statistic as in Hanley
and McNeil (1982). Cortes and Mohri (2004) further investigate the relation between the AUC and
the classification accuracy, contrasting the two problems.

On the other hand, the similarity has prompted a host of applications of classification techniques
such as boosting and support vector machines to ranking problems. For example, RankBoost
proposed by Freund et al. (2003) is an adaptation of AdaBoost to combine preferences. Application
of the large margin principle in classification to ranking has led to the procedures that aim to
maximize the AUC by minimizing the ranking risk under a convex surrogate function of the bipartite
ranking loss for computational efficiency. See Joachims (2002), Herbrich et al. (2000), Brefeld and
Scheffer (2005) and Rakotomamonjy (2004) for optimization of AUC by support vector learning.

Further, to capture the practical need for accuracy of the instances near the top of the list in
many ranking applications, various modifications of the standard formulation for bipartite rank-
ing and alternative ranking criteria have been proposed (Rudin 2009, Cossock and Zhang 2008,
Clémençon and Vayatis 2007, Le and Smola 2007).

Theoretical developments in the current literature regarding bipartite ranking in part center
around the convergence of the empirical ranking risk to the minimal risk achievable within the
class of ranking functions as an application of the standard learning theory for generalization
bounds. See Agarwal et al. (2005), Agarwal and Niyogi (2005) and Clémençon et al. (2008).

With particular focus on the Bayes ranking consistency, we investigate the theoretical relation
between a loss criterion used for pairwise ranking and the optimal ranking function driven by
the criterion in this paper. Motivated by considerable developments of ranking algorithms and
procedures in connection with classification, we examine how the optimal ranking functions defined
by a family of convex surrogate loss criteria are related to the underlying probability distribution
for data, and identify the explicit form of optimal ranking functions for some loss criteria. In doing
so, we draw a parallel between binary classification and bipartite ranking and establish the minimal
notion of consistency in ranking, namely ranking calibration, analogous to the notion of classification
calibration or Fisher consistency, which has been studied quite extensively in the classification
literature (see, for example, Bartlett et al. 2006, Zhang 2004). Recently, Kotlowski et al. (2011)
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and Agarwal (2012) also study ranking consistency in connection with classification by examining
the risk bounds for bipartite ranking when discriminant functions from binary classification are
directly used as ranking functions. Duchi et al. (2010) examine ranking consistency of general loss
functions defined over preference graphs in label ranking and show negative results about convex
loss functions, which are largely due to the generality of label ranking in contrast to bipartite
ranking.

In this paper we employ a pairwise ranking approach, which is standard in learning to rank. We
show that the theoretically optimal ordering over the instance space is determined by the likelihood
ratio of the positive category to the negative category, and the best ranking functions under some
convex loss criteria produce the same ordering. In particular, the RankBoost algorithm with the
exponential loss is shown to target a half of the log likelihood ratio on the population level. This
result reveals the theoretical relationship between the ranking function from RankBoost and the
discriminant function from AdaBoost. Rudin and Schapire (2009) arrive at a qualitatively similar
conclusion through an algebraic proof of the finite sample equivalence of AdaBoost and RankBoost
algorithms. The binomial deviance loss used in RankNet (Burges et al. 2005) also preserves the
optimal ordering for ranking consistency. Further, the result suggests that discriminant functions
for classification that are order-preserving transformations of the likelihood ratio (e.g. logit func-
tion) can be used as a consistent ranking function in general. We establish general conditions for
ranking-calibrated losses, and show that they are stricter than those conditions for classification
calibration as optimal ranking requires more information about the underlying conditional proba-
bility (a transformation of the likelihood ratio) than classification. Some classification-calibrated
loss functions are also ranking-calibrated (e.g. exponential loss and binomial deviance loss), but
the hinge loss for support vector ranking is a notable exception among the commonly used loss
functions. We prove in this paper that the support vector ranking with the hinge loss may produce
potentially many ties or granularity in ranking scores due to the singularity of the loss, and this
could result in ranking inconsistency.

As a related work, Clémençon et al. (2008) partially investigate the theoretical aspects in rank-
ing by defining a statistical framework that transforms the bipartite ranking problem into a pairwise
binary classification problem. By minimizing empirical convex risk functionals in the framework,
the authors study ranking rules which specify preference between two instances instead of real-
valued ranking or scoring functions in our approach, and draw on the connection to convex risk
minimization in binary classification. However, a ranking rule for a pair of instances or the associ-
ated function that induces the rule, in general, does not define a ranking function consistently in the
form of pairwise difference as assumed in bipartite ranking. This fact yields significantly different
results for the two formulations. Equivalence between the two formulations depends largely on the
loss, and we specify the condition for loss in convex risk minimization under which the equivalence
holds (see Theorem 7). Here, the functional equivalence means that the convex risk minimizer
that induces the optimal ranking rule in pairwise binary classification is identical to the pairwise
difference of the optimal bipartite ranking function. The condition implies that not all ranking-
calibrated loss functions result in such functional equivalence. This result renders the relevance
of the pairwise binary classification approach rather limited in practice because standard ranking
algorithms such as RankBoost, RankNet, and RankSVM are designed to produce a scoring func-
tion instead of a ranking rule in the framework of bipartite ranking. Moreover, the pairwise binary
classification approach does not make the important distinction between classification calibration
and ranking calibration for loss functions. Theorem 3 and Section 3.3 highlight the difference in the
two approaches. Some comments are made further on the link between our results and pertinent
discussion in the paper later.

The rest of this paper is organized as follows. Section 2 introduces the problem setting and
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specifies the best ranking function that maximizes the AUC. The properties of the theoretically
optimal ranking functions under convex loss criteria are discussed together with conditions for
ranking calibration, and the form of the optimal ranking function for a certain class of loss criteria
is specified in Section 3. The general relation between the optimal bipartite ranking function and
the optimal ranking rule in pairwise binary classification approach is investigated in Section 4,
followed by numerical illustration of the results in Section 5. Conclusion and further discussions
are in Section 6.

2 Bipartite ranking

2.1 Basic setting

Let X denote the space of objects or instances we want to rank. Suppose each object X ∈ X comes
from two categories, either positive or negative, Y = {1,−1}, and let Y indicate the category
associated with X. Training data for ranking consist of independent pairs of (X,Y ) from X × Y.
Suppose the data set has n+ positive objects {xi}n+

i=1 and n− negative ones {x′j}
n−

j=1. From the
data, we want to learn a ranking function such that positive objects are generally ranked higher
than negative objects. A ranking function is a real-valued function defined on X , f : X → R,
whose values determine the ordering of instances. For x and x′ ∈ X , x is preferred to x′ by f if
f(x) > f(x′).

For each pair of a positive object x and a negative object x′, the bipartite ranking loss of f is

defined as l0(f ;x, x
′) = I(f(x) < f(x′)) +

1

2
I(f(x) = f(x′)), where I(·) is the indicator function.

Note that the loss is invariant under any order-preserving transformation of f . The best ranking
function can then be defined as the function f minimizing the empirical ranking risk over the
training data

Rn+,n−
(f) =

1

n+n−

n+
∑

i=1

n−
∑

j=1

l0(f ;xi, x
′
j)

by considering all pairs of positive and negative instances from the data.
The ROC curve of a ranking function f shows the trade-off between true positive rates (TPR)

and false positive rates (FPR) over a range of threshold values, where TPR(r) = |{xi|f(xi) >
r}|/n+, and FPR(r) = |{x′j |f(x′j) > r}|/n− for threshold value r. The AUC is shown to be
equivalent to a U-statistic, the Wilcoxon-Mann-Whitney statistic (Hanley and McNeil 1982). Thus,
the empirical ranking risk Rn+,n−

(f) is given by one minus the AUC of f , and minimization of the
bipartite ranking risk is equivalent to maximization of the AUC.

2.2 Optimal ranking function

Theoretically the AUC of a ranking function is the probability that the function ranks a positive
instance higher than a negative instance when they are drawn at random. Casting the AUC
maximization problem in the context of statistical inference, consider hypothesis testing of H0 :
Y = −1 versus Ha : Y = 1 based on a ‘test statistic’ f(x). For critical value r, the test rejects
H0 if f(x) > r, and retains H0 otherwise. Then the size of the test is P (f(X) > r|Y = −1),
which is, in fact, the theoretical FPR(r), and the power of the test is P (f(X) > r|Y = 1), which is
the theoretical TPR(r) of f . Hence, the relationship between the false positive rate and the true
positive rate of a ranking function f is the same as that between the size and the power of a test
based on f in statistical hypothesis testing. This dual interpretation of ranking also appears in
Clémençon et al. (2008) and Clémençon and Vayatis (2009b). By the Neyman-Pearson lemma, the
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most powerful test at any fixed size is based on the likelihood ratio of x under the two hypotheses.
This implies that the best ranking function which maximizes the theoretical AUC is a function of
the likelihood ratio.

Let g+ be the pdf or pmf of X for positive category, and let g− be the pdf or pmf of X for
negative category. For simplicity, we further assume that 0 < g+(x) < ∞ and 0 < g−(x) < ∞
for x ∈ X in this paper. The following theorem states that the optimal ranking function for
bipartite ranking is any order-preserving function of the likelihood ratio f∗

0 (x) ≡ g+(x)/g−(x). For
notational convenience, let R0(f) ≡ E(l0(f ;X,X ′)) denote the ranking error rate of f under the
bipartite ranking loss, where X and X ′ are, respectively, a positive instance and a negative instance
randomly drawn from the distributions with g+ and g−. The proof of the theorem is omitted here,
but interested readers can refer to Uematsu and Lee (2011).

Theorem 1. For any ranking function f , R0(f
∗
0 ) ≤ R0(f).

To see the connection of ranking with classification, let π = P (Y = 1) and verify that the
posterior probability

P (Y = 1|X = x) =
πg+(x)

πg+(x) + (1− π)g−(x)
=

f∗
0 (x)

f∗
0 (x) + (1− π)/π

is a monotonic transformation of f∗
0 (x). Indeed, through a different formulation of ranking,

Clémençon et al. (2008) and Clémençon and Vayatis (2009b) showed the equivalent result that
a class of optimal ranking functions should be strictly increasing transformations of the posterior
probability. The difference in the formulation is described in Section 4. This fact implies that those
discriminant functions from classification methods estimating the posterior probability consistently,
for example, logistic regression, may well be used as a ranking function for minimal ranking error
in practice.

3 Ranking with convex loss

Since minimization of ranking error involves non-convex optimization with discontinuous l0 loss
function, direct maximization of the AUC is not computationally advisable just as direct minimiza-
tion of classification error under the misclassification loss is not. For computational advantages
of convex optimization, many researchers have applied successful classification algorithms such
as boosting and support vector machines to ranking for the AUC maximization by replacing the
bipartite ranking loss with a convex surrogate loss.

In this section, we identify the form of the minimizers of convex ranking risks and examine
the properties of the optimal ranking functions. Consider non-negative, non-increasing convex loss
functions l : R → R

+ ∪ {0} which define l(f(x)− f(x′)) as a ranking loss, given a ranking function
f and a pair of a positive instance x and a negative instance x′. For example, the RankBoost
algorithm in Freund et al. (2003) takes the exponential loss, l(s) = exp(−s), for learning the best
ranking function, and the support vector ranking in Joachims (2002), Herbrich et al. (2000) and
Brefeld and Scheffer (2005) takes the hinge loss, l(s) = (1− s)+.

To understand the relation between a convex loss function l used to define a ranking loss and the
minimizer of the ranking risk on the population level, let Rl(f) ≡ E[l(f(X)−f(X ′))] be the convex
ranking risk and let f∗ be the optimal ranking function minimizing Rl(f) among all measurable
functions f : X → R. When f∗ preserves the ordering of the likelihood ratio f∗

0 , we call the loss l
ranking-calibrated, which is analogous to the notion of classification-calibration of l for the Bayes
error consistency in classification.
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3.1 Special case

The following theorem states some special conditions on the loss function under which the theoret-
ically best ranking function can be specified explicitly.

Theorem 2. Suppose that l is convex, differentiable, l′(s) < 0 for all s ∈ R, and l′(−s)/l′(s) =
exp(s/α) for some positive constant α. Then the optimal ranking function minimizing E[l(f(X)−
f(X ′))] is of the form

f∗(x) = α log(g+(x)/g−(x)) + β,

where β is an arbitrary constant.

Proof. Given (X,X ′), let (V, V ′) be an unordered pair of (X,X ′) taking (X,X ′) or (X ′,X) with
equal probability. Then the conditional probability of (X,X ′) given (V, V ′) is

g+(v)g−(v′)
g+(v)g−(v′) + g+(v′)g−(v)

if (x, x′) = (v, v′),

g+(v
′)g−(v)

g+(v)g−(v′) + g+(v′)g−(v)
if (x, x′) = (v′, v),

and 0 otherwise. With (V, V ′), Rl(f) = E[l(f(X) − f(X ′))] can be expressed as

EV,V ′(EX,X′ [l(f(X)− f(X ′))|V, V ′])

= EV,V ′

[

l(f(V )− f(V ′))g+(V )g−(V ′) + l(f(V ′)− f(V ))g+(V
′)g−(V )

g+(V )g−(V ′) + g+(V ′)g−(V )

]

.

To find the minimizer of Rl(f), it is sufficient to find f such that EX,X′ [l(f(X)− f(X ′))|V, V ′]
is minimized for each (V, V ′) = (v, v′). For fixed (v, v′), let s = f(v) − f(v′). Noting that
g+(v)g−(v′) + g+(v

′)g−(v) is fixed, consider minimizing l(s)g+(v)g−(v′) + l(−s)g+(v
′)g−(v) with

respect to s. Under the assumption that l is differentiable, the above expression is minimized when
l′(s)g+(v)g−(v′)− l′(−s)g+(v

′)g−(v) = 0, or equivalently

l′(−s)

l′(s)
=

g+(v)

g−(v)
g−(v′)
g+(v′)

. (1)

Define G(s) ≡ l′(−s)/l′(s). Then clearly G(0) = 1 and G(s) is increasing. Let v0 be the point

at which g+(v0) = g−(v0). Using the relation G(s) = g+(v)
g−(v)

g−(v′)
g+(v′) , taking v′ = v0, and solving for s,

we get

f∗(v) − f∗(v0) = G−1

(

g+(v)

g−(v)
g−(v0)
g+(v0)

)

= G−1

(

g+(v)

g−(v)

)

.

From the assumption of G(s) = exp(s/α), we have f∗(v) = f∗(v0) + α log(g+(v)/g−(v)), which
completes the proof.

Remark 1. For the RankBoost algorithm, l(s) = exp(−s), and l′(−s)/l′(s) = exp(2s). Hence,
Theorem 2 applies, and it gives f∗(x) = 1

2 log(g+(x)/g−(x)) as the optimal ranking function up to
an additive constant. Similarly, when l(s) = log(1+ exp(−s)), the negative log likelihood in logistic
regression as in RankNet (Burges et al. 2005), l′(−s)/l′(s) = exp(s), and the optimal ranking
function under the loss is given by f∗(x) = log(g+(x)/g−(x)) up to a constant. Thus, the loss
functions for RankBoost and RankNet are ranking-calibrated.
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3.2 General case

To deal with a general loss l beyond those covered by Theorem 2, we consider convex loss criteria.
The next theorem specifies general conditions for ranking calibration, and states the general relation
between the best ranking function f∗ under convex ranking loss criteria and the likelihood ratio
(g+/g−) in terms of the relative ordering of a pair of instances when X is continuous. The proof of
the theorem is given in Appendix. Similar arguments can be made to establish the corresponding
results for discrete X .

Theorem 3. Suppose that l is convex, non-increasing, differentiable, and l′(0) < 0. Let f∗ ≡
argminf Rl(f).

(i) For almost every (x, z) ∈ X × X , g+(x)
g−(x) >

g+(z)
g−(z) implies f∗(x) > f∗(z).

(ii) If l′ is one-to-one, then for almost every (x, z) ∈ X ×X , g+(x)
g−(x) =

g+(z)
g−(z) implies f∗(x) = f∗(z).

Remark 2. As an interesting example, consider l(s) = (1 − s)+, the hinge loss in support vector
ranking. It is differentiable at 0 with l′(0) = −1, but it has a singularity point at s = 1. Thus,
Theorem 3 does not apply. In comparison, l(s) = [(1−s)+]

2, the squared hinge loss, is differentiable
everywhere, and Theorem 3 (i) implies that the optimal ranking function f∗ under l preserves the
order of the likelihood ratio without ties.

3.3 Support vector ranking

To cover the hinge loss for support vector ranking, we resort to results in convex analysis. A
subderivative of a convex function l at point s0 is a real number c such that l(s)− l(s0) ≥ c(s− s0)
for all s ∈ R. The set of all subderivatives is called the subdifferential of l at s0 and denoted by
∂l(s0). It can be shown that the subdifferential is a nonempty closed interval. For example, the
subdifferential of hinge loss l(s) = (1−s)+ at s = 1 is [−1, 0]. For a convex function l, its derivative
may not be defined at some points, but a subderivative is always defined though it may not be
unique. At differentiable points of the function, the subderivative is uniquely determined and the
same as the derivative. The function is globally minimized at s0 if and only if zero is contained in
the subdifferential at s0. For more details of convex analysis, see Rockafellar (1997).

First we illustrate potential ties in the optimal ranking function under the hinge loss with a toy
example. We can derive explicitly the conditions under which ties can occur in this simple example.

3.3.1 Toy example

Suppose X = {x∗1, x∗2, x∗3}, and without loss generality, assume that
g+(x∗

1
)

g−(x∗

1
) <

g+(x∗

2
)

g−(x∗

2
) <

g+(x∗

3
)

g−(x∗

3
) for

the pmfs of X and X ′, g+ and g−. Let f∗ be a minimizer of the ranking risk under the hinge loss
l(s) = (1− s)+. Define s1 = f(x∗2)− f(x∗1) and s2 = f(x∗3)− f(x∗2) for a ranking function f . Then
we can express the risk Rl(f) in terms of s1 and s2 as follows:

Rl(s1, s2)

= l(s1)g+(x
∗
2)g−(x

∗
1) + l(−s1)g+(x

∗
1)g−(x

∗
2) + l(s2)g+(x

∗
3)g−(x

∗
2) + l(−s2)g+(x

∗
2)g−(x

∗
3)

+l(s1 + s2)g+(x
∗
3)g−(x

∗
1) + l(−s1 − s2)g+(x

∗
1)g−(x

∗
3) +

3
∑

i=1

g+(x
∗
i )g−(x

∗
i ).

It is easy to check that truncation of s1 and s2 to 1 always reduces the risk if they are greater
than 1. So, it is sufficient to consider s1 ≤ 1 and s2 ≤ 1 for the minimizer f∗. Letting s∗i =
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f∗(x∗i+1) − f∗(x∗i ) for i = 1, 2, we can show that the minimizer f∗ has non-negative increments,
that is, s∗i ≥ 0. Otherwise, there are three cases: i) s∗i < 0 (i = 1, 2), ii) s∗1 < 0 and s∗2 ≥ 0, and iii)
s∗1 ≥ 0 and s∗2 < 0. From the assumption of ordering of x∗i , for all i = 1, 2 and k = 1, . . . , 3− i

g+(x
∗
i+k)g−(x

∗
i ) > g+(x

∗
i )g−(x

∗
i+k). (2)

Using the inequalities and the fact that for positive constants p and q with p > q, p · l(s)+ q · l(−s)
is strictly decreasing in (−∞, 1] with minimum at s = 1, we can verify that i) (s1, s2) = (0, 0), ii)
(s1, s2) = (0, 1), and iii) (s1, s2) = (1, 0) yield strictly smaller risk values than (s∗1, s

∗
2), respectively.

Thus, we can restrict the region for the increments of f∗ to 0 ≤ s1 ≤ 1 and 0 ≤ s2 ≤ 1.
Taking the risk as a function of s1 and a function of s2, we have its subderivatives as

∂s1Rl(s1, s2) = l′(s1)g+(x
∗
2)g−(x

∗
1)− l′(−s1)g+(x

∗
1)g−(x

∗
2) + l′(s1 + s2)g+(x

∗
3)g−(x

∗
1)

−l′(−s1 − s2)g+(x
∗
1)g−(x

∗
3)

∂s2Rl(s1, s2) = l′(s2)g+(x
∗
3)g−(x

∗
2)− l′(−s2)g+(x

∗
2)g−(x

∗
3) + l′(s1 + s2)g+(x

∗
3)g−(x

∗
1)

−l′(−s1 − s2)g+(x
∗
1)g−(x

∗
3). (3)

Since s1 and s2 for f∗ are non-negative, l′(−s1) = −1 and l′(−s2) = −1. Furthermore, we can
prove s1 + s2 ≥ 1. Otherwise, s1 < 1 and s2 < 1, which simplifies the subderivatives above to

−g+(x
∗
2)g−(x

∗
1) + g+(x

∗
1)g−(x

∗
2)− g+(x

∗
3)g−(x

∗
1) + g+(x

∗
1)g−(x

∗
3), and

−g+(x
∗
3)g−(x

∗
2) + g+(x

∗
2)g−(x

∗
3)− g+(x

∗
3)g−(x

∗
1) + g+(x

∗
1)g−(x

∗
3).

However, (2) implies that the subderivatives then can not be zero. This contradicts that f∗ is a risk
minimizer. In summary, we have the constraints on s1 and s2 for f∗ that 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1,
and s1 + s2 ≥ 1.

With the constraints, we show that the optimal increments s1 and s2 of a minimizer f∗ can
be identified explicitly in some cases. Let a = g+(x

∗
1)g−(x

∗
2) − g+(x

∗
2)g−(x

∗
1) + g+(x

∗
1)g−(x

∗
3) and

b = g+(x
∗
2)g−(x

∗
3)− g+(x

∗
3)g−(x

∗
2) + g+(x

∗
1)g−(x

∗
3). Then the subderivatives in (3) are re-expressed

as

g−(x
∗
1)[(l

′(s1) + 1)g+(x
∗
2) + l′(s1 + s2)g+(x

∗
3)] + a, and

g+(x
∗
3)[(l

′(s2) + 1)g−(x
∗
2) + l′(s1 + s2)g−(x

∗
1)] + b.

If a < 0, then the term in the bracket has to be positive in order to have zero subderivative. This,
in turn, implies that l′(s1) + 1 > 0 since l′(s1 + s2) ≤ 0. Hence, s1 ≥ 1 and together with the
condition s1 ≤ 1, we have s1 = 1. When s1 = 1, the ranking risk Rl(f) is simplified to a function
of s2 only up to a constant (ignoring

∑3
i=1 g+(x

∗
i )g−(x

∗
i )):

2g+(x
∗
1)g−(x

∗
2) + (1− s2)g+(x

∗
3)g−(x

∗
2) + (1 + s2)g+(x

∗
2)g−(x

∗
3) + (2 + s2)g+(x

∗
1)g−(x

∗
3)

= bs2 + 2g+(x
∗
1)g−(x

∗
2) + g+(x

∗
2)g−(x

∗
3) + g+(x

∗
3)g−(x

∗
2) + 2g+(x

∗
1)g−(x

∗
3). Therefore, if b < 0, the

risk is minimized at s2 = 1, and if b > 0, it is minimized at s2 = 0. When b = 0, s2 can be any
value between 0 and 1.

If a = 0, then either [l′(s1) + 1 = 0 and l′(s1 + s2) = 0] or [l′(s1) + 1 > 0 and l′(s1 + s2) < 0].
The former leads to s1 ≤ 1 and s1 + s2 ≥ 1 while the latter leads to s1 = 1 and s2 = 0. Similarly,
if a > 0, then l′(s1 + s2) < 0, implying s1 + s2 ≤ 1. However, from the constraint s1 + s2 ≥ 1, we
conclude that s1+ s2 = 1. When s1+ s2 = 1, again the ranking risk can be simplified to a function
of one variable (say, s1) only up to a constant:

(1− s1)g+(x
∗
2)g−(x

∗
1) + (1 + s1)g+(x

∗
1)g−(x

∗
2) + 2g+(x

∗
1)g−(x

∗
3)

+s1g+(x
∗
3)g−(x

∗
2) + (2− s1)g+(x

∗
2)g−(x

∗
3)

= (a− b)s1 + g+(x
∗
1)g−(x

∗
2) + g+(x

∗
2)g−(x

∗
1) + 2g+(x

∗
1)g−(x

∗
3) + 2g+(x

∗
2)g−(x

∗
3).
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It is minimized at s1 = 0 if a > b or at s1 = 1 if a < b. If a = b, then the minimizer s1 is indefinite,
and it can be any value between 0 and 1.

Combining with the same consideration of the subderivative with respect to s2 in terms of b, we
arrive at the following summary of the values of s∗1 = f∗(x∗2)− f∗(x∗1) and s∗2 = f∗(x∗3)− f∗(x∗2) for
a risk minimizer f∗. Note that for some values of a and b, s∗1 and s∗2 are not uniquely determined
and neither is f∗.

a − − − 0 0 0 + + +
b − 0 + − 0 + − 0 +

b < a b = a b > a

s∗1 1 1 1 [0,1] [0,1] 1 0 0 0 [0,1] 1
s∗2 1 [0,1] 0 1 [0,1] 0 1 1 1 [0,1] 0

s∗1 + s∗2 2 [1,2] 1 [1,2] [1,2] 1 1 1 1 1 1

The table above shows that the optimal increments for the support vector ranking function could
be zero with the only exception of a < 0 and b < 0 case. Another notable fact is that the maximum
increment is 1, which clearly stems from the singularity point of the hinge loss. Having at least one
of s∗1 and s∗2 equal to zero means that the theoretically optimal ranking function f∗ produces ties
for the pair of x∗1 and x∗2 or x∗2 and x∗3. Such ties make the ranking error rate of f∗ strictly greater
than the minimal ranking error rate, and thus f∗ is not consistent with f∗

0 . This toy example
demonstrates that in general, ranking by risk minimization under the hinge loss could lead to
inconsistency due to ties when the sample space is discrete.

To understand the ideal case when the optimal increments are both 1 and hence ties in ranking
by f∗ do not occur, we examine the conditions a < 0 and b < 0. Expressing a < 0 equivalently as
g+(x

∗
2)g−(x

∗
1) > g+(x

∗
1)(g−(x

∗
2) + g−(x∗3)) and b < 0 as g+(x

∗
3)g−(x

∗
2) > g−(x∗3)(g+(x

∗
1) + g+(x

∗
2)),

we can describe the conditions alternatively as

g−(x∗1)
g+(x∗1)

>
g−(x∗2)
g+(x∗2)

+
g−(x∗3)
g+(x∗2)

and
g+(x

∗
3)

g−(x∗3)
>

g+(x
∗
2)

g−(x∗2)
+

g+(x
∗
1)

g−(x∗2)
.

From the inequalities, a < 0 can be interpreted as a condition for the gap between the likelihood
ratios of g−/g+ at x∗1 and x∗2 being sufficiently large (more precisely, larger than g−(x∗3)/g+(x

∗
2))

and likewise, b < 0 means that the gap between the likelihood ratios of g+/g− at x∗2 and x∗3 is large
enough. In other words, when the elements in the sample space are sufficiently apart in terms of
their likelihood ratio, we expect theoretically optimal rankings by the function f∗ to be without
any ties. Otherwise, f∗ could yield ties.

In addition, we see from the table that a < b is a sufficient condition for s∗1 = 1 and similarly
b < a is a sufficient condition for s∗2 = 1. Note that a < b is equivalent to g−(x∗2) < g+(x

∗
2).

From the result displayed in the table, by choosing either 0 or 1 arbitrarily for s∗i in the indefinite
cases, we can partition the space of all probability distributions g+ and g− on X into three cases:
(s∗1, s

∗
2) = (1, 1), (1, 0) or (0, 1). Letting

∆12 ≡
g−(x∗1)
g+(x∗1)

−
(

g−(x∗2)
g+(x∗2)

+
g−(x∗3)
g+(x∗2)

)

and ∆23 ≡
g+(x

∗
3)

g−(x∗3)
−
(

g+(x
∗
2)

g−(x∗2)
+

g+(x
∗
1)

g−(x∗2)

)

,

we can verify the following relations:

(i) if ∆12 > 0 and ∆23 > 0, (s∗1, s
∗
2) = (1, 1).
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(ii) if ∆23 < 0 and g−(x∗2) < g+(x
∗
2), (s

∗
1, s

∗
2) = (1, 0).

(iii) if ∆12 < 0 and g−(x∗2) > g+(x
∗
2), (s

∗
1, s

∗
2) = (0, 1).

Figure 1 illustrates such partitions of g− distributions for various g+ distributions that are given.

Obeying the inherent restriction that
g+(x∗

1
)

g−(x∗

1
) <

g+(x∗

2
)

g−(x∗

2
) <

g+(x∗

3
)

g−(x∗

3
) and

∑3
i=1 g+(x

∗
i ) =

∑3
i=1 g−(x

∗
i ) = 1,

it shows a partition of the feasible region of (g−(x∗1), g−(x
∗
2)) in each panel, based on (s∗1, s

∗
2) given

(g+(x
∗
1), g+(x

∗
2), g+(x

∗
3)).
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Figure 1: Partitions of feasible (g−(x∗1), g−(x
∗
2)) based on (s∗1, s

∗
2) for various g+ distributions

(g+(x
∗
1), g+(x

∗
2), g+(x

∗
3)). g−(x

∗
i ) is abbreviated as g−(i) for i = 1, 2.

3.3.2 General properties

By using the constructive way of identifying ranking functions with increments in the toy example,
we derive general properties of optimal ranking functions under the hinge loss.

As illustrated in the toy example, the ranking risk is minimized by a unique set of optimal
increments except for some degenerate cases of negligible measure. Without loss of generality in
practical sense, we derive the following result under the assumption that the risk minimizer f∗ is
unique (up to an additive constant).

Theorem 4. For discrete space X = {x∗i }Ni=1 (with N = ∞ allowed), let f∗ = argminf E(1 −
(f(X) − f(X ′)))+. Suppose that f∗ is unique up to an additive constant. Then for every (x, z) ∈
X × X , g+(x)

g−(x) >
g+(z)
g−(z) implies f∗(x) ≥ f∗(z).

Proof. Without loss of generality, assume
g+(x∗

1
)

g−(x∗

1
) < · · · < g+(x∗

N
)

g−(x∗

N
) . To prove the theorem, we have

only to show that the optimal increments s∗i ≡ f∗(x∗i+1) − f∗(x∗i ) for i = 1, . . . , N − 1 are non-
negative.

Consider a sequence of “smoothed” version of hinge loss l(s) = (1− s)+ defined as

ln(s) =







1− s if s ≤ 1− 1/n
(n(s− 1)− 1)2/4n if 1− 1/n < s ≤ 1 + 1/n
0 if s > 1 + 1/n.

(4)

Each ln is differentiable, 0 ≤ ln(s) − l(s) ≤ 1/4n for every s ∈ R, and hence ln(s) → l(s) as
n → ∞. Define R(f) ≡ E[l(f(X) − f(X ′))], Rn(f) ≡ E[ln(f(X) − f(X ′))], f∗

n = argminfRn(f)
and f∗ = argminfR(f).
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Letting si = f(x∗i+1) − f(x∗i ) for given ranking function f , we can represent f as {si}N−1
i=1 .

Likewise, we represent f∗
n and f∗ as {sni = f∗

n(x
∗
i+1) − f∗

n(x
∗
i )}N−1

i=1 and {s∗i }N−1
i=1 , respectively.

Taking R(f) as a function of {si}N−1
i=1 , we have R({sni }N−1

i=1 ) → R({s∗i }N−1
i=1 ) as n → ∞. From the

assumption that {s∗i }N−1
i=1 is unique, we can show that sni → s∗i for i = 1, . . . , N − 1.

The following proof is based on similar arguments in Pollard (1991) and Hjort and Pollard
(1993). Given δ > 0, define h(δ) ≡ inf‖s−s∗‖=δ R(s)−R(s∗), where s = {si}N−1

i=1 and s∗ = {s∗i }N−1
i=1

for short. The uniqueness of s∗ implies that h(δ) > 0 for every δ > 0. Since Rn(s) → R(s)
uniformly, there is N such that for all n ≥ N , sup‖s−s∗‖≤δ |Rn(s)−R(s)| < h(δ)/2.

Let s be any point outside the ball around s∗ with radius δ, say s = s∗ + l · u for a unit vector
u with l > δ. Convexity of Rn implies (δ/l)Rn(s)+ (1− δ/l)Rn(s

∗) ≥ Rn(s
∗ + δu). Then, from the

inequality, we have

(δ/l)(Rn(s)−Rn(s
∗)) ≥ Rn(s

∗ + δu) −Rn(s
∗)

= [R(s∗ + δu) −R(s∗)] + [Rn(s
∗ + δu) −R(s∗ + δu)]− [Rn(s

∗)−R(s∗)]

≥ h(δ) − 2 sup
‖s−s∗‖≤δ

|Rn(s)−R(s)|.

Thus, for all n ≥ N , if ‖s − s∗‖ > δ, then Rn(s)−Rn(s
∗) > 0, and hence the minimizer of Rn, s

∗
n

should be inside the ball, ‖s∗n − s∗‖ ≤ δ. This means that s∗n → s∗ as n → ∞.
Since ln satisfies the conditions in Theorem 3, the discrete version of the theorem implies that

sni > 0 for each n and i. Then, as a limit of the sequence {sni }∞n=1, s
∗
i ≥ 0.

The following theorem shows more specific results of optimal ranking under the hinge loss. They
reveal the undesirable property of potential ties in ranking when the hinge loss is used, extending
the phenomenon observed in the toy example to general case. Detailed proof is given in Appendix.

Theorem 5. Let f∗ = argminf E(1 − (f(X) − f(X ′)))+. Suppose that f∗ is unique up to an
additive constant.

(i) For discrete X = {x∗i }Ni=1 (with N = ∞ allowed), if elements are ordered by the likelihood ratio

g+/g− such that
g+(x∗

1
)

g−(x∗

1
) < · · · < g+(x∗

N
)

g−(x∗

N
) , then the increments of f∗ can not be any value other

than 0 or 1, that is, {f∗(x∗i+1)−f∗(x∗i )}N−1
i=1 = {0, 1}. Thus, a version of f∗ is integer-valued.

(ii) For continuous X , there exists an integer-valued ranking function whose risk is arbitrarily
close to the minimum risk.

3.3.3 Integer-valued ranking functions

As an implication of Theorem 5, it is sufficient to consider only integer-valued functions in order
to find a risk minimizer f∗ under the hinge loss.

Let K be the number of distinct values that f takes (possibly ∞) and re-define Ai(f) as
{x| f(x) = i} slightly different from that in the proof of Theorem 5 (ii). For A(f) = {Ai}Ki=1, using

the same definition of ĝ+ and ĝ− as in the proof, we have ĝ+(A1)
ĝ−(A1)

< · · · < ĝ+(AK)
ĝ−(AK) . Emphasizing the

connection between the partition A(f) and f , let fA(x) =
∑K

i=1 i · I(x ∈ Ai) represent f . Then the
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ranking risk of fA is explicitly given by

E[(1 − (fA(X) − fA(X
′)))+]

=

K
∑

i=1

K
∑

j=i

(1− i+ j)ĝ+(Ai)ĝ−(Aj) =

K
∑

i=1

ĝ+(Ai)

K
∑

l=i

ĝ−(∪K
j=lAj)

=

K
∑

l=1

l
∑

i=1

ĝ+(Ai)ĝ−(∪K
j=lAj) =

K
∑

l=1

ĝ+(∪l
i=1Ai)ĝ−(∪K

j=lAj). (5)

To examine the effect of the number of distinct values K or the number of steps (K − 1) on the
minimal ranking risk, define FK as the set of all integer-valued functions with (K−1) steps only. Let
RK = inff∈FK

Rl(f) be the minimal risk achieved by ranking functions within FK . The following
results show that if the likelihood ratio g+/g− is unbounded, the ranking risk RK is non-increasing
in K and strictly decreasing as long as g− has a positive probability for diminishing tails of the
likelihood ratio where it diverges to ∞. See Section 5 for a concrete example illustrating Theorem
6 and Corollary 1.

Theorem 6. If infx∈X
(

g−(x)/g+(x)
)

= 0, then RK ≥ RK+1 for K = 1, 2, . . ..

Proof. Suppose that fA(x) =
∑K

i=1 i · I(x ∈ Ai) is a risk minimizer in FK . Given fA, we construct
a simple function with K values by splitting AK into two sets BK and BK+1 and setting Bi equal
to Ai for i = 1, . . . ,K − 1. For the new partition B = {Bi}K+1

i=1 , define a simple function

fB(x) =
K+1
∑

i=1

i · I(x ∈ Bi).

Using the relation that ĝ−(AK) = ĝ−(BK) + ĝ−(BK+1) and
∑K

i=1 ĝ+(Ai) =
∑K+1

i=1 ĝ+(Bi) = 1,

and the identity Rl(fB) =
∑K+1

l=1 ĝ+(∪l
i=1Bi)ĝ−(∪K+1

j=l Bj) from (5), we can verify that

Rl(fB) =

K+1
∑

l=1

(

l
∑

i=1

ĝ+(Bi)

)





K+1
∑

j=l

ĝ−(Bj)





=

K−1
∑

l=1

(

l
∑

i=1

ĝ+(Ai)

)





K
∑

j=l

ĝ−(Aj)



 + (1− ĝ+(BK+1))ĝ−(AK) + ĝ−(BK+1)

=

K
∑

l=1

(

l
∑

i=1

ĝ+(Ai)

)





K
∑

j=l

ĝ−(Aj)



− ĝ+(BK+1)ĝ−(AK) + ĝ−(BK+1).

Therefore Rl(fB)−Rl(fA) = −ĝ+(BK+1)ĝ−(AK) + ĝ−(BK+1).
Given ĝ−(AK), define BK+1 = {x| g−(x)/g+(x) < ĝ−(AK)}. If ĝ−(AK) > 0, BK+1 is not empty

since infx∈X g−(x)/g+(x) = 0. Furthermore, we can show that ĝ−(BK+1) < ĝ−(AK)ĝ+(BK+1),
which implies that Rl(fB) < Rl(fA). If ĝ−(AK) = 0, then ĝ−(BK+1) = 0, and consequently
Rl(fB) = Rl(fA). Hence the risk of fB is at most that of fA, and this proves the desired result.

Corollary 1. Let Cǫ = {x| g−(x)/g+(x) < ǫ}. If ĝ−(Cǫ) > 0 for all ǫ > 0, then RK > RK+1 for
each K under the assumption of Theorem 6. Hence the optimal K is infinity.
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Proof. Given a risk minimizer fA with (K−1) steps, there exists ǫK such that AK = {x| g−(x)/g+(x) <
ǫK} = CǫK . By the assumption, ĝ−(AK) = ĝ−(CǫK ) > 0. As shown in Theorem 6, when
ĝ−(AK) > 0, there exists a simple function fB with K values such that Rl(fB) < Rl(fA). Hence
RK > RK+1 for each K.

Remark 3. By reversing the role of g+ and g− and redefining Ai, we can establish similar results
as Theorem 6 and Corollary 1 when infx∈X

(

g+(x)/g−(x)
)

= 0.

4 Comments on related results

As a related work, Clémençon et al. (2008) provide a rigorous statistical framework for studying
the ranking problem and also discuss convex risk minimization methods for ranking. We explain
the connection between the two approaches and point out the differences.

Their formulation considers a ranking rule r : X × X → {−1, 1} directly, instead of a ranking
(or scoring) function f : X → R as in our formulation. If r(x, x′) = 1, then x is ranked higher
than x′. A ranking rule r represents a partial order or preference between two instances while a
ranking function f represents a total order over the instance space. A real-valued function h(x, x′)
on X × X can induce a ranking rule via r(x, x′) ≡ sgn(h(x, x′)).

Covering more general ranking problems with a numerical response Y , for each independent
and identically distributed pair of (X,Y ) and (X ′, Y ′) from a distribution on X ×R, they define a
variable Z = (Y − Y ′)/2, and consider X being better than X ′ if Z > 0. Then by directly relating
(X,X ′) with sgn(Z), they transform the ranking problem to a pairwise binary classification problem
and examine the implications of the formulation to ranking.

Note that in the transformed classification framework, the bipartite ranking loss corresponds to
the 0-1 loss. As a result, when Y = 1 or −1, the best ranking rule r∗(x, x′) is given by the Bayes
decision rule for the classification problem:

φ∗(x, x′) = sgn

(

log
P (Z = 1|X = x,X ′ = x′)
P (Z = −1|X = x,X ′ = x′)

)

.

Although it was not explicitly stated in the paper, we can infer from φ∗(x, x′) that the best ranking
rule in bipartite ranking can be expressed as

r∗(x, x′) = sgn
(

g+(x)/g−(x)− g+(x
′)/g−(x

′)
)

since

P (Z = 1|X,X ′)
P (Z = −1|X,X ′)

=
P (X,X ′|Z = 1)

P (X,X ′|Z = −1)
× P (Z = 1)

P (Z = −1)

=
g+(X)g−(X ′)
g−(X)g+(X ′)

× P (Z = 1)

P (Z = −1)
=

g+(X)g−(X ′)
g−(X)g+(X ′)

.

Hence, with this different formulation, we can arrive at the same conclusion of Theorem 1 that the
theoretically optimal rankings over the instance space X are given by the likelihood ratio (g+/g−).

As an extension, for the ranking rules minimizing convex risk functionals, Clémençon et al.
(2008) invoke the results of Bartlett et al. (2006) on the consistency of classification with convex
loss functions. Again, directly aiming at the optimal ranking rule rather than the scoring function,
they discuss theoretical implications of minimization of the risk E[l(sgn(Z)h(X,X ′))] for a convex
loss l.
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Considering only a positive instance X and a negative instance X ′, we can describe the dif-
ference between our approach and theirs being whether one finds the optimal ranking rule in-
duced by a real-valued function h, argminhE[l(h(X,X ′))] or the optimal ranking function f ,
argminfE[l(f(X) − f(X ′))]. In practice, ranking algorithms such as the RankBoost algorithm
produce a ranking function, not a ranking rule, which makes our approach more natural and perti-
nent. More importantly, a ranking rule does not define a ranking function consistently in general,
and Clémençon et al. (2008) have overlooked the fact when applying the classification results to
ranking.

On the other hand, in some special cases, if there exists f such that h∗(x, x′) = f(x) − f(x′),
h∗ can be used to specify the optimal f . Theorem 2 regards those special cases. For example, in
the case of the exponential loss, its population minimizer in the classification problem is known as
(1/2) times the logit. Therefore, the best ranking rule r∗(x, x′) is induced by

h∗(x, x′) =
1

2
log

P (Z = 1|X = x,X ′ = x′)
P (Z = −1|X = x,X ′ = x′)

=

(

1

2
log

g+(x)

g−(x)
+ β

)

−
(

1

2
log

g+(x
′)

g−(x′)
+ β

)

,

where β is an arbitrary constant. h∗ then identifies f∗ = (1/2) log(g+/g−) as the optimal ranking
function, the same conclusion as Theorem 2.

The following theorem states that the conditions for ranking loss in Theorem 2 are indeed
necessary for the existence of a ranking (or scoring) function consistent with h∗(x, x′), and therefore,
the equivalence between the two formulations.

Theorem 7. Suppose that l is convex, differentiable, l′(s) < 0 for all s ∈ R, and l′(−s)/l′(s) is
strictly increasing in s. Let h∗ be the optimal function on X ×X minimizing E[l(h(X,X ′))]. Then
h∗ is of the form, h∗(x, x′) = f(x) − f(x′) for some function f on X if and only if l′(−s)/l′(s) =
exp(s/α) for some positive constant α.

Proof. For x and x′, let s ≡ h∗(x, x′). From (1) in the proof of Theorem 2, we have

l′(−s)

l′(s)
=

g+(x)

g−(x)
g−(x′)
g+(x′)

.

Note that this intermediate result is obtained using the convexity and differentiability of l only.
Let G(s) ≡ l′(−s)/l′(s). Solving the above equation for s = h∗(x, x′), we get

h∗(x, x′) = G−1

(

g+(x)

g−(x)
g−(x′)
g+(x′)

)

.

Suppose that h∗(x, x′) = f(x)− f(x′) for some function f on X . Then

G−1

(

g+(x)

g−(x)
g−(x′)
g+(x′)

)

= f(x)− f(x′) = [f(x)− f(x0)] + [f(x0)− f(x′)]

= G−1

(

g+(x)

g−(x)
g−(x0)
g+(x0)

)

+G−1

(

g+(x0)

g−(x0)
g−(x′)
g+(x′)

)

,

which implies that G−1(a · b) = G−1(a) + G−1(b) for any a, b > 0, in general. This condition for
G−1 further implies that G−1(t) = α log(t) for some α. Since G is increasing, α has to be positive,
and thus G(s) = exp(s/α), which completes the proof of the necessity. Theorem 2 proves the
sufficiency.
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Remark 4. When the conditions in Theorem 7 hold for loss l, the two formulations for ranking
are equivalent in the sense that h∗(x, x′) = f∗(x) − f∗(x′) by Theorem 2. As mentioned before,
the exponential loss for RankBoost and deviance loss for RankNet satisfy the conditions, leading to
the functional correspondence between h∗ and f∗. Note that the regret bound for bipartite ranking
through h(·, ·) in Clémençon et al. (2008) (see p.864) is based on the result in Bartlett et al. (2006)
for binary classification, and its translation to the regret bound for ranking through f(·) is valid
only when h∗(x, x′) = f∗(x)− f∗(x′).

Remark 5. Kotlowski et al. (2011) and Agarwal (2012) also assume the relation between a pairwise
ranking rule sgn(h(x, x′)) and a scoring function f(x) from binary classification as sgn(f(x)−f(x′))
in their regret bounds analysis.

Remark 6. The assumption in Theorem 7 about l′(−s)/l′(s) is related to the necessary and suffi-
cient condition for proper composite losses in Reid and Williamson (2010) for binary classification.

In contrast to those loss functions that yield the functional correspondence between h∗ and
f∗, other loss functions call for careful distinction between the two approaches. For example, the
squared hinge loss l is ranking-calibrated (also classification-calibrated), but l′(−s)/l′(s) 6= exp(s/α)
for any positive constant α. Hence h∗(x, x′) can not be expressed as f(x)−f(x′) for any f including
f∗, although sgn(h∗(x, x′)) = sgn(f∗(x)− f∗(x′)).

Another case in point which illustrates the difference between the two approaches clearly is the
hinge loss, l(s) = (1− s)+. Application of the well-known result in the classification literature (for
example, Bartlett et al. 2006) about the population minimizer of the hinge loss gives

h∗(x, x′) = sgn

(

P (Z = 1|X = x,X ′ = x′)− 1

2

)

= sgn

(

log
P (Z = 1|X = x,X ′ = x′)
P (Z = −1|X = x,X ′ = x′)

)

= sgn

(

log
g+(x)g−(x′)
g−(x)g+(x′)

)

.

It is easy to argue that there exists no ranking function f such that h∗(x, x′) = f(x) − f(x′). If
there existed f such that

sgn

(

log
g+(x)g−(x′)
g−(x)g+(x′)

)

= f(x)− f(x′),

then for x0 with g+(x0) = g−(x0), the ranking function would be given by

f(x) = f(x0) + sgn

(

log
g+(x)

g−(x)

)

.

However, the functional form leads to the equation

sgn

(

log
g+(x)

g−(x)
− log

g+(x
′)

g−(x′)

)

= sgn

(

log
g+(x)

g−(x)

)

− sgn

(

log
g+(x

′)
g−(x′)

)

,

which is not generally true.
In contrast, Theorem 4 implies at least that the optimal ranking function under the hinge loss

preserves the order of the likelihood ratio, but not strictly with some possible ties. Although the
explicit form of f∗ may not be specified, Theorem 5 further describes that f∗ could exhibit the
characteristic of a step function. As the toy example illustrates, such ties could lead to ranking
inconsistency.
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5 Numerical illustration

5.1 Simulation study

To illustrate the theoretical results pertaining to the large sample characteristics of estimated
ranking functions under different loss criteria, we carried out a numerical experiment under a
simple setting.

With binary Y (1 or −1), the distribution of X for the positive category is set to N(1, 1),
and that for the negative category is set to N(−1, 1). From g+(x) = 1√

2π
exp(−(x − 1)2/2) and

g−(x) =
1√
2π

exp(−(x+1)2/2) in this case, we have log(g+(x)/g−(x)) = 2x. Thus the theoretically

best ranking function with minimum ranking error should be an order-preserving transformation
of x. A training data set of (X,Y ) pairs was generated from the distributions with 2000 instances
in each category (n+ = n− = 2000).

First, the RankBoost algorithm in Freund et al. (2003) was applied to the training sample
by considering 2000 × 2000 positive and negative pairs. It aims to attain the minimum ranking
error by minimizing the empirical risk under the exponential loss. In the boosting algorithm for
ranking, a weak learner is a ranking function whose performance in terms of the AUC is slightly
better than random assignment. In our experiment, a stump fθ(x) ≡ I(x > θ) or I(x ≤ θ) with
a threshold θ ∈ R was used as a weak learner, and the threshold θ was taken from the observed
values, {xi}n+

i=1 ∪ {x′j}
n−

j=1. At each iteration, a weak ranking function was chosen and added to the
current ranking function with weight determined to minimize the ranking risk over the positive and
negative pairs from the training data. We iterated the boosting process for 400 times to combine
weak rankings and obtained the final ranking function f̂ . It is depicted in the left panel of Figure
2. The f̂ in the figure is centered to zero in the y axis. The dotted line is the theoretically optimal
ranking function, f∗(x) = (1/2) log(g+(x)/g−(x)) = x, under the exponential loss as indicated
by Theorem 2. The centered ranking function from boosting appears to approximate f∗ closely,
especially over [−2, 2], where the density is relatively high as marked by the rug plot of a subset of
the observed values sampled at the rate of 1/20. The flat part of the function on either end is an
artifact due to the form of the weak learners used in boosting. Increasing the number of iterations
further did not change the visual appearance of the ranking function. In fact, after fewer than 20
iterations, the AUC values of boosted rankings over the training data became stable as shown in
the right panel, and the changes afterwards were only incremental.

Second, the AUC maximizing support vector machine (SVM) in Brefeld and Scheffer (2005) was
applied to the training data. In general, the AUCSVM (also known as RankSVM) finds a ranking
function f ∈ HK minimizing

C

n+
∑

i=1

n−
∑

j=1

(1− (f(xi)− f(x′j)))+ + ‖f‖2HK
,

where C is a tuning parameter and HK is a reproducing kernel Hilbert space with a kernel K. The
solution f̂(x) takes the form of

∑

i,j cij(K(xi, x)−K(x′j , x)). As the data involve four million pairs,
which would make exact computation almost prohibitive, a clustering approach was proposed in
the paper for approximate computation. Since X is univariate in this example, we could streamline
the clustering step by taking sample quantiles, instead of relying on general k-means clustering as
suggested in the paper. We first selected a certain number of quantiles of pairwise differences (xi−
x′j) for i = 1, . . . , n+ and j = 1, . . . , n−, and used only the corresponding pairs for an approximate
solution. To allow a rich space with sufficiently local basis functions for approximation of the
optimal ranking functions, the Gaussian kernel K(x, x′) = exp(−(x − x′)2/2σ2) with parameter

16



(a)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

(b)

0 10 20 30 40 50

0.65

0.70

0.75

0.80

0.85

0.90

iteration

A
U

C
Figure 2: (a) Ranking function given by the RankBoost algorithm. The solid line is the estimated
ranking function f̂ centered to 0, and the dotted line is the theoretically optimal ranking function
f∗(x) = x. (b) AUC values of boosted rankings over the training data as the iteration proceeds.

σ2 = 0.15 was used. To illuminate the implications of Theorem 5, we also considered a range of
other sample sizes n = n+ = n− and tuning parameter C.

Figure 3 shows approximate ranking functions f̂ (solid lines) obtained by the AUC maximizing
SVM for some combinations of n and C. For approximation, we selected 400 pairs based on quantiles
of the pairwise differences when n+ = n− = 30 and 1500 pairs when n+ = n− = 2000 or 3000. As
expected from Theorem 5, the estimated ranking functions appear to approximate step functions
increasing in x roughly over the region of high density [−2, 2] as indicated by the visible bumps.
The reverse trend on either end is again an artifact due to the form of the Gaussian kernel used as
a basis function and the fact that there are relatively few observations near the end. On the whole,
the ranking functions attempt to provide the same ordering as the likelihood ratio as indicated
by Theorem 4, however, with potentially many ties. In general, ties are considered undesirable in
ranking. The dotted lines in Figure 3 are the optimal step functions that are theoretically identified
when the numbers of steps are 1, 2, 4, and 5, respectively. Explanation of how to characterize the
optimal step functions in general is given in the next subsection. We empirically chose the step
function that matches each of the estimated ranking functions most closely in terms of the number
of steps. For better alignment, we shifted the step function in each panel vertically so that the
values of the pair of functions at x = 0 are identical.

5.1.1 The optimal step functions for ranking under hinge loss

Although there is no explicit expression of the optimal ranking function under the hinge loss in this
case, Theorem 5 (ii) suggests that there exists an integer-valued function whose risk is arbitrarily
close to the minimum. In an attempt to find the best ranking function among integer-valued
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Figure 3: In each panel, the solid line is the estimated ranking function by the AUC maximizing
SVM (RankSVM), and the dotted line is a step function obtained theoretically.

functions given the number of steps K, we consider a step function of the form

fA(x) =
K+1
∑

i=1

i · I(ai−1 < x ≤ ai)

with jump discontinuities {ai}Ki=1, a0 = −∞ and aK+1 = ∞. Note that fA is non-decreasing in x
as the likelihood ratio is.

Using (5) with Ai = (ai−1, ai], we can explicitly calculate the risk of fA as

E[(1 − (fA(X) − fA(X
′)))+] =

K+1
∑

i=1

G+(ai)(1−G−(ai−1)) =

K+1
∑

i=1

Φ(ai − 1)(1 − Φ(ai−1 + 1)),

where G+ and G− are the cdfs of X and X ′, and Φ is the cdf of the standard normal distribution.
Given K, the necessary condition for risk minimization is then

∂

∂ai

K+1
∑

l=1

G+(al)(1−G−(al−1)) = g+(ai)(1 −G−(ai−1))− g−(ai)G+(ai+1) = 0 (6)

for i = 1, . . . ,K. In the normal setting, (6) is simplified to

exp(−ai)Φ(ai+1 − 1) = exp(ai)(1− Φ(ai−1 + 1)) for i = 1, . . . ,K. (7)

By solving for ai analytically, we can identify the jump discontinuities of the step function with
minimal risk given the number of steps. Table 1 displays the solutions to the equations for small K
that are obtained numerically. For example, when K = 1, the optimal ranking function has a jump
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Table 1: Jump discontinuities {ai}Ki=1 of the step functions with minimal risk in the normal setting
given the number of steps

Number of steps K

1 2 3 4 5 6 7 8 9 10 11
7.0139

6.1511
4.5196 4.5202

3.4437 3.4437
2.6756 2.6759 2.6759

aK 2.0887 2.0842 2.0842
1.6262 1.5943 1.5943 1.5943

aK−1 1.2532 1.1613 1.1605 1.1605
0.9205 0.7662 0.7589 0.7589 0.7589

0.5564 0.3947 0.3755 0.3755 0.3754
..
. 0 0 0 0 0 0

-0.5564 -0.3947 -0.3755 -0.3755 -0.3754
-0.9205 -0.7662 -0.7589 -0.7589 -0.7589

a2 -1.2532 -1.1613 -1.1605 -1.1605
-1.6262 -1.5943 -1.5943 -1.5943

a1 -2.0887 -2.0842 -2.0842
-2.6756 -2.6759 -2.6759

-3.4437 -3.4437
-4.5196 -4.5202

-6.1511
-7.0139

at a1 = 0, which coincides with the decision boundary of the Bayes rule if the problem was treated
as binary classification. The sequences displayed in the table certainly reveal some symmetry in
the solutions to (7).

To verify the observed symmetry analytically, first consider the case when K is odd, say, 2m+1
for m = 0, 1, . . .. Set am+1 = 0. Then the equation (7) for i = m + 1 becomes Φ(am+2 − 1) =
1−Φ(am +1), which implies am+2 = −am. By using this fact and (7) for i = m and i = m+2, we
can derive

Φ(am+3 − 1) = exp(−2am)Φ(−1) = 1− Φ(am−1 + 1),

which yields am+3 = −am−1. In general, suppose that a(m+1)+i = −a(m+1)−i for i = 1, . . . , k. Then
Φ(a(m+1)+(k+1) − 1) = exp(2a(m+1)+k)(1− Φ(am+k + 1))
= exp(−2a(m+1)−k)Φ(a(m+1)−(k−1)−1) = 1−Φ(a(m+1)−(k+1)+1). Thus, the symmetry a(m+1)+i =
−a(m+1)−i holds for i = k + 1. By mathematical induction, we conclude that for K = 2m + 1,

a sequence {ai}Ki=1 symmetric around zero with am+1 = 0 solves (7). As a special case, when
K = 3, −a1 = a3 and a2 = 0. Furthermore, from the optimality equation (7), we can determine
a1 =

1
2 log Φ(−1) ≈ −0.9205.

Similarly when K is even, say, 2m, we can show that a sequence {ai}Ki=1 symmetric around zero
with ai = −aK+1−i for i = 1, . . . ,m solves (7). For example, when K = 2, a1 = −a2, and a1 is
the solution to the equation exp(2a1) = Φ(−a1 − 1), which yields a1 ≈ −0.5564. In both cases, the
symmetry halves the number of unknowns in the solution sequences.

Since log(g+(x)/g−(x)) = 2x, by taking Cǫ = {x|x > −(log ǫ)/2}, we can check that ĝ−(Cǫ) =
Φ((log ǫ)/2 − 1) > 0 for all ǫ > 0. Hence, the optimal K on the population level is infinity by
Corollary 1. To study the limiting sequence of jump discontinuities as K → ∞, let us examine
the relation between ai−1 and ai when {ai}Ki=1 is generated sequentially by using (7). Given ai−1,
consider possible values of ai. From Φ(ai+1 − 1) = exp(2ai)(1−Φ(ai−1 +1)), we have exp(2ai)(1−
Φ(ai−1 + 1)) ≤ 1 with the equality holding for i = K only. Similarly, from exp(−2ai−1)Φ(ai −
1) = 1 − Φ(ai−2 + 1), we have exp(−2ai−1)Φ(ai − 1) ≤ 1 with the equality holding for i = 2
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only. In addition, by the monotonicity of the sequence, exp(−ai)Φ(ai − 1) < exp(−ai)Φ(ai+1 −
1) = exp(ai)(1 − Φ(ai−1 + 1)) and exp(ai−1)(1 − Φ(ai−1 + 1)) < exp(ai−1)(1 − Φ(ai−2 + 1)) =
exp(−ai−1)Φ(ai − 1).

Figure 4 depicts the feasible region of (ai−1, ai) derived from the four inequalities. Examples
of (ai−1, ai) pairs for some K are also drawn, which are the circles and the square falling into the
shaded area. For instance, when K = 2, a2 = −a1 ≈ 0.5564, and (a1, a2) lies on the line y = −x.
When K = 3, (a1, a2) = (a1, 0) and (a2, a3) = (0,−a1) with a1 ≈ −0.9205, which are the points on
the x-axis and the y-axis, respectively in the figure.

By the symmetry in {ai}Ki=1, we know that for evenK = 2m, am = −am+1 and thus (am, am+1) =
(−am+1, am+1) lies on the line y = −x, and for odd K = 2m + 1, am+1 = 0 and (am+1, am+2) =
(0, am+2) lies on the y-axis. Since the sequence of jump discontinuities is characterized by the
recursive relation in (7), where ai−1 and ai determine ai+1, finding am+1 for even K (or am+2 for
odd K) as K → ∞ is sufficient to identify the limiting sequence. The discussion of the feasible
region for (ai−1, ai) implies that 0 ≤ am+1 ≤ 0.5564 (the line segment of y = −x in the region) for
even K, and 0 ≤ am+2 ≤ 0.9205 (the segment of the y-axis in the region) for odd K. In each case,
when the progression from ai−1 to ai is made iteratively for the limiting sequence, each pair should
remain in the feasible region. This internal dynamics allows us to devise a bisection algorithm to
pin down the value of am+1 (or am+2), the least positive element in the limiting sequence. Figure
5 illustrates the dynamic process of generating {ai} given several potential values of am+1 for even
K in the left panel and am+2 for odd K in the right panel. The bisection algorithm results in
am+1 ≈ 0.37537 for even K and am+2 ≈ 0.75893 for odd K. Observe that they are close to a6 and
a7 in Table 1 when K = 10 and 11, respectively.
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Figure 4: Feasible region for a pair of jump discontinuities (ai−1, ai) in the normal setting.
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Figure 5: Progression of jump discontinuities {ai} for various values of (a) am+1 (represented by
the points on the line y = −x) for even K = 2m and (b) am+2 (represented by the points on the
y-axis) for odd K = 2m+ 1.

5.1.2 Ranking risk

For a step function of the form fA(x) =
∑K+1

i=1 i · I(ai−1 < x ≤ ai), its theoretical ranking risk (or

1 − AUC) is given by

K+1
∑

i=1

P (ai−1 < X ≤ ai){P (X ′ > ai) +
1

2
P (ai−1 < X ′ ≤ ai)}. In the normal

setting, 1−AUC is then given as

K+1
∑

i=1

{Φ(ai − 1) −Φ(ai−1 − 1)}[1 − Φ(ai + 1) +
1

2
{Φ(ai + 1)− Φ(ai−1 + 1)}]

= 1− 1

2

K+1
∑

i=1

{Φ(ai − 1)− Φ(ai−1 − 1)}{Φ(ai + 1) + Φ(ai−1 + 1)},

and it can be calculated explicitly for a step function with specified jump discontinuities.
Corollary 1 says that the theoretical risk of the optimal ranking function with K steps decreases

with K. Figure 6 illustrates the theoretical risk (1 − AUC) for some K values and corresponding
empirical risk of the RankSVM calculated over simulated data under the bipartite ranking loss (left
panel) and the hinge loss (right panel). The values of the theoretical risk are indicated by the solid
dots in the figure. They get smaller as K increases. For K = 6, the risk is 0.08908. For K = 10
and 11, it is approximately 0.08906, which can be taken as almost the limit of the minimal risk of
the RankSVM from the consideration of the range of x and x′. Compared with the smallest risk
(or the ‘Bayes’ ranking risk) of P (X < X ′) = Φ(−

√
2) ≈ 0.07865 in this setting, the RankSVM

produces an extra error of 0.01041, and this clearly indicates the inconsistency of risk minimization
under the hinge loss.

Along with the theoretical risk, the values of the empirical risk of RankSVM are plotted for
various combinations of sample size and the tuning parameter C. The number next to each plotting
symbol is the value of C used for the corresponding case. We note that determination of the number
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Figure 6: Theoretically minimal risk and empirical risk of RankSVM under (a) bipartite ranking
loss and (b) hinge loss. The solid dots are for the theoretical risk while other symbols are for
the empirical risk calculated under various combinations of sample size n and tuning parameter C
(indicated by the number next to each symbol).

of steps K given an estimated ranking function was not always unambiguous, and subjective calls
had to be made for some cases. Nonetheless, Figure 6 suggests that the empirical results are
generally consistent with the theory. Sample size n and the tuning parameter C influence the
data range and the range of ranking functions, which, in turn, affect the number of steps in finite
sample results. In general, as n increases, f̂ tends to have more steps, and for a fixed n, larger
C (equivalently, smaller penalty parameter) produces more steps. Of course, σ2 affects the visual
characteristics of f̂ as well. A systematic investigation would be necessary to understand the
granularity of finite-sample solutions to the RankSVM further.

5.1.3 Multivariate extension

Analytical comparisons between different ranking procedures in the univariate normal setting can
be generalized to the multivariate case. Suppose that a p-dimensional attribute vector X for
positive category follows Np(µ+,Σ) andX ′ for negative category followsNp(µ−,Σ) as in the classical
linear discriminant analysis setting with a common covariance matrix Σ. The log likelihood ratio,
log(g+(x)/g−(x)) is given by (µ+ − µ−)′Σ−1x up to an additive constant. Hence, the optimal
ranking function is an order-preserving transformation of r(x) ≡ (µ+ − µ−)′Σ−1x, and the Bayes

ranking risk is P (r(X) < r(X′)) = Φ
(

−
√

(∆′
µΣ

−1∆µ)/2
)

, where ∆µ ≡ µ+ − µ−.

Once the linear transform of the attributes is taken via r(x), this multivariate ranking problem
becomes essentially the same as the univariate normal problem whereX andX ′ followN(∆′

µΣ
−1µ+,∆

′
µΣ

−1∆µ)
and N(∆′

µΣ
−1µ−,∆′

µΣ
−1∆µ), respectively. For example, the univariate setting in the foregoing

section is equivalent to the p-variate setting where X ∼ Np(1/
√
p, I) and X ′ ∼ Np(−1/

√
p, I).

Extending the discussions in the univariate case, we can identify r(x) itself as f∗(x) under the
binomial deviance loss and r(x)/2 as that under the exponential loss. Similarly, we infer that f∗(x)
under the hinge loss can be an integer-valued function which is non-decreasing in r(x).
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For illustration, we simulated n+ = 1000 and n− = 1000 data pairs from the multivariate setting
with p = 10, µ+ = 1/

√
p, µ− = −1/

√
p, and Σ = I. In this case, r(x) = (2/

√
10)
∑10

j=1 xj . We
applied RankBoost, LogitBoost (a boosting algorithm for logistic regression; see Friedman et al.
2000), and RankSVM to the data. As in the univariate case, we used stumps as weak learners.
For both boosting algorithms, stumps were generated by randomly choosing a variable from the
10 variables and its threshold θ ∈ R. The number of iterations was determined by minimizing the
ranking error over test data of the same size as the training data.

To examine the estimated ranking functions, we display the main effects of the 10 variables
derived from the RankBoost and the LogitBoost outputs in Figure 7. The black lines are for
RankBoost and the red lines are for LogitBoost. For direct comparison with LogitBoost, the
estimated main effects of RankBoost are doubled in the figure. The dotted lines indicate the
theoretical components in the optimal ranking function. Figure 7 shows that the corresponding
main effects of the two ranking functions, once scaled, coincide mostly over the high density regions
described by the rug plots of the marginal distributions.
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Figure 7: Main effects of the 10 variables (X1-X10) derived from RankBoost and LogitBoost outputs
with stumps. Two times the main effects of RankBoost are in black, and the main effects of
LogitBoost are in red.

5.2 Application to Movie-Lens data

To examine the implications of the theoretical findings to real applications, we took one of the
Movie-Lens data sets (GroupLens-Research 2006). The data set consists of 100,000 ratings for
1682 movies by 943 users. The ratings are on a scale of 1 to 5. In addition to the ratings, the data
set includes information about the movies such as release dates and genres and some demographic
information about the users, which can be used as predictors. Among the features of a movie, we
used its release date (year, month, and day) and genres (a movie can be in several genres at once)
as explanatory variables for ranking. We also included age, gender, and occupation as user-specific
factors. For simplicity, in our analysis, ratings are taken as the sampling unit instead of movies or
users as in collaborative filtering (Bell et al. 2010, Koren et al. 2009).
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We first excluded 10 ratings with incomplete data. A quick examination of the scatterplot of
the proportion of movies rated 1 or 2 versus the number of movies rated for each user revealed
that six users (id: 13, 181, 405, 445, 655, 774) are outliers in one of the metrics; either extremely
critical or having rated unusually many movies. Exercising caution in modeling typical patterns in
ratings, we further excluded their ratings from our analysis, which led to a total of 97,139 ratings.
To turn this rating prediction into bipartite ranking, we dichotomized the ratings into ‘high’ (4
or 5) and ‘low’ (3 or below), which yields 54,806 of high ratings. We standardized the predictors
before conducting numerical experiments.

We compared three methods: RankBoost, RankSVM, and LogitBoost. As in the simulation
studies, stumps were generated by selecting a variable and a threshold from the observed values at
random, and used as weak learners for boosting. To handle large data and at the same time to put
the three procedures on an equal footing except for the loss function employed, we devised a boosting
(as forward stagewise additive modeling) algorithm for the hinge loss, dubbed ‘HingeBoost’ in this
paper. The loss criteria determine the weights attached to the weak learners in boosting, and thus
they drive the main difference between RankBoost and HingeBoost in the numerical comparisons.
Since the hinge loss is not strictly convex, depending on weak learners used, the optimal weight may
not be determined uniquely. For HingeBoost, weight optimization was done by grid search, and
when multiple minima existed, the smallest value was chosen. In addition, we examined the effect
of sample size and input space on ranking functions and their accuracy by varying the combination
of variables used in ranking and the number of training pairs (n+ × n−) from small (200× 200) to
large (1000 × 1000).

In each experiment, we first set aside test data (of 106 pairs) chosen at random from the Movie-
Lens data for evaluation. The same test data set was used across different training sample sizes
and variable combinations. High-low pairs in training data were formed by selecting equal number
of cases from each category at random from the remaining data, and additional 106 pairs were
randomly chosen from the rest for determining the number of iterations in boosting by taking the
given loss criterion as the corresponding validation criterion. Ranking accuracy was then evaluated
over the test pairs. This process was repeated 50 times. In each replicate, test data as well as
validation data were fixed and only training sample sizes and variable combinations were changed.
Across replicates, test data and validation data were varied.

Table 2 provides a summary of the results with the mean AUC value and the standard error
in parentheses for each setting. As the training set size increases, the ranking accuracy generally
increases for all three methods. Among the main variables, the movie release year turns out to be
a stronger predictor than genres, the user’s occupation and age. In terms of the ranking accuracy,
LogitBoost and RankBoost performed better than HingeBoost in general, and the differences be-
come more pronounced as the number of training pairs increases. LogitBoost produced the highest
mean AUC value for each setting.

Figure 8 depicts the main effect of the movie release year in the ranking functions when fitted
to a training set of million pairs by the three methods with all the variables. Here, the main effect
means the additive component of the ranking scores attributed to the corresponding variable, and
it is taken to be centered to zero. Each panel contains sample curves of the estimated main effect
from ten replicates, which are distinguished by different colors, and the solid black line indicates
their mean curve. Overall, old films in the data set tend to be rated high. Probably, they are those
films that survive for several decades for good reasons. The estimated effect of the movie release
year peaks around 1940-50, which includes such film classics as Citizen Kane, Vertigo, Casablanca,
Rear Window, and The Seventh Seal, just to name a few. The main effects from RankBoost and
LogitBoost in the figure are very similar except for the scale factor of 2 as suggested by the theory.
In contrast, HingeBoost provides a crude approximation to the ranking scores from the other two
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Table 2: Mean AUC values over test set of 106 pairs from Movie-Lens data and their standard errors
in parentheses when weak learners are stumps. The highest AUC value in each row is boldfaced.

Variable Training pairs LogitBoost RankBoost HingeBoost
(n+ × n−)
200 × 200 0.5146 (0.0018) 0.5128 (0.0020) 0.5123 (0.0014)

Age only 500 × 500 0.5186 (0.0019) 0.5155 (0.0019) 0.5106 (0.0018)
1000 × 1000 0.5233 (0.0017) 0.5204 (0.0019) 0.5115 (0.0017)

200 × 200 0.5788 (0.0021) 0.5698 (0.0027) 0.5678 (0.0023)
Year only 500 × 500 0.5846 (0.0020) 0.5786 (0.0024) 0.5673 (0.0020)

1000 × 1000 0.5881 (0.0015) 0.5840 (0.0019) 0.5665 (0.0017)

Genre and 200 × 200 0.5332 (0.0038) 0.5158 (0.0034) 0.5220 (0.0034)
Occupation only 500 × 500 0.5647 (0.0022) 0.5482 (0.0039) 0.5474 (0.0025)

1000 × 1000 0.5776 (0.0024) 0.5695 (0.0036) 0.5531 (0.0028)

200 × 200 0.5659 (0.0033) 0.5324 (0.0046) 0.5444 (0.0040)
All 500 × 500 0.6018 (0.0020) 0.5895 (0.0040) 0.5772 (0.0029)

1000 × 1000 0.6194 (0.0015) 0.6160 (0.0017) 0.5909 (0.0023)

procedures, removing some fine details captured by the two. The granularity in the main effect
of HingeBoost (clearly visible in the individual main effect curves) is due to the singularity of the
hinge loss and its particular preference toward integer-valued scores. When it is coupled with such
discrete weak learners as the stumps, the extent of granularity becomes stronger.

Similarly, Figure 9 displays the main effect of the user’s age from the ranking functions fitted
to the same replicates of training sets. Comparison among the three methods is qualitatively the
same as in Figure 8. The replicates of the main effect of age from HingeBoost strongly exhibit
features of step functions. Small effect sizes exacerbate the extent of such features.

For comparison of the overall ranking scores from the three procedures, scatter plots of the
scores from RankBoost and HingeBoost versus those from LogitBoost are shown in Figure 10 for a
replicate. Two times the score of RankBoost is very close to the score of LogitBoost in the figure,
empirically confirming the theoretical findings in this paper. HingeBoost with the stumps as base
learners produces integer-valued ranking scores.

To examine the effect of weak learners on ranking functions, we take the Gaussian kernel
functions centered at data points as alternative smooth weak learners. Depending on the variables,
they were taken either as a univariate or as a multivariate function. When taken as univariate
for each of the standardized predictors, σ2 of the Gaussian kernel was set to 1. In an attempt to
handle the dummy variables for genre and occupation as a group and model potential interactions
among the categories, we alternatively took multivariate Gaussian kernels as weak learners. With
19 movie genres and 21 occupations, the σ2 in this case was set to 20 for proper normalization. At
each iteration of boosting, a data point was chosen at random to specify the Gaussian kernel as a
weak learner.

Table 3 shows the mean AUC values of the three methods with Gaussian kernels in parallel
with Table 2. Comparisons between the two tables indicate that using the Gaussian kernels as
weak learners improved the ranking accuracy of the three methods on the whole. In particular,
the accuracy of the ranking functions with year only improved with the Gaussian kernels across
all the training sample sizes and the methods. On the other hand, the smooth weak learners
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Figure 8: The main effect of the movie release year in the ranking functions fitted to a million
training pairs by RankBoost, LogitBoost, and HingeBoost with stumps as base learners. Sample
curves from ten replicates are drawn with different colors in each panel, and the solid black line
indicates the mean curve. The rug plots in red and green are for a random sample from the movie
data with labels 1 and −1, respectively.

improved small to modest-sample performance of those with age only and with all the variables
except for HingeBoost. The adverse effect of the granularity of HingeBoost with stumps was
mitigated by the smooth weak learners, which, in turn, improved the overall accuracy of HingeBoost
significantly. Moreover, using the multivariate Gaussian kernels for the categorical variables (genre
and occupation) further improved the accuracy as seen in the comparison of the rows for all vs all*
in Table 3 and the corresponding rows for genre and occupation only in Tables 2 and 3.

Inspection of the estimated main effect of movie release year with the Gaussian kernels as base
learners reveals that the smoothness of the base learners provides more stable fits across replicates,
yet it leads to some loss of interesting details evident in Figure 8 with stumps. In addition, Figure
11 shows scatter plots of the ranking scores from the three procedures with the Gaussian kernels
(multivariate for genre and occupation) for the same replicate used in Figure 10. A notable change
from the plots with stumps is that the ranking scores from HingeBoost are now continuous and
nearly in line with those from LogitBoost. More details of the analysis can be found in Uematsu
and Lee (2011).

6 Conclusion and discussion

We have investigated the properties of the best ranking functions under convex loss criteria on the
population level in bipartite ranking problems, and have specified general conditions for ranking
calibrated loss functions. Our results show that the best ranking functions under convex ranking-
calibrated loss criteria produce the same ordering as the likelihood ratio. The best ranking function
specified for a certain class of loss functions including the exponential loss provides justification for
boosting method in maximizing the AUC.

For the AUC maximizing SVM (or the RankSVM), the result points to the undesirable property
of potential ties in ranking, which could lead to inconsistency. Numerical results confirm these
theoretical findings. In particular, it was observed that the ranking scores from the RankSVM
exhibit granularity. Our result offers much improved understanding of the RankSVM, and at
the same time, provides due caution that contrary to the current practice and widespread belief
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Figure 9: The main effect of the user’s age in the fitted ranking functions by RankBoost, LogitBoost,
and HingeBoost.

regarding the utility of the hinge loss in machine learning, ranking with the hinge loss is not
consistent.

As for practical implications of the theoretical findings about the RankSVM, we need to carefully
examine the effect of some of the factors involved in the ranking algorithm on ranking scores. As
observed in the numerical examples, weak learners in boosting and kernel parameters such as
bandwidth for the Gaussian kernel or degree for polynomial kernels are expected to be critical
in determining the extent of granularity in rankings. A systematic study will be necessary to
understand the operational relation between the factors in the algorithm and notable features
of the resulting ranking function. In practice, such knowledge of the relation can be utilized to
minimize potential ties in ranking.

Study of the theoretical relation between a loss criterion and the optimal ranking function
is important not only for understanding of consistency, but also for appropriate modification of
ranking procedures to achieve different goals in ranking other than minimization of the overall
ranking error. For example, many ranking applications in web search and recommender systems
focus on those instances ranked near the top only. Clémençon and Vayatis (2009a) investigate
the relation between AUC maximization and optimization of linear rank statistics including mean
reciprocal rank (MRR). It is worth extending the current results to study the impact of certain
modifications proposed for specific aims in ranking, and further develop a principled framework for
proper modification.

As another direction for extension, our on-going research shows that the results in bipartite
ranking can be generalized to multipartite ranking, providing a new perspective on ordinal regres-
sion methods in machine learning and the proportional odds model in statistics.

Appendix

Proof of Theorem 3

Proof. Recall that the risk of a ranking function f under the loss l is defined as

Rl(f) =

∫

X

∫

X
l(f(x)− f(x′))g+(x)g−(x

′)dxdx′.
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Figure 10: Scatter plots of the scores from the ranking functions with all the variables fitted to
a training set of a million pairs by RankBoost and HingeBoost plotted against the ranking scores
from LogitBoost when stumps are used as weak learners.

For a ranking function f 6= f∗, consider h = f − f∗. For a real number δ and a ranking function
(f∗ + δh), define s(δ) ≡ Rl(f

∗ + δh). Since l is convex, s(·) is a convex function of δ. As f∗

minimizes the risk, we have

s′(0) =
∫

X

∫

X
(h(x)− h(x′))l′(f∗(x)− f∗(x′))g+(x)g−(x

′)dxdx′ = 0.

Since f is arbitrary, the equation above holds for any h. This means that
∫

X

∫

X
h(x)(l′(f∗(x)− f∗(x′))g+(x)g−(x

′)− l′(f∗(x′)− f∗(x))g−(x)g+(x
′))dxdx′ = 0,

and for almost every x ∈ X ,
∫

X
(l′(f∗(x)− f∗(x′))g+(x)g−(x

′)− l′(f∗(x′)− f∗(x))g−(x)g+(x
′))dx′ = 0. (8)

First, for z satisfying (8), we verify that
∫

X l′(f∗(z) − f∗(x′))g−(x′)dx′ < 0. Since l′(s) ≤ 0 for
all s, the above integral is either strictly negative or zero. However, having zero for the integral
leads to contradiction. The optimality condition for z implies

g+(z)

∫

X
l′(f∗(z)− f∗(x′))g−(x

′)dx′ = g−(z)
∫

l′(f∗(x′)− f∗(z))g+(x
′)dx′.

If
∫

X l′(f∗(z)− f∗(x′))g−(x′)dx′ = 0, then the right hand side of the above equation can be shown
to be nonzero while the left hand side is zero. Let t0 ≡ inf{t| l′(t) = 0}. First note that t0 > 0
from the assumption that l′(0) < 0. Since l′ is non-positive and non-decreasing, l′(t) < 0 if t < t0,
and l′(t) = 0 if t > t0. If

∫

X l′(f∗(z)− f∗(x′))g−(x′)dx′ = 0, then f∗(z)− f∗(x′) ≥ t0 for almost all
x′. This implies f∗(x′) − f∗(z) ≤ −t0, and hence l′(f∗(x′) − f∗(z)) < 0 for almost all x′ given z,
which then makes the integral on the right hand side strictly negative.
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Table 3: Mean AUC values over test set of 106 pairs from Movie-Lens data and their standard
errors in parentheses when weak learners are Gaussian kernels. The highest AUC value in each row
is boldfaced.

Variable Training pairs LogitBoost RankBoost HingeBoost
(n+ × n−)
200 × 200 0.5153 (0.0023) 0.5153 (0.0026) 0.5169 (0.0023)

Age only 500 × 500 0.5135 (0.0025) 0.5118 (0.0028) 0.5144 (0.0024)
1000 × 1000 0.5174 (0.0018) 0.5147 (0.0019) 0.5155 (0.0021)

200 × 200 0.5909 (0.0015) 0.5862 (0.0027) 0.5910 (0.0016)
Year only 500 × 500 0.5920 (0.0015) 0.5925 (0.0015) 0.5923 (0.0015)

1000 × 1000 0.5931 (0.0015) 0.5928 (0.0014) 0.5925 (0.0015)

Genre and 200 × 200 0.5377 (0.0036) 0.5353 (0.0030) 0.5223 (0.0031)
Occupation only* 500 × 500 0.5669 (0.0032) 0.5516 (0.0025) 0.5385 (0.0038)

1000 × 1000 0.5915 (0.0025) 0.5671 (0.0024) 0.5671 (0.0037)

200 × 200 0.5809 (0.0034) 0.5900 (0.0022) 0.5649 (0.0050)
All 500 × 500 0.6026 (0.0020) 0.6063 (0.0020) 0.6014 (0.0024)

1000 × 1000 0.6189 (0.0015) 0.6140 (0.0015) 0.6198 (0.0016)

200 × 200 0.5862 (0.0027) 0.5885 (0.0023) 0.5757 (0.0034)
All* 500 × 500 0.6112 (0.0022) 0.6083 (0.0021) 0.6088 (0.0023)

1000 × 1000 0.6246 (0.0020) 0.6183 (0.0018) 0.6235 (0.0021)

Note: * indicates that multivariate Gaussian kernels are used for genre and occupation.

Now consider a pair of x and z satisfying (8).

(i) Suppose that g+(x)
g−(x) >

g+(z)
g−(z) , yet f

∗(x) ≤ f∗(z). Since l′ is non-decreasing,

∫

X
(l′(f∗(x)− f∗(x′))g+(x)g−(x

′)− l′(f∗(x′)− f∗(x))g−(x)g+(x
′))dx′

≤
∫

X
(l′(f∗(z)− f∗(x′))g+(x)g−(x

′)− l′(f∗(x′)− f∗(z))g−(x)g+(x
′))dx′

<
g−(x)
g−(z)

(
∫

X
(l′(f∗(z) − f∗(x′))g+(z)g−(x

′)− l′(f∗(x′)− f∗(z))g−(z)g+(x
′))dx′

)

. (9)

The last strict inequality comes from the fact that
∫

X l′(f∗(z) − f∗(x′))g−(x′)dx′ < 0. Since the
lower and upper bounds are both 0 by the optimality condition (8), the above inequality leads to

contradiction. Hence g+(x)
g−(x) >

g+(z)
g−(z) implies f∗(x) > f∗(z).

(ii) If g+(x)
g−(x) =

g+(z)
g−(z) and f∗(z) > f∗(x), similar derivation as in (9) shows that

∫

X
(l′(f∗(x)− f∗(x′))

g+(x)

g−(x)
g−(x

′)− l′(f∗(x′)− f∗(x))g+(x
′))dx′

<

∫

X
(l′(f∗(z)− f∗(x′))

g+(z)

g−(z)
g−(x

′)− l′(f∗(x′)− f∗(z))g+(x
′))dx′

=
1

g−(z)

∫

X
(l′(f∗(z)− f∗(x′))g+(z)g−(x

′)− l′(f∗(x′)− f∗(z))g−(z)g+(x
′))dx′.
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Figure 11: Scatter plots of the scores from the ranking functions with all the variables fitted to
a million training pairs by RankBoost and HingeBoost plotted against the ranking scores from
LogitBoost when the Gaussian kernels are used as weak learners.

The strict inequality holds because l′ is one-to-one. Again both bounds are 0, leading to con-
tradiction. Similarly, assuming f∗(z) < f∗(x) yields the same contradiction. Consequently,
f∗(z) = f∗(x).

Proof of Theorem 5

Proof. For part (i), we show that a set of the increments of the optimal ranking function can be
replaced with an alternative set of either 0 or 1 only without increasing the risk, which contradicts
the uniqueness of the optimal function. The alternative set of increments is constructed by using
the fact that the subdifferential of hinge loss changes only at 1, and solving 0-1 valued equations
for the partial sums of new increments. For part (ii), we approximate the optimal ranking function
by a sequence of simple functions that depend on the likelihood ratio, akin to such approximation
in real analysis, and apply the result in (i) to the simple functions.

(i) For l(s) = (1− s)+, the risk Rl(f) is given by

N
∑

i=1

g+(x
∗
i )g−(x

∗
i )

+
N
∑

i=2

i−1
∑

k=1

[

(1− (f(x∗i )− f(x∗k)))+g+(x
∗
i )g−(x

∗
k) + (1− (f(x∗k)− f(x∗i )))+g+(x

∗
k)g−(x

∗
i )

]

.

Letting si = f(x∗i+1)− f(x∗i ), we can express Rl(f) as a function of si. Rl(f) is

N
∑

i=2

i−1
∑

k=1





(

1−
i−1
∑

l=k

sl

)

+

g+(x
∗
i )g−(x

∗
k) +

(

1 +

i−1
∑

l=k

sl

)

+

g+(x
∗
k)g−(x

∗
i )





up to a constant. Then its minimizer f∗ can be identified by s∗i = f∗(x∗i+1)− f∗(x∗i ).
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From Theorem 4, we know that s∗i ≥ 0. On the other hand, if s∗i > 1, truncation of s∗i to 1 does
not change the first term in the risk while the second term gets smaller. Hence, 0 ≤ s∗i ≤ 1 for all
i = 1, . . . , N − 1.

In the following we show that if there were s∗i with 0 < s∗i < 1, then they could be replaced
with either 0 or 1 without changing the risk. This contradicts the assumption that the minimizer
is unique. Therefore, the increments of f∗ have to be either 0 or 1.

For given sequence of {s∗i }N−1
i=1 , consider blocks of s∗i divided by s∗i = 1. Let I = {i1, . . . , im} =

{i | s∗i = 1}, where m is the cardinality of I, and i1 < · · · < im. Defining i0 = 0 and im+1 = N ,
we can form (m+ 1) blocks of indices, Bj = {i | ij < i < ij+1} for j = 0, . . . ,m. Depending on ij ,
some blocks may be empty.

To show that s∗i in each block can be replaced with a sequence of 0 or 1 without changing the
risk, define a new sequence {ti}N−1

i=1 as follows. If s∗i = 0 or 1, set ti = s∗i . Otherwise, first find
the block Bj that contains i. We can choose ti ∈ {0, 1} such that for every pair of (k, k′) from Bj

with k ≤ k′,
∑k′

l=k tl ≤ 1 (or ≥ 1) if
∑k′

l=k s
∗
l ≤ 1 (or ≥ 1). We will show that such a choice of ti is

always feasible.
Let Cj = {k ∈ Bj | 0 < s∗k < 1} = {σj(1), . . . , σj(Jj)}, where Jj is the cardinality of the set.

For each σj(k) ∈ Cj , consider τj(k) = maxk′{k′|
∑k′

l=k s
∗
σj(l)

≤ 1, k′ ≥ k}.
Given the {τj(k)}Jjk=1, we show that ti for every i ∈ Cj can be set to satisfy

∑τj(k)
l=k tσj(l) = 1 for

each σj(k) ∈ Cj and ti ∈ {0, 1}. Here we provide a proof by mathematical induction. If Jj = 1,
then ti = tσj(1) = 1 follows immediately since τj(1) = 1. Suppose that our assumption is true when
Jj = J . For Jj = J +1, consider the (J +1) equations that ti for i ∈ Cj should satisfy. Depending
on τj(k), they are of the following form:















1 1 1 . . . 1 0 0 . . . 0
0 1 1 . . . 1 0 0 . . . 0
0 0 1 . . . 1 1 0 . . . 0

...
. . .

...
. . .

...
0 0 0 . . . 0 0 0 . . . 1





























tσj(1)

tσj(2)
...

tσj(J)

tσj(J+1)















=















1
1
...
1
1















,

where the kth row of the matrix in the left hand side consists of ones only for the tσj(l), l =
k, . . . , τj(k), and zeros elsewhere. When we delete the first equation and remove tσj(1) from the
rest, the equations above become











1 1 . . . 1 0 0 . . . 0
0 1 . . . 1 1 0 . . . 0
...

. . .
...

. . .
...

0 0 . . . 0 0 0 . . . 1





















tσj(2)
...

tσj(J)

tσj(J+1)











=











1
...
1
1











.

By the assumption, we can set tσj(2), . . . , tσj(J+1) such that they are either 0 or 1. When τj(1) = 1,

tσj(1) = 1 trivially. When τj(1) ≥ 2, from
∑τj(2)

l=2 tσj(l) = 1, and 0 ≤
∑τj(1)

l=2 tσj(l) ≤
∑τj(2)

l=2 tσj(l) = 1,
∑τj(1)

l=2 tσj(l) as an integer should be either 0 or 1. From the equation that
∑τj(1)

l=1 tσj(l) = 1, it follows

that tσj(1) =
∑τj(1)

l=1 tσj(l) −
∑τj(1)

l=2 tσj(l) is also either 0 or 1. Hence tσj(1), . . . , tσj(J+1) are either 0
or 1. This completes the proof of the claim that ti ∈ {0, 1}, i = 1, . . . , N − 1.

Now, based on {ti}N−1
i=1 in the proof, we verify that for every pair of (k, k′) from Bj with

k ≤ k′,
∑k′

l=k tl ≤ 1 (or ≥ 1) if
∑k′

l=k s
∗
l ≤ 1 (or ≥ 1). If k = k′, then

∑k′

l=k s
∗
l = s∗k < 1. As

tk for s∗k < 1 is either 0 or 1, tk ≤ 1, and the statement clearly holds true. If
∑k′

l=k s
∗
l = 0 for
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k < k′, then s∗l = 0 for every l = k, . . . , k′, and thus tl = 0, retaining the inequality. Since
∑k′

l=k s
∗
l =

∑k′

l=k s
∗
l I(s

∗
l 6= 0), it is sufficient to consider (k, k′) from Cj with k < k′. For such a

pair (k, k′) from Cj, there exist two indices i′ and j′ such that k = σj(i
′) and k′ = σj(j

′), and
∑k′

l=k s
∗
l =

∑j′

l=i′ s
∗
σj(l)

and
∑k′

l=k tl =
∑j′

l=i′ tσj(l). Since both s∗
σj(1)

, . . . , s∗
σj(Jj)

and tσj(1), . . . , tσj(Jj)

are nonnegative, for (i′, j′) with 1 ≤ i′ < j′ ≤ Jj ,
∑j′

l=i′ s
∗
σj(l)

≤ 1 (or ≥ 1) implies that j′ ≤ τj(i
′)

(or ≥ τj(i
′)) and

∑j′

l=i′ tσj(l) ≤
∑τj(i

′)
l=i′ tσj(l) = 1 (or ≥ 1) as desired.

Finally, we confirm that the new ranking function f̂ defined by ti = f̂(x∗i+1) − f̂(x∗i ) has the

same risk as f∗ with s∗i . To the end, we demonstrate that f̂ satisfies the optimality condition
that the subdifferential of the risk of f̂ includes zero. Letting l′ denote a subderivative of l, we
have the expression of the subderivative of Rl(f) (as a function of si) taken with respect to sj for
j = 1, . . . , N − 1:

j
∑

i=1

N−i
∑

k=j−i+1

l′
( k+i−1
∑

l=i

sl

)

g+(x
∗
i+k)g−(x

∗
i )− l′

(

−
k+i−1
∑

l=i

sl

)

g+(x
∗
i )g−(x

∗
i+k).

If the index set {i, . . . , k+ i−1} is contained in Bj for some j, then by the property of {ti}N−1
i=1 ,

∑k+i−1
l=i s∗l ≤ 1 (or ≥ 1) implies

∑k+i−1
l=i tl ≤ 1 (or ≥ 1), and in particular, the equality holds

simultaneously for s∗i and ti. Hence l′(
∑k+i−1

l=i s∗l ) = l′(
∑k+i−1

l=i tl) in the case. If {i, . . . , k + i − 1}
includes any index from I = {i | s∗i = 1}, then there are two possibilities: i) {s∗j}k+i−1

j=i consists of

either 0 or 1, and ii) for some j in {i, . . . , k+i−1}, 0 < s∗j < 1. In the former,
∑k+i−1

l=i s∗l =
∑k+i−1

l=i tl,

and thus l′(
∑k+i−1

l=i s∗l ) = l′(
∑k+i−1

l=i tl). In the latter,
∑k+i−1

l=i s∗l > 1 and
∑k+i−1

l=i tl ≥ 1. Therefore

l′(
∑k+i−1

l=i tl) can be taken to be the same as l′(
∑k+i−1

l=i s∗l ) = 0. As a result, if the subdifferential

of Rl(f) at f
∗ contains zero, then that of Rl(f) at f̂ contains zero as well. Due to the translation

invariance of ranking functions, f̂ can be taken to be integer-valued.
The assumption of strict ordering of x∗i can be relaxed to allow some ties in the likelihood ratio.

The same proof remains true if we consider equivalence classes defined by the likelihood ratio and
relabel x∗i as its equivalence class denoted by [x∗i ]. See Uematsu and Lee (2011) for detailed proof
of this fact.
(ii) For any ranking function f defined on X , consider a simple function fn of the form:

fn(x) =

2nM
∑

i=1

(

i

n
−M

)

I(x ∈ Ai(f)) +M · I(x ∈ A2nM+1(f))−M · I(x ∈ A0(f)),

whereM is a positive constant, Ai(f) = {x | i−1
n

−M < f(x) ≤ i
n
−M}, A0(f) = {x | f(x) ≤ −M},

and A2nM+1(f) = {x | f(x) > M}. It is easy to see that

∣

∣E{(1− (f(X)− f(X ′)))+} − E{(1 − (fn(X)− fn(X
′)))+}

∣

∣

≤ E{I(|f(X)| ≤ M, |f(X ′)| ≤ M)
∣

∣(f(X)− f(X ′))− (fn(X) − fn(X
′))
∣

∣}
+2E{I(|f(X)| > M)(1− (f(X)− f(X ′)))+}

+2E{I(|f(X ′)| > M)(1 − (f(X)− f(X ′)))+}+
2

n

≤ 4

n
+ 2E{I(|f(X)| > M)(1− (f(X)− f(X ′)))+}

+2E{I(|f(X ′)| > M)(1 − (f(X)− f(X ′)))+}.
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Without loss of generality, assume that Rl(f) < ∞. Then from the above inequality and the
dominated convergence theorem, for any positive number ǫ, there exist n and M such that

∣

∣Rl(f)−
Rl(fn)

∣

∣ < ǫ.

Each f induces a partition of the sample space X through {Ai(f)}2nM+1
i=0 . Letting A(f) denote

the partition, consider the discretized probability mass functions ĝ+ and ĝ− on A(f) defined as
ĝ±(Ai(f)) =

∫

Ai(f)
g±(x)dx.

Since the optimal ranking function f∗ is a monotonic transformation of the likelihood ratio

g+/g−, there exists a sequence {αi}2nM+1
i=0 such that Ai(f

∗) =
{

x | αi−1 <
g+(x)
g−(x) ≤ αi

}

. Ai(f
∗) is

in the order of the likelihood ratio ĝ+/ĝ−. For this, observe that

ĝ+(Ai+1)ĝ−(Ai) =

∫

Ai+1

∫

Ai

g+(x)g−(x
′)dx′dx >

∫

Ai+1

∫

Ai

g−(x)g+(x
′)dx′dx

= ĝ+(Ai)ĝ−(Ai+1)

since αi−1 <
g+(x′)
g−(x′) ≤ αi <

g+(x)
g−(x) ≤ αi+1, and thus ĝ+(Ai+1)

ĝ−(Ai+1)
> ĝ+(Ai)

ĝ−(Ai)
for every i.

For the discretized version of the ranking problem with pmfs ĝ+ and ĝ− on the countable A(f∗),
by the result (i), there is an integer-valued function among the optimal ranking functions.

Given ǫ, let f∗
n be the simple function corresponding to f∗ such that

∣

∣Rl(f
∗)−Rl(f

∗
n)
∣

∣ < ǫ, and

let f̂n be the integer-valued optimal ranking function on A(f∗). Then Rl(f̂n) ≤ Rl(f
∗
n) < Rl(f

∗)+ǫ.
This completes the proof.
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