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The paper provides an overview of the multi-objective multi-class support
vector machine (MMSVM) based on a series of research articles written by
the authors and their collaborators. As an extension of the binary SVM, the
MMSVM takes an all-together approach to classification with multiple cate-
gories. Along with the description of the original multi-objective optimization
problem for the method, the paper lays out computational strategies for its
implementation and further approximation of the solutions to the initial prob-
lem via alternative single-objective second-order cone programming problems.
The progression from the initial problem to various alternative formulations
is methodically presented with summary of the relation between the two sets
of corresponding solutions.

Geometric Margin vs. Functional Margin

The MMSVM is primarily motivated by the observation that the geometric
margin and “functional margin” could be different when they are evaluated
for a pair of estimated discriminant hyperplanes from other multi-class SVMs.
Note that there are two different definitions of the functional margin for a
linear discriminant function, f(x) = w>x+ b, in the literature. One is yif(xi),
individually defined for each instance (xi, yi) and the other is 1/‖w‖, a half of
the distance between the two hyperplanes given by w>x+b = ±1 in the binary
case. The latter is the definition used in the paper. In the linearly separable
case, the functional margin coincides with the geometric margin, that is, the
minimal distance of training data to the discriminant hyperplane (mini |w>xi+
b|/‖w‖). The main thrust of the series of the papers reviewed by Tatsumi and
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Tanino is that simultaneous maximization of the geometric margins as opposed
to maximization of the functional margins as in the existing multi-class SVMs
would produce better generalization.

Margin Maximization as a Form of Regularization

However, Vapnik’s theoretical argument for maximization of margin for bet-
ter generalization lies in the result (see Theorem 10.3 in Vapnik (1998)) that
the upper bound of the V-C dimension of the class of δ-margin normalized
separating hyperplanes is inversely related to δ2. This, in turn, suggests simul-
taneous maximization of the margin and minimization of the training error
to attain a smaller upper bound of the generalization error as stated in the
Corollary of the aforementioned theorem. In my view, the original Vapnik’s
arguments rest on the functional margin (1/‖w‖) rather than the geometric
margin. The latter is properly defined and coincides with the former only in
the limited separable case, while the “functional margin” through the norm
of w is well-defined as a measure of the complexity of a discriminant func-
tion in general. It is well known that maximization of margin or equivalently
minimization of ‖w‖2 is a form of regularization. This idea of stabilizing so-
lutions to ill-posed problems with a regularizer originates from Tikhonov in
solving an integral operator equation in mathematics, and a similar idea can
be found in statistics, for instance, in ridge regression for stabilizing the vari-
ance of least squares estimators with the l2 norm of the regression coefficients
as a regularizer. For the reasons, I am not convinced of the significance of
the distinction between the two kinds of margin in extending the SVM to the
multi-category case as emphasized in the paper, and unsure whether it would
bring substantial differences in practice.

Separable vs. Non-Separable Case

The paper seems to be focused almost exclusively on the separable case (ex-
cept for the review of the binary SVM) where the geometric margins for a
pair of classes can be meaningfully specified. However, it is not clear how the
notion of geometric margin is extended to the non-separable case. When it
comes to practical applications, I believe, separable problems are exceptions
rather than the norm. Consequently, the authors’ statement that “the large
margin guarantees the generalization ability of the SVM” has to be modified
in most settings. A large margin is only one side of the equation to ensure high
classification accuracy. For better generalization, it is paramount to strike a
balance between the empirical risk and the complexity of a classifier. The
trade-off comes in the form of a choice of the regularization parameter or the
cost parameter C in SVM. This critical aspect does not seem to be stressed
adequately in the paper. Moreover, the focus on the separable case inevitably
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limits the scope of comparisons as evident in the numerical experiment in Sec-
tion 5.3. Only three out of eight benchmark problems had feasible solutions
for comparison.

Turning Focus from Margin (or Penalty) to Loss

As in many of the existing extensions of the binary SVM, the multi-class ex-
tension in the paper takes an operational/computational point of view of the
loss function (e.g. hinge loss, (1 − yf(x))+ for the binary case) that it is an
entity only implicitly defined through the inequality constraints for data. By
contrast, there are other extensions primarily motivated by a statistical view-
point, in particular, how to devise a loss function in the multi-category case so
that the resulting discriminant functions are consistent with the Bayes deci-
sion rule. For example, Lee et al (2004) proposed an extension of the hinge loss
that is properly classification-calibrated and thus ensures the Bayes risk con-
sistency, after noting that the one-versus-rest approach with the binary SVM
is not consistent nor is the commonly used multi-class extension in Vapnik
(1998). More comprehensive take on this theoretical aspect of multi-category
classification and conditions for proper loss functions can be found in Zhang
(2004) and Tewari and Bartlett (2007).

Differential Penalties

With Bayes risk consistency being an asymptotic and rather minimal prop-
erty, employing a consistent extension alone would not directly translate to
near optimal performance, especially when the sample size is small to modest.
In a nutshell, the key to the optimal performance is how to approximate the
ideal partition of the input space given by the Bayes decision rule using data.
Depending on the geometric characteristics of the partition, conceivably, the
complexity of the discriminant functions fj(x) = w>

j x + bj that induce the

classification boundaries (as measured by ‖wj‖2) would vary across classes.
As the number of classes increases, it is likely that configuration of the classes
over the input space would become more complex, warranting differences in
the complexity of fj . This increasing complexity of the partition also explains
partially why various combination approaches might produce better perfor-
mance than the direct approach in spite of the lack of consistency. I suspect
that simultaneous maximization of the geometric margins might have the net
effect of allowing for differential penalties on wj , and the observed benefits of
the multi-objective approach in some applications might be attributed to its
flexibility in the size of wj .
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Computation and Empirical Validation

In addition to mathematical learning-theoretic justification and statistical
sense of optimality, one cannot overlook the importance of computational ef-
ficiency, scalability and ease of implementation for a learning algorithm. For
multi-category classification problems, the combination approach may seem
more appealing than the direct approach in this regard. Tatsumi and Tanino’s
paper puts great emphasis on the computational aspect of the optimization for
the MMSVM. The initial multi-objective formulation (M1) is relaxed and pro-
gressively transformed to a single-objective second-order cone programming
problem (εM2) with the aid of the ε constraint method and additional con-
straints. The transformation requires a choice of a pair of classes (r, s) and ε
constants for (εM) and another constant crs for (εM2) a priori. Presumably,
the quality of the solutions from the transformed version would hinge on the
choice of the parameters, but there is little discussion about how to specify
them and how much impact incorrect specification has on error rates. Some
numerical examples in the paper indicate fixing the parameters by using the
solution to a version of multi-class SVM maximizing the functional margins.
Given the additional computational complexity, its observed gain in accuracy
over benchmark problems seems too incremental to render a convincing case
for the method.
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