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Abstract

The support vector machine is a supervised learning technique for classification in-

creasingly used in many applications of data mining, engineering, and bioinformatics.

This chapter aims to provide an introduction to the method, covering from the basic

concept of the optimal separating hyperplane to its nonlinear generalization through

kernels. A general framework of kernel methods that encompass the support vector

machine as a special case is outlined. In addition, statistical properties that illuminate

both advantage and limitation of the method due to its specific mechanism for classifi-

cation are briefly discussed. For illustration of the method and related practical issues,

an application to real data with high dimensional features is presented.

Key Words: Classification, Machine learning, Kernel methods, Regularization, Sup-

port vector machine
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1 Introduction

Classification is a type of statistical problem where we want to predict a predefined class

membership accurately based on features of an individual. For instance, pathologists wish to

diagnose a patient either healthy or diseased, based on some measurements from the patient’s

tissue sample. In general, the foremost goal of classification is to learn the discrimination

rule attaining the minimum error rate over novel cases. In the statistics literature, Fisher’s

linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are classical

examples of a discriminant rule, and modern statistical tools include classification trees,

logistic regression, neural networks, and kernel density based methods. For reference to

classification in general, see (1–3).

This chapter introduces the support vector machine (SVM), a classification method which

has drawn tremendous attention in machine learning, a thriving area of computer science, for

the last decade or so. It has been successfully used in many applications of data mining, engi-

neering, and bioinformatics; for instance, hand-written digit recognition, text categorization,

and tumor classification with genomic profiles. Motivated by the statistical learning theory

(4) that Vapnik and Chervonenkis developed, Vapnik and his collaborators (5) proposed the

optimal separating hyperplane and its nonlinear generalization for pattern recognition in

the early 90’s, which is now known as the SVM. For complete treatment of the subject, see

(4, 6, 7) and references therein.

The method has gained its popularity in part due to simple geometric interpretation,

competitive classification accuracy in practice, and an elegant theory behind. In addition,

it has such operational characteristics as sparsity and duality, and they render the method

an appealing data-analytic tool. The sparsity of the SVM solution leads to efficient data

reduction for massive data at the testing stage, and the mathematical duality allows co-

herent handling of high dimensional data. The latter property, in particular, seems to be
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fitting for modern data analysis, as nowadays data with high dimensional features are quite

prevalent due to technological advances in many areas of science and industry. In fact, the

aforementioned successful applications all involve high dimensional data.

On the statistical side, a salient aspect of the SVM as a classification rule is its mechanism

to directly focus on the decision boundary. One of the earlier references of the SVM (8)

begins by noting how quickly the number of parameters to estimate increases in Fisher’s

normal discriminant paradigm as the dimension of the feature space increases. Instead

of probability model parameters, the SVM aims at classification boundary directly by a

hyperplane with maximum margin, amending the non uniqueness of Rosenblatt’s perceptron

(9) (an earlier attempt to find a hyperplane for discrimination). This ‘hard’ classification

approach departs from more traditional approach of ‘soft’ classification through estimation of

the underlying probability model that generates data. Whether the latter is more appropriate

than the former depends largely on the context of applications, and their relative efficiency

still remains to be a subject of controversy.

Contrasting hard classification with soft classification, this chapter provides an overview

of the SVM with more focus on conceptual understanding than technical details, for be-

ginners in the field of statistical learning. Geometric formulation of the method, related

computation, and the resulting operational characteristics are outlined. Various aspects of

the method are examined with more emphasis on its statistical properties and connection

than other tutorials, for instance, (10–12). By doing so, its advantages as well as limitation

are highlighted. For illustration of the method, a data example is provided with discussion

of some practical issues arising in its applications.
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2 Method

Consider a classification problem where multivariate attributes such as expression levels

of genes are measured for each subject in a data set as potential molecular markers for a

biological or clinical outcome of interest (e.g. the status of a disease or its progression). Let

X = (X1, . . . , Xp) ∈ X = R
p denote the predictors and Y the variable for the categorical

outcome which takes one of, say, k nominal class labels, Y = {1, . . . , k}. Then the so-called

training data are given as a set of n observation pairs, Dn = {(xi, yi), i = 1, . . . , n}, where

(xi, yi)’s are viewed as independent and identically distributed random outcomes of (X, Y )

from some unknown distribution PX,Y .

The ultimate goal of classification is to understand informative patterns that exist in the

predictors in relation to their corresponding class labels. For that reason, classification is

known as pattern recognition in the computer science literature. Formally, it aims to find a

map (classification rule), φ : X → Y based on the training data which can be generalized to

future cases from the same distribution PX,Y .

For simplicity, this section is focused on classification with binary outcomes only (k = 2).

Typically, construction of such a rule φ is done by finding a real-valued discriminant function

f first and taking either the indicator φ(x) = I(f(x) ≥ 0) if two classes are labeled as 0 or

1, or its sign φ(x) = sgn(f(x)) if they are symmetrically labeled as ±1. In the latter, the

classification boundary is determined by the zero level set of f , i.e. {x : f(x) = 0}.

2·1 Linearly Separable Case

With Y = {−1, 1}, first consider a simple scenario as depicted in Figure 1, where two classes

in the training data are linearly separable, so a linear discriminant function, f(x) = β ′x+β0,

could be adequate for classification. Fisher’s LDA is a standard example of linear classifiers

in statistics, which is proven to be optimal in minimizing the misclassification rate under
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Figure 1: This toy example illustrates training data ith two predictors and binary class labels
(red: 1 and blue: −1). The solid line indicates the optimal separating hyperplane.

the normality and equal covariance assumptions on the distributions of predictors for two

classes.

In contrast to the LDA, without such distributional assumptions, the discriminant func-

tion of the linear SVM is determined directly through the corresponding hyperplane, β ′x+

β0 = 0, or the classification boundary itself. The perceptron algorithm (9) is a precursor

of the SVM in the sense that both search for a hyperplane for discrimination. However,

in the situations illustrated in Figure 1, there are infinitely many separating hyperplanes,

and the former intends to find just one by sequentially updating β and β0 while the latter

looks for the hyperplane with the maximum margin between two classes, which is uniquely

determined. The margin is defined as the distance between the two convex hulls formed by

xi’s with class labels 1 and −1, respectively, and it can be mathematically characterized as

follows. When the training data are linearly separable, there exist δ > 0, β0, and β such
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that

β ′xi + β0 ≥ δ for yi = 1 and

β ′xi + β0 ≤ −δ for yi = −1.

Then, without loss of generality, δ can be set to 1 by normalizing β0 and β. This leads to

the following separability condition:

yi(β
′xi + β0) ≥ 1 for all i = 1, . . . , n. (1)

So, the margin between the two classes is the same as the sum of the distances from the

nearest xi’s with yi = ±1 to the hyperplane β ′x + β0 = 0. Since the distance of a point

x0 ∈ R
p from a hyperplane β ′x + β0 = 0 is given by |β ′x0 + β0|/‖β‖, under the specified

normalization of the separating hyperplane, the margin is given as 2/‖β‖. Maximizing

the margin is mathematically equivalent to minimizing its reciprocal or a monotonically

decreasing function of it in general, for example, ‖β‖2/2. For the optimal hyperplane, the

SVM finds β0 and β minimizing

1

2
‖β‖2 subject to yi(β

′xi + β0) ≥ 1 for all i = 1, . . . , n. (2)

Once the minimizer (β̂0, β̂) is obtained, the induced SVM classifier is given as

φSVM(x) = sgn(β̂ ′x+ β̂0).

The solid line in Figure 1 indicates the boundary of the linear SVM classifier with maximal

margin for the toy example, and the dotted lines are 1 and −1 level sets of the discriminant

function.
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Although the formulation of the SVM discussed so far pertains to a linearly separable

case only, which may be fairly restrictive, it serves as a prototype for its extension to more

general cases with possible overlap between classes and nonlinear boundary. The extension

to the nonseparable case will follow in the next section.

Two distinctive aspects of the formulation for the SVM are noted here. First, by tar-

geting classification boundary, it takes direct aim at prediction of labels given attributes

bypassing modeling or estimation of the probabilistic mechanism that generates the labels.

In a decision theoretic view, the SVM is categorized as a procedure that directly minimizes

the error rate under the 0-1 loss. Differently from data modeling strategy in statistics, this

approach of risk minimization is commonly employed in machine learning for supervised-

learning problems as encapsulated in the empirical risk minimization principle. Yet, as a

result of error rate minimization, the SVM classifier is inevitably limited in inference on the

underlying probability distribution, which is to be discussed later in detail. Second, although

the margin may well be justified as a simple geometric notion to determine a unique sepa-

rating hyperplane in the separable case, the rationale for a large margin is, in fact, deeply

rooted in Vapnik’s statistical learning theory (4). The theory shows that a notion of the ca-

pacity of a family of linear classifiers is inversely related to the margin size, and large margin

classifiers can be expected to give lower test error rates. Clearly, maximizing the margin is a

form of regularization akin to penalization of regression coefficients in ridge regression (13)

in order to control model complexity for stability and accuracy in estimation.

2·2 Case with Overlapping Classes

When the training data are not linearly separable, the separability condition (Eq. 1) can

not be met. To relax the condition, a set of non-negative variables ξi’s are introduced for
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the data points such that

ξi + yi(β
′xi + β0) ≥ 1, ξi ≥ 0 for i = 1, . . . , n. (3)

These ξi’s are often called slack variables in the optimization literature as they loosen the

rigid constraints. However, if they are too large, many data points could be incorrectly

classified. If the ith data point is misclassified by the hyperplane β ′x + β0 = 0, that is,

yi(β
′xi + β0) ≤ 0, then ξi ≥ 1. So,

∑n

i=1
ξi provides an upper bound of the misclassification

error of the classifier φ(x) = sgn(β ′x + β0). To minimize the error bound and at the same

time to maximize the margin, the SVM formulation for the separable case is modified to

seek β0, β, and ξ := (ξ1, . . . , ξn)
′ that minimize

1

n

n
∑

i=1

ξi +
λ

2
‖β‖2 (4)

subject to (Eq. 3). Here λ is a positive tuning parameter that controls the trade-off between

the error bound and the margin.

By noting that given a constant a, (min ξi subject to ξi ≥ 0 and ξi ≥ a) = max{a, 0} :=

a+, it can be shown that the above modification is equivalent to finding β0 and β that

minimize

1

n

n
∑

i=1

(1− yi(β
′xi + β0))+ +

λ

2
‖β‖2. (5)

This equivalent form brings a new loss function known as the hinge loss for measuring a

‘goodness of fit’ of a real-valued discriminant function. For a discriminant function f(x) =

β ′x + β0, consider a loss criterion, L(f(xi), yi) = (1 − yif(xi))+ = (1 − yi(β
′xi + β0))+.

yi(β
′xi + β0) is called the functional margin of the individual point (xi, yi) differently from

the geometric class margin in the separable case. The functional margin of (x, y) is the

product of a signed distance from x to the hyperplane β ′x + β0 = 0 and ‖β‖. That is, if
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y(β ′x+ β0) > 0,

yf(x) = |β ′x+ β0| = ‖β‖ × distance of x from the hyperplane β ′x+ β0 = 0,

and otherwise, yf(x) = −|β ′x+ β0| = −‖β‖ × distance of x from the hyperplane.

Figure 2 shows the hinge loss together with the 0-1 loss (misclassification loss) in terms

of the functional margin. For a discriminant function that induces a classifier through

sgn(f(x)), the misclassification loss is given by

L0−1(f(x), y) := I(y 6= sgn(f(x))) = I(yf(x) ≤ 0).

Clearly, the hinge loss is a convex upper bound of the 0-1 loss and is monotonically decreasing

in yf(x) = y(β ′x + β0), the functional margin. The convexity of the hinge loss makes the

SVM computationally more attractive than direct minimization of the empirical error rate.

−2 −1 0 1 2

0

1

2

t=yf

[−t]
*

(1−t)
+

Figure 2: The solid line is the 0-1 loss, and the dashed line is the hinge loss in terms of the
functional margin yf(x).

In the case with overlapping classes, the geometric interpretation of 2/‖β‖ as the sepa-

ration margin between two classes no longer holds although 2/‖β‖ may still be viewed as a
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‘soft’ margin analogous to the ‘hard’ margin in the separable case. Rather, ‖β‖2 in (Eq. 5)

can be immediately regarded as a penalty imposed on the linear discriminant function f .

From this perspective, the SVM procedure can be cast in the regularization framework

where a function estimation method is formulated as an optimization problem of finding f

in a class of candidate functions F that minimizes

1

n

n
∑

i=1

L(f(xi), yi) + λJ(f).

Here L(f(x), y) is a loss function, J(f) is a regularizer or a penalty imposed on f , and λ > 0

is a tuning parameter which controls the trade-off between data fit and the complexity of

f . There are numerous examples of regularization procedures in statistics. For instance,

consider the multiple linear regression with F = {f(x) = β ′x + β0 : β ∈ R
p, β0 ∈ R} and

the squared error loss (y − f(x))2 for L. J(f) = ‖β‖2 defines the ridge regression procedure

in (13) while the least absolute shrinkage and selection operator (LASSO) in (14) takes

J(f) =
∑p

j=1
|βj| as a penalty for a sparse linear model. In light of these, the SVM can

be viewed as a procedure for penalized risk minimization with the hinge loss and ridge-like

penalty.

2·3 Computation: Constrained Optimization

To describe the operational properties of the SVM solution, derivation of the dual optimiza-

tion problem for the optimal hyperplane is sketched in this section. Thorough explanation

of the theory behind is omitted for ease of discussion. Details and the relevant optimization

theory can be found in (7, 10). To solve (Eq. 5) through the equivalent problem in (Eq.

4), we need to handle the inequality constraints in (Eq. 3). Using the standard machinery

of primal-dual formulations in constrained optimization theory (15), two sets of Lagrange

multipliers or dual variables are introduced for the constraints: αi and γi (i = 1, . . . , n) for
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ξi ≥ 1− yi(β
′xi +β0) and ξi ≥ 0, respectively. Define hi(β, β0, ξ) = 1− yi(β

′xi +β0)− ξi and

hn+i(β, β0, ξ) = −ξi so that the constraints are of the form hi(β, β0, ξ) ≤ 0 for i = 1, . . . , 2n.

Then the Lagrangian primal function is given by

lP (β, β0, ξ, α, γ) =
n

∑

i=1

ξi +
nλ

2
‖β‖2 +

n
∑

i=1

αi(1− yi(β
′xi + β0)− ξi)−

n
∑

i=1

γiξi

with the following constraints

∂lP
∂β

= nλβ −
n

∑

i=1

αiyixi = 0 ⇔ β =
1

nλ

n
∑

i=1

αiyixi,

∂lP
∂β0

= −
n

∑

i=1

αiyi = 0 ⇔
n

∑

i=1

αiyi = 0,

∂lP
∂ξi

= 1− αi − γi = 0 ⇔ γi = 1− αi,

αi ≥ 0 and γi ≥ 0 for i = 1, . . . , n.

Simplifying lP by using the constraints, we have the dual problem of maximizing

n
∑

i=1

αi −
1

2nλ

∑

i,j

αiαjyiyjx
′
ixj with respect to α := (α1, . . . , αn)

′ (6)

subject to 0 ≤ αi ≤ 1 and
∑n

i=1
αiyi = 0 for i = 1, . . . , n. Note that the dual problem

is a quadratic programming (QP) problem with a non-negative definite matrix given by
[

yiyjx
′
ixj

]

.

The dual problem in (Eq. 6) itself reveals a few notable characteristics of the SVM. First,

it involves n dual variables, so the sample size could be the main factor that determines

the size of the problem not the number of predictors. This implies a great computational

advantage when n is relatively small while p is very large. For example, typical microarray

data have such a ‘large p small n’ structure. Second, the solution α̂ depends on the attributes
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in the training data only through their pairwise inner products x′ixj . This observation proves

to be particularly useful for nonlinear extension of the linear SVM. Third, once α̂ satisfying

the bound condition (0 ≤ α̂i ≤ 1) and the equilibrium condition (
∑n

i=1
α̂iyi = 0) is found,

the normal vector of the optimal hyperplane is determined by β̂ = 1

nλ

∑n

i=1
α̂iyixi.

As part of necessary and sufficient conditions for the optimality of the solution, known as

the Karush-Kuhn-Tucker (KKT) conditions, the following complementarity conditions have

to be met: for i = 1, . . . , n,

αihi(β, β0, ξ) = αi{1− yi(β
′xi + β0)− ξi} = 0, and

γihn+i(β, β0, ξ) = −γiξi = −(1 − αi)ξi = 0.

Since for any 0 < αi∗ < 1, ξi∗ = 0 and 1 − yi∗(β
′xi∗ + β0) − ξi∗ = 0 by the conditions, we

have 1− yi∗(β
′xi∗ + β0) = 0. This gives an equation for β̂0 once β̂ is determined:

β̂0 = yi∗ − β̂ ′xi∗ = yi∗ −
1

nλ

n
∑

i=1

α̂iyix
′
ixi∗ .

Also, by the complementarity conditions, the data points can be categorized into two kinds:

those with a positive Lagrange multiplier (α̂i > 0) and those with zero (α̂i = 0). If a data

point falls outside the margin, yi(β̂
′xi+ β̂0) > 1, then the corresponding Lagrange multiplier

must be α̂i = 0, and thus it plays no role in determining β̂. On the other hand, the attribute

vectors of the data points with α̂i > 0 expand β̂, and such data points are called the support

vectors. The proportion of the support vectors depends on λ, but typically for a range of

values of λ, only a fraction of the data points are support vectors. In the sense, the SVM

solution admits a sparse expression in terms of the data points. This sparsity is due to the

singularity of the hinge loss at 1. A simple analogy of the sparsity can be made to median

regression with the absolute deviation loss that has a singular point at 0.
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For classification of a new point x, the following linear discriminant function is used:

f̂λ(x) = β̂ ′x+ β̂0 =
1

nλ

∑

i: α̂i>0

α̂iyix
′
ix+ β̂0. (7)

Note that the final form of f̂λ does not depend on the dimensionality of x explicitly but

depends on the inner products of xi and x as in the dual problem. This fact enables con-

struction of hyperplanes even in infinite-dimensional Hilbert spaces (p.406, (4)). In addition,

(Eq. 7) shows that all the information necessary for discrimination is contained in the sup-

port vectors. As a consequence, it affords efficient data reduction and fast evaluation at the

testing phase.

2·4 Nonlinear Generalization

In general, hyperplanes in the input space may not be sufficiently flexible to attain the

smallest possible error rate for a given problem. As noted earlier, the linear SVM solution

and prediction of a new case x depends on the xi’s only through the inner product x′ixj and

x′ix. This fact leads to a straightforward generalization of the linear SVM to the nonlinear

case by taking a basis expansion. The main idea of the nonlinear extension is to map the

data in the original input space to a feature space and find the hyperplane with a large

margin in the feature space. For an enlarged feature space, consider transformations of x,

say, φm(x), m = 1, . . . ,M . Let Φ(x) := (φ1(x), . . . , φM(x))′ be the so-called feature mapping

from R
p to a higher dimensional feature space, which can be even infinite dimensional. Then

by replacing the inner product x′ixj with Φ(xi)
′Φ(xj), the formulation of the linear SVM can

be easily extended. For instance, suppose the input space is R
2 and x = (x1, x2)

′. Define

Φ : R2 → R
3 as Φ(x) = (x21, x

2
2,
√
2x1x2)

′. Then the mapping gives a new dot product in the
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feature space,

Φ(x)′Φ(t) = (x21, x
2

2,
√
2x1x2)(t

2

1, t
2

2,
√
2t1t2)

′ = (x1t1 + x2t2)
2 = (x′t)2.

In fact, for this generalization to work, the feature mapping Φ does not need to be explicit.

Specification of the bivariate function K(x, t) := Φ(x)′Φ(t) would suffice. With K, the

nonlinear discriminant function is then given as f̂λ(x) =
1

nλ

∑n

i=1
α̂iyiK(xi, x) + β̂0, which is

in the span of K(xi, x), i = 1, . . . , n. So, the shape of the classification boundary, {x ∈ R
p :

f̂λ(x) = 0} is determined by K.

From the property of the dot product, it is clear that such a bivariate function is non-

negative definite. Replacing the Euclidean inner product in a linear method with a non-

negative definite bivariate function, K(x, t), known as a kernel function to obtain its non-

linear generalization is often referred to as the ‘kernel trick’ in machine learning. The only

condition for a kernel to be valid is that it is a symmetric non-negative (semi-positive) defi-

nite function: for every N ∈ N, ai ∈ R, and zi ∈ R
p (i = 1, . . . , N),

∑N

i,j aiajK(zi, zj) ≥ 0.

In other words, KN := [K(zi, zj)] is a non-negative definite matrix. Some kernels in common

use are polynomial kernels with dth degree, K(x, t) = (1 + x′t)d or (x′t)d for some positive

integer d and the radial basis (or Gaussian) kernel, K(x, t) = exp(−‖x− t‖2/2σ2) for σ > 0.

It turns out that this generalization of the linear SVM is closely linked to the function

estimation procedure known as the reproducing kernel Hilbert space (RKHS) method in

statistics (16, 17). And the theory behind the RKHS methods or kernel methods in short

provides a unified view of smoothing splines, a classical example of the RKHS methods for

nonparametric regression, and the kernelized SVM. The connection allows more abstract

treatment of the SVM, offering a different perspective on the methodology, in particular, the

nonlinear extension.
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2·5 Kernel Methods

Kernel methods can be viewed as a method of regularization in a function space characterized

by a kernel. A brief description of general framework for the regularization method is given

here for advanced readers in order to elucidate the connection, to show how seamlessly the

SVM sits in the framework, and to broaden the scope of its applicability in a wide range of

problems.

Consider a Hilbert space (complete inner product space) of real-valued functions defined

on a domain X (not necessarily R
p), H with an inner product 〈f, g〉H for f, g ∈ H. A Hilbert

space is an RKHS if there is a kernel function (called reproducing kernel) K(·, ·) : X 2 → R

such that

i) K(x, ·) ∈ H for every x ∈ X , and

ii) 〈K(x, ·), f(·)〉H = f(x) for every f ∈ H and x ∈ X .

The second condition is called the reproducing property for the obvious reason that K re-

produces every f in H. Let Kx(t) := K(x, t) for a fixed x. Then the reproducing property

gives a useful identity that K(x, t) = 〈Kx(·), Kt(·)〉H. For a comprehensive treatment of the

RKHS, see (18). Consequently, reproducing kernels are non-negative definite. Conversely, by

the Moore-Aronszajn Theorem, for every non-negative definite function K(x, t) on X , there

corresponds a unique RKHS HK that has K(x, t) as its reproducing kernel. So, non-negative

definiteness is the defining property of kernels.

Now, consider a regularization method in the RKHS, HK with reproducing kernel K:

min
f∈{1}⊕HK

1

n

n
∑

i=1

L(f(xi), yi) + λ‖h‖2HK
, (8)

where f(x) = β0 + h(x) with h ∈ HK and the penalty J(f) is given by ‖h‖2HK
. In general,

the null space can be extended to a larger linear space than {1}. As an example, X = R
p
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and HK = {h(x) = β ′x | β ∈ R
p} with K(x, t) = x′t. For h1(x) = β ′

1x and h2(x) = β ′
2x ∈ H,

〈h1, h2〉HK
= β ′

1β2. Then for h(x) = β ′x, ‖h‖2HK
= ‖β ′x‖2HK

= ‖β‖2. Taking f(x) = β0 + β ′x

and the hinge loss L(f(x), y) = (1 − yf(x))+ gives the linear SVM as a regularization

method in HK . So, encompassing the linear SVM as a special case, the SVM can be cast

as a regularization method in an RKHS HK , which finds f(x) = β0 + h(x) ∈ {1} ⊕ HK

minimizing

1

n

n
∑

i=1

(1− yif(xi))+ + λ‖h‖2HK
. (9)

The representer theorem in (19) says that the minimizer of (Eq. 8) has a representation of

the form

f̂λ(x) = b+
n

∑

i=1

ciK(xi, x), (10)

where b and ci ∈ R, i = 1, . . . , n. As previously mentioned, the kernel trick leads to the

expression of the SVM solution:

f̂λ(x) = β̂0 +
1

nλ

n
∑

i=1

α̂iyiK(xi, x).

It agrees with what the representer theorem generally implies for the SVM formulation.

Finally, the solution in (Eq. 10) can be determined by minimizing

1

n

n
∑

i=1

{1− yi(b+
n

∑

j=1

cjK(xj , xi))}+ + λ
n

∑

i,j=1

cicjK(xi, xj)

over b and ci’s. For further discussion of the perspective, see (17).

Notably the abstract formulation of kernel methods has no restriction on input domains

and the form of kernel functions. Because of that, the SVM in combination with a variety

of kernels is modular and flexible. For instance, kernels can be defined on non-numerical

domains such as strings of DNA bases, text, and graph, expanding the realm of applications

17



well beyond Euclidean vector spaces. Many applications of the SVM in computational

biology capitalize on the versatility of the kernel method. See (20) for examples.

2·6 Statistical Properties

Contrasting the SVM with more traditional approaches to classification, we discuss statistical

properties of the SVM and their implications. Theoretically, the 0-1 loss criterion defines

the rule that minimizes the error rate over the population as optimal. With the symmetric

labeling of ±1 and conditional probability η(x) := P (Y = 1|X = x), the optimal rule,

namely, the Bayes decision rule is given by φB(x) := sgn(η(x) − 1/2), predicting the label

of the most likely class. In the absence of the knowledge of η(x), there are two different

approaches for building a classification rule that emulates the Bayes classifier. One is to

construct a probability model for the data first and then use the estimate of η(x) from the

model for classification. This yields such model-based plug-in rules as logistic regression,

LDA, QDA and other density based classification methods. The other is to aim at direct

minimization of the error rate without estimating η(x) explicitly. Large margin classifiers

with a convex surrogate of the 0-1 loss fall into the second type, and the SVM with the hinge

loss is a typical example.

The discrepancy of the 0-1 loss from the surrogate loss that is actually used for training a

classifier in the latter approach generated an array of theoretical questions regarding neces-

sary conditions for the surrogate loss to guarantee the Bayes risk consistency of the resulting

rules. (21–23) delve into the issues and provide proper conditions for a convex surrogate loss.

It turns out that only minimal conditions are necessary in the binary case to ensure the risk

consistency while much care has to be taken in the multiclass case (24–26). In particular,

it is shown that the hinge loss is class-calibrated, meaning that it satisfies a weak notion

of consistency known as Fisher consistency. Furthermore, the Bayes risk consistency of the
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SVM has been established under the assumption that the space generated by a kernel is

sufficiently rich (21, 27).

A simple way to see the effect of each loss criterion on the resulting rule is to look

at its population analog and identify the limiting discriminant function which is defined

as the population risk minimizer among measurable functions of f . Interestingly, for the

hinge loss, the population minimizer of E(1− Y f(X))+ is f ∗
SVM(x) := sgn(η(x)− 1/2), the

Bayes classifier itself, while that of the negative log likelihood loss for logistic regression is

f ∗
LR(x) := log{η(x)/(1− η(x))}, the true logit, for comparison. This difference is illustrated

in Figure 3. For 300 equally spaced xi in (−2, 2), yi’s were generated with the probability of

class 1 equal to η(x) in Figure 3 (the solid line is 2η(x)− 1). The dotted line is the estimate

of 2η(x)−1 by penalized logistic regression and the dashed line is the SVM. The radial basis

kernel was used for both methods. Note that the logistic regression estimate is very close to

the true probability 2η(x)− 1 while the SVM is close to sgn(η(x)− 1/2). Nonetheless, the

resulting classifiers are almost identical.

If prediction is of primary concern, then the SVM can be an effective choice. However,

there are many applications where accurate estimation of the conditional probability η(x)

is required for making better decisions than just prediction of a dichotomous outcome. In

those cases, the SVM offers very limited information as there is no principled way to recover

the probability from the SVM output in general.

However, the remark pertains only to the SVM with a flexible kernel since it is based on

the property that the asymptotic discriminant function is sgn(η(x)− 1/2). The SVM with

simple kernels, the linear SVM for one, needs to be analyzed separately. A recent study

(28) shows that under the normality and equal variance assumption on the distribution of

attributes for two classes, the linear SVM coincides with the LDA in the limit. Technically,

the analysis exploits a close link between the SVM and median regression yet with categorical

responses. At least in this case, the probability information would not be masked and can be
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Figure 3: Comparison of the SVM and logistic regression. The solid line is the true function,
2η(x)− 1, the dotted line is 2η̂LR(x)− 1 from penalized logistic regression, and the dashed
line is f̂SVM(x) of the SVM.

recovered from the linear discriminant function with additional computation. However, it is

generally advised that the SVM is a tool for prediction, not for modeling of the probabilistic

mechanism underlying the data.

3 Data Example

Taking breast cancer data in (29) as an example, we illustrate the method and discuss

various aspects of its application and some practical issues. The data consist of expression

levels of 24,481 genes collected from patients with primary breast tumors who were lymph

node negative at the time of diagnosis. The main goal of the study was to find a gene

expression signature prognostic of distant metastases within five years, which can be used to

select patients who would benefit from adjuvant therapy such as chemotherapy or hormone

therapy. Out of 78 patients in the training data, 34 developed metastasis within five years
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(labeled a poor prognosis) and 44 remained metastasis free for at least five years (labeled a

good prognosis).

Following a similar preprocessing step in the paper, we filtered those genes that exhibited

at least a two-fold change in the expression from the pooled reference sample with a p-value

< 0.01 in five or more tumors in the training data and discarded two additional genes with

missing values, yielding 4,008 genes. Sample 54 with more than 20% of missing values was

removed before filtering.

First, we applied the linear SVM to the training data (77 observations), varying the

number of genes from large to relatively small (d = 4008, 70, and 20) to see the effect of

the input dimension on error rates and the number of support vectors. Whenever a subset

of genes were used, we included in classification those top ranked genes by the p-value of

a t-test statistic for marginal association with the prognostic outcomes. 70 is the number

of genes selected for the prediction algorithm in the original paper although the selection

procedure was not based on the p-values.

λ affects classification accuracy and the number of support vectors as well. To elucidate

the effect of λ, we obtained all the possible solutions indexed by the tuning parameter λ for

each fixed set of genes (using R package svmpath).

Figure 4 shows the error rate curves as a function of λ. The dotted lines are the apparent

error rates of the linear SVM over the training data set itself, and the solid lines are the test

error rates evaluated over the 19 test patients, where 7 remained metastasis free for at least

five years and 12 developed metastasis within five years. Clearly, when all of 4,008 genes are

included in the classifier, the training error rates can be driven to zero as the λ decreases

to zero, that is, classifiers get less regularized. On the other hand, the corresponding test

error rates in the same panel for small values of λ are considerably higher than the training

error rates, exemplifying the well-known phenomenon of overfitting. Hence, to attain the

best test error rate, the training error rate and the complexity of a classifier need to be

21



0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d=4008

λ

E
rr

or
 r

at
e

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d=70

λ

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d=20

λ

Figure 4: Error rate curves of the linear SVMs with three input dimensions (left: 4,008,
center: 70, and right: 20). The dotted lines are the apparent error rates over 77 training
patients, and the solid lines are the test error rates over 19 test patients.

properly balanced. However, for smaller input dimensions, the relationship between the

apparent error rates and test error rates is quite different. In particular, when only 20 genes

are used, in other words, the feature space is small, regularization provides little benefit in

minimizing the test error rate and the two error rate curves are roughly parallel to each

other. In contrast, for d = 70 and d = 4, 008, penalization (‘maximizing the margin’) does

help in reducing the test error rate. The overall minimum error rate of around 20% was

achieved when d = 70.

Like the error rates, the number of support vectors also depends on the tuning parameter,

the degree of overlap between two classes and the input dimensionality among other factors.

Figure 5 depicts how it varies as a function of λ for the three cases of high to relatively low

dimension. When d = 4, 008, the number of support vectors is approximately constant and

except a few observations almost all the observations are support vectors. A likely reason is

that the dimension is so high compared to the sample size that nearly every observation is

close to the classification boundary. However, for the lower dimensions, as the λ approaches

22



0 5 10 15

40
50

60
70

d=4008

λ

N
um

be
r 

of
 S

up
po

rt
 V

ec
to

rs

0.0 0.5 1.0 1.5

40
50

60
70

d=70

λ

0.0 0.2 0.4 0.6

40
50

60
70

d=20

λ

Figure 5: Relationship between the input dimension (left: 4,008, center: 70, and right: 20)
and the number of support vectors for the linear SVM.

zero, a smaller fraction of observations come out to be support vectors.

Generally, changing the kernel from linear to nonlinear leads to reduction in the overall

training error rate, and it often translates into a lower test error rate. As an example, we

obtained the training and test error rate curves for the Gaussian kernel, K(x, t) = exp(−‖x−

t‖2/2σ2), with the 70 genes as shown in Figure 6. The bandwidth σ, which is another tuning

parameter, was set to be the median of pairwise distances between two classes in the left

panel, its half in the center, and nearly a third of the median in the right panel, respectively.

Figure 6 illustrates that with a smaller bandwidth, the training error rates can be made

substantially small over a range of λ. Moreover, for σ = 1.69 and 1.20, if λ is properly

chosen, then fewer mistakes are made in prediction for the test cases by the nonlinear SVM

than the linear SVM.

As emphasized before, generally the SVM output values can not be mapped to class-

conditional probabilities in a theoretically justifiable way perhaps with the only exception

of the linear SVM in a limited situation. For comparison of logistic regression and SVM,

we applied penalized logistic regression to the breast cancer data with the expression levels
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Figure 6: Error rate curves of the nonlinear SVM with 70 genes and the Gaussian kernel for
three bandwidths. The dotted lines are the apparent error rates, and the solid lines are the
test error rates.
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Figure 7: Scatter plot of the estimated probabilities of good prognosis from penalized logistic
regression versus the values of the discriminant function from the linear SVM for training
data. The green dots indicate the patients with good diagnosis and the red dots indicate
those with poor diagnosis.
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of the 70 genes as linear predictors. For simplicity, the optimal penalty size for logistic

regression was again determined by the minimum test error rate. Figure 7 is a plot of the

estimated probabilities of good prognosis from the logistic regression versus the values of

the discriminant function from the linear SVM evaluated for the observations in the training

data. It shows a monotonic relationship between the output values of the two methods, which

could be used for calibration of the results from the SVM with class-conditional probabilities.

When each method was best tuned in terms of the test error rate, logistic regression gave

10% of the training error rate and 30% of the test error rate while both error rates were

around 20% for the SVM. For more comparison between the two approaches, see (30, 31).

The statistical issue of finding an optimal choice of the tuning parameter has not been

discussed adequately in this data example. Instead, by treating the test set as if it were a

validation set, the size of the penalty was chosen to minimize the test error rate directly for

simple exposition. In practice, cross validation is commonly used for tuning in the absence

of a separate validation set.

On a brief note, in the original paper, a correlation-based classifier was constructed

on the basis of 70 genes that were selected sequentially and its threshold was adjusted

for increased sensitivity to poor prognosis. With the adjusted threshold, only 2 out of

19 incorrect predictions were reported. This low test error rate could be explained as a

result of the threshold adjustment. Recall that the good prognosis category is the majority

for the training data set (good/poor=44/33) while the opposite is true for the test set

(good/poor=7/12). As in this example, if two types of error (misclassifying good prognosis

as poor or vice versa) are treated differentially, then the optimal decision boundary would

be different from the region where two classes are equally likely, that is, η(x) = 1/2. For

estimation of a different level of probability, say, η0 6= 1/2 with the SVM method, the hinge

loss has to be modified with weights that are determined according to the class labels. This

modification leads to a weighted SVM, and more details can be found in (32).
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4 Further Extensions

So far, the standard SVM for the binary case has been mainly introduced. Since its incep-

tion, various methodological extensions have been considered, expanding its utility to many

different settings and applications. Just to provide appropriate pointers to references for

further reading, some of the extensions are briefly mentioned here.

First, consider situations that involve more than two classes. A proper extension of the

binary SVM to the multiclass case is not as straightforward as a probability-model based

approach to classification, as evident in the special nature of the discriminant function that

minimizes the hinge loss in the binary case. (24, 25) discuss some extensions of the hinge

loss that would carry the desired consistency of the binary SVM to the multicategory case.

Second, identification of the variables that discriminate given class labels is often crucial

in many applications. There have been a variety of proposals to either combine or integrate

variable or feature selection capability with the SVM for enhanced interpretability. For

example, recursive feature elimination (33) combines the idea of backward elimination with

the linear SVM. Similar to the ℓ1 penalization approach to variable selection in regression

such as the LASSO and the basis pursuit method (34), (35) and later (36) modified the linear

SVM with the ℓ1 penalty for feature selection, and (37) considered further the ℓ0 penalty. For

a nonlinear kernel function, (38, 39) introduced a scale factor for each variable and chose the

scale factors by minimizing generalization error bounds. As an alternative, (40, 41) suggested

functional analysis of variance approach to feature selection for the nonlinear SVM motivated

by the nonparametric generalization of the LASSO in (42).

On the computational front, numerous algorithms to solve the SVM optimization prob-

lem have been developed for fast computation with enhanced algorithmic efficiency and for

the capacity to cope with massive data. (43) provides a historical perspective of the devel-

opment in terms of relevant computational issues to the SVM optimization. Some of the
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implementations are available at http://www.kernel-machines.org, including SVM light in

(44) and LIBSVM in (45). The R package e1071 is an R interface to LIBSVM, and kernlab

is another R implementation of the SVM. Note that the aforementioned implementations are

mostly for getting a solution at a given value of the tuning parameter λ. However, as seen

in the data example, the classification error rate depends on λ, and thus, in practice, it is

necessary to consider a range of λ values and get the corresponding solutions in pursuit of an

optimal solution. It turns out that characterization of the entire solution path as a function

of λ is possible as demonstrated in (46) for the binary case and (47) for the multicategory

case. The solution path algorithms in the references provide a computational shortcut to

obtain the entire spectrum of solutions, facilitating the choice of the tuning parameter.

The scope of extensions of kernel methods in current use is, in fact, far beyond classi-

fication. Details of other methodological developments with kernels for regression, novelty

detection, clustering, and semi-supervised learning can be found in (7).
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