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Abstract

We review some of the basic ideas of Support Vector Machines (SVM’s) for clas-
sification, with the goal of describing how these ideas can sit comfortably inside
the statistical literature in decision theory and penalized likelihood regression. We
review recent work on adaptive tuning of SVMs, discussing generalizations to the
nonstandard case where the training set is not representative and misclassification
costs are not equal. Mention is made of recent results in the multicategory case.

1.1 Introduction

This paper is an expanded version of the the talk given by one of the authors (GW)
at the Mathematical Sciences Research Institute Berkeley Workshop on Nonlin-
ear Estimation and Classification, March 20, 2001. In this paper we review some
of the basic ideas of Support Vector Machines(SVMs) with the goal of describing
how these ideas can sit comfortably inside the statistical literature in decision the-
ory and penalized likelihood regression, and we review some of our own related
research.
Support Vector Machines (SVM’s) burst upon the classification scene in the

early 90’s, and soon became the method of choice for many researchers and prac-
titioners involved in supervised machine learning. The talk of Tommi Poggio
at the Berkeley workshop highlights some of the many interesting applica-
tions. The website http://kernel-machines.org is a popular repository
for papers, tutorials, software, and links related to SVM’s. A recent search in
http://www.google.com for ‘Support Vector Machines’ leads to ‘about
10,600’ listings. Recent books on the topic include [23] [24] [5], and there is
a section on SVM’s in [10]. [5] has an incredible (for a technical book) ranking in
amazon.com as one of the 4500 most popular books.
The first author became interested in SVM’s at the AMS-IMS-SIAM Joint

Summer Research Conference on Adaptive Selection of Models and Statistical
Procedures, held at Mount Holyoke College in South Hadley MA in June 1996.
There, Vladimir Vapnik, generally credited with the invention of SVM’s, gave
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an interesting talk, and during the discussion after his talk it became evident
that the SVM could be derived as the solution to an optimization problem in a
Reproducing Kernel Hilbert Space (RKHS), [25], [29] [13], [27], thus bearing
a resemblance to penalized likelihood and other regularization methods used in
nonparametric regression. This served to link the rapidly developing SVM lit-
erature in supervised machine learning to the now obviously related statistics
literature. Considering the relatively recent development of SVM’s, compared to
the 40 or so year history of other classification methods, it is of interest to question
theoretically why SVM’s work so well. This question was recently answered in
[18], where it was shown that, provided a rich enough RKHS is used, the SVM is
implementing the Bayes rule for classification. Convergence rates in some special
cases can be found [19]. An examination of the form of the SVM shows that it is
doing the implementation in a flexible and particularly efficient manner.
As with other regularization methods, there is always one, and sometimes

several tuning parameters which must be chosen well in order to have efficient
classification in nontrivial cases. Our own work has focused on the extension of
the Generalized Approximate Cross Validation (GACV) [35] [17] [8] from pe-
nalized likelihood estimates to SVM’s, see [21] [20] [32] [29]. At the Berkeley
meeting, Bin Yu pointed GW to the ξα method of Joachims [12], which turned
out to be closely related to the GACV. Code for the ξα estimate is available
in SV M light http://ais.gmd.de/ thorsten/svm light/. At about
this time there was a lot of activity in the development of tuning methods, and
a number of them [26] [11] [22] [12] [2] turned out to be related under various
circumstances.
We first review optimal classification in the two-category classification prob-

lem. We describe the standard case, where the training set is representative of the
general population, and the cost of misclassification is the same for both cate-
gories, and then turn to the nonstandard case, where neither of these assumptions
hold. We then describe the penalized likelihood estimate for Bernoulli data, and
compare it with the standard SVM. Next we discuss how the SVM implements the
Bayes rule for classification and then we turn to the GACV for tuning the standard
SVM. The GACV and Joachims’ ξα method are then compared. Next we turn to
the nonstandard case. We describe the nonstandard SVM, and show how both the
GACV and the ξα method can be generalized in that case, from [31]. A modest
simulation shows that they behave similarly. Finally, we briefly mention that we
have generalized the (standard and nonstandard) SVM to the multicategory case
[15].

1.2 Optimal Classification and Penalized Likelihood

Let hA(·), hB(·) be densities of x for class A and class B, and let πA = proba-
bility the next observation (Y ) is an A, and let πB = 1 − πA = probability that
the next observation is a B. Then p(x) ≡ prob{Y = A|x} = πAhA(x)

πAhA(x)+πBhB(x) .



1. Optimal Properties and Adaptive Tuning of Standard and Nonstandard Support VectorMachines 3

Let CA = cost to falsely call a B an A and CB = cost to falsely call an A a B.
A classifier φ is a map φ(x) : x → {A,B}. The optimal (Bayes) classifier, which
minimizes the expected cost is

φOPT(x) =

{
A if p(x)

1−p(x) > CA
CB

,

B if p(x)
1−p(x) < CA

CB
.

(1.1)

To estimate p(x), or, alternatively the logit f(x) ≡ log p(x)/(1− p(x)), we use a
training set {yi, xi}n

i=1, yi ∈ {A,B}, xi ∈ T , where T is some index set. At first
we assume that the relative frequency of A’s in the training set is the same as in
the general population. f can be estimated (nonparametrically) in various ways.
If CA/CB = 1, and f is the logit, the optimal classifier is

f(x) > 0 (equivalently, p(x) − 1
2 > 0) → A

f(x) < 0 (equivalently, p(x) − 1
2 < 0) → B

In the usual penalized log likelihood estimation of f , the observations are coded
as

y =

{
1 if A,

0 if B.
(1.2)

The probability distribution function for y | p is then

L = py(1 − p)1−y =

{
p if y = 1
(1 − p) if y = 0

.

Using p = ef/(1 + ef ) gives the negative log likelihood − logL = −yf +
log(1 + ef ). For comparison with the support vector machine we will describe
a somewhat special case (General cases are in [13], [17], [8], [34]). The penal-
ized log likelihood estimate of f is obtained as the solution to the problem: Find
f(x) = b + h(x) with h ∈ HK to minimize

1
n

n∑

i=1

[
−yif(xi) + log(1 + ef(xi))

]
+ λ∥h∥2

HK
(1.3)

where λ > 0, and HK is the reproducing kernel Hilbert space (RKHS) with
reproducing kernel

K(s, t), s, t ∈ T . (1.4)

For more on RKHS, see [1] [28]. RKHS may be tailored to many applications
since any symmetric positive definite function on T × T has a unique RKHS
associated with it.
Theorem: [13] fλ, the minimizer of (1.3) has a representation of the form

fλ(x) = b +
n∑

i=1

ciK(x, xi). (1.5)
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It is a property of RKHS that

∥h∥2
HK

≡
n∑

i,j=1

cicjK(xi, xj). (1.6)

To obtain the estimate fλ, (1.5) and (1.6) are substituted into (1.3), which is then
minimized with respect to b and c = (c1, . . . , cn). Given positive λ, this is a
strictly convex optimization problem with some nice features special to penalized
likelihood for exponential families, provided that p is not too near 0 or 1. The
smoothing parameter λ, and certain other parameters which may be insideK may
be chosen by Generalized Approximate Cross Validation (GACV) for Bernoulli
data, see ([17]) and references cited there. The target for GACV is to minimize
the Comparative Kullback-Liebler (CKL) distance of the estimate from the true
distribution:

CKL(λ) = Etrue

n∑

i=1

−ynew.ifλ(xi) + log(1 + efλ(xi)), (1.7)

where ynew.i is a new observation with attribute vector xi.

1.3 Support Vector Machines (SVM’s)

For SVM’s, the data is coded differently:

y =

{
+1 if A,

−1 if B.
(1.8)

The support vector optimization problem is: Find f(x) = b + h(x) with h ∈ HK

to minimize

1
n

n∑

i=1

(1 − yif(xi))+ + λ∥h∥2
HK

(1.9)

where (τ )+ = τ , if τ > 0, and 0 otherwise. The original support vector machine
(see e. g. ([26]) was obtained from a different argument, but it is well known
that it is equivalent to (1.9), see ([29], [25]). As before, the SVM fλ has the
representation (1.5). To obtain the classifier fλ for a fixed λ > 0, (1.5) and (1.6)
are substituted into (1.9) resulting in a mathematical programming problem to be
solved numerically. The classifier is then fλ(x) > 0 → A, fλ(x) < 0 → B.
Wemay compare the penalized log likelihood estimate of the logit log p/(1−p)

and the SVM (the minimizer of (1.9)) by coding y in the likelihood as

ỹ =

{
+1 if A,

−1 if B.

Then −yf + log(1+ ef ) becomes log(1+ e−ỹf ), where f is the logit. Figure 1.1
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Figure 1.1. Adapted from [29]. Comparison of [−τ ]∗, (1 − τ)+ and loge(1 + e−τ ).

compares log(1 + e−yf ), (1 − yf)+ and [−yf ]∗ as functions of τ = yf where

[τ ]∗ =

{
1 if τ ≥ 0,

0 otherwise.

Note that [−yf ]∗ is 1 or 0 according as y and f have the same sign or not.
Calling [−yf ]∗ the misclassification counter, one might consider minimizing the
misclassification count plus some (quadratic) penalty functional on f but this is
a nonconvex problem and difficult to minimize numerically. Numerous authors
have replaced the misclassification counter by some convex upper bound to it.
The support vector, or ramp function (1 − yf)+ is a convex upper bound to the
misclassification counter, and Bin Yu observed that log2(1+e−τ ) is also a convex
upper bound. Of course it is also possible to use a penalized likelihood estimate
for classification see [33]. However, the ramp function (modulo the slope) is the
‘closest’ convex upper bound to the misclassification counter, which provides one
heuristic argument why SVM’s work so well in the classification problem.
Recall that the penalized log likelihood estimate was tuned by a criteria which

chose λ to minimize a proxy for the CKL of (1.7) conditional on the same xi. By
analogy, for the SVM classifier we were motivated in [20] [21] [29] [32] to say
that it is optimally tuned if λ minimizes a proxy for the Generalized Comparative
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Kullback-Liebler distance (GCKL), defined as

GCKL(λ) = Etrue
1
n

n∑

i=1

(1 − ynew·ifλ(xi))+. (1.10)

That is, λ (and possibly other parameters in K) are chosen to minimize a proxy
for an upper bound on the misclassification rate.

1.4 Why is the SVM so successful?

There is actually an important result which explains why the SVM is so success-
ful: We have the Theorem:

Theorem [18]: The minimizer over f of Etrue(1 − ynewf(x))+ is sign
(p(x) − 1

2 ), which coincides with the sign of the logit.

As a consequence, if HK is a sufficiently rich space, the minimizer of (1.9)
where λ is chosen to minimize (a proxy for) GCKL(λ), is estimating the sign
of the logit. This is exactly what you need to implement the Bayes classifier!
Etrue(1 − ynewfλ)+ is given by

Etrue(1 − ynewfλ)+ =

⎧
⎨

⎩

p(1 − fλ), fλ < −1
p(1 − fλ) + (1 − p)(1 + fλ), − 1 < fλ < +1
(1 − p)(1 + fλ), fλ > +1.

⎫
⎬

⎭

(1.11)

Since the true p is only known in a simulation experiment, GCKL is also only
known in experiments. The experiment to follow, which is reprinted from [18],
demonstrates this theorem graphically. Figure 1.2 gives the underlying conditional
probability function p(x) = Prob{y = 1|x} used in the simulation. The function
sign (p(x)− 1/2) is 1, for 0.25 < x < 0.75;−1 otherwise. A training set sample
of n = 257 observations were generated with the xi equally spaced on [0, 1], and
p according to Figure 1.2. The SVM was computed and f is given in Figure 1.3
for nλ = 2−1, 2−2, . . . , 2−25, in the plots left to right starting with the top row
and moving down. We see that solution f is close to sign (p(x)−1/2)when nλ is
in the neighborhood of 2−18. 2−18 was the minimizer of the GCKL, suggesting
that it is necessary to tune the SVM to estimate sign (p(x) − 1/2) well.

1.5 The GACV for choosing λ (and other parameters in
K)

In [29], [32], [20], [21] we developed and tested the GACV for tuning SVM’s.
In [29] a randomized version of GACV was obtained using a heuristic argument
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Figure 1.2. From [18]. The underlying conditional probability function
p(x) = Prob{y = 1|x} in the simulation.
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related to the derivation of the GCV [4], [9] for Gaussian observations and for the
GACV for Bernoulli observations [35]. In [32], [20], [21] it was seen that a direct
(non-randomized) version was readily available, easy to compute, and worked
well. At about same time, there were several other tuning results [3] [11] [12]
[22] [26] which are closely related to each other and to the GACV in one way or
another. We will discuss these later. The arguments below follow [32]. The goal
here is to obtain a proxy for the (unobservable) GCKL(λ) of (1.10). Let f [−k]

λ
be the minimizer of the form f = b + h with h ∈ HK to minimize

1
n

∑

i = 1
i ̸= k

(1 − yif(xi))+ + λ∥h∥2
K .

Let

V0(λ) =
1
n

n∑

k=1

(1 − ykf [−k]
λ (xk))+.

We write

V0(λ) ≡ OBS(λ) + D(λ), (1.12)

where

OBS(λ) =
1
n

n∑

k=1

(1 − ykfλ(xk))+. (1.13)

and

D(λ) =
1
n

n∑

k=1

[(1 − ykf [−k]
λ (xk))+ − (1 − ykfλ(xk))+] (1.14)

Using a rather crude argument, [32] showed that D(λ) ≈ D̂(λ) where

D̂(λ) =
1
n

⎡

⎣
∑

yifλ(xi)<−1

2
∂fλ(xi)

∂yi
+

∑

yifλ(xi)∈[−1,1]

∂fλ(xi)
∂yi

⎤

⎦ . (1.15)

In this argument, yi is treated as though it is a continuous variate, and the lack of
differentiability is ignored. Then

V0(λ) ≈ OBS(λ) + D̂(λ). (1.16)

D̂(λ) may be compared to trace A(λ) in GCV and unbiased risk estimates.
How shall we interpret ∂fλ(xi)

∂yi
? Let Kn×n = {K(xi, xj)}, Dy =⎛

⎜⎝
y1

. . .
yn

⎞

⎟⎠,

⎛

⎜⎝
fλ(x1)
...

fλ(xn)

⎞

⎟⎠ = Kc + eb , e =

⎛

⎜⎝
1
...
1

⎞

⎟⎠ . We will ex-

amine the optimization problem for (1.9): Find (b, c) to minimize 1
n

∑n
i=1(1 −
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yifλ(xi))+ + λc′Kc. The dual problem for (1.9) is known to be: Find α =⎛

⎜⎝
α1
...

αn

⎞

⎟⎠ to minimize 1
2α′ ( 1

2nλDyKDy

)
α − e′α subject to

⎛

⎜⎝
0
...
0

⎞

⎟⎠ ≤

⎛

⎜⎝
α1
...

αn

⎞

⎟⎠ ≤

⎛

⎜⎝
1
...
1

⎞

⎟⎠ and y′α = 0, where y =

⎛

⎜⎝
y1
...

yn

⎞

⎟⎠, and c = 1
2nλDyα.

Then

⎛

⎜⎝
fλ(x1)
...

fλ(xn)

⎞

⎟⎠ = 1
2nλKDyα + eb, and we interpret ∂fλ(xi)

∂yi
as ∂fλ(xi)

∂yi
=

1
2nλK(xi, xi)αi, resulting in

D̂(λ) =
1
n

⎡

⎣2
∑

yifλ(xi)<−1

αi

2nλ
K(xi, xi) +

∑

yifλ(xi)∈[−1,1]

αi

2nλ
K(xi, xi)

⎤

⎦

(1.17)

and

GACV (λ) = OBS(λ) + D̂(λ). (1.18)

Let θk = αk
2nλK(xk, xk), and note that if ykfλ(xk) > 1, then αk = 0. If

αk = 0, leaving out the kth data point does not change the solution. Otherwise,
the expression for D̂(λ) in (1.17) is equivalent in a leaving-out-one argument, to
approximating [ykfλ(xk)−ykf [−k]

λ (xk)] by θk if ykfλ(xk) ∈ [−1, 1] and by 2θk

if ykfλ(xk) < −1. Jaakkola and Haussler, [11] in the special case that b is taken
as 0 proved that θk is an upper bound for [ykfλ(xk)−ykf [−k]

λ (xk)] and Joachims
[12] proved in the case considered here, that [ykfλ(xk) − ykf [−k]

λ (xk)] ≤ 2θk.
Vapnik [26] in the case that b is set equal to 0, and OBS = 0, proposed choosing
the parameters to minimize the so-called radius-margin bound. This works out
to minimizing

∑
i θi when K(xi, xi) is the same for all i. Chapelle and Vapnik

[2] and Opper and Winther [22] have related proposals for choosing the tuning
parameters. More details on some of these comparisons may be found in [3].

1.6 Comparing GACV and Joachims’ ξα method for
choosing tuning parameters.

Let ξi = (1 − yifλi)+, andKij = K(xi, xj). The GACV is then

GACV (λ) =
1
n

⎡

⎣
n∑

i=1

ξi + 2
∑

yifλi<−1

αi

2nλ
Kii +

∑

yifλi∈[−1,1]

αi

2nλ
Kii

⎤

⎦ .

(1.19)
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A more direct target than GCKL(λ) is the misclassification rate, defined
(conditional on the observed set of attribute variables) as

MISCLASS(λ) = Etrue
1
n

n∑

i=1

[−yifλi]∗ ≡ 1
n

n∑

i=1

{pi[−fλi]∗ + (1 − pi)[fλi]∗}.

(1.20)
Joachims [12], Equation (7) proposed the ξα (to be called XA here) proxy for
MISCLASS as:

XA(λ) =
1
n

n∑

i=1

[
ξi + ρ

αi

2nλ
K − 1

]

∗
(1.21)

where ρ = 2 and here (with some abuse of notation) K is an upper bound on
Kii − Kij . Letting θi = ρ αi

2nλK, it can be shown that the sum in XA(λ) counts
all of the samples for which yifλi ≤ θi. Since yifλi > 1 ⇒ αi = 0, XA may
also be written

XA(λ) =
1
n

⎡

⎣
n∑

i=1

[−yifλi]∗ +
∑

yifλi≤1

I[
ραi
2nλ K](yifλi)

⎤

⎦ , (1.22)

where I[θ](τ ) = 1 if τ ∈ (0, θ] and 0 otherwise. Equivalently the sum in XA
counts the misclassified cases in the training set plus all of the cases where yifλi ∈
(0, ρ αi

2nλK] (adopting the convention that if fλi is exactly 0 then the example is
considered misclassified). In some of his experiments Joachims (empirically) set
ρ = 1 because it achieved a better estimate of the misclassification rate than did
the XA with ρ = 2. Let us go over how estimates of the difference between a
target and its leaving out one version may be used to construct estimates when the
‘fit’ is not the same as the target - here the ‘fit’ is (1 − yifλi)+, while the ‘target’
for the XA is [−yifλi]∗. We will use the argument in the next section to generalize
the XA to the nonstandard case in the same way that the GACV is generalized to
its nonstandard version.
Let f [−i]

λi = f [−i]
λ (xi). Suppose we have the approximation yifλi ≈ yif

[−i]
λi +

θi, with θi ≥ 0. A leaving out one estimate of the misclassification rate is given
by V0(λ) = 1

n

∑n
i=1[−yif

[−i]
λi ]∗. Now V0(λ) = 1

n

∑n
i=1[−yifλi]∗ +D(λ) where

here

D(λ) =
1
n

n∑

i=1

{[−yif
[−i]
λi ]∗ − [−yifλi]∗}. (1.23)

Now, the ith term in D(λ) = 0 unless yif
[−i]
λi and yifλi have different signs. For

θi > 0 this can only happen if yifλi ∈ (0, θi]. Assuming the approximation

yifλi ≈ yif
[−i]
λi +

αi

2nλ
Kii (1.24)

tells us that 1
n

∑
yifλi≤1 I[

αi
2nλ Kii](yifλi), can be taken as an approximation to

D(λ) of (1.23), resulting in (1.22). This provides an alternate derivation as well
as an alternative interpretation of XA with ρ = 1,K replaced byKii.
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1.7 The Nonstandard SVM and the Nonstandard GACV

We now review the nonstandard case, from [21]. Let πs
A and πs

B be the relative fre-
quencies of theA and B classes in the training (sample) set. Recall that πA and πB
are the relative frequencies of the two classes in the target population, CA and CB
are the costs of falsely calling a B an A and falsely calling anA a B respectively,
and hA(x) and hB(x) are the the densities of x in theA and B classes, and that the
probability that a subject from the target population with attribute x belongs to the
A class is p(x) = πAhA(x)

πAhA(x)+πBhB(x) . However, the probability that a subject with
attribute x chosen from a population with the same distribution as the training set,
belongs to the A class, is ps(x) = πs

AhA(x)
πs
AhA(x)+πs

BhB(x) . Letting φ(x) be the deci-
sion rule coded as a map from x ∈ X to {−1, 1}, where 1 ≡ A and −1 ≡ B, the
expected cost, using φ(x) is Extrue{CBp(x)[−φ(x)]∗ + CA(1 − p(x))[φ(x)]∗},
where the expectation is taken over the distribution of x in the target population.
The Bayes rule, which minimizes the expected cost is (from (1.1)) φ(x) = +1 if

p(x)
1−p(x) > CA

CB
and −1 otherwise. Since we don’t observe a sample from the true

distribution but only from the sampling distribution, we need to express the Bayes
rule in terms of the sampling distribution ps. It is shown in [21] that the Bayes
rule can be written in terms of ps as φ(x) = +1 if ps(x)

1−ps(x) > CA
CB

πs
A

πs
B

πB
πA

and
−1 otherwise. Let L(−1) = CAπB/πs

B and L(1) = CBπA/πs
A. Then the Bayes

rule can be expressed as φ(x) = sign
[
ps(x) − L(−1)

L(−1)+L(1)

]
. [21] proposed the

nonstandard SVM to handle this nonstandard case as:

min
1
n

n∑

i=1

L(yi)[(1 − yif(xi))+] + λ∥h∥2
HK

(1.25)

over all the functions of the form f(x) = b + h(x), with h ∈ HK . This definition
is justified there by showing that, if the RKHS is rich enough and λ is chosen
suitably, the minimizer of (1.25) tends to sign

[
ps(x) − L(−1)

L(−1)+L(1)

]
. In [7] and

references cited there, the authors considered the nonstandard case and proposed
a heuristic solution, which is different than the one discussed here.
The minimizer of (1.25) has same form as in (1.5). [20] show that the dual

problem becomes minimize 1
2α′ ( 1

2nλDyKDy

)
α − e′α subject to 0 ≤ αi ≤

L(yi), i = 1, 2, ..., n, and y′α = 0, and c = 1
2nλDyα. The GACV for non-

standard problems was proposed there, in an argument generalizing the standard
case, as:

GACV (λ) =
1
n

⎡

⎣
n∑

i=1

L(yi)ξi + 2
∑

yifλi<−1

L(yi)
αi

2nλ
Kii +

∑

yifλi∈[−1,1]

L(yi)
αi

2nλ
Kii

⎤

⎦ .

(1.26)
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It was shown to be a proxy for the nonstandard GCKL given by the nonstandard
version of GCKL of (1.10), which can be written as:

GCKL(λ) =
1
n

n∑

i=1

{L(1)ps(xi)(1 − fλi)+ + L(−1)(1 − ps(xi))(1 + fλi)+}.

(1.27)

(Compare (1.11).) We now propose a generalization, BRXA, of the XA as a com-
putable proxy for the Bayes risk in the nonstandard case. Putting together the
arguments which resulted in the the GACV of (1.19), the XA in the form that it
appears in (1.22) and the nonstandard GACV of (1.26), we obtain the BRXA:

BRXA(λ) =
1
n

n∑

i=1

⎡

⎣L(yi)[−yifλi]∗ +
∑

yifλi≤1

L(yi)I[
αi
2nλ Kii](yifλi)

⎤

⎦ .

(1.28)

The BRXA is a proxy for BRMISCLASS, given by

BRMISCLASS(λ) =
1
n

n∑

i=1

{L(1)ps(xi)[−fλi]∗ + L(−1)(1 − ps(xi))[fλi]∗}.

(1.29)
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Figure 1.4. Observations, and true, GACV, XA and MISCLASS Decision Curves for the
Standard Case (Left) and true, GACV, BRXA and BRMISCLASS Decision Curves for the
Nonstandard Case (Right).
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1.8 Simulation Results and Conclusions

The two panels of Figure 1.4 show the same simulated training set. The sam-
ple proportions of the A (+) and B (o) classes are .4 and .6 respectively. The
conditional distribution of x given that the sample is from the A class is bivari-
ate Normal with mean (0,0) and covariance matrix diag (1,1). The distribution
for x from the B class is bivariate Normal with mean (2,2) and covariance diag
(2,1). The left panel in Figure 1.4 is for the standard case, assuming that mis-
classification costs are the same for both kinds of misclassification, and the target
population has the same proportions of the A and B as the sample. For the right
panel, we assume that the costs of the two types of errors are different, and that
the target population has different relative frequencies than the training set. We
took CA = 1 CB = 2, πA = 0.1, πB = 0.9. As before, πs

A = 0.4, and πs
B = 0.6,

yielding L(−1) = CAπB/πs
B = 1.5, and L(1) = CBπA/πs

A = 0.5. Since the
distributions generating the data and the distributions of the target populations are
known and involve Gaussians, the theoretical best decision rules (for an infinite
future population) are known, and are given by the curves marked ‘true’ in both
panels.
The Gaussian kernel K(x, x′) = exp{−∥x − x′∥2/2σ2} was used, where

x = (x1, x2), and σ is to be tuned along with λ. The curves selected by the
GACV of (1.19) and the XA of (1.22) in the standard case are shown in the left
panel, along with MISCLASS of (1.20), which is only known in a simulation ex-
periment. The right panel gives the curves chosen by the nonstandard GACV of
(1.26), the BRXA of (1.28) and the BRMISCLASS of (1.29). The optimal (λ, σ)
pair in each case for the tuned curves was chosen by a global search. It can be
seen from both panels in Figure 1.4 that the MISCLASS curve, which is based on
the (finite) observed sample is quite close to the theoretical true curve (based on
an infinite future population), we make this observation because it will be easier
to compare the GACV and the XA against MISCLASS than against the true, sim-
ilarly for the BRMISCLASS curve. In both panels it can be seen that the decision
curves determined by the GACV and the XA(BRXA) are very close.
We have computed the inefficiency of these estimates with respect to MIS-

CLASS(BRMISCLASS), by inefficiency is meant the ratio of MISCLASS(BRMISCLASS)
at the estimated (λ, σ) pair to its minimum value, a value of 1 means that the
estimated pair is as accurate as possible, with respect to the (uncomputable) min-
imizer of MISCLASS(BRMISCLASS). The results for the standard case were:
GACV : 1.0064, XA : 1.0062 − 1.0094 (due to multiple neighboring minima
in the grid search, the 1.0062 case is in Figure 1.4); and for the nonstandard case:
GACV : 1.151, BRXA : 1.166.
Figure 1.5 gives contour plots for GCKL, GACV, BRMISCLASS and BRXA

as a function of λ and σ in the nonstandard case. It can be seen that the GACV
and BRXA curves have nearly the same minima. The GCKL and BRMISCLASS
curves both have long, shallow, tilted cigar-shaped minima, and the GACV and
BRXA minima are near the lower right end. For the standard case (not shown)
the minima are somewhat more pronounced and the GACV and XA minima are
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closer to the MISCLASS minimum, and this is reflected in inefficiencies nearer
to 1. (BR)MISCLASS curves in other simulation studies we have done show this
same behavior. We have observed (as did Joachims) that the value of XA in the
standard case is a good estimate of the value of MISCLASS at its minimizer, only
slightly pessimistic. The GACV at its minimizer is an estimate of twice the mis-
classification rate. The value of one half the GACV is somewhat more pessimistic.
We note that once one obtains the solution to the problem the computation of both
GACV and (BR)XA are equally trivial.
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Figure 1.5. GCKL, GACV, BRMISCLASS, BRXA as functions of λ and σ2, for the
nonstandard example. Note different logarithmic scales in λ and σ.

The GACV in (quadratically) penalized likelihood cases generally scatters
about the minimizer of its target (analogous to GCKL)(see [30]) but here, both
the GACV and the BRXA (along with the standard case) appear to be biased to-
wards larger λ. The (BR)MISCLASS surfaces are so flat in λ in our examples this
does not seem to be a serious problem (less so in the standard case).
Recently we have obtained a generalization of the SVM to the k category

case, which solves a single optimization problem to obtain a vector fλ(x) =
(f1λ(x), . . . , fkλ(x)) where the category classifier is the component of f that is
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largest, see [14]. Usual muticategory classification schemes do one-vs-many or(k
2

)
pairwise comparisons, and the multicategory SVM has advantages in certain

examples. The GACV has been been extended to the nonstandard multicategory
SVM case and it appears that the BRXA can also be extended. Penalized like-
lihood estimates which estimate a vector of logits simultaneously could also be
used for classification, [16], but again, if classification is the only consideration,
one can argue that an appropriate multicategory SVM is preferable.
Recently [6] compared the GACV, the XA, five-fold cross validation and sev-

eral other methods for tuning, using the standard two-category SVM on four data
sets with large validation sets available. It appears from the information given that
the authors may not have always found the minimizing (λ, σ) pair. However, we
note the authors’ conclusions here. With regard to the comparison between the
GACV and the XA, essentially similar conclusions were obtained as those here,
namely that they behaved similarly, one slightly better on some examples the other
slightly better on the other examples. However five-fold cross validation appeared
to have a better accuracy record on three of the examples, and was tied with the
GACV on the fourth. Several other methods were studied, none of which appeared
to be related to any leaving out one argument, and those did not perform well. The
five-fold cross validation will cost more in computer time, but with todays com-
puting speeds, that is not a real consideration. In some of our own experiments
we have found that the ten-fold cross validation beats or is tied with the GACV.
It is of some theoretical interest to understand what appears to be a systematic
overestimation of λ when using the Gaussian kernel and tuning σ2 along with λ,
by methods which are based on the leaving-out-one arguments around (1.24), es-
pecially since corresponding tuning parameter estimates in penalized likelihood
estimation generally appear to be unbiased in numerical examples.
.
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