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Abstract

Monitoring gene expression profiles is a novel approach in cancer diagnosis. Several stud-
ies showed that prediction of cancer types using gene expression data is promising and very
informative. The Support Vector Machine (SVM) is one of the classification methods success-
fully applied to the cancer diagnosis problems using gene expression data. However, its optimal
extension to more than two classes was not obvious, which might impose limitations in its appli-
cation to multiple tumor types. In this paper, we analyze a couple of published multiple cancer
types data sets by the multicategory SVM, which is a recently proposed extension of the binary
SVM.

1 Introduction

Microarray gene expression technology has opened the possibility of investigating the activity of
thousands of genes simultaneously. Gene expression profiles are the measurements of relative abun-
dance of mRNA corresponding to the genes. Thus, gene expression profiles have potential as a
medical diagnosis tool, since they sensitively reflect the state of a cell at the molecular level. In
clinical practice, it is known that classification of cancer types primarily based on histological fea-
tures has limitations due to their morphological similarity to other cancer types. Current diagnosis
procedures typically involve a pathologist’s interpretation of combination of analyses, without a
single systematic test. Accurate diagnosis would be essential for the efficacy of therapies. Under
the premise of gene expression patterns as fingerprints at the molecular level, systematic methods
to classify tumor types using gene expression data have been studied recently, in an attempt to
overcome the limitations of such conventional procedures. See Golub et al. (1999), Mukherjee et
al. (1999), Dudoit et al. (2000), Furey et al. (2000), Khan et al. (2001), Yeo and Poggio (2001),
and references therein.

Available training data sets (a set of pairs of a gene expression profile and the tumor type that it
falls into) have a fairly small sample size, typically less than one hundred, compared to the number
of genes involved. This poses an unprecedented challenge to some classification methodologies. The
Support Vector Machine (SVM) is one of the methods successfully applied to the cancer diagnosis
problem in the previous studies. In principle, it can handle input variables much larger than the
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sample size since its solution is determined by the dual problem of size equal to the sample size.
Although several extensions to the multiclass case have been proposed by Vapnik (1998), Weston
and Watkins (1999), and Crammer and Singer (2000), its optimal extension was not obvious in
relation to the theoretically best classification rule. Using SVMs, multiclass problems have been
tackled by solving a series of binary problems instead, such as one-vs-rest schemes. In order to
overcome possible limitations in its application to multiclass problems, the multicategory Support
Vector Machine (MSVM), an optimal extension of the binary SVM, was proposed recently by Lee
et al. (2001). In this paper, we apply the Multicategory Support Vector Machine (MSVM) to the
leukemia data set in Golub et al. (1999) and the small round blue cell tumors (SRBCTs) of childhood
data set in Khan et al. (2001). The classification results show that the MSVMs achieve perfect
classification or near perfect classification in diagnosing blind test samples. Such classification
accuracy is comparable to other methods. In addition to demonstrating the effectiveness of MSVMs
for the diagnosis of multiple cancer types, we touch other issues related to the data analysis in this
paper; the effect of data preprocessing, gene selection, and dimension reduction.

This paper is organized as follows. In Section 2, we briefly review the multicategory SVM and
discuss how to assess the strength of prediction made by the MSVM and some heuristics to reject
weak predictions, which may be important in clinical practice. The analysis of the two published
data sets by MSVMs comprises Section 3, followed by concluding remarks and discussion at the
end.

2 Multicategory Support Vector Machines

2.1 Brief review of Multicategory Support Vector Machines

The binary SVM paradigm has a nice geometrical interpretation of discriminating one class from
the other by a separating hyperplane with maximum margin. See Boser et al. (1992), Vapnik
(1995), and Burges (1998) for introductions to SVMs. Now, it is commonly known that the SVM
paradigm can be cast as a regularization problem. See Wahba (1998) and Evgeniou et al. (1999)
for details. In classification problems, we are given a training data set that consists of n samples,
(xi, yi) for i = 1, · · · , n. xi ∈ Rd represents covariates or input vectors and yi denotes the class
label of the ith sample. In the binary SVM setting, the class labels yi are either 1 or -1. Then
SVM methodology seeks a function f(x) = h(x) + b with h ∈ HK , a reproducing kernel Hilbert
space (RKHS) and b, a constant minimizing

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2
HK

(1)

where (x)+ = x if x ≥ 0 and 0 otherwise. ‖h‖2
HK

denotes the square norm of the function h
defined in the RKHS with the reproducing kernel function K(·, ·), measuring the complexity or
smoothness of h. For more information on RKHS, see Wahba (1990). λ is a tuning parameter
which balances the data fit and the complexity of f(x). The classification rule φ(x) induced by
f(x) is φ(x) = sign[f(x)]. The function f(x) yields the level curve defined by f(x) = 0 in Rd,
which is the classification boundary of the rule φ(x).

For the multiclass problem, assume the class label yi ∈ {1, · · · , k} without loss of generality.
k is the number of classes. To carry over the symmetry in representation of class labels, we code
each class label yi as a k-dimensional vector with 1 in the jth coordinate and − 1

k−1 elsewhere
if it falls into class j for j = 1, · · · , k. Accordingly, we define a k-tuple of separating functions
f(x) = (f1(x), · · · , fk(x)) with the sum-to-zero constraint,

∑k
j=1 fj(x) = 0 for any x ∈ Rd. Note
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that the constraint holds implicitly for coded class labels yi. Analogous to the two-category case,
we consider f(x) = (f1(x), · · · , fk(x)) ∈

∏k
j=1({1} + HKj

), the product space of k reproducing
kernel Hilbert spaces HKj

for j = 1, · · · , k. In other words, each component fj(x) can be expressed
as hj(x) + bj with hj ∈ HKj

. Unless there is compelling reason to believe that HKj
should be

different for j = 1, · · · , k, we will assume they are the same RKHS denoted by HK . Define Q as the
k by k matrix with 0 on the diagonal, and 1 elsewhere. It represents the cost matrix when all the
misclassification costs are equal. Let L be a function which maps a class label yi to the jth row
of the matrix Q if yi indicates class j. So, if yi represents class j, then L(yi) is a k dimensional
vector with 0 in the jth coordinate, and 1 elsewhere. The MSVM finds f(x) = (f1(x), · · · , fk(x)) ∈
∏k

1({1} + HK), with the sum-to-zero constraint, minimizing

1

n

n
∑

i=1

L(yi) · (f(xi) − yi)+ +
1

2
λ

k
∑

j=1

‖hj‖
2
HK

(2)

where (f(xi)−yi)+ means [(f1(xi)−yi1)+, · · · , (fk(xi)−yik)+] by taking the truncate function (·)+

componentwise, and · operation in the data fit functional indicates the Euclidean inner product.
The classification rule φ(x) induced by (f1(x), · · · , fk(x)) is φ(x) = arg maxj fj(x). We can verify
that the binary SVM formulation (1) is a special case of (2) when k = 2. Theoretically, the
population version minimizer of the loss functional in (2) at x is proven to be the coded class
label of the most probable class at x in Lee et al. (2001). This extends the binary case result that
ordinary SVMs approximate the majority class label at x, sign(p1(x)− 1/2), asymptotically to the
multiclass case. Here p1(x) = P (Y = 1|X = x), where (X,Y ) denotes a generic pair of a random
sample from P (x, y). These implications are the main grounds to argue that solving a series of
binary problems by the binary SVM may not be optimal for the original multiclass problems, and
by contrast, the MSVMs implement the optimal classification rule asymptotically in a coupled
fashion. So, for flexible reproducing kernel Hilbert space and appropriately chosen λ, the solution
f(x) to (2) is expected to be close to the most probable class code.

The problem of finding constrained functions (f1(x), · · · , fk(x)) minimizing (2) is then trans-
formed into that of finding finite dimensional coefficients instead, with the aid of a variant of the
representer theorem. It was shown in Lee et al. (2001) that to find (f1(x), · · · , fk(x)) with the
sum-to-zero constraint, minimizing (2) is equivalent to find (f1(x), · · · , fk(x)) of the form

fj(x) = bj +
n

∑

i=1

cijK(xi,x) for j = 1, · · · , k (3)

with the sum-to-zero constraint only at xi for i = 1, · · · , n, minimizing (2). Omitting intermediate
steps and introducing nonnegative Lagrange multipliers αj ∈ Rn , we get the following dual problem:

min
αj

LD =
1

2

k
∑

j=1

(αj − ᾱ)tK(αj − ᾱ) + nλ
k

∑

j=1

αt
jy·j (4)

subject to 0 ≤ αj ≤ Lj for j = 1, · · · , k (5)

(αj − ᾱ)te = 0 for j = 1, · · · , k (6)

where Lj ∈ Rn for j = 1, · · · , k is the jth column of the n by k matrix with the ith row L(yi), and
similarly y·j denotes the jth column of the n by k matrix with the ith row yi. ᾱ is the average
of αj’s, and e denotes the vector of ones of length n. With some abuse of notation, the n by
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n matrix K ≡ (K(xi,x`)). Once we solve the quadratic programming problem, the coefficients
are found from the relation c·j = − 1

nλ
(αj − ᾱ) for j = 1, · · · , k. Here c·j is the jth column of

the n by k matrix with the ijth entry being cij . bj can be found from any of the examples with
unbounded αij satisfying (5) strictly by the Karush-Kuhn-Tucker complementarity conditions. It is
worth noting that if (αi1, · · · , αik) = 0 for the ith example, then (ci1, · · · , cik) = 0, so removing such
example (xi,yi) would not affect the solution at all. In the two-category SVM, those data points
with nonzero coefficient are called support vectors. To carry over the notion of support vectors
to the multicategory case, we define support vectors as examples with ci = (ci1, · · · , cik) 6= 0 for
i = 1, · · · , n. Thus, the multicategory SVM retains the sparsity of the solution in the same way as
the binary SVM. For proofs and details of MSVMs, refer to Lee et al. (2001) and Lee et al. (2002).

As with other regularization methods, the efficiency of the method depends on the tuning
parameters. So, choosing proper tuning parameters is important in the MSVM as well. An approx-
imate leaving-out-one cross validation function, called Generalized Approximate Cross Validation
(GACV) is derived analogously to the GACV proposed by Wahba et al. (2000) in the binary case.
Its detailed derivation can be found in Lee et al. (2002). To define the GACV for the multi-
class case, we need to introduce a prediction function µ(f) first, which is a critical element of the
leaving-out-one lemma. µ truncates any component fj < − 1

k−1 to − 1
k−1 and replaces the rest

by

∑k
j=1 I(fj < − 1

k−1)

k −
∑k

j=1 I(fj < − 1
k−1)

(

1

k − 1

)

to satisfy the sum-to-zero constraint. If f has a maximum

component greater than 1, and all the others less than − 1
k−1 , then µ(f) is given by a k-tuple with

1 on the maximum coordinate and − 1
k−1 elsewhere. So, the function µ maps f to a class label

representation when there is a class strongly predicted by f . In contrast, if none of the coordinates
of f is less than − 1

k−1 , µ maps f to (0, · · · , 0). Now, the GACV for multicategory SVMs is defined
as

GACV (λ) =
1

n

n
∑

i=1

L(yi) ·(f(xi)−yi)++
1

n

n
∑

i=1

(k−1)K(xi,xi)
k

∑

j=1

lij [fj(xi)+
1

k − 1
]∗cij(yij −µij(f))

(7)
where L(yi) ≡ (li1, · · · , lik), and [x]∗ = I(x ≥ 0). In practice, one can choose the minimizer of
GACV as appropriate tuning parameters without really doing the leaving-out-one crossvalidation
(LOOCV), which might be computationally prohibitive for large samples. 5-fold or 10-fold CV
based on misclassification counts is often used alternatively. However, in cancer diagnosis problems
using gene expression patterns, we typically encounter data sets of small sample size. Thus LOOCV
can be still a feasible tuning tool, and has been often adopted for the validation of classifiers in the
previous studies.

2.2 Assessing Prediction Strength

This section concerns how to measure strength or confidence of a class prediction made by Support
Vector Machines. Based on some reasonable confidence measures, we wish to reject any prediction
weaker than a specified threshold. For classification methods that provide an estimate of the
conditional probability of each class given x, the issue of whether to reject a class prediction or not
can be settled easily. Set a threshold for the prediction probability such that we make a prediction
only when the estimated probability of the predicted class exceeds the threshold. We mentioned that
SVMs target the representation of the most probable class itself without any probability estimate
when flexible kernel functions are used. Linear SVMs do not provide probability estimates, either.
The efficiency that SVMs enjoy in classification problems by targeting much simpler functions than
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the probability functions themselves, suddenly becomes a drawback in dealing with this issue. How
to measure the strength of SVM prediction may seem to be an undue question since our goal in the
original formulation of classification problems was simply to find a rule with the minimum error
rate. However, in many applications such as medical diagnosis, making a wrong prediction could
be more serious than reserving a call. For weakly diagnosed examples, getting further information
from a specialized investigation or expert opinion would be an appropriate procedure for a more
informative call.

There have been a couple of approaches to address this problem for SVMs in the binary case, and
solving a series of binary SVMs in the multiclass case. The basic idea comes from the observation
that SVM decision functions get small in magnitude near classification boundaries. So, it is natural
to propose a confidence measure based on the evaluation of the SVM decision function, f(x) at
x; the bigger f(x) in the absolute value, the stronger the prediction. Mukherjee et al. (1999)
suggested a confidence measure for an SVM output f(x) and its induced class prediction in this
direction. Assuming that P (Y |X = x) ≈ P (Y |f(X) = f(x)), P (Y = 1) = P (Y = −1) and
P (f |Y = 1) = P (−f |Y = −1), they asserted that a confidence of the SVM prediction f can be
quantified using the relation that P (Y |f) ∝ P (f |Y )P (Y ). For the estimation of P (f |Y ), they used
leave-one-out estimates of f values from the training data set, along with the class label y of each
example left out. However, for almost separable classification problems, the proposed computations
can not be done properly due to the complete or quasi-complete separation. So, they heuristically
defined the confidence level of an SVM prediction f as 1 − F̂ (|f |) at the end of their applications,
using the symmetry assumption that P (f |Y = 1) = P (−f |Y = −1). Here, F̂ is the estimated
cumulative distribution function of SVM outputs |f |. This heuristic measure implicitly assumes
that the probability of a correct prediction given f depends only on the margin sign(f) · f = |f |
and realizes the initial notion that the bigger the margin |f |, the stronger the prediction. Thus,
the confidence level for an SVM output f is interpreted as the proportion of SVM predictions
stronger than f . The proportion can be inferred from jackknife (LOO) estimates or any variants
of crossvalidation of training samples. The confidence level seems to be a misnomer in that the
smaller the confidence level, the stronger the prediction. In their application, the confidence level
was limited to at most 95% to make a class prediction.

Here is a simple variant of the method for MSVMs. The MSVM output is a vector of the
decision functions (f1, · · · , fk) evaluated at x. A decision vector close to a coded class label can
be considered as a strong prediction. The multiclass hinge loss in (2), g(y, f) ≡ L(y) · (f − y)+

sensibly measures the proximity between an MSVM decision vector and a coded class, reflecting
how strong their association is in the classification context. It considers the sign and the magnitude
of each coordinate of a decision vector simultaneously. Recall that given an MSVM decision vector
(f1, · · · , fk), the predicted class is arg maxj fj. Analogous to the binary case, we assume that the
probability of a correct prediction given f(x) = (f1, · · · , fk) at x, P (Y = arg maxj fj|f) depends on f

only through the multiclass hinge loss, g(arg maxj fj, f) for the predicted class. Now, the smaller the
hinge loss, the stronger the prediction. The strength of the MSVM prediction, P (Y = arg maxj fj|f)
can be inferred from the training data similarly by crossvalidation. For example, leave out the
ith example (xi, yi), and get the MSVM decision vector f(xi) = (f1, · · · , fk) at xi based on the
remaining samples. Then, get a pair of the loss, g(arg maxj fj(xi), f(xi)) and the indicator of
correct decision I(yi = arg maxj fj(xi)) and repeat this calculation marching through the samples
in the training data set. P (Y = arg maxj fj|f), as a function of g(arg maxj fj, f) can be estimated
from the collection of pairs of the hinge loss and the indicator. If we further assume the complete
symmetry of k classes, that is, P (Y = 1) = · · · = P (Y = k) and P (f |Y = y) = P (π(f)|Y = π(y))
for any permutation operator π of {1, · · · , k}, it follows that P (Y = arg maxj fj|f) = P (Y =
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π(arg maxj fj)|π(f)). Consequently, under these symmetry and invariance assumption with respect
to k classes, we can pool the pairs of the hinge loss and the indicator for all the classes, and
estimate the invariant prediction strength function in terms of the loss, regardless of the predicted
class. In almost separable classification problems, oftentimes we would see the loss values for
correct classifications only, impeding the estimation of the prediction strength. Again, we can
apply similar heuristics of predicting a class only when the corresponding loss is less than, say, the
95th percentile of the empirical loss distribution. This cautious measure will be exercised in the
application following this section.

The second approach to reject a prediction by SVMs naturally arises in solving multiclass
problems by binary classifiers in the one-vs-rest fashion. Breaking a multiclass problem into a series
of unrelated binary problems is apt to yield unresolved calls such as non-membership prediction
(it does not belong to any of the known classes) and conflicting prediction (it falls into more than
one class). Though the possibility of having unresolved calls may not be desirable in general,
such indecisive prediction does mean a weak call subject to rejection. Yeo and Poggio (2001)
demonstrated the idea of rejecting the two kinds of predictions in a tumor classification problem
with four types, using binary SVMs, and other methods in the one-vs-rest fashion. They could
reject the predictions made on 5 test examples which indeed do not fall into any of the four classes.
It is worth mentioning that the population version of this approach is equivalent to making a
prediction only when the predicted class has more than a 50% chance of being correct. If a more
stringent classification rule is necessary in making prediction for unseen examples, then one can use
the nonstandard binary SVMs in Lin et al. (2002) which adjust the costs for two different types of
misclassification to achieve a required accuracy.

3 Data Analysis and Results

3.1 Leukemia Data Set

The leukemia gene expression data set from Golub et al. (1999) is revisited. Classification of acute
leukemias has been done based on subtle morphological differences under the microscope or results of
histobiochemical and cytogenetic analyses. Recently, Golub et al. (1999) suggested gene expression
monitoring for cancer classification, and they demonstrated this idea on the classification of two
preclassified leukemias, ALL (acute lymphoblastic leukemia) and AML (acute myeloid leukemia).
These two cancer types were identified based on their origins, lymphoid (lymph or lymphatic tissue
related) and myeloid (bone marrow related), respectively. ALL could be further divided into B-
cell and T-cell ALLs. Several classification methods were applied to the data set as a two-class
(ALL/AML) problem. They include “weighted voting scheme” in the original paper, Golub et
al. (1999) and the binary Support Vector Machine in Furey et al. (2000) and Mukherjee et al.
(1999). Dudoit et al. (2000) compared the performance of several discrimination methods such as
linear discriminant analysis, CART, and nearest neighbor classifiers, for three tumor classification
problems. In the last paper, the leukemia set was analyzed as both two-class (ALL/AML) and
three-class problems.

We consider the problem as a three cancer types classification problem. Table 1 shows the
class distribution of the leukemia data set. 38 training examples were all from bone marrow
samples while 24 test examples were from bone marrow, and the remaining 10 test examples from
peripheral blood samples. It was mentioned in Golub et al. (1999) that the test set may be more
heterogeneous than the training set due to the different origin of the samples and different sample
preparation protocols. However, Dudoit et al. (2000) argued that the heterogeneity does not seem
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to be prominent. The number of variables (genes) in the study is 7129. Since those genes irrelevant
to the class prediction would degrade the performance of classifiers, we need to select relevant genes
first for the accuracy of prediction. Before variable selection, standardization of the variables is
necessary. Standardization of each variable (gene) across samples is a usual way in any statistical
analysis. However, standardization of each sample, in other words, each array, across genes is often
adopted in gene expression analysis. Additional preprocessing steps were taken in Dudoit et al.
(2000) for the data before the standardization: (i) thresholding (floor of 100 and ceiling of 16000),
(ii) filtering (exclusion of genes with max /min ≤ 5 and max−min ≤ 500 across the samples),
(iii) base 10 logarithmic transformation. The filtering resulted in 3571 genes. To see the effect of
different preprocessing and standardization, we tried both (A) to standardize each gene, and (B)
to preprocess the data first according as Dudoit et al. (2000), and to standardize each array, in the
following analysis.

Selecting important variables (genes) out of 7129 would be a formidable task if we require
learning classifiers with all the possible subsets of the variables. To circumvent the difficulty,
simple prescreening measures were used to pick out relevant variables in the previous applications,
Golub et al. (1999), and Dudoit et al. (2000). Since the multiclass problems are of current concern
in this paper, we use the ratio of between classes sum of squares to within class sum of squares for
each gene, following Dudoit et al. (2000). For gene `, the ratio is defined as

BSS(`)

WSS(`)
=

∑n
i=1

∑k
j=1 I(yi = j)(x̄

(j)
·` − x̄·`)

2

∑n
i=1

∑k
j=1 I(yi = j)(xi` − x̄

(j)
·` )2

(8)

where n is the training sample size, 38 in the leukemia data set, x̄
(j)
·` indicates the average expression

level of gene ` for class j samples, and x̄·` is the overall mean expression levels of gene ` in the
training set. We pick genes with the largest ratios. For instance, Figure 1 depicts the expression
levels of 40 important genes selected by (8) in a heat map for the training samples standardized
according to (B). Each row corresponds to a sample, which is grouped into the three classes, and
the columns representing genes, are clustered in a way the similarity within each class and the
difference between classes are easily recognized. We can expect from the figure that the selected
40 genes would be informative in discriminating the three classes. Table 2 shows the list of the
top 20 genes out of 40 genes which maximize class separation in terms of (8). These genes encode
functional proteins responsible for transcription factor, development, metabolism and structure.
Since B-cell ALL (ALLB) and T-cell ALL (ALLT) arise from the same origin, we expected that
these classes show similar trend in gene expression. However, surprisingly, the inspection of 20
most informative genes revealed that gene expression patterns in ALLB are much closer to those
in AML than ALLT. ALLT showed quite different gene expression behavior than others. The box
plots in Figure 2 illustrate four different gene expression patterns chosen from the top ranked 20
genes in the training set. More than 10 genes showed patterns similar to (i) gene 1, which possibly

Table 1: Class distribution of the leukemia data set

Data set ALL B-cell ALL T-cell AML total

Training set 19 8 11 38
Test set 19 1 14 34

Total 38 9 25 72
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Figure 1: The heat map shows the expression levels of 40 most important genes for the training
samples when they are standardized according to (B). Each row corresponds to a sample, which is
grouped into the three classes, and the columns represent genes. The 40 genes are clustered in a
way the similarity within each class and the dissimilarity between classes are easily recognized.

implies that ALLB might be closer to AML than ALLT. Whereas, only a few genes match with the
patterns in (ii), (iii) and (iv). This is the reason as to why those genes listed as important predictors
in distinguishing ALL from AML in Golub et al. (1999) do not overlap any of the genes in Table
2, other than the fact that different variable selection criteria and standardization procedures were
used.

We apply the MSVM to the data with various numbers of genes, and different standardization
steps. In addition, we compare the performance of the multicategory SVM classifiers for different
choice of kernel functions, and tuning methods. For the choice of kernel function K(x1,x2), the

Gaussian kernel exp(− ‖x1−x2‖2

2σ2 ) and the linear kernel xt
1x2 are considered. We compare two tuning

methods; the leaving-out-one cross validation (LOOCV) based on misclassification counts and the
Generalized Approximate Cross Validation (GACV). Table 3 summarizes the classification results.
The first column is the number of variables included, with indication of the applied preprocessing
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Table 2: 20 genes with the largest ratios in the leukemia data set

Rank Orf Gene Description
1 M58285 Hem-1 Expressed only in cells of hematopoietic origin1.
2 M58583 Cerebellin 1 precursor (CBLN1) Also known as Precerebellin 1.
3 HG4157-HT4427 Glycinamide Ribonucleotide Synthetase Metabolism.
4 M74096 Acyl-CoA dehydrogenase, long- Beta-oxidation of fatty acids.

chain (Acadl)
5 U52154 Potassium inwardly-rectifying Ion channel.

channel, subfamily J, member 5
(Kcnj5)

6 M74719 Transcription factor 4 (TCF4) Also known as Immunoglobulin transcription
factor 2. Plays a role in lymphoid development
(B- and T-lymphocyte development)2.

7 U15085 Major histocompatibility complex, Antigen presentation. Immune-cell specific
class II, DM beta (HLA-DMB) surface antigen.

8 U47928 Protein “A” Unknown.
9 D82344 Paired mesoderm homeobox 2b Transcription factor. Also known as

(PMX2B) Neuroblastoma paired-type homeo box gene
(NBPHOX).

10 U50534 Unknown Unknown.
11 U38545 Phospholipase D1, Lipid metabolism. Phosphatidic acid, end

phosphatidylcholine-specific (PLD1) product of this enzymatic activity, is
a signaling molecule.

12 L04953 Amyloid beta (A4) precursor Putative function in synaptic vesicle exocytosis.
protein-binding, family A, member 1
(X11) (Apba1)

13 L17330 Pre-T/NK cell associated protein Development.
(6H9A)

14 D86640 Src homology three (SH3) and Signal transduction.
cysteine rich domain (Stac)

15 M96739 Nescient helix loop helix 1 (Nhlh1) Transcription factor. Also known as Hen1.
Plays an important role in growth and
development.

16 U15177 Alu Repetitive DNA sequence.
17 M37984 Regulatory domain of cardiac Structural modulation.

troponin C
18 D43948 ch-TOG (for colonic and hepatic Over-expressed in hepatomas and colonic

tumor over-expressed gene) tumors3.
19 U14518 Centromere protein A (17 kDa) Component of centromere structure.

(Cenpa)
20 S73205 Insulin activator factor (Insaf) Transcription factor binding at insulin control

element (ICE).

1 Hromas et al. (1991)
2 Bain and Murre (1998)
3 Charrasse et al. (1995)
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Figure 2: The box plots show four different gene expression patterns from the top ranked 20 genes
in Table 2. A possible grouping of the genes depending on the expression patterns is (i) gene 1, 2,
4, 5, 6, 7, 8, 9, 10, 11, 14, 16, and 17, (ii) gene 3, and 18 (iii) gene 12, 13 and 15, and (iv) gene
19. Since gene 20 showed a slightly different pattern than the others, it was not included in the
grouping. Only one representative gene from each group is shown in the four panels.

procedure (A) or (B). The values in the parentheses in the third column are optimal tuning pa-
rameters chosen by the specified method. A grid search was made for λ in the linear kernel case,
and (λ, σ) jointly in the Gaussian kernel case. The optimal parameters are on log base 2 scale.
Typically, the LOOCV in nearly separable classification problems does not have a unique minimum
due to the non-convexity of the misclassification loss function. On the contrary, GACV gives a
unique minimum, which is usually a part of the LOOCV multiple minima. Finally, the number of
misclassified test samples, when the estimated classification rule is applied to 34 test samples, is in
the last column, along with the misclassified test sample id’s in the parentheses. The non integer
values in the last column are due to the multiple minima. They are the averaged misclassification
counts over all the tuning parameters chosen by LOOCV. The effect of the preprocessing steps
can be read from the table. For the preprocessing (A), adding 50 more genes to the 50 important
genes reduced the test error rate. Comparable or even smaller test error rate is achieved using only
40 genes when the data are preprocessed according to (B). Reducing the number of genes further
down to 10, using (B) made the classification performance worse, which is not shown in the table.
From the previous studies, the test error rates reported range from 0 to 5 out of 34. Note that they
resulted from solving ALL vs AML binary problem, not to mention any difference in classification
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Table 3: Classification results for the leukemia data set. The first column shows the number of
genes fitted and the preprocessing method specified in parentheses. The second column indicates
the kernel function employed in MSVMs and the third column identifies the tuning method with
chosen tuning parameter(s) if unique, (multiple), otherwise. The counts of misclassified test samples
are in the last column with the id’s for the misclassified ones. When there are multiple equally
good tuning parameters, the average performance was reported.

Number of genes Kernel Tuning (log2 λ, log2 σ) Test error (test id)

Gaussian GACV (-24,2.5) 4 (57, 60, 66, 71)
50 Gaussian LOOCV (multiple) 6 (53, 57, 60, 64, 66, 71)
(A) Linear GACV (-13) 4 (57, 60, 66, 71)

Linear LOOCV (multiple) 4 (57, 60, 66, 71)

Gaussian GACV (-22,2.6) 1 (66)
100 Gaussian LOOCV (-5, 2.8) 1 (66)
(A) Linear GACV (-23) 2 (66, 71)

Linear LOO (multiple) 2.25 (57, 66, 67, 71)

Gaussian GACV (-20,1.6) 1 (71)
40 Gaussian LOOCV (multiple) 0.8 (67,71)
(B) Linear GACV (-13) 1 (71)

Linear LOOCV (multiple) 1 (71)

methods and preprocessing steps used in the papers. So, the test error rates from other studies may
not be directly comparable to that of the multicategory SVM presented here. However, considering
that multiclass problems are harder than binary problems, the performance of the MSVM in this
three-class problem seems encouraging. Also, test samples frequently misclassified in this analysis,
primarily intersect with those reported in the previous analyses. The Gaussian kernel function
seems to give a slightly better result than the linear kernel function, but there is no significant
difference. In terms of the test error rates, none of the tuning methods, GACV and LOOCV, gives
a dominantly better result than the other.

Figure 3 shows the evaluations of the three components f1, f2, and f3 for 34 test samples, when
the Gaussian kernel function was used with the GACV tuning method for the data preprocessed
as (B). Recall that the population version of (f1, f2, f3) in the MSVM is the representation of the
most probable class, and accordingly, we predict class j with the maximum component fj at x. In
this example, the class codes, (1,−1/2,−1/2), (−1/2, 1,−1/2) and (−1/2,−1/2, 1) correspond to
ALL B-cell lineage, ALL T-cell lineage, and AML, respectively. Each test sample is drawn in a
different color depending on the class that it falls into; ALL B-cell in blue, ALL T-cell in red, and
AML in yellow. We can see from the figure that overall the estimated (f1, f2, f3) approximates the
corresponding class code and their proximity to the ideal class code varies along the test samples.
Out of 34, there is one misclassified sample located at 56, which is from ALL B-cell, but classified
into ALL T-cell. The test samples were rearranged in the figure, in order that samples from the
same class cluster together. So, each value in the horizontal axis does not match with the test id
in the original data set. The test id of the misclassified sample is 71.
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Figure 3: Evaluations of the three components (f1, f2, f3) for 34 test samples. The class codes,
(1,−1/2,−1/2), (−1/2, 1,−1/2) and (−1/2,−1/2, 1) correspond to ALL B-cell lineage, ALL T-cell
lineage, and AML, respectively. The true test example class is indicated by colors; ALL B-cell in
blue, ALL T-cell in red, and AML in yellow. There is one misclassified sample located at 56.
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3.2 Small Round Blue Cell Tumors of Childhood

Khan et al. (2001) classified the small round blue cell tumors (SRBCTs) of childhood into 4 classes;
neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing
family of tumors (EWS) using cDNA gene expression profiles. The data set is available from
http://www.nhgri.nih.gov/DIR/Microarray/Supplement/. 2308 gene profiles out of 6567 genes
are given in the data set after filtering for a minimal level of expression. The training set consists
of 63 samples falling into 4 categories each, while the test set contains 20 SRBCT samples and
5 non SRBCTs (2 normal muscle tissues and 3 cell lines including an undifferentiated sarcoma,
osteosarcoma, and a prostate carcinoma). Table 4 shows the distribution of the four distinct tumor
categories in the training set and the test set. Note that Burkitt lymphoma (BL) is a subset of
NHL. Khan et al. (2001) successfully diagnosed the tumor types into four categories using Artificial
Neural Networks. Also, Yeo and Poggio (2001) applied k Nearest Neighbor (kNN), weighted voting
and linear SVM in one-vs-rest fashion to this four-class problem, and compared the performances
of these methods when they are combined with several feature selection methods for each binary
classification problem. It was reported that mostly SVM classifiers achieve the smallest test error
and LOOCV error when 5 to 100 genes (features) are used. For the best results shown in the paper,
perfect classification was possible in testing the blind 20 samples as well as in crossvalidating 63
training samples with one training example left out each time. Yeo and Poggio (2001) did not tell
how the classifiers with a tuning parameter such as kNN and SVM were tuned. However, it is clear
from the context that the LOOCV errors reported in the paper refer to the misclassification counts
over 63 training samples, each of which is left out to validate a classifier tuned and trained from the
remaining 62 examples. Not to be confused, we refer to LOOCV tuning error whenever LOOCV is
used as a tuning measure in this section. Since the one-vs-rest scheme needs four binary classifiers
in this problem, the maximum number of distinct features used in learning a complete classification
rule is four times the number of features for each binary classifier.

For comparison, we apply the MSVM to the problem using 20, 60, 100 genes. We take logarithm
base 10 of the expression levels and standardize arrays before applying the classification method.
Table 5 shows the list of top 20 genes. Most of genes were consistently selected from the top 96
genes used for the analysis in Khan et al. (2001). However, the list includes 4 additional genes,
which are neurofibromin 2, Isg20, cold shock domain protein A, and WASP, and their biological
functions are poorly characterized. Table 6 is a summary of the classification results by MSVMs.
The Gaussian kernel function was our choice of kernel function in the analysis. Though the previous
studies showed that linear classifiers are good enough to achieve almost perfect classification, we
find that flexible basis functions such as the Gaussian kernel are particularly effective for multiclass
problems. The classification results with the linear kernel function are not shown in the table, but it
was observed that linear MSVMs achieve similar performances as Gaussian MSVMs although their
evaluated decision vectors are less specific to the class representation than those of the Gaussian
kernel. The second column indicates the optimal tuning parameters pair λ and σ on log 2 scale

Table 4: Class distribution of SRBCTs data set

Data set NB RMS BL EWS total

Training set 12 20 8 23 63
Test set 6 5 3 6 20

Total 18 25 11 29 83
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chosen by the GACV tuning measure (7). In fact, the LOOCV tuning error as a function of
the tuning parameters was zero at multiple minima. The phenomenon that LOOCV tuning error
has multiple minima while the multiple minima include the optimal tuning parameters given by
GACV was observed in this experiment as well. The zero LOOCV tuning errors imply that the
classification task is not challenging at all. The number of Support Vectors (SVs) in the third
columns indicates how many samples out of 63 have nonzero coefficients in the expression of the
solution (3). Removing non Support Vectors does not change the solution, and the number of SVs
is related to the fraction of the training data near the classification boundary induced by the SVM.
We observe from the table that a large number of features involved tend to produce a large number
of SVs. It seems due to the sparsity of the data in a high dimensional space. The proposed MSVMs
are crossvalidated for the training set in leaving-out-one fashion, with zero error attained for 20, 60,
and 100 genes, as shown in the fourth column. The last column shows the final test results. Genes
are selected according to the ratio of between class variability relative to within class variability in
(8). Using the top ranked 20, 60, and 100 genes, the MSVMs correctly classify 20 test examples.
With all the genes included, one error occurs in LOOCV and the misclassified example is identified
as EWS-T13, which was reported to occur frequently as an LOOCV error in Khan et al. (2001)
and Yeo and Poggio (2001). The test error using all genes varies from 0 to 3 depending on tuning
measures. The MSVM tuned by GACV gives 3 test errors while LOOCV tuning gives 0 to 3 test
errors.

Perfect classification in crossvalidation and testing with high dimensional inputs, suggests a
possibility of a compact representation of the classifier in a low dimension. The main obstacle of
analyzing high dimensional data like gene expression data is that we are not capable of visualizing
the raw data in their original space, and consequently it is hard to make judicious calls in fitting
and assessing models. However, such high dimensional data oftentimes reside in a low dimensional
subspace. Using dimension reduction techniques such as the principal component analysis, we can
visualize the data approximately in a much lower dimension than that of the original space. Figure
4 displays the three principal components of the top 100 genes in the training set as circles. Squares
represent the corresponding three principal coordinates of the test set when we apply the linear
combinations obtained from the training set to the test samples. Different colors identify four
different tumor types; EWS in blue, BL in purple, NB in red, RMS in green, and non SRBCT in
cyan. Notice that the principal coordinates of 5 non SRBCTs in the test set land on ‘no man’s land’,
encircled by the samples from the four known classes. It clearly shows that three linear combinations
of the 100 gene expression profiles are informative enough to differentiate 4 tumor types. The three
principal components contain total 66.5% variation of 100 genes in the training set. They contribute
27.52%, 23.12% and 15.89%, respectively and the fourth component not included in the analysis
explains only 3.48% of variation of the training data. With the three principal components (PCs)
only, we apply the MSVM, and the corresponding classification result is in the last row of Table 6.
Again, perfect classification is achieved in crossvalidating and testing. Indeed, the zero test error is
no surprise from the picture, and we have checked that QDA (quadratic discriminant analysis), a
simple traditional method, which could not be applied when the dimension of input space exceeds
the sample size, gives the same zero test error once the data are represented by three PCs. Other
benefit of the dimension reduction for MSVMs is that the number of SVs is noticeably reduced to
about a third of the training sample size. Figure 5 shows the predicted decision vectors (f1, f2, f3, f4)
at the test samples. The four class labels are coded according as EWS: (1,−1/3,−1/3,−1/3), BL:
(−1/3, 1,−1/3,−1/3), NB: (−1/3,−1/3, 1,−1/3), and RMS: (−1/3,−1/3,−1/3, 1). We follow the
color scheme in Figure 4, to indicate the true class identities of the test samples. For example,
blue bars correspond to EWS samples, and the ideal decision vector (f1, f2, f3, f4) for them is

14



Table 5: 20 genes with the largest ratios in SRBCT data set

Id Gene Description
770394 Fc fragment of IgG, receptor, transporter, Regulate serum IgG level.

alpha
796258 Sarcoglycan, alpha (50 kDa dystrophin- Structure.

associated glycoprotein)
784224 Fibroblast growth factor receptor 4 Bind both acidic and basic FGF.
814260 Follicular lymphoma variant translocation 1

(FVT-1)
295985 Unknown Unknown.
377461 Caveolin 1, caveolae protein, 22 kDa Structural component of caveolae.
859359 Quinone oxidoreductase homolog Metabolism.
769716 Neurofibromin 2 (bilateral acoustic neuroma) Possible tumor suppressor1.
365826 Growth arrest-specific 1 Growth regulation.

1435862 MIC2 (CD99) Transmembrane glycoprotein and tumor marker2.
866702 Protein tyrosine phosphatase, non-receptor May involve in Fas-mediated apoptosis.

type 13 (APO-1/CD95 (Fas)-associated
phosphatase)

296448 Insulin-like growth factor 2 (somatomedin A) Growth regulation.
740604 Interferon stimulated gene (20 kDa) (ISG20)
241412 E74-like factor 1 (ets domain transcription Ets family transcription factor.

factor) (Elf-1)
810057 Cold shock domain protein A Probable transcriptional factor for Y-box.
244618 Unknown Unknown.
52076 Olfactomedin related ER localized protein
21652 Catenin (cadherin-associated protein), alpha 1 Structure.

(102 kDa)
43733 Glycogenin 2 (GYG2) lycogen synthesis.

236282 Wiskott-Aldrich syndrome protein (WASP) Related to X-linked immunodeficiency.

1 Zhu and Parada (2001)
2 Weidner and Tjoe (1994), Ramani et al. (1993), and Fellinger et al. (1992).
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Table 6: LOOCV error and Test error for SRBCT data set. MSVMs with the Gaussian kernel are
applied to the training data set. The second column indicates the optimal tuning parameters pair,
λ and σ on log 2 scale chosen by the GACV. The third column presents the number of Support
Vectors in the final solution of the MSVM with the number of genes specified as in the first column.
The last row shows the results by using only three principal components (PCs) from 100 genes.

Number of genes (log2 λ, log2 σ) Number of SVs LOOCV error Test error

20 (-22,1.4) 45 0 0
60 (-23,2.4) 63 0 0
100 (-23,2.6) 58 0 0
all (-25,4.8) 63 1 0 to 3

3 PCs (100) (-19,1.6) 22 0 0

(1,−1/3,−1/3,−1/3). The estimated decision vectors are pretty close to the ideal representation
and their maximum components are the first one, meaning correct classification. We can see from
the plot that all the 20 test examples from 4 classes are classified correctly. Note that the test
examples are rearranged in the order of EWS, BL, NB, RMS, and non SRBCT, so the horizontal
coordinates do not match with the test id’s given in the original data set. In the test data set, there
are 5 non SRBCT samples (2 normal muscle tissues and 3 cell lines). The fitted MSVM decision
vectors for the 5 samples are plotted in cyan color in Figure 5. In clinical settings, it is important to
be able to reject classification whenever samples not falling into the known classes are given. Now,
we demonstrate that the MSVM predictions are specific enough to identify the peculiarity of the 5
non SRBCTs. The loss function at x in (2) is used to measure the MSVM prediction strength at
unseen example x, as described earlier. The smaller loss, the stronger prediction. The last panel
in Figure 5 depicts the loss for the predicted MSVM decision vector at each test sample including
5 non SRBCTs. The dotted line indicates the threshold of rejecting a prediction given the loss.
That is, any prediction with loss above the dotted line will be rejected. It is set at 0.2171, which is
a jackknife estimate of the 95th percentile of the loss distribution from the training data set. Note
that the LOOCV error for the training data set was zero, so all the 63 losses that the jackknife
estimate is based on are from correct predictions. The losses corresponding to the predictions
of 5 non SRBCTs all exceed the threshold, while 3 test samples out of 20 can not be classified
confidently by thresholding.

4 Discussion

In this paper, we applied MSVMs to diagnose multiple cancer types based on gene expression profiles
in conjunction with a method of thinning out genes. The main motivation was to demonstrate that
the MSVM specially developed for multiclass problems can accurately classify cancer types and to
compare the performance of MSVMs to those reported in the previous studies, in particular, that
of a series of binary SVMs for multiple cancer types. The MSVM method could achieve perfect
classification or near perfect classification for the two data sets considered. The classification
accuracy is comparable to other methods.

The cancer classification problems using gene expression profiles available so far are observed to
be very separable and not a challenging task once the dimension of the input space is reduced. In
other words, it has the implication that gene expression profiles are informative enough to differen-
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Figure 4: Three principal components of 100 gene expression levels in the training set are plotted as
circles. The squares represent the corresponding principal coordinates of the test samples including
non SRBCT samples. The tumor types are distinguished by colors (EWS: blue, BL: purple, NB:
red, RMS: green, and non SRBCT: cyan). We can see a nice separation of the four tumor types
through three principal components. Non SRBCT samples lie amid four-class samples.

tiate several tumor types. If this is a prevalent characteristic of the cancer diagnosis problem with
gene expressions, then the accuracy of any reasonable classifier may not be significantly different.
Differences, if any, will get evident as we accumulate more information on this kind of data. Still,
there are certain advantages of flexible classifiers, for example, the SVM is often advocated to be
suitable for the tumor classification problems using gene expression data, since in principle it can
handle variables even larger than the sample size via its dual formulation. In this sense, MSVMs
and binary SVMs may look resistant to the curse of dimensionality, but it is obvious that the
presence of irrelevant noise variables does deteriorate their classification accuracy. Not only for the
sake of the parsimony, the dimension reduction including gene selection is indispensable to improve
accuracy.

The MSVM methodology is a generic approach to multiclass problems treating all the classes
simultaneously. Solving a series of binary problems instead, in one-vs-rest fashion has potential
drawbacks when classes overlap considerably. The pairwise approach often exhibits large variability
since each binary classifier is estimated from a small subset of the training data. If there are quite
a few classes and pooling some classes into a hyperclass gives much simpler classification problems
than the original problem, the simultaneous approach may not be very efficient. Nonetheless, the
difficulty is how to form such hyperclasses cleverly without a priori knowledge about the relation

17



5 10 15 20 25
−0.5

0

0.5

1

1.5

f1

5 10 15 20 25
−0.5

0

0.5

1

1.5

f2

5 10 15 20 25
−0.5

0

0.5

1

1.5

f3

5 10 15 20 25
−0.5

0

0.5

1

1.5

f4

5 10 15 20 25
0

0.5

1

lo
ss

Figure 5: The first four panels show the predicted decision vectors (f1, f2, f3, f4) at the test samples.
The four class labels are coded according as EWS in blue: (1,−1/3,−1/3,−1/3), BL in purple:
(−1/3, 1,−1/3,−1/3), NB in red: (−1/3,−1/3, 1,−1/3), and RMS in green: (−1/3,−1/3,−1/3, 1).
The colors indicate the true class identities of the test samples. We can see from the plot that all
the 20 test examples from 4 classes are classified correctly and the estimated decision vectors are
pretty close to their ideal class representation. The fitted MSVM decision vectors for the 5 non
SRBCT samples are plotted in cyan. The last panel depicts the loss for the predicted decision
vector at each test sample. The last 5 losses corresponding to the predictions of non SRBCTs all
exceed the threshold (the dotted line) below which means a strong prediction. Three test samples
falling into the known four classes can not be classified confidently by the same threshold.
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among classes. The effectiveness of the various approaches to solve multiple tumor types diagnosis
problems remains to be addressed as we collect more evidence. From the classification accuracy
shown in this paper and its flexibility, we believe that the MSVM has a great potential to be used
for medical diagnosis.

Note added
A few references on other extensions of the binary SVM to the multiclass case have been added and
a couple of notations have been clarified on May 21, 2002. Section 2.2 has been slightly revised on
July 7, 2002.

Acknowledgements
The first author would like to thank Grace Wahba and Yi Lin for their helpful suggestions and
discussions.

References

Bain, G. and Murre, C. (1998). The role of E-proteins in B- and T-lymphocyte development, Semin
Immunol 10: 143–153.

Boser, B., Guyon, I. and Vapnik, V. (1992). A training algorithm for optimal margin classifiers,
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Vol. 5, pp. 144–
152.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition, Data Mining and
Knowledge Discovery 2(2): 121–167.

Charrasse, S., Mazel, M., Taviaux, S., Berta, P., Chow, T. and Larroque, C. (1995). Characteriza-
tion of the cDNA and pattern of expression of a new gene over-expressed in human hepatomas
and colonic tumors, Eur J Biochem 234: 406–413.

Crammer, K. and Singer, Y. (2000). On the learnability and design of output codes for multiclass
problems, Computational Learing Theory, pp. 35–46.

Dudoit, S., Fridlyand, J. and Speed, T. (2000). Comparison of discrimination methods for the clas-
sification of tumors using gene expression data, Technical Report 576, Department of Statistics,
University of California, Berkeley. J. Am. Stat. Assoc., 97(457):77–87, 2002.

Evgeniou, T., Pontil, M. and Poggio, T. (1999). A unified framework for regularization networks
and support vector machines, Technical Report AI Memo 1654, MIT.

Fellinger, E. J., Garin-Chesa, P., Glasser, D. B., Huvos, A. G. and Rettig, W. J. (1992). Compar-
ison of cell surface antigen HBA71 (p30/32MIC2), neuron-specific enolase, and vimentin in the
immunohistochemical analysis of Ewing’s sarcoma of bone., Am J Surg Pathol 16: 746–755.

Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M. and Haussler, D. (2000). Support
vector machine classification and validation of cancer tissue samples using microarray expression
data, Bioinformatics 16(10): 906–914.

Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh,
M., Downing, J., Caligiuri, M., Bloomfield, C. and Lander, E. (1999). Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring, Science 286: 531–537.

19



Hromas, R., Collins, S., Raskind, W., Deaven, L. and Kaushansky, K. (1991). Hem-1, a potential
membrane protein, with expression restricted to blood cells, Biochim Biophys Acta 1090: 241–
244.

Khan, J., Wei, J., Ringner, M., Saal, L., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M.,
Atonescu, C., Peterson, C. and Meltzer, P. (2001). Classification and diagnostic prediction of
cancers using gene expression profiling and artificial neural networks, Nature Medicine 7: 673–
679.

Lee, Y., Lin, Y. and Wahba, G. (2001). Multicategory Support Vector Machines, Proceedings of the
33rd Symposium on the Interface. Also available as University of Wisconsin-Madison Statistcs
Dept TR 1043, http://www.stat.wisc.edu/~wahba -> TRLIST.

Lee, Y., Lin, Y. and Wahba, G. (2002). Multicategory support vector machines, theory, and
application to the classification of microarray data and satellite radiance data, in preparation.

Lin, Y., Lee, Y. and Wahba, G. (2002). Support vector machines for classification in nonstandard
situations, Machine Learning 46: 191–202.

Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J. and Poggio, T. (1999).
Support vector machine classification of microarray data, Technical Report AI Memo 1677, MIT.

Ramani, P., Rampling, D. and Link, M. (1993). Immunocytochemical study of 12E7 in small
round-cell tumours of childhood: an assessment of its sensitivity and specificity., Histopathology
23: 557–561.

Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer Verlag, New York.

Vapnik, V. (1998). Statistical Learning Theory, Wiley, New York.

Wahba, G. (1990). Spline Models for Observational Data, Series in Applied Mathematics, Vol. 59,
SIAM, Philadelphia.

Wahba, G. (1998). Support vector machines, reproducing kernel Hilbert spaces, and randomized
GACV, in B. Schoelkopf, C. J. C. Burges and A. J. Smola (eds), Advances in Kernel Methods:
Support Vector Learning, MIT Press, pp. 69–87.

Wahba, G., Lin, Y. and Zhang, H. (2000). GACV for support vector machines, or, another way to
look at margin-like quantities, in A. J. Smola, P. Bartlett, B. Scholkopf and D. Schurmans (eds),
Advances in Large Margin Classifiers, MIT Press, pp. 297–309.

Weidner, N. and Tjoe, J. (1994). Immunohistochemical profile of monoclonal antibody O13: anti-
body that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing’s sarcoma and
peripheral neuroepithelioma., Am J Surg Pathol 18: 486–494.

Weston, J. and Watkins, C. (1999). Support vector machines for multiclass pattern recognition,
Proceedings of the Seventh European Symposium On Artificial Neural Networks.

Yeo, G. and Poggio, T. (2001). Multiclass classification of SRBCTs, Technical Report AI Memo
2001-018 CBCL Memo 206, MIT.

Zhu, Y. and Parada, L. F. (2001). Neurofibromin, a tumor suppressor in the nervous system., Exp
Cell Res 264: 19–28.

20


