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Abstract

Two category Support Vector Machines (SVM) have been very popular in the machine
learning community for the classification problem. Solving multicategory problems by a series
of binary classifiers is quite common in the SVM paradigm. However, this approach may fail
under a variety of circumstances. We have proposed the Multicategory Support Vector Machine
(MSVM), which extends the binary SVM to the multicategory case, and has good theoretical
properties. The proposed method provides a unifying framework when there are either equal or
unequal misclassification costs. As a tuning criterion for the MSVM, an approximate leaving-
out-one cross validation function, called Generalized Approximate Cross Validation (GACV) is
derived, analogous to the binary case. The effectiveness of the MSVM is demonstrated through
the applications to cancer classification using microarray data and cloud classification with satel-
lite radiance profiles.
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1 INTRODUCTION

The Support Vector Machine (SVM) has seen the explosion of its popularity in the machine learning
literature, and more recently, increasing attention from the statistics community as well. For a
comprehensive list of its references, see the web site http://www.kernel-machines.org. This
paper concerns Support Vector Machines for classification problems especially when there are more
than two classes. The SVM paradigm, originally designed for the binary classification problem,
has a nice geometrical interpretation of discriminating one class from the other by a hyperplane
with the maximum margin. For an overview, see Vapnik (1998), Burges (1998), and Cristianini
and Shawe-Taylor (2000). It is commonly known that the SVM paradigm can comfortably sit in
the regularization framework where we have a data fit component ensuring the model fidelity to
data, and a penalty component enforcing the model simplicity. Wahba (1998) and Evgeniou, Pontil
and Poggio (1999) have more details in this regard. Considering that regularized methods such
as the penalized likelihood method and smoothing splines have long been studied in the statistics
literature, it appears quite natural to shed fresh light on the SVM and illuminate its properties
in a similar fashion. In this statistical point of view, Lin (2002) argued that the empirical success
of the SVM can be attributed to its property that for appropriately chosen tuning parameters, it
implements the optimal classification rule asymptotically in a very efficient manner. To be precise,
let X ∈ Rd be covariates used for classification, and Y be the class label, either 1 or -1 in the
binary case. We define (X,Y ) as a random sample from the underlying distribution P (x, y). In the
classification problem, the goal is to find a classification rule that generalizes the relation between
the covariate and its class label, based on n realizations of (X,Y ), (xi, yi) for i = 1, · · · n, so that
for a future sample x, its class can be predicted with a minimal error rate. The theoretically
optimal rule, the so called Bayes rule, minimizes the misclassification error rate and is given by
sign(p1(x)−1/2), where p1(x) = P (Y = 1|X = x), the conditional probability of the positive class
given X = x. Lin (2002) showed that the solution of SVMs, f(x) targets directly sign(p1(x)−1/2),

or equivalently sign
(

log
p1(x)

1 − p1(x)

)

without estimating a conditional probability function p1(x),

thus realizing the Bayes rule via the SVM decision rule, sign(f(x)).

Let us turn our attention to the multicategory classification problem. We assume the class
label Y ∈ {1, · · · , k} without loss of generality, where k is the number of classes. Define pj(x) =
P (Y = j|X = x). In this case, the Bayes rule assigns a test sample x to the class with the largest
pj(x). There are two strategies in tackling the multicategory problem, in general. One is to solve
the multicategory problem by solving a series of binary problems, and the other is to consider all
the classes at once. Refer to Dietterich and Bakiri (1995) for a general scheme to utilize binary
classifiers to solve multiclass problems. Allwein, Schapire and Singer (2000) proposed a unifying
framework to study the solution of multiclass problems obtained by multiple binary classifiers of
certain types. Constructing pairwise classifiers or one-versus-rest classifiers is popular among the
first approaches. The pairwise approach has the disadvantage of potential variance increase since
smaller samples are used to learn each classifier. Regarding its statistical validity, it allows only a
simple cost structure when different misclassification costs are concerned. See Friedman (1996) for
details. For SVMs, the one-versus-rest approach has been widely used to handle the multicategory
problem. The conventional recipe using the SVM scheme is to train k one-versus-rest classifiers,
and to assign a test sample the class giving the largest fj(x) for j = 1, · · · , k, where fj(x) is
the SVM solution from training class j versus the rest. Even though the method inherits the
optimal property of SVMs for discriminating one class from the rest, it does not necessarily imply
the best rule for the original k-category classification problem. Leaning on the insight that we
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have from the two category SVM, fj(x) will approximate sign(pj(x) − 1/2). If there is a class j
with pj(x) > 1/2 given x, then we can easily pick the majority class j by comparing f`(x)’s for
` = 1, · · · , k since fj(x) would be near 1, and all the other f`(x) would be close to -1, making
a big contrast. However, if there is no dominating class, then all fj(x)’s would be close to -1,
leaving the class prediction based on them very obscure. Apparently, it is different from the Bayes
rule. Thus, there is a demand for a true extension of SVMs to the multicategory case, which
would inherit the optimal property of the binary case, and treat the problem in a simultaneous
fashion. In fact, there have been alternative multiclass formulations of the SVM considering all the
classes at once, such as Vapnik (1998), Weston and Watkins (1999), Bredensteiner and Bennett
(1999) and Crammer and Singer (2000). However, they are rather algorithmic extensions of the
binary SVM and the relation of those formulations to the Bayes rule is unclear. So, the motive
is to design an optimal multicategory SVM which continues to deliver the efficiency of the binary
SVM. With this intent, we devise a loss function with suitable class codes for the multicategory
classification problem. Based on the loss function, we extend the SVM paradigm to the multiclass
case and show that this extension ensures that the solution directly targets the Bayes rule in the
same fashion as for the binary case. Its generalization to handle unequal misclassification costs is
quite straightforward, and it is carried out in a unified way, thereby encompassing the version of
the binary SVM modification for unequal costs in Lin, Lee and Wahba (2002).

We briefly state the Bayes rule in Section 2 for either equal or unequal misclassification costs.
The binary Support Vector Machine is reviewed in Section 3. Section 4 is the main part of this
paper where we present a formulation of the multicategory SVM as a true generalization of ordinary
SVMs. We consider the formulation in the standard case first, followed by its modification to
accommodate the nonstandard case. The dual problem corresponding to the proposed method
is derived, as well as a data adaptive tuning method, analogous to the binary case. A numerical
study comprises Section 5 for illustration. Then, cancer diagnosis using gene expression profiles and
cloud classification using satellite radiance profiles are presented in Section 6 as its applications.
Concluding remarks and future directions are given at the end.

2 CLASSIFICATION PROBLEM AND THE BAYES RULE

We state the theoretically best classification rules derived under a decision theoretic formulation of
classification problems in this section. They serve as golden standards for any reasonable classifiers
to approximate. The optimal rule for the equal misclassification costs is followed by that for unequal
costs. Their derivations are fairly straightforward, and can be found in any general references to
classification problems, for instance, Devroye, Györfi and Lugosi (1996).

In the classification problem, we are given a training data set that consists of n samples (xi, yi)
for i = 1, · · · , n. xi ∈ Rd represents covariates and yi ∈ {1, · · · , k} denotes the class label of the
ith sample. The task is to learn a classification rule φ(x) : Rd → {1, · · · , k} that well matches
attributes xi to a class label yi. We assume that each (xi, yi) is an independent random sample
from a target population with probability distribution P (x, y). Let (X,Y ) denote a generic pair
of a random sample from P (x, y), and pj(x) = P (Y = j|X = x) be the conditional probability of
class j given X = x for j = 1, · · · , k. If the misclassification costs are all equal, the loss by the
classification rule φ at (x, y) is defined as

l(y, φ(x)) = I(y 6= φ(x)) (1)

where I(·) is the indicator function, which assumes 1 if its argument is true, and 0 otherwise.
The best classification rule with respect to the loss would be the one that minimizes the expected

3



misclassification rate. The best rule, often called the Bayes rule is given by

φB(x) = arg min
j=1,··· ,k

[1 − pj(x)] = arg max
j=1,··· ,k

pj(x). (2)

If we knew the conditional probabilities pj(x), we can implement φB(x) easily. However, since we
rarely know pj(x)’s in reality, we need to approximate the Bayes rule by learning from a training
data set. A common way to approximate it is to estimate pj(x)’s or equivalently the log odds
log[pj(x)/pk(x)] from data first and to plug them into (2).

When the misclassification costs are not equal, which may be common in solving real world
problems, we change the loss (1) to reflect the cost structure. First, define Cj` for j, ` = 1, · · · , k as
the cost of misclassifying an example from class j to class `. Cjj for j = 1, · · · , k are all zero since
the correct decision should not be penalized. The loss function for the unequal costs is then

l(y, φ(x)) =
k

∑

j=1

I(y = j)

( k
∑

`=1

Cj`I(φ(x) = `)

)

. (3)

Analogous to the equal cost case, the best classification rule is given by

φB(x) = arg min
j=1,··· ,k

k
∑

`=1

C`jp`(x). (4)

Notice that when the misclassification costs are all equal, say, Cj` = 1, j 6= `, then (4) nicely reduces
to (2), the Bayes rule in the equal cost case. Besides the concern with different misclassification
costs, sampling bias is an issue that needs special attention in the classification problem. So far,
we have assumed that the training data are truly from the general population that would generate
future samples. However, it is often the case that while we collect data, we tend to balance each
class by oversampling minor class examples and downsampling major class examples. The sampling
bias leads to distortion of the class proportions. If we know the prior class proportions, then there
is a remedy for the sampling bias by incorporating the discrepancy between the sample proportions
and the population proportions into a cost component. Let πj be the prior proportion of class j in
the general population, and πs

j be the prespecified proportion of class j examples in a training data
set. πs

j may be different from πj if sampling bias has occurred. Define gj(x) the probability density
of X for class j population, j = 1, · · · , k, and let (X s, Y s) be a random sample obtained by the
sampling mechanism used in the data collection stage. Then, the difference between (X s, Y s) in the
training data and (X,Y ) in the general population becomes clear when we look at the conditional
probabilities. That is,

pj(x) = P (Y = j|X = x) =
πjgj(x)

∑k
`=1 π`g`(x)

,

ps
j(x) = P (Y s = j|Xs = x) =

πs
jgj(x)

∑k
`=1 πs

`g`(x)
.

Since we learn a classification rule only through the training data, it is better to express the Bayes
rule in terms of the quantities for (Xs, Y s) and πj’s which we assume are known a priori. One can
verify that the following is equivalent to (4).

φB(x) = arg min
j=1,··· ,k

k
∑

`=1

π`

πs
`

C`jp
s
`(x) = arg min

j=1,··· ,k

k
∑

`=1

l`jp
s
`(x) (5)
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where l`j is defined as (π`/π
s
` )C`j , which is a modified cost that takes the sampling bias into

account together with the original misclassification cost. Lin et al. (2002) has more details on the
two-category case in treating Support Vector Machines. Following the usage in that paper, we call
the case when misclassification costs are not equal or there is a sampling bias, nonstandard, as
opposed to the standard case when there are equal misclassification costs without sampling bias.

3 SUPPORT VECTOR MACHINES

We briefly go over the standard Support Vector Machines for the binary case. SVMs have their roots
in a geometrical interpretation of the classification problem as a problem of finding a separating
hyperplane in a multidimensional input space. For reference, see Boser, Guyon and Vapnik (1992),
Vapnik (1998), Burges (1998), Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2002)
and references therein. The class labels yi are either 1 or -1 in the SVM setting. The symmetry in
the representation of yi is very essential in the mathematical formulation of SVMs.

3.1 Linear SVM

Let us consider the linearly separable case when the positive examples (with yi = 1) in the training
data set can be perfectly separated from the negative examples (with yi = −1) by a hyperplane in
Rd. Then there exists f(x) = w · x + b, w ∈ Rd and b ∈ R, satisfying the following conditions for
i = 1, · · · , n:

f(xi) ≥ 1 if yi = 1

f(xi) ≤ −1 if yi = −1.

Or more succinctly,

yif(xi) ≥ 1 for i = 1, · · · , n. (6)

Here, the hyperplane w · x + b = 0 separates all the positive examples from the negative examples.
Among the hyperplanes satisfying (6), Support Vector Machines look for the one with the maximum
margin. The margin is defined as the sum of the shortest distance from the hyperplane to the
closest positive example and the closest negative example. It is given by 2/‖w‖ when the closest
positive example lies on the level set of f(x) = 1 and likewise, the closest negative example lies on
f(x) = −1 level set. Note that finding the hyperplane maximizing 2/‖w‖ is equivalent to finding
the one minimizing ‖w‖2, subject to (6). Figure 1 shows a canonical picture of the SVM in the
linearly separable case. The red circles indicate positive examples and the blue circles represent
negative examples. The solid line corresponds to the SVM solution which puts positive examples
maximally apart from the negative examples.

In the nonseparable case, the Support Vector Machine finds f(x) minimizing

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖w‖2 (7)

where (x)+ = max(x, 0). Essentially, the SVM loss function (1 − yif(xi))+, so-called hinge loss
penalizes the violation of the separability condition (6).
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Figure 1: A canonical example of the binary Support Vector Machine

3.2 SVM in Regularization Framework

Further, generalizing SVM classifiers from hyperplanes to nonlinear ones, we get the following SVM
formulation with a tight link to regularization methods. The SVM methodology seeks a function
f(x) = h(x) + b with h ∈ HK , a reproducing kernel Hilbert space (RKHS) and b, a constant
minimizing

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2
HK

(8)

where ‖h‖2
HK

denotes the square norm of the function h defined in the RKHS with the the repro-
ducing kernel function K(·, ·). If HK is the d-dimensional space of homogeneous linear functions
h(x) = w · x with ‖h‖2

HK
= ‖w‖2, then (8) reduces to (7). For more information on RKHS, see

Aronszajn (1950) and Wahba (1990). λ is a given tuning parameter which balances the data fit
measured as the average hinge loss, and the complexity of f(x), measured as ‖h‖2

HK
. The classi-

fication rule φ(x) induced by f(x) is φ(x) = sign(f(x)). The function f(x) yields the level curve
defined by f(x) = 0 in Rd, which is the classification boundary of the rule φ(x). Note that the
hinge loss function (1− yif(xi))+ is closely related to the misclassification loss function, which can
be reexpressed as [−yiφ(xi)]∗ = [−yif(xi)]∗ where [x]∗ = I(x ≥ 0). Indeed, the hinge loss is a tight
convex upper bound of the misclassification loss, and when the resulting f(xi) is close to either 1
or -1, the hinge loss function is close to 2 times the misclassification loss.

3.3 Relation to the Bayes Rule

Theoretical justifications of the SVM in Vapnik’s structural risk minimization approach can be
found in Vapnik (1995), and Vapnik (1998). These arguments are based on upper bounds of its
generalization error in terms of the Vapnik-Chervonenkis dimension, which are often too pessimistic
to completely explain the success of the SVMs in many applications. Another explanation as to
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why the SVM works well has been given in Lin (2002), by identifying the asymptotic target function
of the SVM formulation, and associating it with the Bayes rule. Noting that the representation
of class label Y in the binary SVMs is either 1 or -1, one can verify that the Bayes rule in (2)
is φB(x) = sign(p1(x) − 1/2) in this symmetric representation. Lin (2002) showed that, if the
reproducing kernel Hilbert space is rich enough, the solution f(x) approaches the Bayes rule directly,
as the sample size n goes to ∞ for appropriately chosen λ. For example, the Gaussian kernel is one
of typically used kernels for SVMs, the RKHS induced by which is flexible enough to approximate
sign(p1(x)−1/2). Compared to other popular statistical methods implementing the Bayes rule via
density estimates or logistic regressions, the mechanism that Support Vector Machines approximate
the optimal rule seems to be particularly efficient for sparse data since sign(p1(x)− 1/2) would be
much simpler to estimate than the probability p1(x). For a discussion of the connection between
SVMs and likelihood-based penalized methods, see Wahba (1998).

3.4 Dual Problem

To ease the later exposition, we sketch the derivations to get the SVM solution to (8). The minimizer
f(x) is known to be of the form

∑n
i=1 ciK(x,xi) + b by the representer theorem in Kimeldorf and

Wahba (1971). Using the reproducing property of K, (8) can be written as a constrained quadratic
optimization problem in terms of c1, · · · , cn and b. Finally, the coefficients ci and the constant b are
determined by its dual problem using Lagrange multipliers α = (α1, · · · , αn)t. The dual problem
is given by

minLD(α) =
1

2
αtHα − etα (9)

subject to 0 ≤ α ≤ e (10)

αty = 0 (11)

where H =

(

1
2nλ

yiyjK(xi,xj)

)

, y = (y1, · · · , yn)t, and e = (1, · · · , 1)t. Once αi’s are obtained

from the quadratic programming problem above, we have ci = αiyi/(2nλ) by the primal-dual
relation, and b is determined from the examples with 0 < αi < 1 by the Karush-Kuhn-Tucker
optimality conditions. Burges (1998) has more details, and for reference to mathematical pro-
gramming in general, see Mangasarian (1994). Usually, some fraction of αi’s are zero. Thus, the
SVM solution permits a sparse expansion depending only on the samples with nonzero αi, which
are called support vectors. The support vectors are typically either near the classification bound-
aries or misclassified samples. The modification of the standard SVM setting for the nonstandard
case is treated in detail in Lin et al. (2002). Similarly, it has been shown that the modified SVM
implements the optimal classification rule in the same way as the standard SVM.

4 MULTICATEGORY SUPPORT VECTOR MACHINES

We propose to extend the whole machinery of the SVM for the multiclass case, from its optimiza-
tion problem formulation to its theoretical properties. In the subsequent sections, we present the
extension of the Support Vector Machines to the multicategory case. Beginning with the standard
case, we generalize the hinge loss function for the multicategory case, and show that the general-
ized formulation encompasses that of the two-category SVM, retaining desirable properties of the
binary SVM. Then, straightforward modification follows for the nonstandard case. In the end, we
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derive its dual formulation via which we obtain the solution, and address how to tune the model
controlling parameter(s) involved in the multicategory SVM.

4.1 Standard Case

Assuming that all the misclassification costs are equal and there is no sampling bias in the training
data set, consider the k-category classification problem. To carry over the symmetry of class label
representation in the binary case, we use the following vector valued class codes denoted by yi. For
notational convenience, we define vj for j = 1, · · · , k as a k-dimensional vector with 1 in the jth
coordinate and −1/(k − 1) elsewhere. Then, yi is coded as vj if example i belongs to class j. For
instance, if example i belongs to class 1, yi = v1 = (1,−1/(k − 1), · · · ,−1/(k − 1)). Similarly, if
it belongs to class k, yi = vk = (−1/(k − 1), · · · ,−1/(k − 1), 1). Accordingly, we define a k-tuple
of separating functions f(x) = (f1(x), · · · , fk(x)) with the sum-to-zero constraint,

∑k
j=1 fj(x) = 0

for any x ∈ Rd. Note that the constraint holds implicitly for coded class labels yi. Analogous
to the two-category case, we consider f(x) = (f1(x), · · · , fk(x)) ∈

∏k
j=1({1} + HKj

), the product
space of k reproducing kernel Hilbert spaces HKj

for j = 1, · · · , k. In other words, each component
fj(x) can be expressed as hj(x) + bj with hj ∈ HKj

. Unless there is compelling reason to believe
that HKj

should be different for j = 1, · · · , k, we will assume they are the same RKHS denoted by
HK . Define Q as the k by k matrix with 0 on the diagonal, and 1 elsewhere. It represents the cost
matrix when all the misclassification costs are equal. Let L be a function which maps a class label
yi to the jth row of the matrix Q if yi indicates class j. So, if yi represents class j, then L(yi)
is a k dimensional vector with 0 in the jth coordinate, and 1 elsewhere. Now, we propose that to
find f(x) = (f1(x), · · · , fk(x)) ∈

∏k
1({1} + HK), with the sum-to-zero constraint, minimizing the

following quantity is a natural extension of SVMs methodology:

1

n

n
∑

i=1

L(yi) · (f(xi) − yi)+ +
1

2
λ

k
∑

j=1

‖hj‖
2
HK

(12)

where (f(xi) − yi)+ means [(f1(xi) − yi1)+, · · · , (fk(xi) − yik)+] by taking the truncate function
(·)+ componentwise, and the · operation in the data fit functional indicates the Euclidean inner
product. The classification rule induced by f(x) is naturally

φ(x) = arg max
j

fj(x). (13)

As with the hinge loss function in the binary case, the proposed loss function has analogous
relation to the misclassification loss (1) in the multicategory case. If f(xi) itself is one of the class
codes, L(yi) ·(f(xi)−yi)+ is k/(k−1) times the misclassification loss. When k = 2, the generalized
hinge loss function reduces to the binary hinge loss. Check that if yi = (1,−1) (1 in the binary
SVM notation), then L(yi) · (f(xi)− yi)+ = (0, 1) · [(f1(xi)− 1)+, (f2(xi) + 1)+] = (f2(xi) + 1)+ =
(1 − f1(xi))+. Likewise, if yi = (−1, 1) (-1 in the binary SVM notation), L(yi) · (f(xi) − yi)+ =
(f1(xi) + 1)+. Thereby, the data fit functionals in (8) and (12) are identical, f1 playing the same
role as f in (8). Also, note that (λ/2)

∑2
j=1 ‖hj‖

2
HK

= (λ/2)(‖h1‖
2
HK

+ ‖ − h1‖
2
HK

) = λ‖h1‖
2
HK

,
by the fact that h1(x) + h2(x) = 0 for any x, to be discussed later. So, the penalties to the model
complexity in (8) and (12) are identical. These verify that the binary SVM formulation (8) is a
special case of (12) when k = 2.

An immediate justification for this new formulation generalizing the binary SVM paradigm
is that it carries over the efficiency of implementing the Bayes rule in the same fashion. In the
binary case, Lin (2002) adopted the approach of Cox and O’Sullivan (1990) to establish that the
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SVM directly targets the optimal classification rule, bypassing the estimation of a possibly more
complex probability function. Cox and O’Sullivan (1990) have provided a theoretical framework for
analyzing the asymptotics of penalized methods. It is the very first step to identify the asymptotic
target function of a penalized method, which is a minimizer of its limit data fit functional. Having
said that the SVM paradigms in general are penalized methods, we first identify the asymptotic
target function of (12) in this direction. The limit of the data fit functional in (12) is E[L(Y ) ·
(f(X) − Y )+].

Lemma 1. The minimizer of E[L(Y ) · (f(X) − Y )+] under the sum-to-zero constraint is f(x) =
(f1(x), · · · , fk(x)) with

fj(x) =

{

1 if j = arg maxl=1,··· ,k pl(x)
− 1

k−1 otherwise
(14)

Proof of this lemma and other proofs are in the Appendix A. Indeed, Lemma 1 is a multicategory
extension of Lemma 3.1 in Lin (2002) which showed that f(x) in ordinary SVMs approximates
sign(p1(x) − 1/2) asymptotically. If the reproducing kernel Hilbert space is flexible enough to
approximate the minimizer in Lemma 1, and λ is chosen appropriately, the solution f(x) to (12)
approaches it as the sample size n goes to ∞. Notice that the minimizer is exactly the code of
the most probable class. Then, the classification rule induced by f(x) in Lemma 1 is φ(x) =
arg maxj fj(x) = arg maxj pj(x) = φB(x), the Bayes rule (2) for the standard multicategory case.

4.2 Nonstandard Case

When we allow different misclassification costs and the possibility of sampling bias mentioned
earlier, necessary modification of the multicategory SVM (12) to accommodate such differences is
straightforward. First, let’s consider different misclassification costs only, assuming no sampling
bias. Instead of the equal cost matrix Q used in the definition of L(yi), define a k by k cost matrix
C with entry Cj` for j, ` = 1, · · · , k meaning the cost of misclassifying an example from class j to
class `. All the diagonal entries Cjj for j = 1, · · · , k would be zero. Modify L(yi) in (12) to the jth
row of the cost matrix C if yi indicates class j. When all the misclassification costs Cj` are equal to
1, the cost matrix C becomes Q. So, the modified map L(·) subsumes that for the standard case.

Now, we consider the sampling bias concern together with unequal costs. As illustrated in
Section 2, we need a transition from (X,Y ) to (X s, Y s) to differentiate a “training example”
population from the general population. In this case, with little abuse of notation we redefine a
generalized cost matrix L whose entry lj` is given by (πj/π

s
j )Cj` for j, ` = 1, · · · , k. Accordingly,

define L(yi) to be the jth row of the matrix L if yi indicates class j. When there is no sampling bias,
in other words, πj = πs

j for all j, the generalized cost matrix L reduces to the ordinary cost matrix
C. With the finalized version of the cost matrix L and the map L(yi), the multicategory SVM
formulation (12) still holds as the general scheme. The following lemma identifies the minimizer of
the limit of the data fit functional, which is E[L(Y s) · (f(Xs) − Y s)+].

Lemma 2. The minimizer of E[L(Y s) · (f(Xs)−Y s)+] under the sum-to-zero constraint is f(x) =
(f1(x), · · · , fk(x)) with

fj(x) =

{

1 if j = arg min`=1,··· ,k

∑k
m=1 lm`p

s
m(x)

− 1
k−1 otherwise

(15)

It is not hard to see that Lemma 1 is a special case of the above lemma. Like the standard
case, Lemma 2 has its existing counterpart when k = 2. See Lemma 3.1 in Lin et al. (2002) with
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the caution that yi, and L(yi) are defined differently than here. Again, the lemma implies that if
the reproducing kernel Hilbert space is rich enough to approximate the minimizer in Lemma 2, for
appropriately chosen λ, we would observe the solution to (12) to be very close to the minimizer
for a large sample. Analogously, the classification rule derived from the minimizer in Lemma
2 is φ(x) = arg maxj fj(x) = arg minj=1,··· ,k

∑k
`=1 l`jp

s
`(x) = φB(x), the Bayes rule (5) for the

nonstandard multicategory case.

4.3 The Representer Theorem and Dual Formulation

We explain how to carry out the computation to find the minimizer of (12). First, the problem of
finding constrained functions (f1(x), · · · , fk(x)) minimizing (12) is transformed into that of finding
finite dimensional coefficients instead, with the aid of a variant of the representer theorem. For
the representer theorem in a regularization framework involving RKHS, see Kimeldorf and Wahba
(1971) and Wahba (1998). The following theorem says that we can still apply the representer
theorem to each component fj(x) with, however some restrictions on the coefficients due to the
sum-to-zero constraint.

Theorem 1. To find (f1(x), · · · , fk(x)) ∈
∏k

1({1} + HK), with the sum-to-zero constraint, mini-
mizing (12) is equivalent to find (f1(x), · · · , fk(x)) of the form

fj(x) = bj +

n
∑

i=1

cijK(xi,x) for j = 1, · · · , k (16)

with the sum-to-zero constraint only at xi for i = 1, · · · , n, minimizing (12).

Remark 1. If the reproducing kernel K is strictly positive definite, then the sum-to-zero constraint
at the data points can be replaced by the equality constraints

∑k
j=1 bj = 0 and

∑k
j=1 c·j = 0, where

c·j = (c1j , · · · , cnj)
t.

Switching to a Lagrangian formulation of the problem (12), we introduce a vector of nonnegative
slack variables ξi ∈ Rk to take care of (f(xi)−yi)+. By Theorem 1, we can write the primal problem
in terms of bj and cij only. Since the problem involves k class components symmetrically, we may
rewrite it more succinctly in vector notation. Let Lj ∈ Rn for j = 1, · · · , k be the jth column of
the n by k matrix with the ith row L(yi) ≡ (Li1, · · · , Lik). Let ξ·j ∈ Rn for j = 1, · · · , k be the
jth column of the n by k matrix with the ith row ξi. Similarly, y·j denotes the jth column of the
n by k matrix with the ith row yi. With some abuse of notation, let K be now the n by n matrix
with ijth entry K(xi,xj). Then, the primal problem in vector notation is

minLP (ξ, c,b) =
k

∑

j=1

Lt
jξ·j +

1

2
nλ

k
∑

j=1

ct
·jKc·j (17)

subject to bje + Kc·j − y·j ≤ ξ·j for j = 1, · · · , k (18)

ξ·j ≥ 0 for j = 1, · · · , k (19)

(
∑k

j=1 bj)e + K(
∑k

j=1 c·j) = 0 (20)

It is a quadratic optimization problem with some equality and inequality constraints. The duality
theory in nonlinear programming allows us to solve its dual problem, which is easier than, but
equivalent to the primal problem. See Mangasarian (1994) for an overview of the duality results
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of nonlinear programming. To derive its Wolfe dual problem, we introduce nonnegative Lagrange
multipliers α·j = (α1j , · · · , αnj)

t ∈ Rn for (18), nonnegative Lagrange multipliers γj ∈ Rn for (19),
and unconstrained Lagrange multipliers δf ∈ Rn for (20), the equality constraints. Then, the dual
problem becomes a problem of maximizing

LD =

k
∑

j=1

Lt
jξ·j +

1

2
nλ

k
∑

j=1

ct
·jKc·j +

k
∑

j=1

αt
·j(bje + Kc·j − y·j − ξ·j)

−

k
∑

j=1

γt
jξ·j + δt

f

(

(

k
∑

j=1

bj)e + K(

k
∑

j=1

c·j)

)

(21)

subject to for j = 1, · · · , k,

∂LD

∂ξ·j
= Lj − α·j − γj = 0 (22)

∂LD

∂c·j
= nλKc·j + Kα·j + Kδf = 0 (23)

∂LD

∂bj

= (α·j + δf )te = 0 (24)

α·j ≥ 0 (25)

γj ≥ 0 (26)

Let ᾱ be (
∑k

j=1 α·j)/k. Since δf is unconstrained, one may take δf = −ᾱ from (24). Accordingly,

(24) becomes (α·j − ᾱ)te = 0. Eliminating all the primal variables in LD by the equality constraint
(22) and using relations from (23) and (24), we have the following dual problem.

minLD(α) =
1

2

k
∑

j=1

(α·j − ᾱ)tK(α·j − ᾱ) + nλ
k

∑

j=1

αt
·jy·j (27)

subject to 0 ≤ α·j ≤ Lj for j = 1, · · · , k (28)

(α·j − ᾱ)te = 0 for j = 1, · · · , k (29)

Matching the dual variable αi in the binary case with the corresponding dual vector (αi1, αi2) in
the multiclass case,

αi =

{

αi2 with αi1 = 0 if yi = 1 or (1,−1)
αi1 with αi2 = 0 if yi = −1 or (−1, 1)

and consequently

αiyi = αi2 − αi1 = −2(αi1 − ᾱi) = 2(αi2 − ᾱi).

From these relations, it can be verified that the above dual formulation, although disguised in its
form, reduces to the binary SVM dual problem (9), (10), and (11), when k = 2 and the costs are
all equal. Once the quadratic programming problem is solved, the coefficients can be determined
by the relation c·j = −(α·j − ᾱ)/(nλ) for j = 1, · · · , k from (23). Note that if the matrix K is
not strictly positive definite, then c·j is not uniquely determined. bj can be found from any of
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the examples with 0 < αij < Lij. By the Karush-Kuhn-Tucker complementarity conditions, the
solution should satisfy

α·j ⊥ (bje + Kc·j − y·j − ξ·j) for j = 1, · · · , k (30)

γj = (Lj − α·j) ⊥ ξ·j for j = 1, · · · , k (31)

where ⊥ means that componentwise products are all zero. If 0 < αij < Lij for some i, then ξij

should be zero from (31), and this implies that bj +
∑n

l=1 cljK(xl,xi)−yij = 0 from (30). If there is
no example satisfying 0 < αij < Lij for some class j, b = (b1, · · · , bk) is determined as the solution
to the following problem:

min
b

1

n

n
∑

i=1

L(yi) · (hi + b− yi)+

subject to
k

∑

j=1

bj = 0

where hi = (hi1, · · · , hik) = (
∑n

l=1 cl1K(xl,xi), · · · ,
∑n

l=1 clkK(xl,xi)).
It is worth noting that if (αi1, · · · , αik) = 0 for the ith example, then (ci1, · · · , cik) = 0. Remov-

ing such example (xi,yi) would have no effect on the solution. Carrying over the notion of support
vectors to the multicategory case, we define support vectors as examples with ci = (ci1, · · · , cik) 6= 0
for i = 1, · · · , n. Hence, depending on the number of support vectors, the multicategory SVM so-
lution may have a sparse representation, which is also one of the main characteristics of the binary
SVM.

4.4 Implementation and Related Issues

In practice, solving the quadratic programming (QP) problem can be done via available optimiza-
tion packages for moderate size problems. All the examples presented in this paper were done via
MATLAB 6.1 with an interface to PATH 3.0, an optimization package implemented by Ferris and
Munson (1999). It is helpful to put (27), (28), and (29) in a standard QP format for use of some
existing QP solvers.

minLD(α) =
1

2
α

t

[

(Ik −
1

k
Jk) ⊗ K

]

α + nλY
t
α (32)

subject to 0 ≤ α ≤ L (33)
[

(Ik − 1
k
Jk) ⊗ e

]t
α = 0 (34)

where

α =







α·1
...

α·k






, Y =







y·1
...

y·k






, L =







L1
...

Lk






,

Ik is the k by k identity matrix, and Jk is the k by k matrix with ones. ⊗ means the Kronecker
product. Note that due to the upper bound L having n zeros in (33), the number of nontrivial
dual variables is (k − 1)n. Compared to solving k QP problems with n dual variables in the
one-versus-rest approach, the multiclass formulation amounts to solving a bigger problem once.
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To make the computation amenable to large data sets, one may borrow implementation ideas
successfully exercised in binary SVMs. Studies have shown that slight modification of the problem
gives a fairly good approximation to the solution in binary case, and its computational benefit is
immense for massive data. For example, SOR (Successive OverRelaxation) in Mangasarian and
Musicant (1999), and SSVM (Smooth SVM) in Lee and Mangasarian (2001) are strategies in this
vein. Decomposition algorithms are the other very popular approach for the binary SVM, the
main idea of which is to solve a smaller piece of the problem each time and update the solution
iteratively until it satisfies the optimality conditions. SMO (Sequential Minimal Optimization)
in Platt (1999), the chunking method in Boser et al. (1992), and SVMlight in Joachims (1999)
are examples of this kind. Another possibility to make the proposed method computationally
feasible for massive datasets is to exploit the specific structure of the QP problem. Noting that the
whole issue is approximating some step functions by basis functions determined by kernel functions
evaluated at data points, we may consider reducing the number of basis functions as well. For a
large dataset, using a subset of the basis functions would not lead to any significant loss in accuracy,
while we get a computational gain by doing so. How to ease computational burden of the proposed
multiclass approach is an ongoing research problem.

4.5 Data Adaptive Tuning Criterion

As with other regularization methods, the effectiveness of the proposed method depends on tuning
parameters. There have been various tuning methods proposed for the binary Support Vector
Machines, to list a few, Vapnik (1995), Jaakkola and Haussler (1999), Joachims (2000), Wahba,
Lin and Zhang (2000), and Wahba, Lin, Lee and Zhang (2002).

We derive an approximate leaving-out-one cross validation function, called Generalized Approx-
imate Cross Validation (GACV) for the multiclass Support Vector Machines. It is based on the
leaving-out-one arguments, reminiscent of GACV derivations for penalized likelihood methods in
Xiang and Wahba (1996). It is quite parallel to the binary GACV in Wahba et al. (2000) except
that the sum-to-zero constraints on the coefficients should be taken care of, due to the characteriza-
tion of the multiclass SVM solution. Throughout the derivation, it is desirable to formulate GACV
symmetrically with respect to each class, since exchanging class labels nominally would not change
the problem at all.

It would be ideal but only theoretically possible to choose tuning parameters minimizing the
generalized comparative Kullback-Leibler (GCKL) distance with respect to the multiclass SVM
loss function, g(yi, fi) ≡ L(yi) · (f(xi) − yi)+ averaged over a data set with the same covariates xi

and unobserved Yi, i = 1, · · · , n:

GCKL(λ) = Etrue
1

n

n
∑

i=1

g(Yi, fi) = Etrue
1

n

n
∑

i=1

L(Yi) · (f(xi) −Yi)+.

To the extent that the estimate tends to the correct class code, the convex multiclass loss function
tends to k/(k − 1) times the misclassification loss, as discussed earlier. This also justifies the
usage of GCKL as an ideal tuning measure, and our strategy is to develop a data-dependent
computable proxy of GCKL and choose tuning parameters minimizing the proxy of GCKL. For
concise notations, let Jλ(f) = (λ/2)

∑k
j=1 ‖hj‖

2
HK

, and y = (y1, · · · ,yn). We denote the objective
function of the multicategory SVM (12) by Iλ(f ,y). That is,

Iλ(f ,y) =
1

n

n
∑

i=1

g(yi, fi) + Jλ(f).
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Let fλ be the minimizer of Iλ(f ,y) and f
[−i]
λ be the solution to the variational problem when the

ith sample is left out, minimizing

1

n

n
∑

l=1

l 6=i

g(yl, fl) + Jλ(f).

Further fλ(xi) and f
[−i]
λ (xi) are abbreviated by fλi and f

[−i]
λi . fλj(xi) and f

[−i]
λj (xi) denote the jth

component of fλ(xi), and f
[−i]
λ (xi), respectively. Now, we define the leaving-out-one cross validation

function which would be a reasonable proxy of GCKL(λ):

V0(λ) =
1

n

n
∑

i=1

g(yi, f
[−i]
λi ).

V0(λ) can be reexpressed as the sum of OBS(λ), the observed fit to the data measured as the
average loss and D(λ), where

OBS(λ) =
1

n

n
∑

i=1

g(yi, fλi), and

D(λ) =
1

n

n
∑

i=1

(

g(yi, f
[−i]
λi ) − g(yi, fλi)

)

.

To obtain a computable approximation of V0(λ) without actually doing the leaving-out-one pro-
cedure, which may be prohibitive for large data sets, we will approximate D(λ) further using the
leaving-out-one lemma.

As a necessary ingredient for the lemma, we extend the domain of the function L(·) from a
set of k distinct class codes to allow argument y not necessarily a class code. For any y ∈ Rk

satisfying the sum-to-zero constraint, we define L : Rk → Rk as L(y) = (w1(y)[−y1 − 1/(k −
1)]∗, · · · , wk(y)[−yk − 1/(k − 1)]∗) where [τ ]∗ = I(τ ≥ 0), and (w1(y), · · · , wk(y)) is the jth row of
the extended misclassification cost matrix L with the jl entry (πj/π

s
j )Cjl if arg maxl=1,··· ,k yl = j.

If there are ties, then (w1(y), · · · , wk(y)) is defined as the average of the rows of the cost matrix
L corresponding to the maximal arguments. We easily check that L(0, · · · , 0) = (0, · · · , 0) and
the extended L(·) coincides with the original L(·) over the domain of class representations. We
define a class prediction µ(f) given the SVM output f as a function truncating any component

fj < −1/(k−1) to −1/(k−1) and replacing the rest by

∑k
j=1 I(fj < − 1

k−1)

k −
∑k

j=1 I(fj < − 1
k−1)

(

1

k − 1

)

to satisfy

the sum-to-zero constraint. If f has a maximum component greater than 1, and all the others less
than −1/(k−1), then µ(f) is a k-tuple with 1 on the maximum coordinate and −1/(k−1) elsewhere.
So, the function µ maps f to its most likely class code if there is a class strongly predicted by f .
By contrast, if none of the coordinates of f is less than −1/(k − 1), µ maps f to (0, · · · , 0). With
this definition of µ, the following can be shown.

Lemma 3 (Leaving-out-one Lemma). The minimizer of Iλ(f ,y[−i]) is f
[−i]
λ , where y[−i] =

(y1, · · · ,yi−1, µ(f
[−i]
λi ),yi+1, · · · ,yn).

For notational simplicity, we suppress the subscript λ from f and f [−i]. We approximate

g(yi, f
[−i]
i )−g(yi, fi), the contribution of the ith example to D(λ) using the above lemma. Details of
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the approximation are in Appendix B. Let (µi1(f), · · · , µik(f)) = µ(f(xi)). From the approximation

g(yi, f
[−i]
i ) − g(yi, fi) ≈ (k − 1)K(xi,xi)

k
∑

j=1

Lij[fj(xi) +
1

k − 1
]∗cij(yij − µij(f)),

we have

D(λ) ≈
1

n

n
∑

i=1

(k − 1)K(xi,xi)

k
∑

j=1

Lij [fj(xi) +
1

k − 1
]∗cij(yij − µij(f)).

Finally, the Generalized Approximate Cross Validation (GACV) for the multicategory SVM is given
by

GACV (λ) =
1

n

n
∑

i=1

L(yi) · (f(xi) − yi)+

+
1

n

n
∑

i=1

(k − 1)K(xi,xi)
k

∑

j=1

Lij[fj(xi) +
1

k − 1
]∗cij(yij − µij(f)). (35)

From a numerical point of view, the proposed GACV may be vulnerable to small perturbations
in the solution since it involves sensitive computations such as checking the condition fj(xi) <
−1/(k − 1) or evaluating the step function [fj(xi) + 1/(k − 1)]∗. To enhance the stability of the
GACV computation, we introduce a tolerance term ε. The nominal condition fj(xi) < −1/(k − 1)
is implemented as fj(xi) < −(1 + ε)/(k − 1), and likewise the step function [fj(xi) + 1/(k − 1)]∗ is
replaced by [fj(xi) + (1 + ε)/(k − 1)]∗. The tolerance is set to be 10−5 for which empirical studies
show that GACV gets robust against slight perturbations of the solutions up to a certain precision.

5 NUMERICAL STUDY

In this section, we illustrate the Multicategory Support Vector Machine (MSVM) through a numer-
ical example. For empirical validation of its theoretical properties, we present a simulated example.
Various tuning criteria, some of which are available only in simulation settings, are considered and
the performance of GACV is compared with those theoretical criteria. We used the Gaussian kernel
function, K(s, t) = exp

(

− 1
2σ2 ‖s − t‖2

)

, and λ and σ were searched over a grid. The estimate can
be quite sensitive to σ. An interval search region for 2σ was taken as the region between the 10th
percentile and the 90th percentile of the within-class pairwise distances of the samples. Often,
searching outside the upper bound was necessary.

We considered a simple three-class example in which x lies in the unit interval [0, 1]. Let the
conditional probabilities of each class given x be p1(x) = 0.97 exp(−3x), p3(x) = exp(−2.5(x −
1.2)2), and p2(x) = 1 − p1(x) − p3(x). They are shown in the top left panel of Figure 2. Class 1
is most likely for small x while class 3 is most likely for large x. The in-between interval would
be a competing zone for three classes although class 2 is slightly dominant. The subsequent three
panels depict the true target function fj(x), j = 1, 2, 3 defined in Lemma 1 for this example. It
assumes the value 1 when pj(x) is maximum, and −1/2 otherwise, whereas the target functions
under one-versus-rest schemes are fj(x) = sign(pj(x) − 1/2). Prediction of class 2 based on f2(x)
of the one-versus-rest scheme would be theoretically hard because the maximum of p2(x) is barely
0.5 across the interval. To compare the multicategory SVM and the one-versus-rest scheme, we
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applied both methods to a data set with sample size n = 200. The attribute xi’s were generated
from the uniform distribution on [0, 1], and given xi, the corresponding class label yi was randomly
assigned according to the conditional probabilities pj(x), j = 1, 2, 3. The tuning parameters λ, and
σ were jointly tuned to minimize the GCKL distance of the estimate fλ,σ from the true distribution.
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Figure 2: Conditional probabilities and multicategory SVM target functions for three-class example.

Figure 3 shows the estimated functions for both the MSVM and the one-versus-rest methods
when tuned via GCKL. The estimated f2(x) in the one-versus-rest scheme is almost -1 at any x in
the unit interval, meaning that it could not learn a classification rule associating the attribute x
with the class distinction (class 2 vs the rest, 1 or 3). Whereas, the multicategory SVM was able to
capture the relative dominance of class 2 for middle values of x. Presence of such an indeterminate
region would amplify the effectiveness of the proposed multicategory SVM.

Table 1 shows the tuning parameters chosen by other tuning criteria alongside GCKL and their
inefficiencies for this example. When we treat all the misclassifications equally, the true target
GCKL is given by

GCKL(λ, σ) = Etrue
1

n

n
∑

i=1

L(Yi) · (fλ,σ(xi) −Yi)+

=
1

n

n
∑

i=1

k
∑

j=1

(

fj(xi) +
1

k − 1

)

+

(1 − pj(xi)).
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Figure 3: Comparison between the multicategory SVM and one-versus-rest method. The Gaussian
kernel function was used, and the tuning parameters λ, and σ were simultaneously chosen via
GCKL.

More directly, the misclassification rate (MISRATE) is available in simulation settings, which is
defined as

MISRATE(λ, σ) = Etrue

1

n

n
∑

i=1

L(Yi) ·

(

I(fi1 = max
1≤j≤k

fij), · · · , I(fik = max
1≤j≤k

fij)

)

=
1

n

n
∑

i=1

k
∑

j=1

I(fij = max
1≤l≤k

fil)(1 − pj(xi)).

In addition, to see how good one can expect from data adaptive tuning procedures, we generated a
tuning set of the same size as the training set and used the misclassification rate over the tuning set
(TUNE), as a yardstick. The inefficiency of each tuning criterion is defined as the ratio of MISRATE
at its minimizer to the minimum MISRATE. Thus, it suggests how much misclassification would
be incurred, relative to the smallest possible error rate by the MSVM if we know the underlying
probabilities. As it is often observed in the binary case, GACV tends to pick bigger λ than that
of GCKL. However, we observe that TUNE, the other data adaptive criterion if a tuning set is
available, gave a similar outcome. The inefficiency of GACV is 1.048, yielding the misclassification
rate 0.4171, slightly bigger than the optimal rate 0.3980. Expectedly, it is a little worse than
having an extra tuning set, but almost as good as 10-fold CV which requires about ten times more
computations than GACV. 10-fold CV has two minimizers, and they suggest the compromising
role between λ and σ for the Gaussian kernel function.

To demonstrate that the estimated functions indeed affect the test error rate, we generated 100
replicate data sets of sample size 200, and applied the multicategory SVM and one-versus-rest SVM
classifiers to each data set, combined with GCKL tuning. Based on the estimated classification
rules, we evaluated the test error rates for both methods over a test data set of size 10000. For
the test data set, the Bayes misclassification rate was 0.3841 while the average test error rate of
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the multicategory SVM over 100 replicates was 0.3951 with the standard deviation 0.0099 and that
of the one-versus-rest classifiers was 0.4307 with its standard deviation 0.0132. The multicategory
SVM gave a smaller test error rate than the one-versus-rest scheme across all the 100 replicates.

Table 1: Tuning criteria and their inefficiencies

Criterion (log2 λ, log2 σ) Inefficiency

MISRATE (-11,-4) *
GCKL (-9,-4) 0.4001/0.3980=1.0051
TUNE ( -5,-3) 0.4038/0.3980=1.0145
GACV ( -4,-3) 0.4171/0.3980=1.0480

10-fold CV (-10,-1) 0.4112/0.3980=1.0331
(-13,0) 0.4129/0.3980=1.0374

Other simulation studies in various settings showed that MSVM outputs approximate coded
classes when the tuning parameters are appropriately chosen, and oftentimes GACV and TUNE
tend to oversmooth in comparison to the theoretical tuning measures, GCKL and MISRATE. The
effect of the high dimensionality (large d) or numerous classes (large k) is yet to be explored.
In theory, the Support Vector Machine can be applied to very high dimensional data without
altering its formulation. Such capacity is well suited to data mining tasks and small n but large
d structures like microarray data. Although a limited simulation study confirmed the feasibility
of the MSVM, and there have been many successful applications of the Support Vector Machines
to high dimensional data in general, it would be still worth investigating further how the high
dimensionality affects the methodology in respect to its computational stability, the efficiency of
tuning, and the consequent impact on its accuracy. Exploring the effect of the number of classes k
as well would add another dimension to such investigation.

A small scale empirical study was carried out over four data sets from the UCI data repository.
The four data sets are wine, waveform, vehicle and glass. The Gaussian kernel function was
used for the MSVM. As a tuning method, we compared GACV with 10-fold CV, which is one of
the popular choices. Note that the computational load of 10-fold CV is about ten times more than
that of GACV. When the problem is almost separable, GACV seems to be effective as a tuning
criterion with a unique minimizer, which is typically a part of the multiple minima of 10-fold CV.
However, with considerable overlaps between classes, we empirically observed that GACV tends to
oversmooth and result in a little bigger error rate than 10-fold CV. It is of some research interest
to understand why the GACV for the SVM formulation tends to overestimate λ. We compared
the performance of MSVM with 10-fold CV with that of the linear discriminant analysis (LDA),
the quadratic discriminant analysis (QDA), and the nearest neighbor method. MSVM performed
the best over the waveform, and vehicle data sets. Over the wine data set, the performance of
MSVM is about the same as that of QDA, slightly worse than LDA, and better than the nearest
neighbor method. Over the glass data, MSVM is better than LDA, and QDA, but is not as good
as the nearest neighbor method. It is clear that the relative performance of different classification
methods depends on the problem at hand, and no single classification method is going to dominate
all other methods. In practice, simple methods such as the linear discriminant analysis often
outperform more sophisticated methods. The multicategory Support Vector Machine is a general
purpose classification method, and we think that it is a useful new addition to the toolbox of the
data analyst.
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6 APPLICATIONS

Two applications to problems arising in oncology and meteorology are presented. One application
is cancer classification using microarray data and the other is cloud detection and classification via
satellite radiance profiles. The results are outlined here. Complete details of the cancer classification
application appear in Lee and Lee (2002) and details of the cloud detection and classification
application appear in Lee, Wahba and Ackerman (2002). See also Lee (2002).

6.1 Cancer Classification with Microarray Data

The advent of microarray gene expression technology has opened the possibility of investigating
the activity of thousands of genes simultaneously. Gene expression profiles are the measurements
of relative abundance of mRNA corresponding to the genes. Since transcriptional changes sensibly
reflect the status of disease including cancers, gene expression profiles can be used to classify the
different types of cancers accurately. See DeRisi, Penland, Brown, Bittner, Meltzer, Ray, Chen, Su
and Trent (1996), Zhang, Zhou, Velculescu, Kern, Hruban, Hamilton, Vogelstein and Kinzler (1997),
Perou, Jeffrey, van de Rijn, Rees, Eisen, Ross, Pergamenschikov, Williams, Zhu, Lee, Lashkari,
Shalon, Brown and Botstein (1999), Schummer, Ng, Bumgarner, Nelson, Schummer, Bednarski,
Hassell, Baldwin, Karlan and Hood (1999), and Jiang, Harlocker, Molesh, Dillon, Stolk, Houghton,
Repasky, Badaro, Reed and Xu (2002) for reference. Currently, cancer diagnosis highly depends
on a variety of histological observations, which have limitations due to morphological similarity.
Accurate diagnosis promotes the efficacy of a proper treatment of cancers. Under the premise
of gene expression patterns as fingerprints at the molecular level, systematic methods to classify
tumor types using gene expression data have been studied in Golub, Slonim, Tamayo, Huard,
Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield and Lander (1999), Mukherjee,
Tamayo, Slonim, Verri, Golub, Mesirov and Poggio (1999), Dudoit, Fridlyand and Speed (2002),
Furey, Cristianini, Duffy, Bednarski, Schummer and Haussler (2000), Khan, Wei, Ringner, Saal,
Ladanyi, Westermann, Berthold, Schwab, Atonescu, Peterson and Meltzer (2001), Yeo and Poggio
(2001), and references therein. Typical microarray training data sets (a set of pairs of a gene
expression profile xi and the tumor type yi that it falls into) have a fairly small sample size, usually
less than one hundred, while the number of genes involved is in the order of thousands. This poses
an unprecedented challenge to some classification methodologies. The Support Vector Machine is
one of the methods successfully applied to the cancer diagnosis problems in the previous studies.
Since in principle, it can handle input variables much larger than the sample size via its dual
formulation, it may be well suited to the microarray data structure.

We revisited the small round blue cell tumors (SRBCTs) of childhood data set in Khan et al.
(2001). Khan et al. (2001) classified the small round blue cell tumors (SRBCTs) of childhood into
4 classes; neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and
the Ewing family of tumors (EWS) using cDNA gene expression profiles. The data set is available
from http://www.nhgri.nih.gov/DIR/Microarray/Supplement/. 2308 gene profiles out of 6567
genes are given in the data set after filtering for a minimal level of expression. The training set
consists of 63 samples falling into 4 categories each, while the test set contains 20 SRBCT samples
and 5 non SRBCTs (2 normal muscle tissues and 3 cell lines including an undifferentiated sarcoma,
osteosarcoma, and a prostate carcinoma). Table 2 shows the distribution of the four distinct tumor
categories in the training set and the test set. Note that Burkitt lymphoma (BL) is a subset of
NHL. Khan et al. (2001) successfully diagnosed the tumor types into four categories using Artificial
Neural Networks. Also, Yeo and Poggio (2001) applied k Nearest Neighbor (kNN), weighted voting
and linear SVM in one-vs-rest fashion to this four-class problem, and compared the performances
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Table 2: Class distribution of SRBCTs data set

Data set NB RMS BL EWS total

Training set 12 20 8 23 63
Test set 6 5 3 6 20

Total 18 25 11 29 83

of these methods when they are combined with several feature selection methods for each binary
classification problem. It was reported that mostly SVM classifiers achieved the smallest test error
and leaving-out-one cross validation (LOOCV) error when 5 to 100 genes (features) were used.
For the best results shown in the paper, perfect classification was possible in testing the blind
20 samples as well as in cross validating 63 training samples. Since the one-vs-rest scheme needs
four binary classifiers in this problem, the maximum number of distinct features used in learning a
complete classification rule is four times the number of features for each binary classifier.

For comparison, we applied the MSVM to the problem after taking the logarithm base 10 of the
expression levels and standardizing arrays. Finding the best subset of genes out of 2308 would be
combinatorially formidable as a variable selection problem. Instead, the marginal relevance of each
gene in class separation was evaluated, following a simple criterion used in Dudoit et al. (2002).
For gene l, we define the ratio of between classes sum of squares to within class sum of squares as
its relevance measure;

BSS(l)

WSS(l)
=

∑n
i=1

∑k
j=1 I(yi = j)(x̄

(j)
·l − x̄·l)

2

∑n
i=1

∑k
j=1 I(yi = j)(xil − x̄

(j)
·l )2

(36)

where n is the training sample size, x̄
(j)
·l indicates the average expression level of gene l for class

j samples, and x̄·l is the overall mean expression levels of gene l in the training set. We select
genes with the largest ratios. Table 3 is a summary of the classification results by MSVMs with
the Gaussian kernel function. Though the previous studies showed that linear classifiers are good
enough to achieve almost perfect classification, we find that flexible basis functions such as the
Gaussian kernel are particularly effective for multiclass problems. The classification results with
the linear kernel function are not shown in the table, but we observed that linear MSVMs achieve
similar performances as Gaussian MSVMs although their evaluated decision vectors are less specific
to the class representation than those of the Gaussian kernel. The second column indicates the
optimal tuning parameters pair λ and σ on log 2 scale chosen by the GACV tuning measure (35). In
fact, the LOOCV tuning error as a function of the tuning parameters was zero at multiple minima.
The phenomenon that LOOCV tuning error has multiple minima while the multiple minima include
the optimal tuning parameters given by GACV was observed in this experiment as well. The zero
LOOCV tuning errors imply that the classification task is not challenging. The proposed MSVMs
were cross validated for the training set in leaving-out-one fashion, with zero error attained for 20,
60, and 100 genes, as shown in the third column. The last column shows the final test results.
Using the top ranked 20, 60, and 100 genes, the MSVMs correctly classify 20 test examples. With
all the genes included, one error occurs in LOOCV and the misclassified example is identified as
EWS-T13, which was reported to occur frequently as an LOOCV error in Khan et al. (2001) and
Yeo and Poggio (2001). The test error using all genes varies from 0 to 3 depending on tuning
measures. The MSVM tuned by GACV gives 3 test errors while LOOCV tuning gives 0 to 3 test
errors.
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Table 3: LOOCV error and Test error for SRBCT data set. MSVMs with the Gaussian kernel were
applied to the training data set. The second column indicates the optimal tuning parameters pair,
λ and σ on log 2 scale chosen by the GACV. The last row shows the results by using only three
principal components (PCs) from 100 genes.

Number of genes (log2 λ, log2 σ) LOOCV error Test error

20 (-22,1.4) 0 0
60 (-23,2.4) 0 0
100 (-23,2.6) 0 0
all (-25,4.8) 1 0 to 3

3 PCs (100) (-19,1.6) 0 0

Perfect classification in cross validation and testing with high dimensional inputs, suggests
a possibility of a compact representation of the classifier in a low dimension. Using dimension
reduction techniques such as the principal component analysis, it is possible to visualize the data
approximately in a much lower dimension than that of the original space. See Figure 4 in Lee
and Lee (2002) for the principal component analysis of the top 100 genes in the training set. The
three principal components contain total 66.5% variation of 100 genes in the training set. They
contribute 27.52%, 23.12% and 15.89%, respectively and the fourth component not included in the
analysis explains only 3.48% of variation of the training data. With the three principal components
(PCs) only, we applied the MSVM, and the corresponding classification result is in the last row of
Table 3. Again, perfect classification was achieved in cross validating and testing. Figure 4 shows
the predicted decision vectors (f1, f2, f3, f4) at the test samples. The four class labels are coded
according as EWS: (1,−1/3,−1/3,−1/3), BL: (−1/3, 1,−1/3,−1/3), NB: (−1/3,−1/3, 1,−1/3),
and RMS: (−1/3,−1/3,−1/3, 1). We use different colors to indicate the true class identities of the
test samples. EWS is blue, BL is purple, NB is red, RMS is green, and non SRBCT is cyan. For
example, the blue bars correspond to EWS samples, and the ideal decision vector (f1, f2, f3, f4)
for them is (1,−1/3,−1/3,−1/3). The estimated decision vectors are pretty close to the ideal
representation and their maximum components are the first one, meaning correct classification.
We can see from the plot that all the 20 test examples from 4 classes are classified correctly. Note
that the test examples are rearranged in the order of EWS, BL, NB, RMS, and non SRBCT, so
the horizontal coordinates do not match with the test id’s given in the original data set. In the test
data set, there are 5 non SRBCT samples. The fitted MSVM decision vectors for the 5 samples
are plotted in cyan color in Figure 4.

In medical diagnosis, making a wrong prediction could be more serious than reserving a call. For
weakly diagnosed samples, getting further information from a specialized investigation or expert
opinion would be an appropriate procedure for a more informative call. Attaching a confidence
statement to each prediction may be useful in identifying such borderline samples. For classification
methods with their ultimate output being the estimated conditional probability of each class at
x, we can simply set a threshold such that the classification is made only when the estimated
probability of the predicted class exceeds the threshold. Whereas, SVMs target the representation
of the most probable class itself without any probability estimate when flexible kernel functions are
used. Linear SVMs do not provide probability estimates, either. The mechanism of the Support
Vector Machine to extract the necessary information for the minimum error rate seems very simple
and efficient, but inevitably limited in restoring the probability from the estimated class code.
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Nevertheless, there have been a couple of empirical approaches to address this issue for SVMs in
the binary case (Mukherjee et al. 1999), and solving a series of binary SVMs in the multiclass case
(Yeo and Poggio 2001). We discuss some heuristics to reject weak predictions, analogous to the
prediction strength for the binary SVM. The MSVM decision vector (f1, · · · , fk) at x, close to a
class code may mean strong prediction away from the classification boundary. The multiclass hinge
loss with the standard cost function L(·), g(y, f) ≡ L(y) · (f −y)+ sensibly measures the proximity
between an MSVM decision vector f and a coded class y, reflecting how strong their association
is in the classification context. It considers the sign and the magnitude of each coordinate of
a decision vector simultaneously. For the time being, we will use a class label and its vector
valued class code interchangeably as an input argument of the hinge loss g and other occasions
without causing much confusion. That is, we let g(j, f) stand for g(vj , f). Recall that given an
MSVM decision vector (f1, · · · , fk), the maximum identifies the predicted class. It is assumed
that the probability of a correct prediction given f(x) = (f1, · · · , fk) at x, P (Y = arg maxj fj|f)
depends on f only through the multiclass hinge loss, g(arg maxj fj, f) for the predicted class. The
smaller the hinge loss, the stronger the prediction. Then the strength of the MSVM prediction,
P (Y = arg maxj fj|f) can be inferred from the training data by cross validation. For example,
leaving out the ith example (xi, yi), we get the MSVM decision vector f(xi) = (f1, · · · , fk) at xi

based on the remaining samples. From it, get a pair of the loss, g(arg maxj fj(xi), f(xi)) and the
indicator of a correct decision I(yi = arg maxj fj(xi)), and repeat this calculation marching through
the samples in the training data set. P (Y = arg maxj fj|f), as a function of g(arg maxj fj, f)
can be estimated then from the collection of pairs of the hinge loss and the indicator. If we
further assume the complete symmetry of k classes, that is, P (Y = 1) = · · · = P (Y = k) and
P (f |Y = y) = P (π(f)|Y = π(y)) for any permutation operator π of {1, · · · , k}, it follows that
P (Y = arg maxj fj|f) = P (Y = π(arg maxj fj)|π(f)). Consequently, under these symmetry and
invariance assumption with respect to k classes, we can pool the pairs of the hinge loss and the
indicator for all the classes, and estimate the invariant prediction strength function in terms of the
loss, regardless of the predicted class. In almost separable classification problems, we might see the
loss values for correct classifications only, impeding the estimation of the prediction strength. We
can apply the heuristics of predicting a class only when its corresponding loss is less than, say, the
95th percentile of the empirical loss distribution. This cautious measure was exercised in identifying
the 5 non SRBCTs. The last panel in Figure 4 depicts the loss for the predicted MSVM decision
vector at each test sample including 5 non SRBCTs. The dotted line indicates the threshold of
rejecting a prediction given the loss. That is, any prediction with loss above the dotted line will
be rejected. It was set at 0.2171, which is a jackknife estimate of the 95th percentile of the loss
distribution from 63 correct predictions in the training data set. The losses corresponding to the
predictions of 5 non SRBCTs all exceed the threshold, while 3 test samples out of 20 can not be
classified confidently by thresholding.

Overall, comparable to alternative methods, the MSVM method appears to achieve perfect
or near perfect classification for cancer diagnosis problems using microarray data. We believe it
has a great potential for such medical diagnosis problems. For another MSVM application to the
leukemia data set, see Lee and Lee (2002). The tumor diagnosis problems using gene expression
profiles available so far are observed to be very separable and not a challenging task once the di-
mension of the input space is reduced. This implies that gene expression profiles are informative
enough to differentiate several tumor types. If this is a prevalent characteristic of the cancer di-
agnosis problem with gene expressions, then the accuracy of any reasonable classifier may not be
significantly different. Differences, if any, will get evident as we accumulate more information on
this kind of data. Still, there are certain advantages of flexible classifiers. The Support Vector
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Machine is often advocated not only for its accuracy but also its versatile formulation to handle
high dimensional data. However, a caveat is that it is not completely free from the curse of dimen-
sionality either. Not only for the sake of the parsimony, dimension reduction methods including
gene selection, therefore will be indispensable to improve the accuracy.
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Figure 4: The first four panels show the predicted decision vectors (f1, f2, f3, f4) at the test samples.
The four class labels are coded according as EWS in blue: (1,−1/3,−1/3,−1/3), BL in purple:
(−1/3, 1,−1/3,−1/3), NB in red: (−1/3,−1/3, 1,−1/3), and RMS in green: (−1/3,−1/3,−1/3, 1).
The colors indicate the true class identities of the test samples. We can see from the plot that all
the 20 test examples from 4 classes are classified correctly and the estimated decision vectors are
pretty close to their ideal class representation. The fitted MSVM decision vectors for the 5 non
SRBCT samples are plotted in cyan. The last panel depicts the loss for the predicted decision
vector at each test sample. The last 5 losses corresponding to the predictions of non SRBCTs all
exceed the threshold (the dotted line) below which means a strong prediction. Three test samples
falling into the known four classes can not be classified confidently by the same threshold.

6.2 Cloud Classification with Radiance profiles

The MODIS (moderate resolution imaging spectroradiometer) is a key instrument of the Earth
Observing System (EOS). It measures radiances at 36 wavelengths including infrared and visible
bands every 1 to 2 days with spatial resolution 250 m to 1 km. For more information about the
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MODIS instrument, see http://modis.gsfc.nasa.gov/. Earth Observing System models require
knowledge of whether a radiance profile is cloud free, or not. If the profile is not cloud free, it is
valuable to have information concerning the type of cloud. For more informations on the MODIS
cloud mask algorithm with a simple threshold technique, see Strabala, Ackerman and Menzel (1994)
and Ackerman, Strabala, Menzel, Frey, Moeller and Gumley (1998). To illustrate the potential of
the multicategory SVM as an efficient cloud detection algorithm, we have applied the MSVM to
simulated MODIS type channels data to classify the radiance profiles as clear, liquid clouds, or ice
clouds.

The description of the data set is as follows. Satellite observations at 12 wavelengths (.66, .86,
.46, .55, 1.2, 1.6, 2.1, 6.6, 7.3, 8.6, 11, 12 microns or MODIS channels 1, 2, 3, 4, 5, 6, 7, 27, 28,
29, 31, 32) were simulated using DISORT, driven by STREAMER in Key and Schweiger (1998).
Setting atmospheric conditions as simulation parameters, atmospheric temperature and moisture
profiles were selected from the 3I TIGR (Thermodynamic Initial Guess Retrieval) data base, and
the surface was set to be water. A total of 744 radiance profiles over the ocean (81 clear scenes, 202
liquid clouds and 461 ice clouds) are given in the data set. Each simulated radiance profile consists
of 7 reflectances (R) at .66, .86, .46, .55, 1.2, 1.6, 2.1 microns, and 5 brightness temperatures (BT)
at 6.6, 7.3, 8.6, 11, 12 microns. To see the radiance profile patterns along 12 channels, 10 profiles
were randomly selected from each category and illustrated in Figure 5. Clear sky profiles are in
blue, water clouds are in green, and ice clouds are in purple. Generally, clouds are characterized
by higher reflectance and lower temperature than the underlying Earth surface. Figure 5 confirms
this general characteristic of clouds compared to clear sky. We observe a fair amount of overlap
in the profiles among the three types. No single channel seems to give a clear separation of the
three categories. Figure 6 gives a scatter plot of Rchannel2 vs log10(Rchannel5/Rchannel6). These two
variables were initially chosen to use for classification based on an understanding of the underlying
physics, and following an examination of several other scatter plots.

To test how predictive the two features, Rchannel2 and log10(Rchannel5/Rchannel6) are, we split
the data set into a training set and a test set, and applied the MSVM with two features only to the
training data. 370 samples, almost half of the original data were selected randomly from Figure 6 as
the training set. The Gaussian kernel was used and the tuning parameters were tuned by 5-fold CV.
The test error rate of the SVM rule over 374 test samples was 11.5% (= 43/374). The left panel of
Figure 7 shows the classification boundaries determined by the training data set in this case. Note
that a lot of ice cloud samples are hidden underneath the clear sky samples in the plot. Most of the
misclassifications in testing occurred due to the considerable overlap between ice clouds and clear
sky samples at the lower left corner of the plot. It turned out that adding three more promising
variables to the MSVM did not improve the classification accuracy significantly. These variables are
given in the second row of Table 4, and again the choice was based on knowledge of the underlying
physics and pairwise scatter plots. We could classify correctly just 5 more examples than the two
features only case with the misclassification rate 10.16% (=38/374). Assuming no such domain
knowledge regarding which features to look at, we applied the MSVM to the original 12 radiance
channels without any transformations or variable selections. It yielded 12.03% test error rate, which
is slightly larger than the MSVMs with the tailored 2 or 5 features. Interestingly enough, when all
the variables are transformed by the logarithm function, the MSVM achieved its minimum error
rate. The results are summarized in Table 4. We compared the MSVM with the tree structured
classification method which is somewhat similar, but much more sophisticated than the MODIS
cloud mask algorithm. The library tree in the R package was used. For each combination of the
variables, the size of the fitted tree was determined by the 10-fold cross validation of the training set,
and its error rate was estimated over the test set. The results are under the column heading TREE
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Figure 5: We selected 10 radiance profiles at random from the three scenes. The top panel displays
the reflectance profiles of the 10 random samples for each category, and the bottom panel shows
the brightness temperature profiles (clear sky: blue, liquid clouds: green, ice clouds: purple).
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Figure 6: Scatter plot of Rchannel2 vs log10(Rchannel5/Rchannel6)

Table 4: Test error rates for the combinations of variables and classifiers.

Number of Variable descriptions Test error rates (%)
variables MSVM TREE 1-NN

2 (i) R2, log10(R5/R6) 11.50 14.97 16.58
5 (i)+R1/R2, BT31, BT32 − BT29 10.16 15.24 12.30
12 (ii) original 12 variables 12.03 16.84 20.86
12 log transformed (ii) 9.89 16.84 18.98

in Table 4. Over all the combinations of the variables considered, the MSVM gives smaller test error
rates than the tree method. This suggests the possibility that the proposed MSVM improves the
accuracy of the current cloud detection algorithm. To roughly measure how hard the classification
problem is due to the intrinsic overlap between class distributions, we applied the nearest neighbor
(NN) method. The inequality in Cover and Hart (1967) relates the misclassification rate of the
nearest neighbor method to the Bayes risk, the smallest error rate theoretically achievable, in the
asymptotic sense. The inequality says that the probability of error for the NN is no more than twice
the Bayes error rate as the size of a training set goes to infinity. The last column in Table 4 shows
the test error rates of the nearest neighbor method. They suggest that the data set is not trivially
separable. The relations between half of the NN test error rates and the actual error rates incurred
by the MSVM are reasonably close, if not very tight. It would be interesting to investigate further
if any sophisticated variable (feature) selection methods may improve the accuracy substantially.

So far, we have treated different types of misclassification equally. However, misclassifying
clouds as clear could be more serious than other kinds of misclassifications in practice, since essen-
tially this cloud detection algorithm will be used as cloud mask for the Earth Observing System
(EOS). The following cost matrix was considered, which penalizes misclassifying clouds as clear 1.5
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times more than misclassifications of other kinds:

C =





0 1 1
1.5 0 1
1.5 1 0





where we coded clear as class 1, water clouds as class 2, and ice clouds as class 3. Its corresponding
classification boundaries are drawn in the right panel of Figure 7. It was observed that if the cost
1.5 is replaced by 2, then there is no region left for the clear sky category at all within the square
range of the two features considered here. The approach to estimating the prediction strength in
Section 6.1 can be generalized to the nonstandard case, if desired.
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Figure 7: The classification boundaries determined by the MSVM using 370 training samples
randomly selected from Figure 6 in the standard case (left) and the nonstandard case (right) where
the cost of misclassifying clouds as clear is 1.5 times higher than other types of misclassifications.

Although this study is preliminary in its scope, the results are promising. It is believed that
the MSVM will be very useful for other classification problems in atmospheric sciences as well.

7 CONCLUDING REMARKS

We have proposed a loss function deliberately tailored to target the coded class with the maximum
conditional probability for multicategory classification problems. Using the loss function, we have
extended the classification paradigm of Support Vector Machines to the multicategory case so that
the resulting classifier approximates the optimal classification rule. The extended Support Vector
Machines allow a unifying formulation when there are either equal or unequal misclassification costs.
An approximate leaving-out-one cross validation function was derived for tuning the method, and
compared with conventional k-fold cross validation methods. The comparisons through several
numerical examples suggested that the proposed tuning measure is sharper near its minimizer
than k-fold cross validation method, but tends to slightly oversmooth. Then, the usefulness of the
multicategory SVM was demonstrated through the applications to a cancer classification problem
with microarray data and cloud classification problems with radiance profiles.
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Although the high dimensionality of data is tractable in the SVM paradigm, its original for-
mulation does not accommodate variable selection. Rather, it provides samplewise data reduction
through support vectors. Some works to integrate variable selection with binary SVMs have been
done by Bradley and Mangasarian (1998), Weston, Mukherjee, Chapelle, Pontil, Poggio and Vap-
nik (2000), and Guyon, Weston, Barnhill and Vapnik (2002). Note that some of the methods were
limited to linear SVMs only. Depending on applications, it is of great importance not only achiev-
ing the smallest error rate by a classifier, but also having its compact representation for better
interpretation. For instance, classification problems in data mining, and bioinformatics often pose
a question of which subsets of the variables are most responsible for the class separation. In the
microarray data analysis presented, we screened predictive genes by a criterion, which measures the
association between the gene and class distinction marginally, and trained classifiers based on the
prescreened genes. It is interesting to know how different results would be obtained if some subsets
of genes were considered jointly and the training was done simultaneously with gene selection steps.
For answering such questions, it would be valuable to generalize the variable selection methods for
binary SVMs further to the multicategory SVM.

Another direction of future work includes establishing the advantage of the multicategory SVM
theoretically, such as its convergence rates to the optimal error rate, compared to those indirect
ways to classify via estimation of the conditional probability or density functions. Lin (2000) and
Steinwart (2001) have made some theoretical endeavors for the binary SVM in some special cases.
It would be intriguing to compare the Support Vector Machine paradigm with traditional methods,
based on a lucid theoretical criterion.

The MSVM methodology is a generic approach to multiclass problems treating all the classes
simultaneously. We believe it is a useful addition to class of nonparametric multicategory classifi-
cation methods.

APPENDIX A: PROOFS

Proof of Lemma 1. Since E[L(Y ) · (f(X) − Y )+] = E(E[L(Y ) · (f(X) − Y )+|X]), we can minimize
E[L(Y ) · (f(X) − Y )+] by minimizing E[L(Y ) · (f(X) − Y )+|X = x] for every x. If we write out
the functional for each x, we have

E[L(Y ) · (f(X) − Y )+|X = x] =
k

∑

j=1

(

∑

l 6=j

(fl(x) +
1

k − 1
)+

)

pj(x)

=

k
∑

j=1

(

∑

l 6=j

pl(x)

)

(fj(x) +
1

k − 1
)+

=

k
∑

j=1

(1 − pj(x))(fj(x) +
1

k − 1
)+. (37)

Here, we claim that it is sufficient to search over f(x) with fj(x) ≥ −1/(k − 1) for all j = 1, · · · , k,
to minimize (37). If any fj(x) < −1/(k − 1), then we can always find another f ∗(x) which is
better than or as good as f(x) in reducing the expected loss as follows. Set f ∗

j (x) to be −1/(k − 1)
and subtract the surplus −1/(k − 1) − fj(x) from other component fl(x)’s which are greater than
−1/(k − 1). The existence of such other components is always guaranteed by the sum-to-zero
constraint. Determine f ∗

i (x) in accordance with the modifications. By doing so, we get f ∗(x) such
that (f ∗

j (x)+1/(k−1))+ ≤ (fj(x)+1/(k−1))+ for each j. Since the expected loss is a nonnegatively
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weighted sum of (fj(x) + 1/(k − 1))+, it is sufficient to consider f(x) with fj(x) ≥ −1/(k − 1) for
all j = 1, · · · , k. Dropping the truncate functions from (37), and rearranging, we get

E[L(Y ) · (f(X) − Y )+|X = x]

=
k

∑

j=1

(1 − pj(x))(fj(x) +
1

k − 1
)

= 1 +

k−1
∑

j=1

(1 − pj(x))fj(x) + (1 − pk(x))(−

k−1
∑

j=1

fj(x))

= 1 +

k−1
∑

j=1

(pk(x) − pj(x))fj(x).

Without loss of generality, we may assume that k = arg maxj=1,··· ,k pj(x) by the symmetry in
the class labels. This implies that to minimize the expected loss, fj(x) should be −1/(k − 1) for
j = 1, · · · , k − 1 because of the nonnegativity of pk(x) − pj(x). Finally, we have fk(x) = 1 by the
sum-to-zero constraint.

�

Proof of Lemma 2. Parallel to all the arguments used for the proof of Lemma 1, it can be shown
that

E[L(Y s) · (f(Xs) − Y s)+|X
s = x]

=
1

k − 1

k
∑

j=1

k
∑

`=1

l`jp
s
`(x) +

k
∑

j=1

( k
∑

`=1

l`jp
s
`(x)

)

fj(x).

We can immediately eliminate the first term which does not involve any fj(x) from our considera-

tion. To make the equation simpler, let Wj(x) be
∑k

`=1 l`jp
s
`(x) for j = 1, · · · , k. Then the whole

equation reduces to the following up to a constant.

k
∑

j=1

Wj(x)fj(x) =
k−1
∑

j=1

Wj(x)fj(x) + Wk(x)(−
k−1
∑

j=1

fj(x))

=

k−1
∑

j=1

(Wj(x) − Wk(x))fj(x).

Without loss of generality, we may assume that k = arg minj=1,··· ,k Wj(x). To minimize the ex-
pected quantity, fj(x) should be −1/(k − 1) for j = 1, · · · , k − 1 because of the nonnegativity of
Wj(x) − Wk(x) and fj(x) ≥ −1/(k − 1) for all j = 1, · · · , k. Finally, we have fk(x) = 1 by the
sum-to-zero constraint.

�

Proof of Theorem 1. Consider fj(x) = bj + hj(x) with hj ∈ HK . Decompose

hj(·) =

n
∑

l=1

cljK(xl, ·) + ρj(·)

for j = 1, · · · , k where cij ’s are some constants, and ρj(·) is the element in the RKHS orthogo-

nal to the span of {K(xi, ·), i = 1, · · · , n}. By the sum-to-zero constraint, fk(·) = −
∑k−1

j=1 bj −

29



∑k−1
j=1

∑n
i=1 cijK(xi, ·)−

∑k−1
j=1 ρj(·). By the definition of the reproducing kernel K(·, ·), (hj ,K(xi, ·))HK

=
hj(xi) for i = 1, · · · , n. Then,

fj(xi) = bj + hj(xi) = bj + (hj ,K(xi, ·))HK

= bj + (

n
∑

l=1

cljK(xl, ·) + ρj(·),K(xi, ·))HK

= bj +

n
∑

l=1

cljK(xl,xi)

So, the data fit functional in (12) does not depend on ρj(·) at all for j = 1, · · · , k. On the
other hand, we have ‖hj‖

2
HK

=
∑

i,l cijcljK(xl,xi) + ‖ρj‖
2
HK

for j = 1, · · · , k − 1, and ‖hk‖
2
HK

=

‖
∑k−1

j=1

∑n
i=1 cijK(xi, ·)‖

2
HK

+‖
∑k−1

j=1 ρj‖
2
HK

. To minimize (12), obviously ρj(·) should vanish. It
remains to show that minimizing (12) under the sum-to-zero constraint at the data points only is
equivalent to minimizing (12) under the constraint for every x. Let K be now the n by n matrix
with il entry K(xi,xl). Let e be the column vector with n ones, and c·j = (c1j , · · · , cnj)

t. Given the

representation (16), consider the problem of minimizing (12) under (
∑k

j=1 bj)e+K(
∑k

j=1 c·j) = 0.

For any fj(·) = bj +
∑n

i=1 cijK(xi, ·) satisfying (
∑k

j=1 bj)e + K(
∑k

j=1 c·j) = 0, define the centered
solution

f∗
j (·) = b∗j +

n
∑

i=1

c∗ijK(xi, ·) = (bj − b̄) +
n

∑

i=1

(cij − c̄i)K(xi, ·)

where b̄ = 1
k

∑k
j=1 bj and c̄i = 1

k

∑k
j=1 cij . Then fj(xi) = f∗

j (xi), and

k
∑

j=1

‖h∗
j‖

2
HK

=
k

∑

j=1

ct
·jKc·j − kc̄tK c̄ ≤

k
∑

j=1

ct
·jKc·j =

k
∑

j=1

‖hj‖
2
HK

.

Since the equality holds only when K c̄ = 0, that is, K(
∑k

j=1 c·j) = 0, we know that at the

minimizer, K(
∑k

j=1 c·j) = 0, and therefore
∑k

j=1 bj = 0. Observe that K(
∑k

j=1 c·j) = 0 implies

(

k
∑

j=1

c·j)
tK(

k
∑

j=1

c·j) = ‖

n
∑

i=1

(

k
∑

j=1

cij)K(xi, ·)‖
2
HK

= ‖

k
∑

j=1

n
∑

i=1

cijK(xi, ·)‖
2
HK

= 0.

It means
∑k

j=1

∑n
i=1 cijK(xi,x) = 0 for every x. Hence, minimizing (12) under the sum-to-zero con-

straint at the data points is equivalent to minimizing (12) under
∑k

j=1 bj+
∑k

j=1

∑n
i=1 cijK(xi,x) =

0 for every x.
�
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Proof of Lemma 3 (Leaving-out-one Lemma) Observe that

Iλ(f
[−i]
λ ,y[−i]) =

1

n
g(µ(f

[−i]
λi ), f

[−i]
λi ) +

1

n

n
∑

l=1

l 6=i

g(yl, f
[−i]
λl ) + Jλ(f

[−i]
λ )

≤
1

n
g(µ(f

[−i]
λi ), f

[−i]
λi ) +

1

n

n
∑

l=1

l 6=i

g(yl, fl) + Jλ(f)

≤
1

n
g(µ(f

[−i]
λi ), fi) +

1

n

n
∑

l=1

l 6=i

g(yl, fl) + Jλ(f)

= Iλ(f ,y[−i])

The first inequality holds by the definition of f
[−i]
λ . Notice that the jth coordinate of L(µ(f

[−i]
λi ))

is positive only when µj(f
[−i]
λi ) = −1/(k − 1), while the corresponding jth coordinate of (f

[−i]
λi −

µ(f
[−i]
λi ))+ will be zero since f

[−i]
λj (xi) < −1/(k − 1) for µj(f

[−i]
λi ) = −1/(k − 1). As a result,

g(µ(f
[−i]
λi ), f

[−i]
λi ) = L(µ(f

[−i]
λi )) · (f

[−i]
λi − µ(f

[−i]
λi ))+ = 0.

Thus, the second inequality follows by the nonnegativity of the function g. This completes the
proof.

�

APPENDIX B: APPROXIMATION OF g(yi, f
[−i]
i ) − g(yi, fi)

Due to the sum-to-zero constraint, g depends only on k − 1 components of each fi and yi. Thus, it
suffices to consider k − 1 coordinates of yi and fi as arguments of g, which correspond to nonzero
components of L(yi). We illustrate the case when the ith example is from class k. All the arguments
will hold analogously for other class examples. Suppose that yi = (−1/(k − 1), · · · ,−1/(k − 1), 1).
By the first order Taylor expansion, we have

g(yi, f
[−i]
i ) − g(yi, fi)

≈ −

(

∂

∂f1
g(yi, fi), · · · ,

∂

∂fk−1
g(yi, fi)

)









f1(xi) − f
[−i]
1 (xi)

...

fk−1(xi) − f
[−i]
k−1(xi)









. (38)

Ignoring nondifferentiable points of g for a moment, we have for j = 1, · · · , k − 1

∂

∂fj

g(yi, fi) = L(yi) ·

(

0, · · · , 0, [fj(xi) +
1

k − 1
]∗, 0, · · · , 0

)

= Lij[fj(xi) +
1

k − 1
]∗.
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Let (µi1(f), · · · , µik(f)) = µ(f(xi)) and similarly (µi1(f
[−i]), · · · , µik(f

[−i])) = µ(f [−i](xi)). Using
the leaving-out-one lemma for j = 1, · · · , k − 1 and the Taylor expansion,

fj(xi) − f
[−i]
j (xi)

≈

(

∂fj(xi)

∂yi1
, · · · ,

∂fj(xi)

∂yi,k−1

)







yi1 − µi1(f
[−i])

...

yi,k−1 − µi,k−1(f
[−i])






.

Thus we have the following approximation in matrix notation.








f1(xi) − f
[−i]
1 (xi)

...

fk−1(xi) − f
[−i]
k−1(xi)









≈















∂f1(xi)

∂yi1
· · ·

∂f1(xi)

∂yi,k−1
...

. . .
...

∂fk−1(xi)

∂yi1
· · ·

∂fk−1(xi)

∂yi,k−1





















yi1 − µi1(f
[−i])

...

yi,k−1 − µi,k−1(f
[−i])






. (39)

Recall that the solution of k-class SVM is given by

fj(xi) =
n

∑

i′=1

ci′jK(xi,xi′) + bj = −
n

∑

i′=1

(αi′j − ᾱi′)

nλ
K(xi,xi′) + bj.

Parallel to the binary case, we rewrite ci′j = −yi′j(k − 1)ci′j if the i′th example is not from class

j, and ci′j = (k − 1)
k

∑

l=1

l 6=j

yi′lci′l otherwise. When the ith example is from class k, we get for j and

l = 1, · · · , k − 1,

∂fj(xi)

∂yil

=

{

−(k − 1)cijK(xi,xi) if l = j
0 if l 6= j.

Hence,














∂f1(xi)

∂yi1
· · ·

∂f1(xi)

∂yi,k−1
...

. . .
...

∂fk−1(xi)

∂yi1
· · ·

∂fk−1(xi)

∂yi,k−1















= −(k − 1)K(xi,xi)











ci1 0 · · · 0
0 ci2 · · · 0
...

...
. . .

...
0 0 · · · ci,k−1











.

From (38), (39) and

(yi1 − µi1(f
[−i]), · · · , yi,k−1 − µi,k−1(f

[−i])) ≈ (yi1 − µi1(f), · · · , yi,k−1 − µi,k−1(f)),

we reach an approximation for a class k example that

g(yi, f
[−i]
i ) − g(yi, fi) ≈ (k − 1)K(xi,xi)

k−1
∑

j=1

Lij[fj(xi) +
1

k − 1
]∗cij(yij − µij(f)).

32



Noting that Lik = 0 in this case, and the approximation can be defined analogously for other class
examples, we have

g(yi, f
[−i]
i ) − g(yi, fi) ≈ (k − 1)K(xi,xi)

k
∑

j=1

Lij[fj(xi) +
1

k − 1
]∗cij(yij − µij(f)).
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