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Abstract

The support vector machine has been successful in a variety of applications. Also on
the theoretical front, statistical properties of the support vector machine have been stud-
ied quite extensively with a particular attention to its Bayes risk consistency under some
conditions. In this paper, we study somewhat basic statistical properties of the support
vector machine yet to be investigated, namely the asymptotic behavior of the coefficients
of the linear support vector machine. A Bahadur type representation of the coefficients is
established under appropriate conditions, and their asymptotic normality and statistical
variability are derived on the basis of the representation. These asymptotic results do not
only help further our understanding of the support vector machine, but also they can be
useful for related statistical inferences.

Keywords: Asymptotic Normality, Bahadur Representation, Classification, Convexity
Lemma, Radon Transform

1. Introduction

The support vector machine (SVM) introduced by Cortes and Vapnik (1995) has been
successful in many applications due to its high classification accuracy and flexibility. For
reference, see Vapnik (1996), Schölkopf and Smola (2002), and Cristianini and Shawe-Taylor
(2000). In parallel with a wide range of applications, statistical properties of the SVM have
been studied by many researchers recently in addition to the statistical learning theory by
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Vapnik (1996) that originally motivated the SVM. These include studies on the Bayes risk
consistency of the SVM (Lin, 2002; Zhang, 2004; Steinwart, 2005) and its rate of convergence
to the Bayes risk (Lin, 2000; Blanchard, Bousquet, and Massart, 2004; Scovel and Steinwart,
2006; Bartlett, Jordan, and McAuliffe, 2006). While the existing theoretical analysis of the
SVM largely concerns its asymptotic risk, there are some basic statistical properties of the
SVM that seem to have eluded our attention. For example, to the best of our knowledge,
large sample properties of the coefficients in the linear SVM have not been studied so far
although the magnitude of each coefficient is often the determining factor of feature selection
for the SVM in practice.

In this paper, we address this basic question of the statistical behavior of the linear
SVM as a first step to the study of more general properties of the SVM. We mainly inves-
tigate asymptotic properties of the coefficients of variables in the SVM solution for linear
classification. The investigation is done in the standard way that parametric methods are
studied in a finite dimensional setting, that is, the number of variables is assumed to be
fixed and the sample size grows to infinity. Additionally, in the asymptotics, the effect
of regularization through maximization of the class margin is assumed to vanish at a cer-
tain rate so that the solution is ultimately governed by the empirical risk. Due to these
assumptions, the asymptotic results become more pertinent to the classical parametric set-
ting where the number of features is moderate compared to the sample size and the virtue
of regularization is minute than to the situation with high dimensional inputs. Despite the
difference between the practical situation where the SVM methods are effectively used and
the setting theoretically posited in this paper, the asymptotic results shed a new light on
the SVM from a classical parametric point of view. In particular, we establish a Bahadur
type representation of the coefficients as in the studies of sample quantiles and estimates
of regression quantiles. See Bahadur (1966) and Chaudhuri (1991) for reference. It turns
out that the Bahadur type representation of the SVM coefficients depends on Radon trans-
form of the second moments of the variables. This representation illuminates how the so
called margins of the optimal separating hyperplane and the underlying probability distri-
bution within and around the margins determine the statistical behavior of the estimated
coefficients. Asymptotic normality of the coefficients then follows immediately from the
representation. The proximity of the hinge loss function that defines the SVM solution to
the absolute error loss and its convexity allow such asymptotic results akin to those for least
absolute deviation regression estimators in Pollard (1991).

In addition to providing an insight into the asymptotic behavior of the SVM, we expect
that our results can be useful for related statistical inferences on the SVM, for instance,
feature selection. For introduction to feature selection, see Guyon and Elisseeff (2003), and
for an extensive empirical study of feature selection using SVM-based criteria, see Ishak
and Ghattas (2005). In particular, Guyon, Weston, Barnhill, and Vapnik (2002) proposed
a recursive feature elimination procedure for the SVM with an application to gene selection
in microarray data analysis. Its selection or elimination criterion is based on the absolute
value of a coefficient not its standardized value. The asymptotic variability of estimated
coefficients that we provide can be used in deriving a new feature selection criterion which
takes inherent statistical variability into account.

This paper is organized as follows. Section 2 contains the main results of a Bahadur type
representation of the linear SVM coefficients and their asymptotic normality under mild
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conditions. An illustrative example is then provided in Section 3 followed by simulation
studies in Section 4. Proofs of technical lemmas and theorems are collected in Section 5,
ensued by a discussion in Section 6.

2. Main Results

2.1 Preliminaries

Let (X,Y ) be a pair of random variables with X ∈ X ⊂ R
d and Y ∈ {1,−1}. The marginal

distribution of Y is given by P(Y = 1) = π+ and P(Y = −1) = π− with π+, π− > 0 and
π+ + π− = 1. Let f and g be the densities of X given Y = 1 and −1, respectively. Let
{(Xi, Y i)}n

i=1 be a set of training data, independently drawn from the distribution of (X,Y ).
Denote the input variables as x = (x1, . . . , xd)

⊤ and their coefficients as β+ = (β1, . . . , βd)
⊤.

Let x̃ = (x̃0, . . . , x̃d)
⊤ = (1, x1, . . . , xd)

⊤ and β = (β0, β1, . . . , βd)
⊤. We consider linear

classifications with hyperplanes defined by h(x;β) = β0 + x⊤β+ = x̃⊤β. Let ‖ · ‖ denote
the Euclidean norm of a vector. For separable cases, the SVM finds the hyperplane that
maximizes the geometric margin, 2/‖β+‖2 subject to the constraints yih(xi;β) ≥ 1 for
i = 1, . . . , n. For non-separable cases, a soft-margin SVM is introduced to minimize

C
n∑

i=1

ξi +
1

2
‖β+‖2

subject to the constraints ξi ≥ 1 − yih(xi;β) and ξi ≥ 0 for i = 1, . . . , n, where C > 0
is a tuning parameter and {ξi}n

i=1 are called the slack variables. Equivalently, the SVM
minimizes the unconstrained objective function

lλ,n(β) =
1

n

n∑

i=1

[
1 − yih(xi;β)

]
+

+
λ

2
‖β+‖2 (1)

over β ∈ R
d+1, where [z]+ = max(z, 0) for z ∈ R and λ > 0 is a penalization parameter; see

Vapnik (1996) for details. Let the minimizer of (1) be denoted by β̂λ,n = arg minβ lλ,n(β).
Note that C = (nλ)−1. Choice of λ depends on the data, and usually it is estimated via
cross validation in practice. In this paper, we consider only nonseparable cases and assume
that λ → 0 as n → ∞. We note that separable cases require a different treatment for
asymptotics because λ has to be nonzero in the limit for the uniqueness of the solution.

Before we proceed with a discussion of the asymptotics of the β̂λ,n, we introduce some
notation and definitions first. The population version of (1) without the penalty term is
defined as

L(β) = E

[
1 − Y h(X;β)

]
+

(2)

and its minimizer is denoted by β∗ = arg minβ L(β). Then the population version of the
optimal hyperplane defined by the SVM is

x̃⊤β∗ = 0. (3)

Sets are identified with their indicator functions. For example,

∫

X
xj{xj > 0}f(x)dx =

∫

{x∈X : xj>0}
xjf(x)dx. Letting ψ(z) = {z ≥ 0} for z ∈ R, we define S(β) = (S(β)j) to be
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the (d+ 1)-dimensional vector given by

S(β) = −E

(
ψ(1 − Y h(X;β))Y X̃

)

and H(β) = (H(β)jk) to be the (d+ 1) × (d+ 1)-dimensional matrix given by

H(β) = E

(
δ(1 − Y h(X;β))X̃X̃⊤

)
,

where δ denotes the Dirac delta function with δ(t) = ψ′(t) in distributional sense. Provided
that S(β) and H(β) are well-defined, S(β) and H(β) are considered as the gradient and
Hessian matrix of L(β), respectively. Formal proofs of these relationships are given in
Section 5.1.

For explanation of H(β), we introduce a Radon transformation. For a function s on X ,
define the Radon transform Rs of s for p ∈ R and ξ ∈ R

d as

(Rs)(p, ξ) =

∫

X
δ(p − ξ⊤x)s(x)dx.

Denote

sj(x) = x̃js(x), sjk(x) = x̃jx̃ks(x) for 0 ≤ j, k ≤ d.

Then, it can be seen that

H(β)jk = π+(Rfjk)(1 − β0, β+) + π−(Rgjk)(1 + β0,−β+). (4)

Equation (4) shows that the Hessian matrix H(β) depends on the Radon transforms of f , g,
fj, gj , fjk and gjk. For Radon transform and its properties in general, see Natterer (1986),
Deans (1993), or Ramm and Katsevich (1996).

For a continuous integrable function s, it can be easily proved that Rs is continuous. If f
and g are continuous densities with finite second moments, then fjk and gjk are continuous
and integrable. Hence H(β) is continuous in β when f and g are continuous and have finite
second moments.

2.2 Asymptotics

Now we present the asymptotic results for β̂λ,n. We state regularity conditions for the as-
ymptotics first. Some remarks on the conditions then follow for exposition and clarification.
Throughout this paper, we use C1, C2, . . . to denote positive constants independent of n.

(A1) The densities f and g are continuous and have finite second moments.

(A2) There exists B(x0, δ0), a ball centered at x0 with radius δ0 > 0 such that f(x) > C1

and g(x) > C1 for every x ∈ B(x0, δ0).

(A3) For some 1 ≤ i∗ ≤ d,

∫

X
{xi∗ ≥ G−

i∗}xi∗g(x)dx <

∫

X
{xi∗ ≤ F+

i∗ }xi∗f(x)dx
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or ∫

X
{xi∗ ≤ G+

i∗}xi∗g(x)dx >

∫

X
{xi∗ ≥ F−

i∗ }xi∗f(x)dx.

Here F+
i∗ , G

+
i∗ ∈ [−∞,∞] are upper bounds such that

∫

X
{xi∗ ≤ F+

i∗ }f(x)dx =

min

(
1,
π−
π+

)
and

∫

X
{xi∗ ≤ G+

i∗}g(x)dx = min

(
1,
π+

π−

)
. Similarly, lower bounds

F−
i∗ and G−

i∗ are defined as

∫

X
{xi∗ ≥ F−

i∗ }f(x)dx = min

(
1,
π−
π+

)
and

∫

X
{xi∗ ≥

G−
i∗}g(x)dx = min

(
1,
π+

π−

)
.

(A4) For an orthogonal transformation Aj∗ that maps β∗+/‖β∗+‖ to the j∗-th unit vector ej∗

for some 1 ≤ j∗ ≤ d, there exist rectangles

D+ = {x ∈M+ : li ≤ (Aj∗x)i ≤ vi with li < vi for i 6= j∗}

and
D− = {x ∈M− : li ≤ (Aj∗x)i ≤ vi with li < vi for i 6= j∗}

such that f(x) ≥ C2 > 0 on D+, and g(x) ≥ C3 > 0 on D−, where M+ = {x ∈
X | β∗0 + x⊤β∗+ = 1} and M− = {x ∈ X | β∗0 + x⊤β∗+ = −1}.

Remark 1

• (A1) ensures that H(β) is well-defined and continuous in β.

• When f and g are continuous, the condition that f(x0) > 0 and g(x0) > 0 for some
x0 implies (A2).

• The technical condition in (A3) is a minimal requirement to guarantee that β∗+, the
normal vector of the theoretically optimal hyperplane is not zero. Roughly speaking,
it says that for at least one input variable, the mean values of the class conditional
distributions f and g have to be different in order to avoid the degenerate case of
β∗+ = 0. Some restriction of the supports through F+

i∗ , G+
i∗, F

−
i∗ and G−

i∗ is necessary
in defining the mean values to adjust for potentially unequal class proportions. When
π+ = π−, F+

i∗ and G+
i∗ can be taken to be +∞ and F−

i∗ and G−
i∗ can be −∞. In this

case, (A3) simply states that the mean vectors for the two classes are different.

• (A4) is needed for the positive-definiteness of H(β) around β∗. The condition means
that there exist two subsets of the classification margins, M+ and M− on which the
class densities f and g are bounded away from zero. For mathematical simplicity, the
rectangular subsets D+ and D− are defined as the mirror images of each other along
the normal direction of the optimal hyperplane. This condition can be easily met when
the supports of f and g are convex. Especially, if R

d is the support of f and g, it is
trivially satisfied. (A4) requires that β∗+ 6= 0, which is implied by (A1) and (A3); see
Lemma 4 for the proof. For the special case d = 1, M+ and M− consist of a point.
D+ and D− are the same as M+ and M−, respectively, and hence (A4) means that
f and g are positive at those points in M+ and M−.

5



Under the regularity conditions, we obtain a Bahadur-type representation of β̂λ,n (The-

orem 1). The asymptotic normality of β̂λ,n follows immediately from the representation

(Theorem 2). Consequently, we have the asymptotic normality of h(x; β̂λ,n), the value of
the SVM decision function at x (Corollary 3).

Theorem 1 Suppose that (A1)-(A4) are met. For λ = o(n−1/2), we have

√
n(β̂λ,n − β∗) = − 1√

n
H(β∗)−1

n∑

i=1

ψ(1 − Y ih(Xi;β∗))Y iX̃i + oP(1).

Theorem 2 Suppose (A1)-(A4) are satisfied. For λ = o(n−1/2),

√
n(β̂λ,n − β∗) → N

(
0,H(β∗)−1G(β∗)H(β∗)−1

)

in distribution, where

G(β) = E

(
ψ(1 − Y h(X;β))X̃X̃⊤

)
.

Remark 2 Since β̂λ,n is a consistent estimator of β∗ as n → ∞, G(β∗) can be estimated

by its empirical version with β∗ replaced by β̂λ,n. To estimate H(β∗), one may consider the
following nonparametric estimate:

1

n

[
n∑

i=1

pb

(
1 − Y ih(Xi; β̂λ,n)

)
X̃i(X̃i)⊤

]
,

where pb(t) ≡ p(t/b)/b, p(t) ≥ 0 and
∫

R
p(t)dt = 1. Note that pb(·) → δ(·) as b → 0.

However, estimation of H(β∗) requires further investigation.

Corollary 3 Under the same conditions as in Theorem 2,

√
n
(
h(x; β̂λ,n) − h(x;β∗)

)
→ N

(
0, x̃⊤H(β∗)−1G(β∗)H(β∗)−1x̃

)

in distribution.

Remark 3 Corollary 3 can be used to construct a confidence bound for h(x;β∗) based on
an estimate h(x; β̂λ,n), in particular, to judge whether h(x;β∗) is close to zero or not given
x. This may be useful if one wants to abstain from prediction at a new input x if it is close
to the optimal classification boundary h(x;β∗) = 0.

3. An Illustrative Example

In this section, we illustrate the relation between the Bayes decision boundary and the
optimal hyperplane determined by (2) for two multivariate normal distributions in R

d.
Assume that f and g are multivariate normal densities with different mean vectors µf and
µg and a common covariance matrix Σ. Suppose that π+ = π− = 1/2.
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We verify the assumptions (A1)-(A4) so that Theorem 2 is applicable. For normal
densities f and g, (A1) holds trivially, and (A2) is satisfied with

C1 = |2πΣ|−1/2 exp

(
− sup

‖x‖≤δ0

{
(x− µf )⊤Σ−1(x− µf ), (x− µg)

⊤Σ−1(x− µg)
})

for δ0 > 0. Since µf 6= µg, there exists 1 ≤ i∗ ≤ d such that i∗-th elements of µf and µg are
different. By taking F+

i∗ = G+
i∗ = +∞ and F−

i∗ = G−
i∗ = −∞, we can show that one of the

inequalities in (A3) holds as mentioned in Remark 1. Since D+ and D− can be taken to be
bounded sets of the form in (A4) in R

d−1, and the normal densities f and g are bounded
away from zero on such D+ and D−, (A4) is satisfied. In particular, β∗+ 6= 0 as implied by
Lemma 4.

Denote the density and cumulative distribution function of N(0, 1) as φ and Φ, respec-
tively. Note that β∗ should satisfy the equation S(β∗) = 0, or

Φ(af ) = Φ(ag) (5)

and
µfΦ(af ) − φ(af )Σ1/2ω∗ = µgΦ(ag) + φ(ag)Σ

1/2ω∗, (6)

where af =
1 − β∗0 − µ⊤f β

∗
+

‖Σ1/2β∗+‖
, ag =

1 + β∗0 + µ⊤g β
∗
+

‖Σ1/2β∗+‖
and ω∗ = Σ1/2β∗+/‖Σ1/2β∗+‖. From (5)

and the definition of af and ag, we have a∗ ≡ af = ag. Hence

(β∗+)⊤(µf + µg) = −2β∗0 . (7)

It follows from (6) that

β∗+/‖Σ1/2β∗+‖ =
Φ(a∗)
2φ(a∗)

Σ−1(µf − µg). (8)

First we show the existence of a proper constant a∗ satisfying (8) and its relationship with
a statistical distance between the two classes. Define Υ(a) = φ(a)/Φ(a) and let dΣ(u, v) =
{(u − v)⊤Σ−1(u − v)}1/2 denote the Mahalanobis distance between u and v ∈ R

d. Since
‖ω∗‖ = 1, we have Υ(a∗) = ‖Σ−1/2(µf − µg)‖/2. Since Υ(a) is monotonically decreasing in
a, there exists a∗ = Υ−1(dΣ(µf , µg)/2) that depends only on µf , µg, and Σ. For illustration,
when the Mahalanobis distances between the two normal distributions are 2 and 3, a∗ is
given by Υ−1(1) ≈ −0.303 and Υ−1(1.5) ≈ −0.969, respectively. The corresponding Bayes
error rates are about 0.1587 and 0.06681. Figure 1 shows a graph of Υ(a) and a∗ when
dΣ(µf , µg)=2 and 3.

Once a∗ is properly determined, we can express the solution β∗ explicitly by (7) and
(8):

β∗0 = − (µf − µg)
⊤Σ−1(µf + µg)

2a∗dΣ(µf , µg) + dΣ(µf , µg)2

and

β∗+ =
2Σ−1(µf − µg)

2a∗dΣ(µf , µg) + dΣ(µf , µg)2
.
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Figure 1: A plot of Υ function. The dashed lines correspond to the inverse mapping from
the Mahalanobis distances of 2 and 3 to a∗ ≈ −0.303 and −0.969, respectively.

Thus the optimal hyperplane (3) is

2

2a∗dΣ(µf , µg) + dΣ(µf , µg)2

{
Σ−1(µf − µg)

}⊤{
x− 1

2
(µf + µg)

}
= 0,

which is equivalent to the Bayes decision boundary given by

{
Σ−1(µf − µg)

}⊤{
x− 1

2
(µf + µg)

}
= 0.

This shows that the linear SVM is equivalent to Fisher’s linear discriminant analysis in this
setting. In addition, H(β∗) and G(β∗) can be shown to be

G(β∗) =
Φ(a∗)

2

[
2 (µf + µg)

⊤

µf + µg G22(β
∗)

]

and

H(β∗) =
φ(a∗)

4
(2a∗ + dΣ(µf , µg))

[
2 (µf + µg)

⊤

µf + µg H22(β
∗)

]
,
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where

G22(β
∗) = µfµ

⊤
f + µgµ

⊤
g + 2Σ −

(
a∗

dΣ(µf , µg)
+ 1

)
(µf − µg)(µf − µg)

⊤ and

H22(β
∗) = µfµ

⊤
f + µgµ

⊤
g + 2Σ

+2

((
a∗

dΣ(µf , µg)

)2

+
a∗

dΣ(µf , µg)
− 1

d2
Σ(µf , µg)

)
(µf − µg)(µf − µg)

⊤.
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Figure 2: The asymptotic variabilities of estimates of (a) the intercept, (b) the slope, and (c)
their ratio for the optimal hyperplane as a function of the Mahalanobis distance.

For illustration, we consider the case when d = 1, µf + µg = 0, and σ = 1. The
asymptotic variabilities of the intercept and the slope for the optimal decision boundary
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are calculated according to Theorem 2. Figure 2 shows the asymptotic variabilities as a
function of the Mahalanobis distance between the two normal distributions, |µf −µg| in this
case. Also, it depicts the asymptotic variance of the estimated classification boundary value
(−β̂0/β̂1) by using the delta method. Although the Mahalanobis distance roughly in the
range of 1 to 4 would be of practical interest, the plots show a notable trend in the asymptotic
variances as the distance varies. When the two classes get very close, the variances shoot
up due to the difficulty in discriminating them. On the other hand, as the Mahalanobis
distance increases, that is, the two classes become more separated, the variances become
increasingly large. A possible explanation for the trend is that the intercept and the slope
of the optimal hyperplane are determined by only a small fraction of data falling into the
margins in this case.

4. Simulation Studies

In this section, simulations are carried out to illustrate the asymptotic results and their
potential for feature selection.

4.1 Bivariate Case

Theorem 2 is numerically illustrated with the multivariate normal setting in the previous
section. Consider a bivariate case with mean vectors µf = (1, 1)⊤ and µg = (−1,−1)⊤

and a common covariance matrix Σ = I2. This example has dΣ(µf , µg) = 2
√

2 and the
corresponding Bayes error rate is 0.07865. Data were generated from the two normal dis-
tributions with an equal probability for each class. The total sample size was varied from
100 to 500. To see the direct effect of the hinge loss on the SVM coefficients without regu-
larization as in the way the asymptotic properties in Section 2 are characterized ultimately,
we estimated the coefficients of the linear SVM without the penalty term by linear pro-
gramming. Such a simulation was repeated 1,000 times for each sample size, and Table 1
summarizes the results by showing the averages of the estimated coefficients of the SVM
over 1,000 replicates. As expected, the averages get closer to the theoretically optimal co-
efficients β∗ as the sample size grows. Moreover, the sampling distributions of β̂0, β̂1, and
β̂2 approximate their theoretical counterparts for a large sample size as shown in Figure 3.
The solid lines are the estimated density functions of β̂0 and β̂1 for n = 500, and the dotted
lines are the corresponding asymptotic normal densities in Theorem 2.

Coefficients Sample size n Optimal values
100 200 500

β0 0.0006 -0.0013 0.0022 0
β1 0.7709 0.7450 0.7254 0.7169
β2 0.7749 0.7459 0.7283 0.7169

Table 1: Averages of estimated and optimal coefficients over 1,000 replicates.
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Figure 3: Estimated sampling distributions of (a) β̂0 and (b) β̂1 with the asymptotic normal
densities overlaid.

4.2 Feature Selection

Clearly the results we have established have implications to statistical inferences on the
SVM. Among others, feature selection is of particular interest. By using the asymptotic
variability of estimated coefficients, one can derive a new feature selection criterion based
on the standardized coefficients. Such a criterion will take inherent statistical variability
into account. More generally, this consideration of new criteria opens the possibility of
casting feature selection for the SVM formally in the framework of hypothesis testing and
extending standard variable selection procedures in regression to classification.

We investigate the possibility of using the standardized coefficients of β̂ for selection of
variables. For practical applications, one needs to construct a reasonable nonparametric
estimator of the asymptotic variance-covariance matrix, whose entries are defined through
line integrals. A similar technical issue arises in quantile regression. See Koenker (2005) for
some suggested variance estimators in the setting.

For the sake of simplicity in the second set of simulation, we used the theoretical asymp-
totic variance in standardizing β̂ and selected those variables with the absolute standardized
coefficient exceeding a certain critical value. And we mainly monitored the type I error rate
of falsely declaring the significance of a variable when it is not, over various settings of a
mixture of two multivariate normal distributions. Different combinations of the sample size
(n) and the number of variables (d) were tried. For a fixed even d, we set µf = (1d/2,0d/2)

⊤,

µg = 0⊤
d , and Σ = Id, where 1p and 0p indicate p-vectors of ones and zeros, respectively.

Thus only the first half of the d variables have nonzero coefficients in the optimal hyper-
plane of the linear SVM. Table 2 shows the minima, median, and maxima of such type I
error rates in selection of relevant variables over 200 replicates when the critical value was
z0.025 ≈ 1.96 (5% level of significance). If the asymptotic distributions were accurate, the
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error rates would be close to the nominal level of 0.05. On the whole, the table suggests that
when d is small, the error rates are very close to the nominal level even for small sample
sizes, while for a large d, n has to be quite large for the asymptotic distributions to be valid.
This pattern is clearly seen in Figure 4, which displays the median values of the type I error
rates. In passing, we note that changing the proportion of relevant variables did not seem
to affect the error rates, which are not shown here.

Number of variables (d)
n 6 12 18 24

250 [0.050, 0.060, 0.090] [0.075, 0.108, 0.145] [0.250, 0.295, 0.330] [0.665, 0.698, 0.720]
500 [0.045, 0.080, 0.090] [0.040, 0.068, 0.095] [0.105, 0.130, 0.175] [0.275, 0.293, 0.335]
750 [0.030, 0.055, 0.070] [0.035, 0.065, 0.090] [0.055, 0.095, 0.115] [0.135, 0.185, 0.205]
1000 [0.050 ,0.065, 0.065] [0.060, 0.068, 0.095] [0.040, 0.075, 0.095] [0.105, 0.135, 0.175]
1250 [0.065, 0.065, 0.070] [0.035, 0.045, 0.050] [0.055, 0.080, 0.105] [0.070, 0.095, 0.125]
1500 [0.035, 0.050, 0.065] [0.040, 0.058, 0.085] [0.055, 0.075, 0.090] [0.050, 0.095, 0.135]
1750 [0.030, 0.035, 0.060] [0.035, 0.045, 0.075] [0.040, 0.065, 0.095] [0.055, 0.080, 0.120]
2000 [0.035, 0.040, 0.060] [0.040, 0.065, 0.080] [0.060, 0.070, 0.100] [0.055, 0.075, 0.105]

Table 2: The minimum, median, and maximum values of the type I error rates of falsely
flagging an irrelevant variable as relevant over 200 replicates by using the stan-
dardized SVM coefficients at 5% significance level.

We leave further development of asymptotic variance estimators for feature selection and
comparison with risk based approaches such as the recursive feature elimination procedure
as a future work.

5. Proofs

5.1 Technical Lemmas

Lemma 1 shows that there is a finite minimizer of L(β), which is useful in proving the
uniqueness of the minimizer in Lemma 6. In fact, the existence of the first moment of X is
sufficient for Lemmas 1, 2, and 4. However, (A1) is needed for the existence and continuity
of H(β) in the proof of other lemmas and theorems.

Lemma 1 Suppose that (A1) and (A2) are satisfied. Then L(β) → ∞ as ‖β‖ → ∞ and
the existence of β∗ is guaranteed.

12
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Figure 4: The median values of the type I error rates in variable selection depending on
the sample size n and the number of variables d. The dotted line indicates the
nominal level of 0.05.

Proof. Without loss of generality, we may assume that x0 = 0 in (A2) and B(0, δ0) ⊂ X .
For any ε > 0,

L(β) = π+

∫

X
[1 − x̃⊤β]+f(x)dx+ π−

∫

X
[1 + h(x;β)]+g(x)dx

≥ π+

∫

X
{h(x;β) ≤ 0}(1 − h(x;β))f(x)dx + π−

∫

X
{h(x;β) ≥ 0}(1 + h(x;β))g(x)dx

≥ π+

∫

X
{h(x;β) ≤ 0}(−h(x;β))f(x)dx + π−

∫

X
{h(x;β) ≥ 0}h(x;β)g(x)dx

≥
∫

X
|h(x;β)|min (π+f(x), π−g(x)) dx

≥ C1 min(π+, π−)

∫

B(0,δ0)
|h(x;β)|dx

= C1 min(π+, π−)‖β‖
∫

B(0,δ0)
|h(x;w)|dx

≥ C1 min(π+, π−)‖β‖vol ({|h(x;w)| ≥ ε} ∩B(0, δ0)) ε,

where w = β/‖β‖ and vol(A) denotes the volume of a set A.

13



Note that −1 ≤ w0 ≤ 1. For 0 ≤ w0 < 1 and 0 < ε < 1,

vol ({|h(x;w)| ≥ ε} ∩B(0, δ0))

≥ vol ({h(x;w) ≥ ε} ∩B(0, δ0))

= vol

({
x⊤w+/

√
1 − w2

0 ≥ (ε− w0)/
√

1 −w2
0

}
∩B(0, δ0)

)

≥ vol

({
x⊤w+/

√
1 − w2

0 ≥ ε

}
∩B(0, δ0)

)
≡ V (δ0, ε)

since (ε− w0)/
√

1 − w2
0 ≤ ε. When −1 < w0 < 0, we obtain

volB(h(x;w) ≤ −ε) ≥ V (δ0, ε)

in a similar way. Note that V (δ0, ε) is independent of β and V (δ0, ε) > 0 for some ε < δ0.
Consequently, L(β) ≥ C1 min(π+, π−)‖β‖V (δ0, ε)ε → ∞ as ‖β‖ → ∞. The case w0 = ±1
is trivial.

Since the hinge loss is convex, L(β) is convex in β. Since L(β) → ∞ as ‖β‖ → ∞, the
set, denoted by M, of minimizers of L(β) forms a bounded connected set. The existence of
the solution β∗ of L(β) easily follows from this. �

In Lemmas 2 and 3, we obtain explicit forms of S(β) and H(β) for non-constant decision
functions.

Lemma 2 Assume that (A1) is satisfied. If β+ 6= 0, then we have

∂L(β)

∂βj
= S(β)j

for 0 ≤ j ≤ d.

Proof. It suffices to show that

∂

∂βj

∫

X
[1 − h(x;β)]+f(x)dx = −

∫

X
{h(x;β) ≤ 1}x̃jf(x)dx.

Define ∆(t) = [1 − h(x;β) − tx̃j]+ − [1 − h(x;β)]+. Let t > 0.

First, consider the case x̃j > 0. Then,

∆(t) =





0 if h(x;β) > 1
h(x;β) − 1 if 1 − tx̃j < h(x;β) ≤ 1
−tx̃j if h(x;β) ≤ 1 − tx̃j.

Observe that
∫

X
∆(t){x̃j > 0}f(x)dx =

∫

X
{1 − tx̃j < h(x;β) ≤ 1}(h(x;β) − 1)f(x)dx

−t
∫

X
{h(x;β) ≤ 1 − tx̃j, x̃j > 0}x̃jf(x)dx

14



and that
∣∣∣∣
1

t

∫

X
{1 − tx̃j < h(x;β) ≤ 1}(h(x;β) − 1)f(x)dx

∣∣∣∣ ≤
∫

X
{1 − tx̃j < h(x;β) ≤ 1}x̃jf(x)dx.

By Dominated Convergence Theorem,

lim
t↓0

∫

X
{1 − tx̃j < h(x;β) ≤ 1}x̃jf(x)dx =

∫

X
{h(x;β) = 1}x̃jf(x)dx = 0

and

lim
t↓0

∫

X
{h(x;β) ≤ 1 − tx̃j, x̃j > 0}x̃jf(x)dx =

∫

X
{h(x;β) ≤ 1, x̃j > 0}x̃jf(x)dx.

Hence

lim
t↓0

1

t

∫

X
∆(t){x̃j > 0}f(x)dx = −

∫

X
{h(x;β) ≤ 1, x̃j > 0}x̃jf(x)dx. (9)

Now assume that x̃j < 0. Then,

∆(t) =





0 if h(x;β) > 1 − tx̃j

1 − h(x;β) − tx̃j if 1 < h(x;β) ≤ 1 − tx̃j

−tx̃j if h(x;β) ≤ 1.

In a similar fashion, one can show that

lim
t↓0

1

t

∫

X
∆(t){x̃j < 0}f(x)dx = −

∫

X
{h(x;β) ≤ 1, x̃j < 0}x̃jf(x)dx. (10)

Combining (9) and (10), we have shown that

lim
t↓0

1

t

∫

X
∆(t)f(x)dx = −

∫

X
{h(x;β) ≤ 1}x̃jf(x)dx.

The proof for the case t < 0 is similar. �

The proof of Lemma 3 is based on the following identity

∫
δ(Dt+ E)T (t)dt =

1

|D|T (−E/D) (11)

for constants D and E. This identity follows from the fact that δ(at) = δ(t)/|a| and∫
δ(t− a)T (t)dt = T (a) for a constant a.

Lemma 3 Suppose that (A1) is satisfied. Under the condition that β+ 6= 0, we have

∂2L(β)

∂βj∂βk
= H(β)jk,

for 0 ≤ j, k ≤ d.
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Proof. Define

Ψ(β) =

∫

X
{x⊤β+ < 1 − β0}s(x)dx

for a continuous and integrable function s defined on X . Without loss of generality, we may
assume that β1 6= 0. It is sufficient to show that for 0 ≤ j, k ≤ d,

∂2

∂βj∂βk

∫

X
[1 − h(x;β)]+f(x)dx =

∫

X
δ(1 − h(x;β))x̃j x̃kf(x)dx.

Define X−j = {(x1, . . . , xj−1, xj+1, . . . , xd) : (x1, . . . , xd) ∈ X} and Xj = {xj :
(x1, . . . , xd) ∈ X}. Observe that

∂Ψ(β)

∂β0
= − 1

|β1|

∫

X−1

s

(
1 − h(x;β) + β1x1

β1
, x2, . . . , xd

)
dx−1 (12)

and that for k 6= 1,

∂Ψ(β)

∂βk
= − 1

|β1|

∫

X−1

xks

(
1 − h(x;β) + β1x1

β1
, x2, . . . , xd

)
dx−1. (13)

If βp = 0 for any p 6= 1, then

∂Ψ(β)

∂β1
= −1 − β0

β1|β1|

∫

X−1

s

(
1 − β0

β1
, x2, . . . , xd

)
dx−1. (14)

If there is p 6= 1 with βp 6= 0, then we have

∂Ψ(β)

∂β1
= − 1

|βp|

∫

X−p

x1s

(
x1, . . . , xp−1,

1 − h(x;β) + βpxp

βp
, xp+1, . . . , xd

)
dx−p. (15)

Choose D = β1, E = x̃⊤β − β1x1 − 1, t = x1 in (11). It follows from (13) and (15) that

∂Ψ(β)

∂βk
= − 1

|β1|

∫

X−1

xks

(
1 − h(x;β) + β1x1

β1
, x2, . . . , xd

)
dx−1 (16)

= −
∫

X−1

∫

X1

xks(x)δ(h(x;β) − 1)dx1dx−1

= −
∫

X
δ(1 − h(x;β))xks(x)dx.

Similarly, we have
∂Ψ(β)

∂β0
= −

∫

X
δ(1 − h(x;β))s(x)dx (17)

by (12).
Choosing D = β1, E = β0 − 1, t = x1 in (11), we have

∫

X1

δ(β1x1 − 1 + β0)x1s(x)dx1 =
1

|β1|

(
1 − β0

β1

)
s

(
1 − β0

β1
, x2, . . . , xd

)

by (14). This implies (16) for k = 1. The desired result now follows from (16) and (17). �

The following lemma asserts that the optimal decision function is not a constant under
the condition that the centers of two classes are separated.
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Lemma 4 Suppose that (A1) is satisfied. Then (A3) implies that β∗+ 6= 0.

Proof. Suppose that
∫

X
{xi∗ ≥ G−

i∗}xi∗g(x)dx <

∫

X
{xi∗ ≤ F+

i∗ }xi∗f(x)dx (18)

in (A3). We will show that

min
β0

L(β0, 0, . . . 0) > min
β0,βi∗>0

L(β0, 0, . . . , 0, βi∗ , 0, . . . , 0), (19)

implying that β∗+ 6= 0. Henceforth, we will suppress β’s that are equal to zero in L(β). The
population minimizer (β∗0 , β

∗
i∗) is given by the minimizer of

L(β0, βi∗) = π+

∫

X
[1 − β0 − βi∗xi∗ ]+f(x)dx+ π−

∫

X
[1 + β0 + βi∗xi∗ ]+g(x)dx.

First, consider the case βi∗ = 0.

L(β0) =





π−(1 + β0), β0 > 1
1 + (π− − π+)β0, −1 ≤ β0 ≤ 1
π+(1 − β0), β0 < −1

with its minimum
min
β0

L(β0) = 2min (π+, π−) . (20)

Now consider the case βi∗ > 0, where

L(β0, βi∗) = π+

∫

X

{
xi∗ ≤ 1 − β0

βi∗

}
(1 − β0 − βi∗xi∗)f(x)dx

+π−

∫

X

{
xi∗ ≥ −1 − β0

βi∗

}
(1 + β0 + βi∗xi∗)g(x)dx.

Let β̃0 denote the minimizer of L(β0, βi∗) for a given βi∗ . Note that ∂L(β0, βi∗)/∂β0 is given
as

∂L(β0, βi∗)

∂β0
(21)

= −π+

∫

X

{
xi∗ ≤ 1 − β0

βi∗

}
f(x)dx+ π−

∫

X

{
xi∗ ≥ −1 − β0

βi∗

}
g(x)dx,

which is monotonic increasing in β0 with limβ0→−∞
∂L(β0,βi∗)

∂β0
→ −π+ and limβ0→∞

∂L(β0,βi∗)
∂β0

→ π−. Hence β̃0 exists for a given βi∗ .
When π− < π+, we can easily check that F+

i∗ <∞ and G−
i∗ = −∞. F+

i∗ and G−
i∗ may not

be determined uniquely, meaning that there may exist an interval with probability zero.
There is no significant change in the proof under the assumption that F+

i∗ and G−
i∗ are

unique. Note that

1 − β̃0

βi∗
≤ F+

i∗

17



by definition of F+
i∗ and (21). Then,

−1 − β̃0

βi∗
≤ F+

i∗ − 2

βi∗
→ −∞ as βi∗ → 0,

and
1 − β̃0

βi∗
→ F+

i∗ as βi∗ → 0.

¿From (18),

π−

∫

X
xi∗g(x)dx < π+

∫

X
{xi∗ ≤ F+

i∗ }xi∗f(x)dx. (22)

Now consider the minimum of L(β̃0, βi∗) with respect to βi∗ > 0. From (21),

L(β̃0, βi∗) (23)

= π+

∫

X

{
xi∗ ≤ 1 − β̃0

βi∗

}
(1 − β̃0 − βi∗xi∗)f(x)dx

+π−

∫

X

{
xi∗ ≥ −1 − β̃0

βi∗

}
(1 + β̃0 + βi∗xi∗)g(x)dx

= 2π−

∫

X

{
xi∗ ≥ −1 − β̃0

βi∗

}
g(x)dx

+βi∗

(
π−

∫

X

{
xi∗ ≥ −1 − β̃0

βi∗

}
xi∗g(x)dx − π+

∫

X

{
xi∗ ≤ 1 − β̃0

βi∗

}
xi∗f(x)dx

)

By (22), it can be easily seen that the second term in (23) is negative for sufficiently small
βi∗ > 0, implying

L(β̃0, βi∗) < 2π− for some βi∗ > 0.

If π− > π+, then F+
i∗ = ∞ and G−

i∗ > −∞. Similarly, it can be checked that

L(β̃0, βi∗) < 2π+ for some βi∗ > 0.

Suppose that π− = π+. Then it can be verified that

1 − β̃0

βi∗
→ ∞ as βi∗ → 0,

and
−1 − β̃0

βi∗
→ −∞ as βi∗ → 0.

In this case, L(β̃0, βi∗) < 1.

Hence, under (18), we have shown that

L(β̃0, βi∗) < 1 for some βi∗ > 0.
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This, together with (20), implies (19). For the second case in (A3), the same arguments
hold with βi∗ < 0. �

Note that (A1) implies that H is well-defined and continuous in its argument. (A4)
ensures that H(β) is positive definite around β∗ and thus we have a lower bound result in
Lemma 5.

Lemma 5 Under (A1), (A3) and (A4),

β⊤H(β∗)β ≥ C4‖β‖2,

where C4 may depend on β∗.

Proof. Since the proof for the case d = 1 is trivial, we consider the case d ≥ 2 only. Observe
that

β⊤H(β∗)β = E

(
δ(1 − Y h(X;β∗))h2(X;β)

)

= π+

∫

X
δ(1 − h(x;β∗))h2(x;β)f(x)dx + π−

∫

X
δ(1 + h(x;β∗))h2(x;β)g(x)dx

= π+(Rh2f)(1 − β∗0 , β
∗
+) + π−(Rh2g)(1 + β∗0 ,−β∗+)

= π+(Rh2f)(1 − β∗0 , β
∗
+) + π−(Rh2g)(−1 − β∗0 , β

∗
+).

The last equality follows from the homogeneity of Radon transform.

Recall that β∗+ 6= 0 by Lemma 4. Without loss of generality, we assume that j∗ = 1
in (A4). Let A1β+ = a = (a1, . . . , ad) and z = (A1x)/‖β∗+‖. Given u = (u2, . . . , ud), let

u∗ =
(
(1 − β∗0)/‖β∗+‖, u

)
. Define Z = {z = (A1x)/‖β∗+‖ : x ∈ X} and U = {u : uj =

‖β∗+‖zj for j = 2, . . . , d, and z ∈ Z}. Note that detA1 = 1, du = ‖β∗+‖d−1dz2 . . . dzd,

‖β∗+‖A⊤
1 z
∣∣∣
z1=(1−β∗

0
)/‖β∗

+
‖2

= A⊤
1




(1 − β∗0)/‖β∗+‖
‖β∗+‖z2

...
‖β∗+‖zd


 = A⊤

1 u
∗

and

β0 + ‖β∗+‖a⊤z
∣∣∣
z1=(1−β∗

0
)/‖β∗

+
‖2

= β0 + ‖β∗+‖
(
a1(1 − β∗0)/‖β∗+‖2 +

d∑

j=2

ajzj

)

= β0 + a1(1 − β∗0)/‖β∗+‖ + ‖β∗+‖
d∑

j=2

ajzj.
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Using the transformation A1, we have

(Rh2f)(1 − β∗0 , β
∗
+)

=

∫

Z
δ
(
1 − β∗0 − ‖β∗+‖(A1β

∗
+)⊤z

)
h2
(
‖β∗+‖A⊤

1 z;β
)
f
(
‖β∗+‖A⊤

1 z
)
‖β∗+‖ddz

=

∫

Z
δ
(
1 − β∗0 − ‖β∗+‖2e⊤1 z

)(
β0 + ‖β∗+‖(A1β+)⊤z

)2
f
(
‖β∗+‖A⊤

1 z
)
‖β∗+‖ddz

=

∫

Z
δ
(
1 − β∗0 − ‖β∗+‖2z1

)(
β0 + ‖β∗+‖a⊤z

)2
f
(
‖β∗+‖A⊤

1 z
)
‖β∗+‖ddz

=
1

‖β∗+‖

∫

U

(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

ajuj

)2
f(A⊤

1 u
∗)du.

The last equality follows from the identity (11). Let D+
∗ =

{
u : A⊤

1 u
∗ ∈ D+

}
. By (A4),

there exists a constant C2 > 0 and a rectangle D+
∗ on which f(A⊤

1 u
∗) ≥ C2 for u ∈ D+

∗ .
Then

(Rh2f)(1 − β∗0 , β
∗
+)

≥ 1

‖β∗+‖

∫

D+
∗

(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

ajuj

)2
f(A⊤

1 u
∗)du

≥ 1

‖β∗+‖
· C2

∫

D+
∗

(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

ajuj

)2
du

=
1

‖β∗+‖
· C2 · vol(D+

∗ )Eu
(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

ajUj

)2

=
1

‖β∗+‖
· C2 · vol(D+

∗ )
{(
β0 + a1(1 − β∗0)/‖β∗+‖ + E

u
d∑

j=2

ajUj

)2
+ V

u(
d∑

j=2

ajUj)
}
,

where Uj for j = 2, . . . , d are independent and uniform random variables defined on D+
∗ , and

E
u and V

u denote the expectation and variance with respect to the uniform distribution.
Letting µ̄i = (li + vi)/2, we have

(Rh2f)(1 − β∗0 , β
∗
+) (24)

≥ 1

‖β∗+‖
· C2 · vol(D+

∗ )
{(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

ajµ̄j

)2
+ min

2≤j≤d
V

u(Uj)

d∑

j=2

a2
j

}
.

Similarly, it can be shown that

(Rh2g)(−1 − β∗0 , β
∗
+) (25)

≥ 1

‖β∗+‖
· C3 · vol(D−

∗ )
{(
β0 − a1(1 + β∗0)/‖β∗+‖ +

d∑

j=2

ajµ̄j

)2
+ min

2≤j≤d
V

u(Uj)
d∑

j=2

a2
j

}
,

where D−
∗ =

{
u : A⊤

1

(
(−1 − β∗0)/‖β∗+‖, u

)
∈ D−

}
.
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Combining (24)-(25) and letting C5 = 2/‖β∗+‖min
(
π+C2 ·vol(D+

∗ ), π−C3 ·vol(D−
∗ )
)

and

C6 = min
(
1,min2≤j≤d V

u(Uj)
)
, we have

β⊤H(β∗)β

≥ π+

‖β∗+‖
· C2 · vol(D+

∗ )
{(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

aj µ̄j

)2
+ min

2≤j≤d
V

u(Uj)

d∑

j=2

a2
j

}

+
π−
‖β∗+‖

· C3 · vol(D−
∗ )
{(
β0 − a1(1 + β∗0)/‖β∗+‖ +

d∑

j=2

ajµ̄j

)2
+ min

2≤j≤d
V

u(Uj)
d∑

j=2

a2
j

}

≥ C5C6

{(
β0 + a1(1 − β∗0)/‖β∗+‖ +

d∑

j=2

aj µ̄j

)2

+
(
β0 − a1(1 + β∗0)/‖β∗+‖ +

d∑

j=2

ajµ̄j

)2
+ 2

d∑

j=2

a2
j

}
/2

= C5C6

{(
β0 + a1(1 − β∗0)/‖β∗+‖

)2
+
(
β0 − a1(1 + β∗0)/‖β∗+‖

)2

+4
(
β0 − a1β

∗
0/‖β∗+‖

) d∑

j=2

aj µ̄j + 2
( d∑

j=2

aj µ̄j

)2
+ 2

d∑

j=2

a2
j

}
/2.

Note that

( d∑

j=2

ajµ̄j

)2
+ 2
(
β0 − a1β

∗
0/‖β∗+‖

) d∑

j=2

aj µ̄j

=
( d∑

j=2

ajµ̄j + β0 − a1β
∗
0/‖β∗+‖

)2
−
(
β0 − a1β

∗
0/‖β∗+‖

)2

and
(
β0 + a1(1 − β∗0)/‖β∗+‖

)2
+
(
β0 − a1(1 + β∗0)/‖β∗+‖

)2
− 2
(
β0 − a1β

∗
0/‖β∗+‖

)2
= 2a2

1/‖β∗+‖2.

Thus, the lower bound of β⊤H(β∗)β except for the constant C5C6 allows the following
quadratic form in terms of β0, a1, . . . , ad. Let

Q(β0, a1, . . . , ad) = a2
1/‖β∗+‖2 +

( d∑

j=2

ajµ̄j + β0 − a1β
∗
0/‖β∗+‖

)2
+

d∑

j=2

a2
j .

Obviously Q(β0, a1, . . . , ad) ≥ 0 and Q(β0, a1, . . . , ad) = 0 implies that a1 = . . . = ad = 0
and β0 = 0. Therefore Q is positive definite. Letting ν1 > 0 be the smallest eigenvalue of
the matrix corresponding to Q, we have proved

β⊤H(β∗)β ≥ C5C6ν1(β
2
0 +

d∑

j=1

a2
j) = C5C6ν1(β

2
0 +

d∑

j=1

β2
j ).
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The last equality follows from the fact that A1β+ = a and the transformation A1 preserves
the norm. With the choice of C4 = C5C6ν1 > 0, the result follows. �

Lemma 6 Suppose that (A1)-(A4) are met. Then L(β) has a unique minimizer.

Proof. By Lemma 1, we may choose any minimizer β∗ ∈ M. By Lemma 4 and 5, H(β) is
positive definite at β∗. Then L(β) is locally strictly convex at β∗, so that L(β) has a local
minimum at β∗. Hence the minimizer of L(β) is unique. �

5.2 Proof of Theorems 1 and 2

For fixed θ ∈ R
d+1, define

Λn(θ) = n
(
lλ,n(β∗ + θ/

√
n) − lλ,n(β∗)

)

and
Γn(θ) = EΛn(θ).

Observe that

Γn(θ) = n
(
L(β∗ + θ/

√
n) − L(β∗)

)
+
λ

2

(
‖θ+‖2 + 2

√
nβ∗+

⊤θ+
)
.

By Taylor series expansion of L around β∗, we have

Γn(θ) =
1

2
θ⊤H(β̃)θ +

λ

2

(
‖θ+‖2 + 2

√
nβ∗+

⊤θ+
)
,

where β̃ = β∗ + (t/
√
n)θ for some 0 < t < 1. Define Djk(α) = H(β∗ + α)jk −H(β∗)jk for

0 ≤ j, k ≤ d. Since H(β) is continuous in β, there exists δ1 > 0 such that |Djk(α)| < ε1 if
‖α‖ < δ1 for any ε1 > 0 and all 0 ≤ j, k ≤ d. Then, as n→ ∞,

1

2
θ⊤H(β̃)θ =

1

2
θ⊤H(β∗)θ + o(1).

It is because for sufficiently large n such that ‖(t/√n)θ‖ < δ1,

∣∣∣θ⊤
(
H(β̃) −H(β∗)

)
θ
∣∣∣ ≤

∑

j,k

|θj ||θk|
∣∣∣∣Djk

(
t√
n
θ

)∣∣∣∣

≤ ε1
∑

j,k

|θj ||θk| ≤ 2ε1‖θ‖2.

Together with the assumption that λ = o(n−1/2), we have

Γn(θ) =
1

2
θ⊤H(β∗)θ + o(1).

Define Wn = −∑n
i=1 ζ

iY iX̃i where ζi =
{
Y ih(Xi;β∗) ≤ 1

}
. Then 1√

n
Wn follows

asymptotically N
(
0, nG(β∗)

)
by central limit theorem. Note that

E

(
ζiY iX̃i

)
= 0 and E

(
ζiY iX̃i(ζiY iX̃i)⊤

)
= E

(
ζiX̃i(X̃i)⊤

)
. (26)
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Recall that β∗ is characterized by S(β∗) = 0 implying the first part of (26). If we define

Ri,n(θ) =
[
1 − Y ih(Xi;β∗ + θ/

√
n)
]
+
−
[
1 − Y ih(Xi;β∗)

]
+

+ ζiY ih(Xi; θ/
√
n),

then we see that

Λn(θ) = Γn(θ) +W⊤
n θ/

√
n+

n∑

i=1

(
Ri,n(θ) − ERi,n(θ)

)

and ∣∣∣Ri,n(θ)
∣∣∣ ≤

∣∣∣h(Xi; θ)/
√
n
∣∣∣U
(∣∣∣h(Xi; θ)/

√
n
∣∣∣
)
, (27)

where

U(t) =
{∣∣∣1 − Y ih(Xi;β∗)

∣∣∣ ≤ t
}

for t ∈ R.

To verify (27), let ζ = {a ≤ 1} and R = [1 − z]+ − [1 − a]+ + ζ(z − a). If a > 1, then
R = (1 − z){z ≤ 1}; otherwise, R = (z − 1){z > 1}. Hence,

R = (1 − z){a > 1, z ≤ 1} + (z − 1){a < 1, z > 1} (28)

≤ |z − a|{a > 1, z ≤ 1} + |z − a|{a < 1, z > 1}
= |z − a|

(
{a > 1, z ≤ 1} + {a < 1, z > 1}

)

≤ |z − a|{|1 − a| ≤ |z − a|}.

Choosing z = Y ih(Xi;β∗ + θ/
√
n) and a = Y ih(Xi;β∗) in (28) yields (27).

Since cross-product terms in E(
∑

i(Ri,n −ERi,n))2 cancel out, we obtain from (27) that
for each fixed θ,

n∑

i=1

E

(
|Ri,n(θ) − ERi,n(θ)|2

)
≤

n∑

i=1

E
(
Ri,n(θ)2

)

≤
n∑

i=1

E

((
h(Xi; θ)/

√
n
)2
U
(
|h(Xi; θ)/

√
n|
))

≤
n∑

i=1

E

(
(1 + ‖Xi‖2)‖θ‖2/n U

(√
1 + ‖Xi‖2‖θ‖/

√
n

))

= ‖θ‖2
E

(
(1 + ‖X‖2) U

(√
1 + ‖X‖2‖θ‖/

√
n
))

.

(A1) implies that E
(
‖X‖2

)
< ∞. Hence, for any ε > 0, choose C7 such that E

(
(1 +

‖X‖2){‖X‖ > C7}
)
< ε/2. Then

E

(
(1 + ‖X‖2) U

(√
1 + ‖X‖2‖θ‖/

√
n
))

≤ E

(
(1 + ‖X‖2){‖X‖ > C7}

)
+ (1 +C2

7 )P

(
U

(√
1 + C2

7‖θ‖/
√
n

))
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By (A1), the distribution of X is not degenerate, which in turn implies that limt↓0 P(U(t)) =

0. We can take a large N such that P

(
U
(√

1 + C2
7‖θ‖/

√
n
))

< ε/(2(1 +C2
7 )) for n ≥ N .

This proves that
n∑

i=1

E

(
|Ri,n(θ) − ERi,n(θ)|2

)
→ 0

as n→ ∞. Thus, for each fixed θ,

Λn(θ) =
1

2
θ⊤H(β∗)θ +W⊤

n θ/
√
n+ oP(1).

Let ηn = −H(β∗)−1Wn/
√
n. By Convexity Lemma in Pollard (1991), we have

Λn(θ) =
1

2
(θ − ηn)⊤H(β∗)(θ − ηn) − 1

2
η⊤nH(β∗)ηn + rn(θ),

where, for each compact set K in R
d+1,

sup
θ∈K

|rn(θ)| → 0 in probability.

Because ηn converges in distribution, there exists a compact set K containing Bε, where Bε

is a closed ball with center ηn and radius ε with probability arbitrarily close to one. Hence
we have

∆n = sup
θ∈Bε

|rn(θ)| → 0 in probability. (29)

For examination of the behavior of Λn(θ) outside Bε, consider θ = ηn + γv, with γ > ε
and v, a unit vector and a boundary point θ∗ = ηn + εv. By Lemma 5, convexity of Λn,
and the definition of ∆n, we have

ε

γ
Λn(θ) +

(
1 − ε

γ

)
Λn(ηn) ≥ Λn(θ∗)

≥ 1

2
(θ∗ − ηn)⊤H(β∗)(θ∗ − ηn) − 1

2
η⊤nH(β∗)ηn − ∆n

≥ C4

2
ε2 + Λn(ηn) − 2∆n,

implying that

inf
‖θ−ηn‖>ε

Λn(θ) ≥ Λn(ηn) +

(
C4

2
ε2 − 2∆n

)
.

By (29), we can take ∆n so that 2∆n < C4ε
2/4 with probability tending to one. So

the minimum of Λn cannot occur at any θ with ‖θ − ηn‖ > ε. Hence, for each ε > 0 and
θ̂λ,n =

√
n(β̂λ,n − β∗),

P

(
‖θ̂λ,n − ηn‖ > ε

)
→ 0.

This completes the proof of Theorems 1 and 2. �
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6. Discussion

In this paper, we have investigated asymptotic properties of the coefficients of variables
in the SVM solution for nonseparable linear classification. More specifically, we have es-
tablished a Bahadur type representation of the coefficients and their asymptotic normality
using Radon transformation of the second moments of the variables. The representation
shows how the statistical behavior of the coefficients is determined by the margins of the
optimal hyperplane and the underlying probability distribution. Shedding a new statistical
light on the SVM, these results provide an insight into its asymptotic behavior and can be
used to improve our statistical practice with the SVM in various aspects.

There are several issues yet to be investigated. The asymptotic results that we have
obtained so far pertain only to the linear SVM in nonseparable cases. Although it may
be of more theoretical consideration than practical, a similar analysis of the linear SVM
in the separable case is anticipated, which will ultimately lead to a unified theory for
separable as well as nonseparable cases. The separable case would require a slightly different
treatment than the nonseparable case because the regularization parameter λ needs to
remain positive in the limit to guarantee the uniqueness of the solution. An extension
of the SVM asymptotics to the nonlinear case is another direction of interest. In this
case, the minimizer defined by the SVM is not a vector of coefficients of a fixed length but a
function in a reproducing kernel Hilbert space. So, the study of asymptotic properties of the
minimizer in the function space essentially requires investigation of its pointwise behavior
or its functionals in general as the sample size grows. A general theory in Shen (1997)
on asymptotic normality and efficiency of substitution estimates for smooth functionals is
relevant. In particular, Theorem 2 in Shen (1997) provides the asymptotic normality of
the penalized sieve MLE, characterization of which bears a close resemblance with function
estimation for the nonlinear case. However, the theory was developed under the assumption
of the differentiability of the loss, and it has to be modified for proper theoretical analysis
of the SVM. As in the approach for the linear case presented in this paper, one may get
around the non-differentiability issue of the hinge loss by imposing appropriate regularity
conditions to ensure that the minimizer is unique and the expected loss is differentiable and
locally quadratic around the minimizer.

Consideration of these extensions will lead to a more complete picture of the asymptotic
behavior of the SVM solution.
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