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Regularization of Case-Specific
Parameters for Robustness and
Efficiency

Yoonkyung Lee, Steven N. MacEachern and Yoonsuh Jung

Abstract. Regularization methods allow one to handle a variety of infer-
ential problems where there are more covariates than cases. This allows
one to consider a potentially enormous number of covariates for a prob-
lem. We exploit the power of these techniques, supersaturating models
by augmenting the “natural” covariates in the problem with an additional
indicator for each case in the data set. We attach a penalty term for these
case-specific indicators which is designed to produce a desired effect. For
regression methods with squared error loss, an f; penalty produces a re-
gression which is robust to outliers and high leverage cases; for quantile
regression methods, an /5 penalty decreases the variance of the fit enough
to overcome an increase in bias. The paradigm thus allows us to robustify
procedures which lack robustness and to increase the efficiency of proce-
dures which are robust.

We provide a general framework for the inclusion of case-specific param-
eters in regularization problems, describing the impact on the effective loss
for a variety of regression and classification problems. We outline a com-
putational strategy by which existing software can be modified to solve the
augmented regularization problem, providing conditions under which such
modification will converge to the optimum solution. We illustrate the bene-
fits of including case-specific parameters in the context of mean regression
and quantile regression through analysis of NHANES and linguistic data
sets.

Key words and phrases: Case indicator, Large margin classifier, LASSO,
Leverage point, Outlier, Penalized method, Quantile regression.

1. INTRODUCTION

A core part of regression analysis involves the examination and handling of in-
dividual cases (Weisberg; 2005). Traditionally, cases have been removed or down-
weighted as outliers or because they exert an overly large influence on the fitted
regression surface. The mechanism by which they are downweighted or removed
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is through inclusion of case-specific indicator variables. For a least-squares fit, in-
clusion of a case-specific indicator in the model is equivalent to removing the case
from the data set; for a normal-theory, Bayesian regression analysis, inclusion of
a case-specific indicator with an appropriate prior distribution is equivalent to
inflating the variance of the case and hence downweighting it. The tradition in
robust regression is to handle the case-specific decisions automatically, most often
by downweighting outliers according to an iterative procedure (Huber; 1981).

This idea of introducing case-specific indicators also applies naturally to cri-
terion based regression procedures. Model selection criteria such as AIC or BIC
take aim at choosing a model by attaching a penalty for each additional pa-
rameter in the model. These criteria can be applied directly to a larger space
of models—namely those in which the covariates are augmented by a set of case
indicators, one for each case in the data set. When considering inclusion of a case
indicator for a large outlier, the criterion will judge the trade-off between the
empirical risk (here, negative log-likelihood) and model complexity (here, num-
ber of parameters) as favoring the more complex model. It will include the case
indicator in the model, and, with a least-squares fit, effectively remove the case
from the data set. A more considered approach would allow differential penal-
ties for case-specific indicators and “real” covariates. With adjustment, one can
essentially recover the familiar ¢-tests for outliers (e.g. Weisberg (2005)), either
controlling the error rate at the level of the individual test or controlling the
Bonferroni bound on the familywise error rate.

Case-specific indicators can also be used in conjunction with regularization
methods such as the LASSO (Tibshirani; 1996). Again, care must be taken with
details of their inclusion. If these new covariates are treated in the same fashion
as the other covariates in the problem, one is making an implicit judgement
that they should be penalized in the same fashion. Alternatively, one can allow
a second parameter that governs the severity of the penalty for the indicators.
This penalty can be set with a view of achieving robustness in the analysis, and
it allows one to tap into a large, extant body of knowledge about robustness
(Huber; 1981).

With regression often serving as a motivating theme, a host of regulariza-
tion methods for model selection and estimation problems have been developed.
These methods range broadly across the field of statistics. In addition to tradi-
tional normal-theory linear regression, we find many methods motivated by a loss
which is composed of a negative log-likelihood and a penalty for model complex-
ity. Among these regularization methods are penalized linear regression methods
(e.g. ridge regression (Hoerl and Kennard; 1970) and the LASSO), regression
with a nonparametric mean function, (e.g. smoothing splines (Wahba; 1990) and
generalized additive models (Hastie and Tibshirani; 1990)), and extension to re-
gression with non-normal error distributions, namely, generalized linear models
(McCullagh and Nelder; 1989). In all of these cases, one can add case-specific
indicators along with an appropriate penalty in order to yield an automated, ro-
bust analysis. It should be noted that, in addition to a different severity for the
penalty term, the case-specific indicators sometimes require a different form for
their penalty term.

A second class of procedures open to modification with case-specific indicators
are those motivated by minimization of an empirical risk function. The risk func-
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tion may not be a negative log-likelihood. Quantile regression (whether linear or
nonlinear) falls into this category, as do modern classification techniques such
as the support vector machine (Vapnik; 1998) and the ¢-learner (Shen et al.;
2003). Many of these procedures are designed with the robustness of the anal-
ysis in mind, often operating on an estimand defined to be the population-level
minimizer of the risk. The procedures are consistent across a wide variety of
data-generating mechanisms and hence are asymptotically robust. They have lit-
tle need of further robustification. Instead, scope for bettering these procedures
lies in improving their finite sample properties. The finite sample performance of
many procedures in this class can be improved by including case-specific indica-
tors in the problem, along with an appropriate penalty term for them.

This paper investigates the use of case-specific indicators for improving model-
ing and prediction procedures in a regularization framework. Section 2 provides
a formal description of the optimization problem which arises with the introduc-
tion of case-specific indicators. It also describes a computational algorithm and
conditions that ensure the algorithm will obtain the global solution to the regu-
larized problem. Section 3 explains the methodology for a selection of regression
methods, motivating particular forms for the penalty terms. Section 4 describes
how the methodology applies to several classification schemes. Sections 5 and 6
contain simulation studies and worked examples. We discuss implications of the
work and potential extensions in Section 7.

2. ROBUST AND EFFICIENT MODELING PROCEDURES

Suppose that we have n pairs of observations denoted by (x;,v;), i = 1,...,n,
for statistical modeling and prediction. Here z; = (241, ..., xip)T with p covariates
and the y;’s are responses. As in the standard setting of regression and classifi-
cation, the y;’s are assumed to be conditionally independent given the z;’s. In
this paper, we take modeling of the data as a procedure of finding a functional
relationship between x; and y;, f(z;8) with unknown parameters 5 € RP that
is consistent with the data. The discrepancy or lack of fit of f is measured by a
loss function L(y, f(x;3)). Consider a modeling procedure, say, M of finding f
which minimizes the empirical risk

Ralf) = = 3" Ll £ 158))
i=1

or its penalized version, R, (f) + AJ(f) = £ 30, L(yi, f(24;8)) + AJ(f), where
A is a positive penalty parameter for balancing the data fit and the model com-
plexity of f measured by J(f). A variety of common modeling procedures are
subsumed under this formulation, including ordinary linear regression, general-
ized linear models, nonparametric regression, and supervised learning techniques.
For brevity of exposition, we identify f with § through a parametric form and
view J(f) as a functional depending on (. Extension of the formulation pre-
sented in this paper to a nonparametric function f is straightforward via a basis
expansion.

2.1 Modification of Modeling Procedures

First, we introduce case-specific parameters, v = (71, ... ,’yn)T, for the n obser-
vations by augmenting the covariates with n case-specific indicators. Motivated
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by the beneficial effects of regularization, we propose a general scheme to modify
the modeling procedure M using the case-specific parameters ~, to enhance M
for robustness or efficiency. Define modification of M to be the procedure of find-
ing the original model parameters, 5, together with the case-specific parameters,
v, that minimize

(1) L(B,7) = Y L(yi, f(i: 8) + ) + AgJ (F) + Ay Ja(7).
=1

If A\g is zero, M involves empirical risk minimization, otherwise penalized risk
minimization. The adjustment that the added case-specific parameters bring to
the loss function L(y, f(x;)) is the same regardless of whether A\s is zero or not.

In general, Ja(y) measures the size of v. When concerned with robustness, we
often take Jo(y) = [y = Yi; [%l- A rationale for this choice is that with
added flexibility, the case-specific parameters can curb the undesirable influence
of individual cases on the fitted model. To see this effect, consider minimizing
L(B,) for fixed 3, which decouples to a minimization of £(y;, f(2:; 3)+7:)+\ |7l
for each ;. In most cases, an explicit form of the minimizer 4 of L(ﬁ ,7) can be
obtained. Generally 4;’s are large for observations with large “residuals” from the
current fit, and the influence of those observations can be reduced in the next
round of fitting 5 with the 4-adjusted data. Such a case-specific adjustment would
be necessary only for a small number of potential outliers, and the £; norm which
yields sparsity works to that effect. The adjustment in the process of sequential
updating of (3 is equivalent to changing the loss from L(y, f(x; 3)) to L(y, f(x; 5)+
%), which we call the y-adjusted loss of L. The y-adjusted loss is a re-expression of
L in terms of the adjusted residual, used as a conceptual aid to illustrate the effect
of adjustment through the case-specific parameter v on £. Concrete examples of
the adjustments will be given in the following sections. Alternatively, one may
view L, (y, (@ 8)) = minnea L(y, (33 8) + 1) + M} = L(y, f(2: 8) +3) +
Ay|¥] as a whole to be the “effective loss” in terms of § after profiling out 7.
The effective loss replaces L(y, f(x;3)) for the modified M procedure. When
concerned with efficiency, we often take Jo(v) = [|7]|3 = S_I-, 2. This choice has
the effect of increasing the impact of selected, non-outlying cases on the analysis.

In subsequent sections, we will take a few standard statistical methods for re-
gression and classification and illustrate how this general scheme applies. This
framework allows us to see established procedures in a new light and also gener-
ates new procedures. For each method, particular attention will be paid to the
form of adjustment to the loss function by the penalized case-specific parameters.

2.2 General Algorithm for Finding Solutions

Although the computational details for obtaining the solution to (1) are specific
to each modeling procedure M, it is feasible to describe a common computational
strategy which is effective for a wide range of procedures that optimize a convex
function. For fixed A\g and \,, the solution pair of B and 4 to the modified M
can be found with little extra computational cost. A generic algorithm below
alternates estimation of  and . Given 4, minimization of L(/3,%) is done via
the original modeling procedure M. In most cases we consider, minimization of
L(ﬂA,’y) given ﬁ, entails simple adjustment of “residuals”. These considerations
lead to the following iterative algorithm for finding 3 and 3.
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1. Initialize 4 =0 and ) = arg ming L(3,0) (the ordinary M solution).
2. Iteratively alternate the following two steps, m = 0,1, ...

° :y(m+1) = argmin, L(ﬁ(m),fy) modifies “residuals”.

o Bmtl) — g ming L(B3,4™m*D). This step amounts to reapplying the
M procedure to 4™t -adjusted data although the nature of the data
adjustment would largely depend on L.

3. Terminate the iteration when |3+ — 30|12 < ¢ where € is a prespecified
convergence tolerance.

In a nutshell, the algorithm attempts to find the joint minimizer (53,7) by
combining the minimizers § and v resulting from the projected subspaces. Con-
vergence of the iterative updates can be established under appropriate conditions.
Before we state the conditions and results for convergence, we briefly describe im-
plicit assumptions on the loss function and the complexity or penalty terms, J(f)
and Ja(7y). L(y, f(z;5)) is assumed to be non-negative. For simplicity, we assume
that J(f) of f(x;3) depends on 3 only, and that it is of the form J(f) = ||3|/5
and Jo(y) = ||v||5 for p > 1. The LASSO penalty has p = 1 while a ridge regres-
sion type penalty sets p = 2. Many other penalties of this form for J(f) can be
adopted as well to achieve better model selection properties or certain desirable
performance of M. Examples include those for the elastic net (Zou and Hastie;
2005), the grouped LASSO (Yuan and Lin; 2006), and the hierarchical LASSO
(Zhou and Zhu; 2007).

For certain combinations of the loss £ and the penalty functionals, J(f) and
Ja(y), more efficient computational algorithms can be devised, as in Hastie et al.
(2004); Efron et al. (2004); Rosset and Zhu (2007). However, in an attempt to
provide a general computational recipe applicable to a variety of modeling pro-
cedures which can be implemented with simple modification of existing routines,
we do not pursue the optimal implementation tailored to a specific procedure in
this paper.

Convexity of the loss and penalty terms plays a primary role in characterizing
the solutions of the iterative algorithm. For a general reference to properties of
convex functions and convex optimization, see Rockafellar (1997). Non-convex
problems require different optimization strategies.

If L(B3,7) in (1) is continuous and strictly convex in 8 and ~ for fixed Ag and
Ay, the minimizer pair (3,7) in each step is properly defined. That is, given 7,
there exists a unique minimizer $(y) = argming L(3,7), and vice versa. The
assumption that L(3,~) is strictly convex holds if the loss L(y, f(x;3)) itself is
strictly convex. Also, it is satisfied when a convex L(y, f(x;3)) is combined with
J(f) and Jo(7) strictly convex in § and ~, respectively.

Suppose that L(3,~) is strictly convex in f and v with a unique minimizer
(B*,~v*) for fixed A\g and A,. Then, the iterative algorithm gives a sequence of
(ﬁ(m),ﬁ(m)) with strictly decreasing L(B(m),’y(m)). Moreover, (ﬁ(m),ﬁ(m)) con-
verges to (8*,+*). This result of convergence of the iterative algorithm is well
known in convex optimization, and it is stated here without proof. Interested
readers can find a formal proof in Lee et al. (2007).
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3. REGRESSION

Consider a linear model of the form y; = x84+ ¢;. Without loss of generality,
we assume that each covariate is standardized. Let X be an n x p design matrix
with 2, in the ith row and let Y = (y1,...,y,) .

3.1 Least Squares Method

Taking the least squares method as a baseline modeling procedure M, we make
a link between its modification via case-specific parameters and a classical robust
regression procedure.

The least squares estimator of 5 = (f1,..., ﬂp)T is the minimizer ﬁ € R? of
L(B) = %(Y — XB)T (Y — Xp). To reduce the sensitivity of the estimator to
influential observations, the p covariates are augmented by n case indicators. Let
z; be the indicator variable taking 1 for the ith observation and 0 otherwise, and
let ¥ = (71,...,7) " be the coefficients of the case indicators. The additional
design matrix Z for z; is the identity matrix, and Zv becomes ~ itself. The
proposed modification of the least squares method with Ja(y) = ||v]]1 leads to
a well-known robust regression procedure. For the robust modification, we find
B € RP and 4 € R™ that minimize

(@) L) = g~ (XY (KB4 A Y il
=1

where )\, is a fixed regularization parameter constraining «. Just as the ordinary
LASSO with the #; norm penalty stabilizes regression coefficients by shrinkage
and selection, the additional penalty in (2) has the same effect on 7, whose
components gauge the extent of case influences.

The minimizer 4 of L(B, ) for a fixed /3 can be found by soft-thresholding the
residual vector r = Y — Xf. That is, 4 = sgn(r)(Jr| — Ay)+. For observations
with small residuals, |r;| < Ay, 4; is set equal to zero with no effect on the current
fit, and for those with large residuals, |r;| > Ay, 4; is set equal to the residual
T = Y — xZT B offset by A, towards zero. Combining 4 with B, we define the
adjusted residuals to be 7} = y; — xZTB —%;. That is, v} = r; if [r;| < Ay, and r} =
sgn(r;) Ay, otherwise. Thus, introduction of the case-specific parameters along
with the the ¢; penalty on v amounts to winsorizing the ordinary residuals. The
y-adjusted loss is equivalent to truncated squared error loss which is (y —z ' 8)? if
ly—a2" B < Ay, and is A2 otherwise. Figure 1 shows (a) the relationship between
the ordinary residual r and the corresponding v, (b) the residual and the adjusted
residual ¥, (c) the vy-adjusted loss as a function of r, and (d) the effective loss.

The effective loss is Exw(y,xTﬁ) = (y—x'p)2/2if ly—2"p8 < Ay, and
A2/2 + M (ly — x'B| — \,) otherwise. This effective loss matches Huber’s loss
function for robust regression (Huber; 1981). As in robust regression, we choose a
sufficiently large A, so that only a modest fraction of the residuals are adjusted.
Similarly, modification of the LASSO as a penalized regression procedure yields
the Huberized LASSO described by Rosset and Zhu (2004).

3.2 Location Families

More generally, a wide class of problems can be cast in the form of a minimiza-
tion of L(B) = 3.1, g(yi — ] B) where g(-) is the negative log-likelihood derived
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(a) (b)
y r*
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(c) (d)
L(r) L(r)
=N, A r -N A r

Fic 1. Modification of the squared error loss with a case-specific parameter. (a) -y versus the
residual r. (b) the adjusted residual ™ versus the ordinary residual r. (c¢) a truncated squared
error loss as the v-adjusted loss. (d) the effective loss.

from a location family. The assumption that we have a location family implies
that the negative log-likelihood is a function only of r; = y; — xZT B. Dropping
the subscript, common choices for the negative log-likelihood, g(r) include r?
(least squares, normal distributions) and |r| (least absolute deviations, Laplace
distributions).

Introducing the case-specific parameters -;, we wish to minimize

LB,y =Y gy — 2 B—%) + Ml
i=1

For minimization with a fixed ﬁ , the next result applies to a broad class of g(-)
(but not to g(r) = |r|).

Proposition 1 Suppose that g is strictly convex with the minimum at 0, and
lim, 400 ¢’ (r) = +00, respectively. Then,

r— g’_l()\y) forr > g’_l()w)
4 = argmin g(r—y)+A, |y = 0 for ¢7H(=XN) <7 <gd7HN)
7 r— g’_l(—)w) forr < g/_l(—)w .
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The proposition follows from straightforward algebra. Set the first derivative
of the decoupled minimization equation equal to 0 and solve for ~y. Inserting these
values for 4; into the equation for L(f,~) yields

L(B,A) = > g(ri—3) + M4l
i=1

The first term in the summation can be decomposed into three parts. Large
r; contribute g(r; — r; + ¢'~*(\y)) = g(¢~'(\y)). Large, negative r; contribute
g(¢""*(—X4)). Those r; with intermediate values have 4; = 0 and so contribute
g(r;). Thus a graphical depiction of the y-adjusted loss is much like that in Figure
1, panel (c), where the loss is truncated above. For asymmetric distributions (and
hence asymmetric log-likelihoods), the truncation point may differ for positive
and negative residuals. It should be remembered that when |r;| is large, the
corresponding 4; is large, implying a large contribution of [|y|[; to the overall
minimization problem. The residuals will tend to be large for vectors 8 that are
at odds with the data. Thus, in a sense, some of the loss which seems to disappear
due to the effective truncation of g is shifted into the penalty term for . Hence
the effective loss Ly (y, f(z;8)) = g(y — f(z;8) — ) + X\y[4] is the same as the
original loss, g(y — f(x;8)) when the residual is in [¢'"'(—),), ¢ "' (\y)] and is
linear beyond the interval. The linearized part of g is joined with g such that £,
is differentiable.

Computationally, the minimization of L(3,4) given 4 entails application of the
same modeling procedure M with g to winsorized pseudo responses y; = y; —Y;,
where yf = y; for ¢71H(=\y) <7 < g7\, yf =g H(\,) for r > ¢'71(A,), and
yr =gt (=\,) for r < g1 (—\,). So, the 4-adjusted data in Step 2 of the main
algorithm consist of (x;,y}) pairs in each iteration. A related idea of subsetting
data and model-fitting to the subset iteratively for robustness can be found in
the computer vision literature, the random sample consensus algorithm (Fischler
and Bolles; 1981) for instance.

3.3 Quantile Regression

Consider median regression with absolute deviation loss L(y,z"8) = |y —
x|, which is not covered in the foregoing discussion. It can be verified easily
that the /i-adjustment of £ is void due to the piecewise linearity of the loss,
reaffirming the robustness of median regression. For an effectual adjustment, the
f5 norm regularization of the case-specific parameters is considered. With the
case-specific parameters 7;, we have the following objective function for modified
median regression:

. A
(3) L(B,v) =D lwi — =] B =l + F k3
1=1

For a fixed 3 and residual r = y — ' 3, the 4 minimizing |r —~|+ )‘7”72 is given
by

1 1 1
sgn(r)/\—I(M > )\—) —i—rI(\r] < )\—)
y ¥ ¥

The ~-adjusted loss for median regression is

Ly B4 =y -8~ 5| Iy - =T8> 1),
Y Y
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as shown in Figure 3 (a). Interestingly, this ¢s-adjusted absolute deviation loss is
the same as the so-called “e-insensitive linear loss” for support vector regression
(Vapnik; 1998) with e = 1/A,.

With this adjustment, the effective loss is Huberized squared error loss. The ¢
adjustment makes median regression more efficient by rounding the sharp corner
of the loss, and leads to a hybrid procedure which lies between mean and median
regression. Note that, to achieve the desired effect for median regression, one
chooses quite a different value of A, than one would when adjusting squared
error loss for a robust mean regression.

The modified median regression procedure can be also combined with a penalty
on (3 for shrinkage and/or selection. Bi et al. (2003) consider support vector
regression with the ¢; norm penalty ||3||; for simultaneous robust regression and
variable selection. These authors rely on the e-insensitive linear loss which comes
out as the y-adjusted loss of the absolute deviation. In contrast, we rely on the
effective loss which produces a different solution.

In general, quantile regression (Koenker and Bassett; 1978; Koenker and Hal-
lock; 2001) can be used to estimate conditional quantiles of y given x. It is a useful
regression technique when the assumption of normality on the distribution of the
errors € is not appropriate, for instance, when the error distribution is skewed or
heavy-tailed. For the gth quantile, the check function p, is employed:

qr for r >0
(4) Pa(r) = { —(1—¢q)r forr<0.

The standard procedure for the gth quantile regression finds 8 that minimizes the
sum of asymmetrically weighted absolute errors with weight ¢ on positive errors
and weight (1 — ¢) on negative errors:

L(B) = qu(yi - x;rﬁ)
i=1

Consider modification of p, with a case-specific parameter v and ¢ norm reg-
ularization. Due to the asymmetry in the loss, except for ¢ = 1/2, the size of
reduction in the loss by the case-specific parameter v would depend on its sign.
Given ﬁ and residual r =y — xTﬁ , if r > 0, then the positive v would lower p, by
q, while if r < 0, the negative v with the same absolute value would lower the
loss by (¢ — 1)y. This asymmetric impact on the loss is undesirable. Instead, we
create a penalty that leads to the same reduction in loss for positive and negative
~ of the same magnitude. In other words, the desired 5 norm penalty needs to
put ¢v+ and (1 — ¢)y— on an equal footing. This leads to the following penalty
proportional to q2’yi and (1 — ¢q)2+2:

Jo(y) = {q/A = Iv; + {1 —a)/a}¥>.

When g = 1/2, J2(7) becomes the symmetric 5 norm of 1.
With this asymmetric penalty, given g, 4 is now defined as

A
(5) argmin £y, (8,7) 1= py(r =) + Z-12(7),
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and is explicitly given by

q q

The effective loss pg is then given by

1_
(q —/\1)7‘ — q(z)wq) for r< 5k
1-q, 2 q
(6) p’Y(T) _ )\T’YTT for —E <r< 0
a 7”1%7‘2 for 0<r< %
(q1 9) 1—q K
q —_ —
qr — Tox; for r > o
and its derivative is
q
q 1— 1 for <%
A =2y for —<L<r<o0
(7) V=9 4 e 0o < g
»YquT‘ or 0 ST 1< T
q for r > )\;f.

We note that, under the assumption that the density is locally constant in a
neighborhood of the quantile, the quantile remains the 0 of the effective 1] func-
tion.

Figure 2 compares the derivative of the check loss with that of the effective loss
in (6). Through penalization of a case-specific parameter, p, is modified to have a
continuous derivative at the origin joined by two lines with a different slope that
depends on ¢q. The effective loss is reminiscent of the asymmetric squared error loss
(q(r1)? + (1 —q)(r_)?) considered by Newey and Powell (1987) and Efron (1991)
for the so-called expectiles. The proposed modification of the check loss produces
a hybrid of the check loss and asymmetric squared error loss, however, with
different weights than those for expectiles, to estimate quantiles. The effective loss
is formally similar to the rounded-corner check loss of Nychka et al. (1995) who
use a vanishingly small adjustment to speed computation. Portnoy and Koenker
(1997) thoroughly discuss efficient computation for quantile regression.

Redefining J2(7) as the sum of the asymmetric penalty for the case-specific pa-
rameter ~;, ¢ = 1,...,n, modified quantile regression is formulated as a procedure
that finds 8 and v by minimizing

8) L(B,7) =Y palyi = B— i) + Ay Ja(7).
i=1

In extensive simulation studies (Jung et al.; 2010), such adjustment of the
standard quantile regression procedure generally led to more accurate estimates.
See Section 5.1.1 for a summary of the studies. This is confirmed in the NHANES
data analysis in Section 6.1.

For large enough samples, with a fixed A,, the bias of the enhanced estimator
will typically outweigh its benefits. The natural approach is to adjust the penalty
attached to the case-specific covariates as the sample size increases. This can be
accomplished by increasing the parameter A\, as the sample size n grows.
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F1c 2. The derivative of the check loss in the left panel, Vq(x), and that of the modified check
loss in the right panel, ¥ (z), for ¢ = 0.2, 0.5 and 0.7.

Let A, := cn® for some constant ¢ and o > 0. The following theorem shows
that if « is sufficiently large, the modified quantile regression estimator B;{, which
minimizes Y"1, pg(y; — x] B) or equivalently (8), is asymptotically equivalent to
the standard estimator Bn Knight (1998) proves the asymptotic normality of the
regression quantile estimator 3, under some mild regularity conditions. Using the
arguments in Koenker (2005), we show that 37 has the same limiting distribution
as f,, and thus it is v/n-consistent if « is sufficiently large.

Allowing a potentially different error distribution for each observation, let
Y1,Ys, ... be independent random variables with cdfs I, Iy, ... and suppose that
each F; has continuous pdf f;. Assume that the gth conditional quantile function
of Y given x is linear in z and given by x'B(q), and let &(q) := z; 8(q). Now
consider the following regularity conditions:

(C-1) fi(§),i=1,2,..., are uniformly bounded away from 0 and oo at &;.

(C-2) fi(§),i=1,2,..., admit a first-order Taylor expansion at &, and f/(§) are
uniformly bounded at &;.

(C-3) There exists a positive definite matrix Dg such that lim,, oo n ™' > :L'Z:L'ZT =
Do.

(C-4) There exists a positive definite matrix Dy such that lim,, oo n ™'Y fl(@)xlxlT

Dy.
(C-5) max;=1,. . n ||zi|]|/+/n — 0 in probability.

(C-1) and (C-3) through (C-5) are the conditions considered for the limiting
distribution of the standard regression quantile estimator /3, in Koenker (2005)
while (C-2) is an additional assumption that we make.

Theorem 2 Under the conditions (C-1)-(C-5), if « > 1/3, then

V(B — B(g)) % N(0,¢(1 — ¢)D; ' Do Dy ).

The proof of the theorem is in Appendix.



12 Y. LEE ET AL.

4. CLASSIFICATION

Now suppose that g;’s indicate binary outcomes. For modeling and prediction
of the binary responses, we mainly consider margin-based procedures such as
logistic regression, support vector machines (Vapnik; 1998), and boosting (Freund
and Schapire; 1997). These procedures can be modified by the addition of case
indicators.

4.1 Logistic Regression

Although it is customary to label a binary outcome as 0 or 1 in logistic re-
gression, we instead adopt the symmetric labels of {—1, 1} for y;’s. The symme-
try facilitates comparison of different classification procedures. Logistic regres-
sion takes the negative log likelihood as a loss for estimation of logit f(x) =
log[p(x)/(1 — p(z))]. The loss, L(y, f(x)) = log[1 + exp(—yf(z))], can be viewed
as a function of the so-called margin, yf(x). This functional margin of yf(x) is
a pivotal quantity for defining a family of loss functions in classification similar
to the residual in regression.

Logistic regression can be modified with case indicators:

i=1
where f(x;80,8) = o+ x' 8. When it is clear in context, f(z) will be used as
abbreviated notation for f(z; @0, B), aAdiscriminant function, and the subscript
7 will be dropped. For fixed fy and [, the minimization decouples, and -; is
determined by minimizing

log(l + exp(—yi{ f (24 30, B) + %‘})) + Ay [l

First note that the minimizer v; must have the same sign as y;. Letting 7 = y f and
assuming that 0 < A\, < 1, we have arg min,>q 10g(1 +exp(—7 — 7)) + My =
log{(1 — Ay)/A\} — 7 if 7 < log{(1 — Ay)/\,}, and O otherwise. This yields a
truncated negative log likelihood given by

f log(T+ XN /(1=Ay)) ifyf(z) <log{(l—A\,)/A},
Ly, f(z)) = { logg((l + exp(—yf(g)))) otﬁerwise ’ e

as the y-adjusted loss. This adjustment is reminiscent of Pregibon (1982)’s pro-
posal tapering the deviance function so as to downweight extreme observations,
thereby producing a robust logistic regression. See Figure 3 (b) for the y-adjusted
loss (the dashed line), where 7y :=log{(1 — A,)/A,} is a decreasing function of
Ay. Ay determines the level of truncation of the loss. As A, tends to 1, there is
no truncation. Figure 3 (b) also shows the effective loss (the solid line) for the ¢;
adjustment, which linearizes the negative log likelihood below 7.

4.2 Large Margin Classifiers

With the symmetric class labels, the foregoing characterization of the case-
specific parameter 7 in logistic regression can be easily generalized to various
margin-based classification procedures. In classification, potential outliers are
those cases with large negative margins. Let g(7) be a loss function of the margin
7 = yf(z). The following proposition, analogous to Proposition 1, holds for a
general family of loss functions.
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Proposition 3 Suppose that g is convex and monotonically decreasing in T, and
g is continuous. Then, for Ay < —lim;_,_ ¢'(7),

. ) TN =T forT < g (=N,
= angmin g7 +5)+ M| ={ ¢ 7T PrTSan i)

The proof is straightforward. Examples of the margin-based loss ¢ satisfying
the assumption include the exponential loss g(7) = exp(—7) in boosting, the
squared hinge loss g(7) = {(1 — 7)4}? in the support vector machine (Lee and
Mangasarian; 2001), and the negative log likelihood g(7) = log(1 + exp(—7)) in
logistic regression. Although their theoretical targets are different, all of these
loss functions are truncated above for large negative margins when adjusted by
7. Thus, the effective loss Ly (y, f(x)) = g(yf(z) + %) + A\y|7] is obtained by
linearizing g for yf(z) < ¢'~1(=\,).

The effect of 4-adjustment depends on the form of g, and hence on the clas-
sification method. For boosting, 4 = —log\, — yf(z) if yf(z) < —logA,,
and is 0 otherwise. This gives L(So, 3,9) = > iy exp(—vif(zi; Bo, B) — %) =
Yoy exp(—5i) exp(—yi f(z4; Bo, B)). So, finding By and S given 4 amounts to
weighted boosting, where the positive case-specific parameters 4; downweight
the corresponding cases by exp(—%;). For the squared hinge loss in the support
vector machine, ¥ =1 —yf(z) — A\, /2 if yf(z) <1—\,/2, and is 0 otherwise. A
positive case-specific parameter 4; has the effect of relaxing the margin require-
ment, that is, lowering the joint of the hinge for that specific case. This allows
the associated slack variable to be smaller in the primal formulation. Accordingly,
the adjustment affects the coeflicient of the linear term in the dual formulation
of the quadratic programming problem.

As arelated approach to robust classification, Wu and Liu (2007) propose trun-
cation of margin-based loss functions and study theoretical properties that ensure
classification consistency. Similarity exists between our proposed adjustment of a
loss function with v and truncation of the loss at some point. However, it is the
linearization of a margin-based loss function on the negative side that produces
its effective loss, and minimization of the effective loss is quite different from min-
imization of the truncated (i.e., adjusted) loss. Linearization is more conducive
to computation than is truncation. Application of the result in Bartlett et al.
(2006) shows that the linearized loss functions satisfy sufficient conditions for
classification consistency, namely Fisher consistency, which is the main property
investigated by Wu and Liu (2007) for truncated loss functions.

Xu et al. (2009) show that regularization in the standard support vector ma-
chine is equivalent to a robust formulation under disturbances of x without
penalty. In contrast, under our approach, robustness of classification methods
is considered through the margin, which is analogous to the residual in regres-
sion. This formulation can cover outliers due to perturbation in z as well as
mislabeling of y.

4.3 Support Vector Machines

As a special case of a large margin classifier, the linear support vector machine
(SVM) looks for the optimal hyperplane f(z; 8o, 3) = Bo + ' 8 = 0 minimizing

(10 Ia(Bo,8) = - [1 = s 60, 0]+ 31815

i=1
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where [t]+ = max(¢,0) and A > 0 is a regularization parameter. Since the hinge
loss for the SVM, ¢(7) = (1 — 7)4, is piecewise linear, its linearization with ||v||1
is void, indicating that it has little need of further robustification. Instead, we
consider modification of the hinge loss with |v||3. This modification is expected
to improve efficiency, as in quantile regression.

Using the case indicators z; and their coefficients 7;, we modify (10), arriving
at the problem of minimizing

n

A A
(1) L5087 = D[ = wid i o, B) + ]+ ZNBIE + FH3:

i=1

For fixed Bo and ﬁ , the minimizer 4 of L(ﬁo, B ,7) is obtained by solving the decou-
pled optimization problem of min., [1 — y; f(zs; Bo, 5) — yivil+ + /\2—7%2 for each ~;.
With an argument similar to that for logistic regression, the minimizer 4; should

have the same sign as y;. Let £ =1 — yf. A simple calculation shows that

) 0 ife<o
arg min [g—y]++7’w2= & fo<E<1/n,
= /A, if€>1/A,.

Hence, the increase in margin y;9; due to inclusion of v is given by

(U= el @M < 1 = yif ) < 3) + 510 = i (@) = 50)
Y Y Y

The v-adjusted hinge loss is L(y, f(x)) = [1 — 1/A\y — yf(x)]+ with the hinge
lowered by 1/\, as shown in Figure 3 (c) (the dashed line). The effective loss
(the solid line in the figure) is then given by a smooth function with the joint
replaced with a quadratic piece between 1 — 1/\, and 1 and linear beyond the
interval.

yf

Fic 3. Modification of (a) absolute deviation loss for median regression with l2 penalty, (b)
negative log likelihood for logistic regression with €1 penalty, and (c) hinge loss for the support
vector machine with 2 penalty. The solid lines are for the effective loss, the dashed lines are for
the v-adjusted loss, and the dotted lines are for the original loss in each panel.
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5. SIMULATION STUDIES

We present results from various numerical experiments to illustrate the effect
of the proposed modification of modeling procedures by regularization of case-
specific parameters.

5.1 Regression

5.1.1 ly-Adjusted Quantile Regression The effectiveness of the /o adjusted
quantile regression depends on the penalty parameter A, in (6), which yields
(—q/Ay, (1 —q)/Ay) as the interval of quadratic adjustment.

We undertook extensive simulation studies (available in Jung et al. (2010))
to establish guidelines for selection of the penalty parameter A, in the linear
regression model setting. The studies encompassed a range of sample sizes, from
10% to 10%, a variety of quantiles, from 0.1 to 0.9, and distributions exhibiting
symmetry, varying degrees of asymmetry, and a variety of tail behaviors. The
modified quantile regression method was directly implemented by specifying the
effective ¢-function ¢y, the derivative of the effective loss, in the rlm function in
the R package.

An empirical rule was established via a (robust) regression analysis. The anal-
ysis considered A, of the form ¢,n®/G, where ¢, is a constant depending on ¢
and & is a robust estimate of the scale of the error distribution. The goal of the
analysis was to find A, which, across a broad range of conditions, resulted in an
M SFE near the condition-specific minimum M SE. Here M SFE is defined as mean
squared error of estimated regression quantiles at a new X integrated over the
distribution of the covariates.

After initial examination of the MSFE with a range of « values, we made a
decision to set a to 0.3 for good finite sample performance across a wide range
of conditions. With fixed «, we varied ¢, to obtain the the smallest MSE by
grid search for each condition under consideration. For a quick illustration, Fig-
ure 4 shows the intervals of adjustment with such optimal ¢, for various error
distributions, g values, and sample sizes. Wider optimal intervals indicate that
more quadratic adjustment is preferred to the standard quantile regression for
reduction of MSFE. Clearly, Figure 4 demonstrates the benefit of the proposed
quadratic adjustment of quantile regression in terms of MSFE across a broad
range of situations, especially when the sample size is small.

In general, M SFE values begin to decrease as the size of adjustment increases
from zero and increase after hitting the minimum, due to an increase in bias.
There is an exception of this typical pattern when estimating the median with
normally distributed errors. M SE monotonically decreases in this case as the in-
terval of adjustment widens, confirming the optimality properties of least squares
regression for normal theory regression. The comparisons between sample mean
and sample median can be explicitly found under the ¢ error distributions using
different degrees of freedom. The benefit of the median relative to the mean is
greater for thicker tailed distributions. We observe that this qualitative behav-
ior carries over to the optimal intervals. Thicker tails lead to shorter optimal
intervals, as shown in Figure 4.

Modeling the optimal condition-specific ¢, as a function of ¢ through a robust
regression analysis led to the rule, with o = 0.30, of ¢, = 0.5 exp(—2.118 —1.097¢)
for ¢ < 0.5 and ¢, =~ 0.5exp(—2.118 — 1.097(1 — ¢)) for ¢ > 0.5. The simulation
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studies show that this choice of penalty parameter results in an accurate estimator
of the quantile surface.
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Fi1c 4. ‘Optimal’ intervals of adjustment for different quantiles (q), sample sizes (n), and error
distributions. The intervals range from the quantile minus q/\y to the quantile plus (1 —q)/\,
with Ay, minimizing MSE. The vertical lines in each distribution indicate the true quantiles.
The stacked horizontal lines for each quantile are corresponding optimal intervals. Five intervals
at each quantile are for n = 10%, 10%°, 10®, 10>° and 10*, respectively, from the bottom.

5.1.2 Robust LASSO We investigated the sensitivity of the LASSO (or LARS)
and its robust version (obtained by the proposed ¢; modification) to contamina-
tion of the data through simulation.

For the robust LASSO, the iterative algorithm in Section 2 was implemented
by using LARS (Efron et al.; 2004) as the baseline modeling procedure and win-
sorizing the residuals with A, as a bending constant. The bending constant was
taken to be scale invariant, so that A\, = k&, where k is a constant and & is
a robust scale estimate. The standard robust statistics literature (Huber; 1981)
suggests that good choices of k lie in the range from 1 to 2.

For brevity, we report only that portion of the results pertaining to accuracy
of the fitted regression surface and inclusion of variates in the model when k = 2.
Similar results were obtained for k near 2. The results differ for extreme values
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of k. Throughout the simulation, the standard linear model y = z' 3 + € was
assumed. Following the simulation setting in Tibshirani (1996), we generated
x = (x1,...,23)" from a multivariate normal distribution with mean zero and
standard deviation 1. The correlation between x; and z; was set to pli=Il with
p = 0.5. Three scenarios were considered with a varying degree of sparsity in terms
of the number of non-zero true coefficients: i) sparse: g = (5,0,0,0,0,0,0,0), ii)
intermediate: 5 = (3,1.5,0,0,2,0,0,0), and iii) dense: 3; = 0.85 for all j =
1,...,8. In all cases, the sample size was 100. For the base case, ¢; was assumed
to follow N(0,02) with o = 3. For potential outliers in e, the first 5% of the
€;’s were tripled, yielding a data set with more outliers. We also investigated
sensitivity to high leverage cases. For this setting, we tripled the first 5% of the
values of x;. Thus the replicates were blocked across the three settings. The C),
criterion was used to select the model.

Figure 5 shows mean square error (M SE) between the fitted and true regres-
sion surfaces, omitting intercepts. M SFE is integrated across the distribution of a
future X, taken to be that for the base case of the simulation. Over the m = 100
replicates in the simulation, M SE = m™! Z;’ll(ﬁl — B)TZ(ﬁi — B), where B s
the estimate of 3 for the i replicate. LARS and robust LARS perform compa-
rably in the base case, with the M SE for robust LARS being greater by 1 to 6
percent. For both LARS and robust LARS, M SFE in the base case increases as
one moves from the sparse to the dense scenario. M SE increases noticeably when
€ is contaminated, by a factor of 1.31 to 1.41 for LARS. For robust LARS, the
factor for increase over the base case with LARS is 1.12 to 1.22. For contamina-
tion in X, results under LARS and robust LARS are similar in the intermediate
and dense cases, with increases in M SE over the base case. For the sparse case,
the coefficient of the contaminated covariate, x1, is large relative to the other
covariates. Here, robust LARS performs noticeably better than LARS, with a
smaller increase in MSE.

Table 1 presents results on the difference in number of selected variables for
pairs of models. In each pair, a contaminated model is contrasted with the cor-
responding uncontaminated model. The top half of the table presents results for
contamination of e. The distribution of the differences in the number of selected
variables for the pairs of fitted models has a mode at 0 in each scenario for both
LARS and robust LARS. There is, however, substantial spread around 0. The
fitted models for the data with contaminated errors tend to have fewer variables
than those for the original data, especially in the dense scenario. This may well
be attributed to inflated estimates of o used in C), for the contaminated data,
favoring relatively smaller models. The effect is stronger for LARS than for robust
LARS, in keeping with the lessened impact of outliers on the robust estimate of
a?.

The bottom half of Table 1 presents results for contamination of X. Again,
the distributions of differences in model size have modes at 0 in all scenarios.
The distributions have substantial spread around 0. Under the sparse scenario
in which the contamination has a substantial impact on MSFE, the distribution
under robust LARS is more concentrated than under LARS.

The simulation demonstrates that the proposed robustification is successful
in dealing with both contaminated errors and contaminated covariates. As ex-
pected, in contrast to LARS, robust LARS is effective in identifying observations
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with large measurement errors and lessening their influence. It is also effective
at reducing the impact of high leverage cases, especially when the high leverage
arises from a covariate with a large regression coefficient. The combined benefits
of robustness to outliers and high leverage cases render robust LARS effective at
dealing with influential cases in an automated fashion.

< sparse intermediate dense
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Fic 5. Mean squared error (MSE) OfB for LARS and its robust version under three different
scenarios in the simulation study. In each scenario, o, e, and x indicate clean data, data with
contaminated measurement errors, and data with mismeasured first covariate. The dotted lines
are for LARS while the solid lines are for robust LARS. The points are the average MSE for
100 replicates.

TABLE 1
Distribution of difference in the number of selected variables for the fitted model to
contaminated data from that to clean data

LARS robust LARS

Scenario -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
€ contamination

Sparse 5* 6 21 48 13 5 2% 1* 4 12 7 7 5 0
Intermediate 5 10 14 46 21 3 1 1 3 14 64 14 4 0
Dense 2 1 16 8 1 0 0 0 0 8 89 3 0 0
X contamination

Sparse * 5 15 34 20 7 12% 5* 3 16 36 22 12 6
Intermediate 1* 5 13 55 21 3 2 1 3 18 50 23 4 1
Dense 0 0 5 93 2 0 0 0 0 4 94 2 0 0

NOTE: The entries with * are the cumulative counts of the specified case and more extreme cases.

5.2 Classification

A three-part simulation study was carried out to examine the effect of the
proposed modification of loss functions for classification. The primary focus is on
i) the efficiency of the modified SVM relative to the SVM with hinge loss and its
smoothed version with quadratically modified hinge loss, and ii) the robustness
of logistic regression relative to modified logistic regression (via the linearized de-
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viance). The secondary focus is on ensuring that robustness does not significantly
degrade as efficiency is improved, and that efficiency does not suffer too much as
robustness is improved.

All three parts of the simulation begin with n = 100 cases generated from a
pair of five-dimensional multivariate normal distributions, with identical covari-
ance matrices and equal proportions for two classes (y = +1). Without loss of
generality, the covariance matrices were taken to be the identity. For the first part
of the simulation, the separation between the two classes is fixed. The separation
is determined by the difference in means of the multivariate normals, which, in
turn, determine the Bayes error rate for the underlying problem. Throughout,
once a method was fit to the data (i.e., a discriminant function was obtained),
the error rate was calculated analytically. Each part of the simulation consisted
of 400 replicates.

Six methods were considered in this study; LDA (linear discriminant analysis)
as a baseline method for the normal setting, the standard SVM, its variant with
squared hinge loss (called Smooth SVM in Lee and Mangasarian (2001)), another
variant with quadratically modified hinge loss (referred to as Huberized SVM in
this study), logistic regression, and the method with linearized binomial deviance
(referred to as linearized LR). The Huberized SVM and linearized LR were im-
plemented through the fast Newton-Armijo algorithm proposed for Smooth SVM
in Lee and Mangasarian (2001). To focus on the effect of the loss functions on
the classification error rate, no penalty was imposed on the parameters of dis-
criminant functions.

For the first part of the study, the mean vectors were set with a difference
of 2.7 in the first coordinate and 0 elsewhere, yielding a Bayes error rate of
8.851%. Figure 6 compares the SVM and its variants in terms of the average
excess error from the Bayes error rate. The k on the z-axis corresponds to the
bending constant, 1 — 1/A, in the Huberized SVM. When k is as small as —1,
we see that quadratic modification in the Huberized SVM effectively yields the
same result as Smooth SVM. As k tends to 1, the Huberized SVM becomes the
standard SVM. Clearly, there is a range of k values for which the mean error rate
of the Huberized SVM is lower than that of the standard SVM, demonstrating
improved efficiency in classification. In fact, the improved efficiency of smooth
versions of the hinge loss in the normal setting can be verified theoretically for
large sample cases, where the relative efficiency is defined as the ratio of mean
excess errors. See Lee and Wang (2011) for details.

Figure 6 also displays a comparison between logistic regression and the lin-
earized LR of Section 4, with bending constant k& = log{(1 — Ay)/Ay}. There is
no appreciable difference in the excess error between logistic regression and its
linearized version for negative values of k. Enhancing the robustness of logistic
regression (shown in part two of the study) sacrifices almost none of its efficiency.

The value of the bending constant k& leading to the minimum error rate depends
on the underlying problem itself, and the range of best k values may differ for the
Huberized SVM and linearized LR. The results in Figure 6 suggest that values of
k ranging from —1 to 0 yield excellent performance for both procedures in this
setting.

The second part of the study focuses on robustness. To study this, we perturbed
each sample by flipping the class labels of a certain proportion of cases selected at
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random, and applied the six procedures to the perturbed sample. The estimated
discriminant rules were evaluated in the same way as in the setting without
perturbation.

Figure 7 (a) highlights increased robustness of linearized LR (with k = —0.5)
compared to logistic regression when some fraction of labels are flipped. As the
proportion of mislabeled data increases, excess error rises for all of the procedures,
including the baseline method of LDA. However, the rate of increase in error is
slower for the modified logistic regression, as the linearized deviance dampens the
influence of mislabeled cases on the discriminant rule.

Comparison of the SVM and its variants in the same setting reveals a trade-off
between efficiency and robustness. Figure 7 (b) shows that the squared hinge
loss yields a lower error rate than hinge loss when the perturbation fraction is
less than 6%. The trend is reversed when the fraction is higher than 6%. This
trade-off is reminiscent of that between the sample mean and median as location
parameter estimators. The Huberized SVM (with £ = —0.5) as a hybrid method
strikes a balance between the two. We note that the robustness of the SVM,
compared with its variants, is more visible when two classes have less overlap
(not shown here).
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F1G 6. Mean excess error of the SVM variant with quadratically modified hinge loss (Huberized
SVM) and the method with linearized deviance loss (linearized LR) as the bending constant
k wvaries. The grey band indicates a one standard error bound around the mean estimate for
Huberized SVM from 400 replicates. The standard error for comparison of the Huberized SVM to
another method varies, but is considerably smaller, due to the simulation design. The horizontal
lines from top to bottom are for SVM, logistic regression, and Smooth SVM, respectively.

The third part of the study provides a comprehensive comparison of the meth-
ods. Three scenarios with differing degree of difficulty were considered; ‘easy’,
‘intermediate’, and ‘hard’ settings refer to the multivariate normal setting with
the Bayes error rates of 2.275%, 8.851%, and 15.866%, respectively. In addition,
for scenarios with mislabeled cases, 5% and 10% of labels were flipped under each
of the three settings. Two values of the bending constant (k = —0.5 and —1) were
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F1G 7. Mean excess errors of (a) logistic regression and linearized LR, and (b) SVM and its
variants, as the proportion of perturbation varies. The grey band indicates a one standard er-
ror bound around the mean estimate for (a) linearized LR and (b) Huberized SVM from 400
replicates. The standard errors for comparisons are considerably smaller than indicated by the
bands.

used for the Huberized SVM and the linearized LR. The results of comparison
under nine scenarios are summarized in Table 5.2. The tabulated values are the
mean error rates of the discriminant rules under each method.

When there are no mislabeled cases, the smooth variants of the SVM improve
upon the performance of the standard SVM. As the separation between classes
increases, the reduction in error due to modification of the hinge loss with fixed
k diminishes. Linearization of deviance in logistic regression does not appear to
affect the error rate. In contrast, when there are mislabeled cases, linearization
of the deviance renders logistic regression more robust across all the scenarios
with differing class separations. Similarly, the standard SVM is less sensitive to
mislabeling than its smooth variants. This makes the SVM more preferable as
the proportion of mislabeled cases increases. However, in the difficult problem of
little class separation, the quadratic modification in the Huberized SVM performs
better than the SVM.

6. APPLICATIONS
6.1 Analysis of the NHANES Data

We numerically compare standard quantile regression with modified quantile
regression for analysis of real data. The Centers for Disease Control and Preven-
tion conduct the National Health and Nutrition Examination Survey (NHANES),
a large scale survey designed to monitor the health and nutrition of residents of
the United States. Many are concerned about the record levels of obesity in the
population, and the survey contains information on height and weight of indi-
viduals, in addition to a variety of dietary and health-related questions. Obesity
is defined through body mass index (BMI) in kg/m?, a measure which adjusts
weight for height. In this analysis, we describe the relationship between height and
BMI among the 5938 males over the age of 18 in the aggregated NHANES data
sets from 1999, 2001, 2003 and 2005. Our analyses do not adjust for NHANES’
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TABLE 2
Mean error rates of classification methods under various settings of mean difference and
perturbation fraction. The lowest error rates are in bold when compared among the methods of
the same type (either SVM or LR) for each scenario.

Scenario SVM Huberized SVM SmoothSVM Linearized LR LR
k=-05 k=-1 k=-05 k=-1

Easy 0.0385 0.0376 0.0376 0.0376 0.0362 0.0363 0.0363
Intermediate 0.1028 0.1009 0.1008 0.1008 0.1014 0.1013 0.1013
Hard 0.1753 0.1727 0.1726 0.1726 0.1730 0.1729 0.1728
Easy + 5% flip 0.0348 0.0362 0.0371 0.0372 0.0383 0.0395 0.0411
Intermediate + 5% flip 0.1063 0.1050 0.1057 0.1059 0.1054 0.1061 0.1071
Hard + 5% flip 0.1790 0.1769 0.1773 0.1774 0.1772 0.1773 0.1778
Easy + 10% flip 0.0370 0.0415 0.0423 0.0421 0.0445 0.0465 0.0481
Intermediate + 10% flip | 0.1107 0.1117 0.1127 0.1127 0.1125 0.1136 0.1150
Hard + 10% flip 0.1846 0.1833 0.1839 0.1840 0.1836 0.1841 0.1848

complex survey design. In particular, no adjustment has been made for oversam-
pling of selected groups or nonresponse. Since BMI is weight adjusted for height,
the null expectation is that BMI and height are unrelated.

We fit a nonparametric quantile regression model to the data. The model is
a six knot regression spline using the natural basis expansion. The knots (held
constant across quantiles) were chosen by eye. The rule for selection of the penalty
parameter )\, described in Section 5.1.1 was used for the NHANES data analysis.

Figure 8 displays the fits from standard (QR) and modified (QR.M) quantile
regressions for the quantiles between 0.1 and 0.9 in steps of 0.05. The fitted curves
show a slight upward trend, some curvature overall, and mildly increasing spread
as height increases. There is a noticeable bump upward in the distribution of BMI
for heights near 1.73 meters. The differences between the two methods of fitting
the quantile regressions are most apparent in the tails, for example the 0.6th and
0.85th quantiles for large heights.

The predictive performance of the standard and modified quantile regressions
are compared in Figure 9. To compare the methods, 10-fold cross-validation was
repeated 500 times for different splits of the data. Each time, a cross-validation
score was computed as

1 — .
(12) CV = - ;Pq(% — i),

where y; is the observed BMI for an individual in the hold-out sample, ¢; is the
fitted value under QR or QR.M, and the sum runs over the hold-out sample. The
figure contains plots of the 500 CV scores. The great majority of CV scores are
to the lower right side of the 45 degree line, indicating that the modified quantile
regression outperforms the standard method—even when the QR empirical risk
function is used to evaluate performance. Mean and 1000 times standard deviation
of the CV scores for the methods are summarized in Table 3.

The pattern shown in these panels is consistent across other quantiles (not
shown here). The pattern becomes a bit stronger when the QR.M empirical risk
function is used to evaluate performance.
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Fic 8. Regression spline estimates of conditional BMI quantiles in steps of 0.05, from 0.1 to 0.9
for the NHANES data. Natural spline bases and 6 knots are used in each fitted curve.
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F1G 9. Scatter plots of 10-fold CV scores from standard quantile regression (QR) and modified
quantile regression (QR.M) at 0.25th, 0.5th and 0.9th quantiles. Regression splines with natural
spline bases and 6 knots are fitted to the NHANES data. Each of 500 points represents a pair of
CV scores as in (12).
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TABLE 3

Mean and (1000 times standard deviation) of C'V scores at selected quantiles based on 500
replicates from NHANES data.

Method q=0.25 q=0.5 q=0.9

QR 1.5040 (0.6105)  2.0405 (0.7272)  1.1267 (1.0714)
QR.M 1.5039 (0.5855)  2.0402 (0.6576) 1.1263 (1.0030)
QR.L1 1.5039 (0.8963)  2.0393 (0.5140)  1.1289 (0.8569)

Modified quantile regression has an additional advantage which is apparent
for small and large heights. The standard quantile regression fits show several
crossings of estimated quantiles, while crossing behavior is reduced considerably
with modified quantile regression. Crossed quantiles correspond to a claim that a
lower quantile lies above a higher quantile, contradicting the laws of probability.
Figure 10 shows this behavior. Fixes for this behavior have been proposed (e.g.,
He (1997)), but we consider it desirable to lessen crossing without any explicit fix.
The reduction in crossing holds up across other data sets that we have examined
and with regression models that differ in their details.

In addition, we compare both methods with ¢; parameter-penalized quantile
regression (QR.L1), where the estimator B is defined as the minimizer of

n p
> payi =l B) + s> 1Bl
i=1 j=1

The rq.fit.lasso function in the quantreg R package was used for QR.LI.
Keeping the same split of data into 90% of training and 10% of testing for
each replicate, we have chosen A\g among 100 candidate values by 9-fold cross-
validation. The results are in Table 3.

The effect of parameter penalization differs from modification of the loss func-
tion. Figure 10 illustrates the difference. The quantiles estimated under QR.L1
(with Ag chosen by 10-fold cross-validation) show less variation across x relative
to the fitted median line, due to the shrinkage of each ; toward 0. This effect
is more visible for large quantiles. Such non-differential penalty can degrade per-
formance, unless the parameters are of comparable size. This adverse effect is
numerically evidenced in the large CV score of QR.L1 for ¢ = 0.9 in Table 3. For
q = 0.25 and 0.5, QR.L1 yields similar results to the other two methods in terms
of the CV scores.

6.2 Analysis of Language Data

Balota et al. (2004) conducted an extensive lexical decision experiment in which
subjects were asked to identify whether a string of letters was an English word or
a non-word. The words were monosyllabic, and the non-words were constructed
to closely resemble words on a number of linguistic dimensions. Two groups were
studied — college students and older adults. The data consist of response times
by word, averaged over the thirty subjects in each group. For each of word, a
number of covariates was recorded. Goals of the experiment include determining
which features of a word (i.e., covariates) affect response time, and whether the
active features affect response time in the same fashion for college students and
older adults. The authors make a case for the need to conduct and analyze studies
with regression techniques in mind, rather than simpler ANOVA techniques.
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Fic 10. Differences between fitted median line and the other fitted quantiles for standard quan-
tile regression (QR), modified quantile regression (QR.M), and {1 penalized quantile regression
(QR.L1) for the NHANES data. The dashed lines are the minimum and mazimum of the ob-
served heights.

Baayen (2007) conducts an extensive analysis of a slightly modified data set
which is available in his languageR package. In his analysis, he creates and se-
lects variables to include in a regression model, addresses issues of nonlinearity,
collinearity and interaction, and removes selected cases as being influential and /or
outlying. He trims a total of 87 of the 4568 cases. The resulting model, based on
“typical” words, is used to address issues of linguistic importance. It includes
seventeen basic covariates which enter the model as linear terms, a non-linear
term for the written frequency of a word (fit as a restricted cubic spline with
five knots), and an interaction term between the age group and the (nonlinear)
written frequency of the word.

We consider two sets of potential covariates for the model. The small set con-
sists of Baayen’s 17 basic covariates and three additional covariates representing
a squared term for written frequency and the interaction between age group and
the linear and squared terms for written frequency. Age group has been coded as
41 for the interactions. The large set augments these covariates with nine addi-
tional covariates that were not included in Baayen’s final model. Baayen excluded
some of these covariates for a lack of significance, others because of collinearity.

To investigate the performance of the LASSO and robust LASSO, a simulation
study was conducted on the 4568 cases in the data set. For a single replicate in the
simulation, the data were partitioned into a training data set and a test data set.
The various methods were fit to the training data, with evaluation conducted on
the test data. The criteria for evaluation were sum of squared differences between
the fitted and observed responses, either over all cases in the test data or over
the test data with the cases identified by Baayen as outliers removed. We refer
to these criteria as predictive mean square error (PMSE).

The simulation investigated several factors, including the amount of training

ge>18)
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data (10% of the full data, 20%, 30%, etc.), the regularization parameter A\, = kg,
and the method used to select the model. Three methods were used to select the
model (i.e., the fraction of the distance along the solution path): minimum C,,
generalized cross-validation, and 10-fold cross-validation on the training data.

The results of a 300 replicate simulation show a convincing benefit to use of
the robust LASSO. The benefit of the robust LASSO is most apparent when k& is
in the “sweet spot” ranging from 1.4 or so to well above 2.0. As expected, for very
small k& (near one), the robust LASSO may not perform as well as the LASSO.
The reduction in PMSE for moderate values of k, both absolute and percent, is
slightly larger when the evaluation is conducted after outliers (as identified by
Baayen-not by the fitted model) have been dropped from the test data set. The
benefit is largest for small training data sets and decreases as the size of the
training data set increases. For large training data sets (e.g., 90% of the data),
little test data remains for calculation of PMSE and the evaluation is less stable.
These patterns were apparent over all three methods of model selection. Figure
11 shows the results for a training sample size of 1827 cases (40% of the data),
with model selected by cross-validation, for a variety of values of k. The PMSE
for the robust LASSO dips below the mean PMSE for the LASSO for a wide
range of k. The figure also presents 95% confidence intervals, based on the 300
replicates in the simulation, for the difference between mean PMSE under the
robust LASSO and the LASSO. The intervals are indicated by the vertical lines,
and statistical significance is indicated where the lines do not overlap the mean
PMSE under the LASSO. The narrowing of the intervals is a consequence of
the greater similarity of LASSO and robust LASSO fits as the bending constant
increases. The patterns just described hold for both the small set of covariates
and the large set of covariates.

HHHHHHH”“” i:HHHMMMHHH

Fic 11. Predictive mean square error (PMSE) for the test data in the simulation study, after
removal of cases identified by Baayen as outliers. The horizontal line is the mean PMSE for the
LASSO while the points represent the mean of PMSEs for the robust LASSO. The vertical lines
have the width of approzimate 95% confidence intervals for the difference in mean PMSE under
the LASSO and robust LASSO. Panel (a) presents results for the small set of covariates and
panel (b) presents results for the large set of covariates.

In addition to using the test data as a target, we studied how well the two
methods could reproduce Baayens expert fit. This makes a good target for infer-
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ence, as there is evidence that humans can produce a better fit than automated
methods (Yu et al.; 2011). Taking a fitted surface as a target allows us to remove
the noise inherent in data-based out-of-sample evaluations. The results from a
5000 replicate simulation study with a training sample size of 400 appear in Fig-
ure 12. The criterion is sum of squared deviations (SSD) between the (robust)
LASSO fit and Baayens fit, with the sum taken over only those covariate values
contained in the test data set. The results presented here are for models selected
with the minimum C), criterion. The robust LASSO outperforms the LASSO over
a wide range of values for k for both the small and large sets of covariates.
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Fic 12. Sum of squared deviations (SSD) from Baayen’s fits in the simulation study. The hori-
zontal line is the mean SSD for the LASSO while the points represent the mean of SSDs for the
robust LASSO. The wvertical lines have the width of approzimate 95% confidence intervals for
the difference in mean SSD under the LASSO and robust LASSO. Panel (a) presents results for
the small set of covariates and panel (b) presents results for the large set of covariates.

Figures 11 and 12 reveal an interesting difference across targets in the behavior
of the small and large sets of covariates. When the target is an expert fit, as in
the second study, adding covariates not present in the expert’s model to the pool
of potential covariates allows the LASSO and robust LASSO to produce a near-
equivalent fit to the data, but with different coefficients for the regressors. An
examination of the variables present in the fitted models and their coefficients
uncovers patterns. As an example, the two covariates “WrittenFrequency” and
“Familiarity” appear in nearly all of the models for both the LASSO and the
robust LASSO, while Baayen includes only “WrittenFrequency” in his model,
and these covariate(s) have negative coefficients. Subjects are able to decide that
a familiar word is a word more quickly (and more accurately) than an unfamiliar
word. Although there seems to be no debate on whether this conceptual effect
of similarity exists, there are a variety of viewpoints on how to best capture the
effect. Regularization methods allow one to include a suite of covariates to address
a single conceptual effect, and this produces a difference between the LASSO and
robust LASSO fits on one hand and a least-squares, variable-selection style fit
on the other hand. The end result is that the regularized fits with the large set
of covariates show greater departures from Baayen’s fit than do regularized fits
with the small set of covariates. In contrast, under the data-based target of the
first study, the large set of covariates results in a smaller PMSE.
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7. DISCUSSION

In the preceding sections, we have laid out an approach to modifying model-
ing procedures. The approach is based on the creation of case-specific covariates
which are then regularized. With appropriate choices of penalty terms, the ad-
dition of these covariates allows us to robustify those procedures which lack ro-
bustness and also allows us to improve the efficiency of procedures which are very
robust, but not particularly efficient. The method is fully compatible with regu-
larized estimation methods. In this case, the case-specific covariates are merely
included as part of the regularization. The techniques are easy to implement, as
they often require little modification of existing software. In some cases, there is
no need for modification of software, as one merely feeds a modified data set into
existing routines.

The motivation behind this work is a desire to move relatively automated
modeling procedures in the direction of traditional data analysis (e.g., Weisberg
(2004)). An important component of this type of analysis is the ability to take
different looks at a data set. These different looks may suggest creation of new
variates and differential handling of individual cases or groups of cases. Robust
methods allow us to take such a look, even when data sets are large. Coupling
robust regression techniques with the ability to examine an entire solution path
provides a sharper view of the impact of unusual cases on the analysis. A second
motivation for the work is the desire to improve robust, relatively nonparametric
methods. This is accomplished by introducing case-specific parameters in a con-
trolled fashion whereby the finite sample performance of estimators is improved.

The perspective provided by this work suggests several directions for future
research. Adaptive penalties, whether used for robustness or efficiency, can be
designed to satisfy specified invariances. The asymmetric {5 penalty for modified
quantile regression was designed to satisfy a specified invariance. For a locally
constant residual density, it kept the 0 of the 1) function invariant as the width
of the interval of adjustment varied. Specific, alternative forms of invariance for
quantile regression are suggested by consideration of parametric driving forms
for the residual distribution. A motivating parametric model, coupled with in-
variance of the 0 of the 1] function to the size of the penalty term )\, yields
a path of penalties. Increasing the size of the covariate-specific penalty at an
appropriate rate leads to asymptotic equivalence with the quantile regression es-
timator. This allows one to fit the model nonparametrically while tapping into
an approximate parametric form to enhance finite sample performance. Similarly,
when case-specific penalties are applied to a model such as the generalized lin-
ear model, the asymmetry of the likelihood, coupled with invariance, suggests an
asymmetric form for the ¢; penalty used to enhance robustness of inference.

Following development of the technique for quantile regression, one can apply
the adaptive loss paradigm for model assessment and selection. For example, in
cross-validation, a summary of a model’s fit is computed as an out-of-sample
estimate of empirical risk and the evaluation is used for choosing the model (pa-
rameter value) with the smallest estimated risk. For model averaging, estimated
risks are converted into weights which are then attached to model-specific predic-
tions that are then combined to yield an overall prediction. The use of modified
loss functions for estimation of risks is expected to improve stability and efficiency
in model evaluation and selection.
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APPENDIX

Proof of Theorem 2.
Let u; := y; — x; B(q) and consider the objective function

(13) Z3(6) =Y {pg(ui — 2 5/v/n) — pg(us)}.
1=1

Note that Z7(8) is minimized at &, := /n(8)—pB(q)), and the limiting distribution
of 0, is determined by the limiting behavior of Z,,(§). To study the limit of Z; (4),
decompose Z,,(§) as

Z30) = Y Apylui — ] 6/v/m) = pg(ui — ] 6/v/m)} + > {pg(ui — 2] 6/v/n) — pq(ui)}
i=1 i=1

= > {pg(ui — 2 8/3/n) = py(ui — 2] 6/v/n)} + Za(9),
i=1

where Z,(8) := S0 {pg(wi — . 6//1) — pg(u;)}. By showing that the first sum
converges to zero in probability up to a sequence of constants that do not depend
on ¢, we will establish the asymptotic equivalence of ﬁ% to ﬁn

Given M\, = cn®, first observe that

E{Pl}(uz’ - x;'—é/\/ﬁ) — pg(ui — x;'—(S/\/ﬁ)} +q(1 - q)/2)‘v

_ /(1—q)/m+x?5/\/ﬁ ﬁi(u B xjg)2 o :cja) -9 £+ u)du
x]8/v/n 21-4¢ vn Vn 2, )
@ §/vn M 1—gq ) ) q(1—q)
+/ (i—u— )2 (g —1)(u— ")+ >fi£i—|—udu
—a/\rals/vm \ 2 4 ( vn S =l \/ﬁ) 20, ( )
(1=q)/ A+ 8/v/n T _a\2
— / ! ﬁL(u_st_u) £i(& + w)du
al6/Vn 21-q Vi

z]6/vn _ T 2
+/ &¥<u— Ti 6+i> fi(& + w)du.
~aftasE 24 Vi Ay

Using a first-order Taylor expansion of f; at & from the condition (C-2) and the
expression above, we have

EZ{pg(u, — x:5/\/ﬁ) — pglu; — 33:‘5/\/5)} +ng(l—q)/2),
i=1

6¢ Vn

Note that S°1, f/(&)x) §/v/n = O(y/n) as f/(&), i = 1,...,n are uniformly
bounded from the condition (C-2), and |z, 8| < |lzill2]l0ll2 < (||l + [|6]|2)/2
while Y7, [|#;]|3 = O(n) from the condition (C-3). Taking C,, := —¢q(1 — q)/(2cn® 1)+
q(1 —q)/(6c*n2*) Y1 | fi(&), we have that

(1-q)y (1—q) &= FE)T5 | o
= 1 Wi ;fi(&')Jr q6c2n2z ZZ:; ; +o(n~2et1/2),

EZ{pg(uZ — ] 5/\n) — pglui — ] 5//n)y — Cp =0 if a > 1/4.
i=1
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Similarly, it can be shown that

VarZ{pq i — 2 6/v/n) — pglu; — x] 5//n)}

q 1—(] fz(gz) —3a+1 .
Z sodga T oln ) =0 ifa>1/3.

Thus, if a >1/3,
Zpg(ui — ] 6/y/n) — py(u; — x} §//n) — C,, — 0 in probability.
i=1

This implies that the limiting behavior of Z,)(§) is the same as that of Z,,(§). From

the proof of Theorem 4.1 in Koenker (2005), Z,(9) 4 5TW $0" D16, where
W ~ N(0,q(1 — q)Dp). By the convexity argument in Koenker (2005) (see also
Pollard (1991), Hjort and Pollard (1993), and Knight (1998)), 4,,, the minimizer
of Z1(8), converges to by := D{'W, the unique minimizer of —§ W + 207Dy
in distribution. This completes the proof. O
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