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Abstract

We consider statistical procedures for feature selectfimeld by a family of regularization problems
with convex piecewise linear loss functions and penaltiés wature. Many known statistical procedures
(e.g. quantile regression and support vector machines/yittorm penalty) are subsumed under this
category. Computationally, the regularization problemesla@ear programming (LP) problems indexed
by a single parameter, which are known as ‘parametric cosbtLparametric right-hand-side LP’ in
the optimization theory. Exploiting the connection witlethP theory, we lay out general algorithms,
namely, the simplex algorithm and its variant for geneiatiegularized solution paths for the feature
selection problems. The significance of such algorithmisasthey allow a complete exploration of the
model space along the paths and provide a broad view of parsfeatures in the data. The implications
of the general path-finding algorithms are outlined for a$éatistical procedures, and they are illustrated
with numerical examples.

Keywords: Grouped Regularizatiori;-Norm Penalty, Parametric Linear Programming, Quantile Re
gression, Simplex Method, Structured Learning, SuppoctdfeMachines

1 Introduction

Regularization methods cover a wide range of statisticatguiures for estimation and prediction, and they
have been used in many modern applications. To name a fewpdes are ridge regression (Hoerl and
Kennard, 1970), the LASSO regression (Tibshirani, 199@pathing splines (Wahba, 1990), and support
vector machines (SVM) (Vapnik, 1998).

Given a training data sef(y;,x;) : X; € RP;¢ = 1,--- ,n}, many statistical problems can be phrased
as the problem of finding a functional relationship betwdsa ¢ovariatesx € RP, and the responsg
based on the observed pairs. For example, a regularizatimoah for prediction looks for a model or a rule
f(x; B) with unknown parameter8 that minimizes prediction error over the training data elubntrolling
its model complexity. To be precise, 1€y, f(x;3)) be a convex loss function for the prediction error
of f over a casdy,x) and J(f) be a convex penalty functional that measures the model @xitylof



/. Formally, the solution to a regularization problem is defirio bef with the model paramete;ﬁ% that
minimizes

f:ﬁ(yi,f(xi;,@))+/\‘e](f)> 1)
i=1

whereX > 0 is a pre-specified regularization parameter. R#etermines the trade-off between the pre-
diction error and the model complexity, and thus the qualftihe solution highly depends on the choice of
. ldentification of a proper value of the regularization paeter for model selection or a proper range for
model averaging is a critical statistical problem. Note ﬁi(ak) is a function of\. As in (1), each regular-
ization method defines a continuum of optimization probl@mexed by a tuning parameter. In most cases,
the solution as a function of the tuning parameter is expetiechange continuously with. This allows
for the possibility of complete exploration of the model spas\ varies, and computational savings if (1)
is to be optimized for multiple values of

Alternatively, the regularization problem in (1) can benfodated to bound the model complexity. In
this complexity-bounded formulation, the optimal paraengtare sought by minimizing:

> L(yi, f(xi; 8)) subject toJ (f) < s, 2)
i=1

wheres is an upper bound of the complexity.

For a certain combination of the logsand the complexity measuté, it is feasible to generate the
entire solution path of the regularization problem. Hehne, path refers to the entire set of solutions to the
regularization problem, for instanc;é(k) in (1) as a function of (orﬁ(s) in (2) as a function of s). Some
pairs of the loss and the complexity are known to allow suach &nd efficient path finding algorithms;
for instance, LARS (Efron et al., 2004), the standard bir¥M (Hastie et al., 2004), the multi-category
SVM (Lee and Cui, 2006), and tlig-norm quantile regression (Li and Zhu, 2008). Rosset and(Z2007)
study general conditions for the combination ®fand J such that solutions indexed by a regularization
parameter are piecewise linear and thus can be sequesgtialtgcterized. They provide generic path-finding
algorithms under some appropriate assumptiong and.J.

In this paper, we focus on an array of regularization metfamaed for feature selection with penalties
of [; nature and piecewise linear loss functions. Many existioggdures are subsumed under this category.
Examples include thg-norm SVM (Zhu et al., 2004) and its extension to the mukiissl case (Wang and
Shen, 2006)/;-norm quantile regression (Li and Zhu, 2008), Sup-norm rualtegory SVM (Zhang et al.,
2006), the functional component selection step (calldtep”) for structured multi-category SVM (Lee
et al., 2006), and the Dantzig selector (Candes and Tao)20@also note that theinsensitive loss in the
SVM regression (Vapnik, 1998) fits into the category of a pigise linear loss. As for the penalty, the sup
norm gives rise to a linear penalty just as theorm in general, and so does a certain combination of the
Iy norm and the sup norm for desired grouping and clusteringatfifes such as OSCAR penalty (Bondell
and Reich, 2008).

There is a great commonality among these methods. Thatrigpu@ationally the associated optimiza-
tion problems are all linear programming (LP) problems ksiteby a single regularization parameter. This
family of LP problems are known as tlparametric costinear programming and have long been studied in
the optimization theory. There already exist general dlgos for generating the solution paths of paramet-
ric LP in the literature. See Saaty and Gass (1954) and GasSaaty (1955a,b) for example. Despite the
commonality, so far, only case-by-case treatments of cdéatipn for some of the procedures are available as



in Zhu et al. (2004); Li and Zhu (2008) and Wang and Shen (20@Bhough Wang and Shen (2006) notice
that those solution path algorithms have fundamental adiores with theparametric right-hand-sidé.P
(see (8) for the definition), such connections have not bdequately explored for other problems with full
generality. As noted, Rosset and Zhu (2007) have a compseetake on the computational properties of
regularized solutions. However, they did not tap into thethiddry for general treatments of the problems of
the current focus. Rather, their approach centers on methitk loss functions of certain forms which need
notion of residual and thg norm penalty primarily, and adheres to a specific structfithe associated
computational problems. With the LP formalism, the scopeelaited methods and computational problems
to handle can be broader, and their treatment can be far reoerg.

The goal of this paper is to make it more explicit the link bedén the parametric LP and a family of
computational problems arising in statistics for featuekeation via regularization and put those feature
selection problems in perspectives. Linear programmiogrigjues, in fact, have been used in statistics for
many other applications as well. For example, the leastlatesdeviation (LAD) regression, also known
asL; regression in robust statistics, involves LP. See Wagrésqt Fisher (1961); Bloomfield and Steiger
(1980) for reference and also Bloomfield and Steiger (1988)hfstorical background, algorithms, and
comprehensive literature on the subject. More generaligntle regression entails LP and parametric
LP, in particular, when regression fits for every quantileapaeter are sought. See Chapter 6 of Koenker
(2005) and references therein for computational aspectpiaitile regression. The main focus of this
paper is on parametric LP as a computational device to sysieaily explore a potentially large model
space with a modular treatment of each feature selectiohadainder consideration. To this end, we pull
together relevant results from the linear programmingditre and summarize them in an accessible and
self-contained fashion.

Section 2 begins with an overview of the standard LP and petrgerlLP problems, and gives a brief
account of the optimality conditions for their solutionsecBon 3 presents the simplex algorithm and the
tableau-simplex algorithm for finding the entire soluticaths of the parametric LP problems. Section 4
describes a few examples of LP for feature selection, paaapty their computational elements in the LP
terms. A detailed comparison of the simplex algorithm with existing algorithm for thé -norm SVM
(Zhu et al., 2004) is given in Section 5, highlighting the getlity of the proposed approach. Numerical
examples and data application of the algorithm follow int®e&c6 for illustration. Technical proofs except
for the key theorems are collected into Appendix.

2 Linear Programming

Linear programming (LP) is one of the cornerstones of tharopation theory. Since the publication of the
simplex algorithm by Dantzig in 1947, there has been a widgeaf LP applications in operation research,
microeconomics, business management, and many othereengig fields. We give an overview of LP
here and describe the optimality conditions of the LP sofupertinent to our discussion of path-finding
algorithms later. Some properties of the LP to be descrilbedvall known in the optimization literature,
but they are included here for completeness along with @meiofs. Our treatment of LP closely follows
that in standard references. See Dantzig (1951); Murty3%98ill et al. (1991); Vanderbei (1997), and
Bertsimas and Tsitsiklis (1997). Some LP references comtigicussions of the parametric LP; see Murty
(1983) and Bertsimas and Tsitsiklis (1997), for example &ass and Saaty (1955a,163al (1979) for
earlier references. The readers are referred to them agidneks therein for more complete discussions.
Section 2.1 reviews basic notions in LP to mathematicallgratterize the optimality of a solution,
directly based on Section 3Qptimality Conditionsf Bertsimas and Tsitsiklis (1997). Section 2.2 describes



the important implications of the LP optimality conditioorfthe parametric LP, mainly from Murty (1983),
Section 8.2The parametric cost simplex algorithm

2.1 Standard Linear Programs

A standard form of LP is

minN cz
zER
st. Az=0D (3)

z >0,

wherez is an N-vector of variablesg is a fixed N-vector,b is a fixedM-vector, andA is anM x N fixed
matrix. Without loss of generality, it is assumed thdt< N andA is of full row rank.

Geometrically speaking, the standard LP problem in (3)$dok the minimum of a linear function over
a polyhedron whose edges are defined by a set of hyperplaheeefdre, if there exists a finite solution for
the LP problem, at least one of the intersection points (&iyrcalled basic solutions) of the hyperplanes
should attain the minimum. For formal discussion of theroptity, a brief review of some terminologies in
LP is provided. Let\" denote the index sétl, - - - , N} of the unknownsz, in the LP problem in (3).

Definition 1 A setB* := {Bf,---, By} C N is called a basic index set, Kg- := [Aps,--- ,Ap: ]is
invertible, whereA s is the B/th column vector ofA fori = 1,---, M. Ag- is called the basic matrix

associated with3*. Correspondingly, a vectat* € RY is called the basic solution associated wigh, if
z* satisfies

* * * -1
ZB* = (ZBT7... ’ZBX{)/:AB*b
2= 0forj € N'\ B

Definition 2 Letz* be the basic solution associated wis.
e 2" is called a basic feasible solutionzif;. > 0;
e 2" is called a non-degenerate basic feasible solutiogiif > 0;

e 2" is called a degenerate basic feasible solutiorzjf. > 0 and z;. = 0 for somei € M :=
{17 o 7M},

e z* s called an optimal basic solution #* is a solution of the LP problem.

Since each basic solution is associated with its basic isdgxthe optimal basic solution can be identi-
fied with the optimal basic index set as defined below.

Definition 3 A basic index seB* is called a feasible basic index sel‘Aflg*lb > 0. A feasible basic index
set5* is also called an optimal basic index set if

[c— A/ (Agf)/cz;*] > 0.

The following theorem indicates that the standard LP proltan be solved by finding the optimal basic
index set.



Theorem 4 For the LP problem in (3), let* be the basic solution associated wifti, an optimal basic
index set. Ther* is an optimal basic solution.

Proof We need to show'z > c'z* or ¢(z — z*) > 0 for any feasible vectoz ¢ R with Az = b and
z > 0. Setd := (dy,--- ,dn) := (2 — 2*). From

Ad=Apdp-+ > Aid;=0,

ieN\B*
we have
dg- =~ Y ApAid;.
ieN\B*
Then,

d(z—2z") = dd=cCpdp-+ » Cd;
1eEN\B*

= Z (Ci — C/B*Al_g*lAZ)dl
ieN\B*

/
Recall that fori € V'\B*, 2} = 0, which impliesd; := (z;—z;) > 0. Togetherwith{c— A’ (Ag&) CB*] >
0, it ensureqc; — C’B*Ag}Ai)di > 0. Thus, we have’d > 0. [ ]

2.2 Parametric Linear Programs

In practical applications, the cost coefficientsr the constraint constanitsin (3) are often partially known
or controllable so that they may be modeled linearlyas A\a) or (b + wb*) with some parametersand
w € R, respectively. A family of regularization methods for @ selection to be discussed share this
structure. Of main interest in this paper is generation efsthlution path indexed by the control parameter
(orw) as it corresponds to a trajectory of possible models origtied rules produced by each regularization
method in the family. Although every parameter value creataew LP problem in the setting, it is feasible
to generate solutions for all values of the parameter viaeatipl updates. The new LP problems indexed
by the parameters andw are called the parametric-cost LP and parametric rightHsaae LP, respectively.
The standard form of a parametric-cost LP is defined as

min  (c+ Aa)'z
ze RN

st. Az=D 4)
z > 0.

Since the basic index sets of the parametric-cost LP do rmerdkon the parametey; it is not hard
to see that an optimal basic index #&tfor some fixed value oh would remain optimal for a range of
values, say|), \]. The interval is called the optimality interval & for the parametric-cost LP problem.
The following result adapted from Section 8.2.1 of Murty &89 shows how to find the lower and upper
bounds of the interval, given a fixed valuexafsay,\* and the associated optimal basic index/set



Corollary 5 For afixed\* > 0, let B* be an optimal basic index set of the problem in (4) at \*. Define

¢t
A= max —ZL (5)
& >0 e N\B*} %

- op
and X:= min —Z I,
& <0jeN\B*} aj
whered; := a; —_ag*AgEAj andc; :=¢; — C’B*AgEAj for j € V. Then,B* is an optimal basic index set
of (4) for A € [\, A], which includes\*.

Proof From the optimality of3* for A = \*, we haveAg*lb > 0and

/ /
{c— A’ (Agi) CB*] + A" {a— A’ (Agf) ag*} >0,
which implies that; + A*a; > 0 for j € N. To find the optimality interval), \] of B*, by Theorem 4, we
need to investigate the following inequality for each N

€ + A& > 0. (6)

It is easy to see tthg}AB; =g fori e M sinceAB; is theith column ofAg-. Consequently, the
jth entries of(¢’ — ¢z Ag! A) and(a — ajz. Az’ A) are both 0 forj € B*, andc’ + A& = 0 for any \. So,
the inequality holds for ank € R and;j € B*. Whena; > 0 (or a; < 0) for j € (NM'\ B*), (6) holds if and
only if A > —é;/aj- (ora < —Cj-/a’;). Thus, the lower bound and the upper bound of the optimadigrval
of B* are given by the\ and\ in (5). [ |

Note that?; anda; define the relative cost coefficient of. Since the number of basic index sets is finite
for fixed A, there exist only a finite number of optimal basic index séthe problem in (4). Corollary 5
also implies that a version of the solution path of the pnwbées a function o\, z()), is a step function.

On the other hand, if the parametric cost LP in (4) is recaiterform of (2), then the stepwise constant
property of the solution path changes. The alternative d¢exitg-bounded formulation of (4) is given by

min cz
zeRN,§eR
s.t. Az =D 7)
dz+0=s
z>0,0>0.

It can be transformed into a standard parametric right-+tsiahel LP problem:

min c'z
7z € RN+1
s.t. Az =1b + wb* (8)
7z >0
) z C b « |0 A O
bysettmgw:s,z:[5},@:[0]%:[0],110 _{1],andA_[a, 1].Not(—:‘thatwhen

A'in (8) is of full row rank, so isA\. Let B* be an optimal basic index set of (8)at= w*. Similarly, we

can show thaf* is optimal for anyw satisfyingzy- = A; (b +wb™) > 0, and there exist andw such

that®B* is optimal forw € [w,@]. This implies that a version of the solution path of (8) is@cewise linear
function.



3 Generating the Solution Path

Standard techniques for solving LP include simplex metlhdl simplex method, tableau method, and
interior point methods. Interior point methods (Karmarke®84; Wright, 1992; Mehrotra, 1992; Wright,
1997) can be more effective in solving some large scale spaPsproblems than the simplex method.
However, they are generally perceived to lack an efficientnwstarting scheme, which is important in
generating the entire regularized solution path. For theam, variants of simplex algorithms are considered
in this paper.

Based on the basic concepts and the optimality conditiorPoihtroduced in Section 2, we describe the
simplex and tableau-simplex algorithms to generate thatisol paths for (4) and (7). A similar treatment
of the parametric LP can be found in Saaty and Gass (1954)pandescription of the tableau-simplex
algorithm is mainly adapted from Section 8.2 of Murty (1983)

Since the examples of the LP problem in Section 4 for featellexton involve non-negative, A, ands
only, we assume that they are non-negative in the followiggrdhms and take = 0 (equivalently\ = co)
as a starting value.

3.1 Simplex Algorithm

3.1.1 Initialization

Let 20 := (z{,---,2%) denote the initial solution of (7) a = 0. &2’ = 0 implies 2} = 0 for all
j & Iy :={i:a = 0,5 € N}. Thus, by extracting the coordinates @fz, and the columns i
corresponding td@,, we can simplify the initial LP problem of (4) and (7) to

min cr, 27,
27, (< R‘Ia‘
s.t. AIazIa =b > (9)
ZTa > 0

where|Z,| is the cardinality ofZ,. Accordingly, any initial optimal basic index sé?) of (4) and (7) contains
that of the reduced problem (9) and determines the inititaitiem z°.

3.1.2 Main Algorithm

For simplicity, we describe the algorithm for the soluticattpof the parametric-cost LP problem in (4) first,
and then discuss how it also solves the complexity-boundegrbblem in (7).

Let B! be thelth optimal basic index set &t = \;_;. For convenience, defing_; := oo, the starting
value of the regularization parameter for the solution dtt4). GivenZ3', let z! be thelth joint solution,
which is given byzh, = AL'b andz} = 0for j € N\ B'. Since the optimal LP solution is identified by
the optimal basic index set as in Theorem 4, it suffices toritesbow to update the optimal basic index set
as\ decreases. By the invertibility of the basic matrix asseciavith the index set, updating amounts to
finding a new index that enters and the other that exits thetibasic index set.

By Corollary 5, we can compute the lower bound of the optitydhiterval of B! denoted by)\; and
identify the entry index associated with it. Let

y ¢
gt= arg max —g : (10)

{5:4 >05€ W\B)}



whered, = (a; — ;A A;) andel = (c; — ¢y ALl A;j). Then, the lower bound is given by =
—ég.l/aé.l, andB! is optimal for\ € [\, \i_1].

To determine the index exitingg’, consider the moving direction frora' to the next joint solution.
Defined’ := (d},--- ,dl) as

diy = —Ag Ay, dy =1, and (11)
di =0forie N\ (B'U{j'}).

Lemma 13 in Appendix shows thét is the moving direction ak = ), in the sense that!*! = 2! + 7d’
for somer > 0. For the feasibility ofzl*t! > 0, the step size can not exceed the minimum efzﬁ/dﬁ for
i € Bl with d. < 0, and the index attaining the minimum is to lea¥e Denote the exit index by

2l
i':=  arg min <——§> . (12)

ie{s: d§.<0, jeEB} i

Therefore, the optimal basic index setat= ), is given byB'*! := B U {51\ {i'}. More precisely, we
can verify the optimality of3'+! at A\ = \; by showing that

/
(C + )\la) —A (A[_gll+l) (CBZ+1 + )\laBz+1) (13)
/
= (c+Na)—A <Ag}) (Cg + Nag).

The proof is given in Appendix B. Then the fact that is optimal atA = ); implies thatB!*! is also
optimal atA = );. As a result, the updating procedure can be repeatedBtithand)\; successively until
A< 0Oor equivalently(:g.l > 0. The algorithm for updating the optimal basic index setalimmmarized as
follows.

1. Initialize the optimal basic index set at ; = oo with B°,

2. Givens', theith optimal basic index set at= \;_, determine the solution’ by 2!, = Agllb and
zh =0forj e N\ B.

3. Find the entry index

jt= arg max ——= .
j:a§>0;jeN\Bl éé

4. Find the exit index

Sl

il = argmin (—Z—l> .
ie{j: d§<0, jeBL} di
If there are multiple indices, choose one of them.
5. Update the optimal basic index setdo = B' U {;j'} \ {i'} and)\;_; to ;.

6. Terminate the algorithm ifg.l > 0 or equivalently); < 0. Otherwise, increaskeby 1 and repeat 2 —
5.



If —z!,/d., = 0, thenz! = 2'*!, which may result in the problem of cycling among severalbmslex
sets with the same solution. We defer the description ofghkeau-simplex algorithm which can avoid the
cycling problem to Section 3.2. For brevity, we just assuha ! + 7d' > 0 for somer > 0 so that
zl # Z!*1 for eachl and call thisnon-degeneracgssumption. Under this assumption, suppose the simplex
algorithm terminates aftef iterations with{(z!,\;) : I = 0,1,---,J}. Then the entire solution path is
obtained as described below.

Theorem 6 The solution path of (4) is

P for A > Ao
z! forhy <A< X\_i, [=1,---,J (14)
2l + (1 —7)2H forA=XNandr €[0,1],1=0,---,J — 1.

Likewise, the solutions to the alternative formulation 8f (ith the complexity bound can be obtained
as a function ofs. By the correspondence of the two formulations, ttejoint of the piecewise linear
solution is given by; = &'z, and the solution between the joints is a linear combinatiosf andz!*! as
described in Theorem 7 below. Its proof is in Appendix C. T® brest of our knowledge, this direct proof
of the piecewise linearity of the solution to (7) in the paadrit right-hand-side LP formulation is new.

Theorem 7 For s > 0, the solution path of (7) can be expressed as

Si+1 — S 1 S— 81 _J+1

z z ifs;<s<syiandl=0,---,J—1
St —si° TS s Col= 1 T

z’ if s> sj.

Notice that when indexed by, the solutions at the joints; are not unique, but when parametrizedshy
the solution path is expressed uniquely as a piecewiser lfaaation of s by tracing those line segments of
two consecutive joint solutions. In essence, the solutireerated by the simplex algorithm @medexed by
the optimal basic index set¥, and the sequences &f ands; are completely determined I/ as a result.
Hence, to the extent that the optimal basic index sets apialyi determined, the regularized solution path
is defined uniquely.

3.2 Tableau-Simplex Algorithm

The non-degeneracy assumption in the simplex method tgatvenconsecutive joint solutions are different
may not hold in practice for many problems. When some coluonfna basic matrix are discrete, the
assumption may fail at some degenerate joint solutions.e@bwlith more general settings where the cycling
problem may occur in generating the LP solution path by thgpkx method, we discuss thableau-
simplexalgorithm.

A tableau refers to a matrix which contains all the inforrmatabout the LP. It consists of the relevant
terms in LP associated with a basic matrix such as the bakit@oand the cost.

Definition 8 For a basic index seB*, its tableau is defined as

zeroth column  pivot columns
—1 —1
cost row —CgAgb =g ABA
penalty row| —ag.Agzlb & —aAgA
pivot rows Azlb Ag A

9



We follow the convention for the names of the columns and rowthe tableau. For reference, see
Murty (1983) and Bertsimas and Tsitsiklis (1997). Note thatzeroth column contams% = AB*lb the
non-zero part of the basic solutiongy;. Az'b = —¢'z*, the negative cost, andaj. Ay z*, the
negative penalty ot* associated with8*, and the pivot columns contait}’s and&’s. The algorithm to
be discussed updates the basic index sets by using theualgzarticular, by ordering some rows of the
tableau. To describe the algorithm, we introduce the leyiaphic order of vectors first.

L

Definition 9 For v andw € R", we say thab is lexicographically greater tham (denoted by > w) if
L

the first non-zero entry af — w is strictly positive. We say that is lexicographically positive i > 0.

Now, consider the parametric-cost LP in (4).

3.2.1 |Initial Tableau

With the index set3Y, initialize the tableau. Smce%0 = ABOb > 0 and the columns oA can be
rearranged such that the submatrix with the fivrétcolumns ofA BOA is |, we assume that the pivot rows,
[Ago b ABO A], of the initial tableau are lexicographically positive. dther words, there is a permutation
T N N which mapsB® to M := {1,--- , M}, and we can replace the problem with thg@ermuted
version (e.9.zxv) andA ).

3.2.2 Updating Tableau

Given the current optimal basic index 4t the current tableau is

zeroth column  pivot columng
cost row —CuAL 1b ¢ — AL A
penalty row| —a, A a — ay, A 'A
pivot rows AB}b A A

Suppose all the pivot rows of the current tableau are lexaqgjcally positive. The tableau-simplex al-
gorithm differs from the simplex algorithm only in the wayetlexit index is determined. The following
procedure is generalization of Step 4 in the simplex algorifor finding the exit index.

Step 4. Letu! = (ul, -, u};) = Ag'A,. Foreachi € M with u} > 0, divide theith pivot row
(including the entry in the zeroth column) bzﬁl And, among those rows, find the indeX, of the lexico-
graphically smallest row. Thew, := B!, is the exit index.

Remark 10 Sinceu! = dBl, if i in (12) is unique Withzf.l > 0, then it is the same as the lexicographically
smallest row that the tableau-simplex algorithm seeks. cdeahe two algorithms coincide. The simplex
algorithm determines the exit index based only on the zemiilmn in the tableau while the lexicographic
ordering involves the pivot columns additionally. The oyatlity of B for A € [\, \;_1] immediately follows
by the same Step 3, and (13) remains to hold true for the adéiii of the tableau-simplex algorithm, which
implies the optimality oB‘t! at A = ).

Some characteristics of the updated tableau associatedit are described in the next theorem. The
proof is adapted from that for the lexicographic pivotintgrim Bertsimas and Tsitsiklis (1997) p. 108—-111.
See Appendix D for details.

10



Theorem 11 For the updated basic index sBt™! by the tableau-simplex algorithm,
i) all the pivot rows of the updated tableau are still lexicaghically positive, and

i) the updated cost row is lexicographically greater thawat for B'.

SinceAl;ﬂlb is the ‘zeroth column’ of the pivot rows, i) says that the basilution for3'*! is feasible,
i.e., z/*1 > 0. Moreover, it implies that the updating procedure can beatgr with3!+! and the new
tableau.

It is not hard to see that'™! = 2! if and only if z;, = 0 (see the proof of Theorem 11 in the Appendix
for more details). When!, = 0, z/*! = 2!, however the tableau-simplex algorithm uniquely updéate's
such that the previous optimal basic index g&s never reappear in the process. This anti-cycling prgpert
is guaranteed by ii). By ii), we can strictly order the optirhasic index set#'’ based on their cost rows.
Because of this and the fact that all possible basic indexaget finite, the total number of iterations must
be finite. This proves the following.

Corollary 12 The tableau updating procedure terminates after a finite memof iterations.

Suppose that the tableau-simplex algorithm stops aftéerations withA; < 0. In parallel to the
simplex algorithm, the tableau-simplex algorithm outptlis sequencé(z', s;, \;) : I = 0,--- ,.J}, and
the solution paths for (4) and (7) admit the same forms as eofldm 6 and Theorem 7 except for any
duplicate joints\; ands;.

4 Examples of LP for Regularization

We provide several concrete examples of LP problems thed aristatistics for feature selection via regular-
ization. For each example, we identify the elements in thiedsird LP form, and discuss their commonalities
across different examples and how they can be utilized faierfit computation.

4.1 [;-Norm Quantile Regression

Quantile regression is a regression technique, introdbgagdoenker and Bassett (1978), intended to esti-
mate conditional quantile functions. It is obtained by egplg the squared error loss of the classical linear
regression for the conditional mean function with a piesewinear loss called the check function. For a
general introduction to quantile regression, see Koenkdrtallock (2001).

For simplicity, assume that the conditional quantiles @medr in the predictors. Given a data set,

{(Xi,yi) : X; € RP,y; € R,i=1,--- ,n}, therth conditional quantile function is estimated by
min s T \Yi — — X ’
o N iz Pr (Ui = Bo — i) (15)
whereg8, and3 := (01,...,0,)" are the quantile regression coefficients foe (0, 1), andp,(-) is the

check function defined as

() = Tt fort >0
Prit) = —(1—=7)-t fort<o.

For example, when = 1/2, the median regression function is estimated. The starglaadtile regression
problem in (15) can be cast as an LP problem itself. BarrodatkRoberts (1973) propose an improved
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tableau-simplex algorithm for median regression. Koerdwat D’'Orey (1987) modify the algorithm to
process quantile regression. Koenker and D’Orey (1994hdurgeneralize the algorithm for enumeration
of the entire range of quantile functions parametrizee ldyeating it as a parametric cost LP problem. Since
the problem is somewhat different from an array of statistaptimization problems for feature selection
that we intend to address in this paper, we skip discussitinedfopic and refer the readers to Koenker and
D’Orey (1994) and Koenker (2005).

Aiming to estimate the conditional quantile function sitanleously with selection of relevant predic-
tors, Li and Zhu (2008) propose tlignorm quantile regression. It is defined by the following stoained
optimization problem:

Bo € R,
s.t. 18l < s,

{ miﬂne . Z?:l Pr (yz - 60 - XZIB)

wheres > 0 is a regularization parameter. Equivalently, with anottugiing parameten, the /;-norm
guantile regression can be recast as

- 7‘1 7 1- i)— A
Bo € R7ﬁr2|’]lgp,c eR" ZZ:I{T(C )+ + ( T)(C ) } + HBHl (16)
s.t. ﬂo—i—xiﬁ—l—gi:yifori:l’...7n’
where (z)4+ = max(z,0) and (z)- = max(—z,0). Now it is straightforward to formulate (16) as an

LP parametrized by, which is a common feature of the examples discussed in ¢igos. For the non-
negativity constraint in the standard form of LP, considethlpositive and negative parts of each variable
and denote, for examplé(3)+, ..., (B,)+) by 8T and((81)—,...,(B,)-) by B~. Note that3 = BT —

B~ and thd;-norm||B||; := >°F_, |B:| is given byl’ (31T +37) with 1 := (1,--- , 1)’ of appropriate length.
LetY := (y1, - ,yn) , X:= (X}, , X)), ¢ := (¢1,- -+ ,¢n)/,and0 := (0, - - - ,0) of appropriate length.
Then the following elements define thenorm quantile regression in the standard form of a paracredst

LP in (4):

z= ( By By (B B) ) &) )
c= ( 0 0 0’ 0’ 1 (1-7)1 )
a— (0 o U 1 o o Y
A= (1 -1 X =X I )
b:=Y

with a total of N = 2(1 + p + n) variables and// = n equality constraints.

4.2 [;-Norm Support Vector Machine

Consider a binary classification problem wherec {—1,1},7 = 1,--- ,n denote the class labels. The
Support Vector Machine (SVM) introduced by Cortes and VaR95) is a classification method that
finds the optimal hyperplane maximizing the margin betwéerctasses. It is another example of a regular-
ization method with a margin-based hinge loss and the ridgeession typé, norm penalty. The optimal
hyperplane §, + x3 = 0) in the standard SVM is determined by the solution to the igrob

min Z{l—yi (50+Xi,3)}++>\||13”%a
i=1

Bo € R,BeERP
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whereX > 0 is a tuning parameter. Replacing thenorm with thel; norm for selection of variables,
Bradley and Mangasarian (1998) and Zhu et al. (2004) artigevariant of the soft-margin SVM:

min PG A
{ﬁoemeww Y6+ + MBI .

s.t. yi(Bo +%83) + ¢ =1fori=1,--- ,n.

Similarly, thisi;-norm SVM can be formulated as a parametric cost LP with tHeviiing elements in the
standard form:

z:= (B B, (B 0 (i N (S A
c=( 0 0 0’ 0’ 1 o
a= ( 0 0 1 1 0’ o
A= (Y -Y diagY)X —diagY)X | 1)
b:= 1.

This example will be revisited in great detail in Section 5.

4.3 [;-Norm Functional Component Selection

We have considered only linear functions in the originalalaes for conditional quantiles and separating
hyperplanes so far. In general, the techniqug oform regularization for variable selection can be extended
to nonparametric regression and classification. Althoughyrdifferent extensions are possible, we discuss
here a specific extension for feature selection which is waugtied to a wide range of function estimation
and prediction problems. In a nutshell, the space of lingactfons is substituted with a rich function space
such as a reproducing kernel Hilbert space (Wahba, 199®Ii&géf and Smola, 2002) where functions
are decomposed of interpretable functional componentd,tla® decomposition corresponds to a set of
different kernels which generate the functional subspates an ANOVA-like decompaosition of with,
say,d components b¢ = f1 +--- + fyandK,,v = 1,...,d be the associated kernels. Non-negative
weightsé, are then introduced for recalibration of the functional pamentsf,. Treatingf,’s as features
and restricting thé; norm of@ := (64, ..., 6,)’ akin to the LASSO leads to a general procedure for feature
selection and shrinkage. Detailed discussions of the ida@e found in Lin and Zhang (2006); Gunn and
Kandola (2002); Zhang (2006); Lee et al. (2006). More gdhendicchelli and Pontil (2005) treat it as a
regularization procedure for optimal kernel combination.

For illustration, we consider thef“step” of the structured SVM in Lee et al. (2006), which ygld
another parametric cost LP problem. For generality, cansd-category problem with potentially different
misclassification costs. The class labels are codek-bgctors;y; = (v}, ... ,yf)' denotes a vector with
yf = land—1/(k — 1) elsewhere if theth observation falls into clasg. L(y;) = (L}Ji,...,L’;Z_) is
a misclassification cost vector, Whef_é/ is the cost of misclassifying asj’. The SVM aims to find
f=(f"..., ¥ closely matching an appropriate class cgdgivenx which induces a classifief(x) =
argmax,—;__x f7(x). Suppose that eacH is of the formg3] + hi (x) == 35+ S, B/ S0, 6, K, (x;, X).
Define the squared norm éf as||h/[|% := (37) (Z,‘f;l 9,,/C,,> B, where@ := (3/,...,3}) is thejth
coefficient vector, andC, is then by n kernel matrix associated with,,. With the extended hinge loss
L{yi, f(X:)} := L(yi){f(X:) — vi } 4+, the structured SVM findg with 3 and@ minimizing

n k d
L) — ik + 5 SO I+ D0, (18)
=1 7j=1 v=1
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subject tod, > 0 for v = 1,...,d. A and )y are tuning parameters. By alternating estimationgof
and @, we attempt to find the optimal kernel configuration (a lineambination of pre-specified kernels)
and the coefficients associated with the optimal kernel. GFetep refers to optimization of the functional
component weight@ given 3. More specifically, treating as fixed, the weights of the features are chosen
to minimize

k _ ‘ d ' _ A\ k _ d ' d
(L) {ﬁél +D_0,K8 — yﬂ} +52_ B8 (Z @/@) B+ 20 0y,
=1 v=1 + j=1 v=1 v=1

J J

wherel/ == (Lj,,..., L},) andy’ = (y],....y%)"
This optimization problem can be rephrased as

min YR (L)) 4+ 3 0 0 (Sh (B KB ) 4+ 2 i, 00

¢eRM™, 0eRA _ ' _ '
s.t. S 0KE ¢ =yl —Fforj=1,... .k
0, >0forv=1,....d.

Let g = ()‘/2) Z?Zl(,@j)/lc,,ﬁj, g:= (917 o ’gd)/' L= ((Ll)/7 T (Lk)/)/' andc = ((Cl)/7 Ty (Ck)/) .
Also, let

Kig' - KBt

Xo= | 0
Kig* - KgB"

Then the following elements define thestep as a parametric cost LP indexedXgywith N = (d + 2nk)
variables and\/ = nk equality constraints:

z:=
c:= (
a= (1 0o o Y
A= (
1

b:=((y' —G1),.... (4" —51)).

4.4 Regularization for Grouping or Clustering of Features via LP

In many real applications, covariates are often groupedaiare, where group selection may be more per-
tinent than individual variable or feature selection. Fearaple, a set of dummy variables created for a
categorical variable or a factor form a natural group.

For description of grouped regularization, consider adsath linear model withy groups of variables:

J
Y = (o +ij/8j + €,
=1

whereY and e are n-vectors,X; is ann x p; matrix associated with thgth group of variables, and
B; = (Bij, -, Bp,5) is a coefficient vector of sizg; for j = 1,---,.J. Let3 := (B,---,8}) and
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X = (Xy,---,Xy). For selection of important variable groups and estimatibthe corresponding3,
Yuan and Lin (2006) propose a grouped LASSO penalty defined as

J
18l Grasso == Z ||IBJH2
j=1

in the regression context. However, computationally d#ifé from the ordinary LASSO witlf; norm
penalty (Tibshirani, 1996), the solutighof the grouped LASSO is not piecewise linear in the reguddian
parameter\, and thus, it has to be calculated at eadh general.

For easier computation and complete enumeration of thdicolby piecewise linearity, one may con-
sider an alternative penalty for grouped variable seladfiefined via the sup-norm:

J
181 e =D 118;]loo (19)
j=1

which is suggested by Zou and Yuan (2008) originally for tMViSand named théactorwise infinitynorm
penalty.

As another variant, by noticing that the sup-norm penalihds$eto equalize coefficients, Bondell and
Reich (2008) propose the so-called OSCAR (Octagonal Shgmkand Clustering Algorithm for Regression)
penalty. It combines thé, norm and the sup norm for simultaneous selection and clagtef correlated

predictors which have a similar effect on the response. TBEAR penalty for3 := (51, ..., 5,)" is given
by
1Blloscar = Z max{|5;|, | Be/}- (20)
1<j<k<p

The penalties for grouped regularization and clusterind @) and (20) are of linear nature. When com-
bined with piecewise linear loss functions given in the pres subsections, they also produce parametric
LP problems. Hence, the algorithms in Section 3 are reagipfieable.

For example, grouped median regression withifgenorm penalty in (19) finds the coefficients, and
3 that minimize

n J
> lyi—Bo— > %iiBil + AIBll e - (21)
i=1 j=1

By introducing non-negative slack variables, ¢~, p* == (pf,---,p5), andnt = (nf’,--- 0},

which are defined through the following relations:

J
C:=¢t—¢ =Y -6 — ) X8,

j=1
pf1=8]+B; +nlwithg, =8/ - 8; forj=1,--,J,
the optimization problem in (21) can be formulated as a patamLP:
min 1(¢T+¢7)
st ¢P—¢T=Y - (B —By) - i X8 - B))
(01,03 1,,) =BT+ B+t
¢r.¢TL et BT 87 > 0.
In the standard form of (4), it has
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zi= () ") ) By B (BY) B) (ph))
Cc:= ( 1’ 14 1 0 0 o’ o o )'
a:= ( o’ o’ o 0 0 o’ o 1’ )/
A— | 0 —| 1 -1 X —X 0
T 0 I 0 0 0 I I -G
Y
b < Y )
1171 p1 OP1
1 0
whereG .= | 2 7 b2
OPJ OPJ lpJ

Similarly, the optimization problem for penalized grougpdhntile regression can be written as the same
LP as the median regression except for the change in the ecistrv

c:=(r1',0',(1 - 1)1',0,0,0’,0’,0).

Taking another example, if th§ norm penalty for functional component selection in Secdod is
replaced with the OSCAR penalty on the recalibration patarsé, the optimization problem of the struc-
tured SVM in (18) becomes

min L))+ 3 0 6 (S (8K

¢ceRY™ 6e Rl

+A max(6,,0
elgugugd ( H) ) (22)
s.t. S 0K ¢ =yl —Fforj=1,... k.
6 > 0.

Introduce slack variableg := n* — 7~ for all pairwise difference$t; — 0;) for 1 < i < j < d. Let
e; be thed-vector with itsith element equal to 1 and O elsewhere. AndAetdenote ai(d — 1)/2 x d
matrix whose row vectors af@; — e;) for 1 < i < j < d in the order of(f; — ;) in . Then using the
same notation as in Section 4.3, the rtestep for the SVM with the OSCAR penalty can be rephrased as a
parametric LP with

2= (O ") ) ") 7))
C:= ( g/ 0/ 0/ L/ 0/ )/
a:= ( (d+1D1 1 1 14 o )
X 0 0 — |
A= [ A — | 0 0

More examples can be found in Yao (2008).
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4.5 Computation

The LP problems for the examples in Sections 4.1 - 4.3 shamikasstructure that can be exploited in
computation. First of all, thé matrix has botH and—1 as its sub-matrices, and the entries of the penalty
coefficient vectom corresponding td and—1 in A are zero. Thus, the ranks AfandAz, areM, and the
initial optimal solution exists and can be easily identifi€lie to the special structure 8fz,, it is easy to
find a basic index sd8* C 1, for the initial LP problem in (9), which gives a feasible dabn. For instance,

a feasible basic solution can be obtained by constructirasi lndex seB* such that fob; > 0, we choose
the jth index from those fol, and otherwise from the indices fefl. For thed-step of structured SVM3*
itself is the initial optimal basic index set, and it givesrigial initial solution. For thel;-norm SVM and
l1-norm quantile regression, the basic index set defined alsavet optimal. However, the initial optimal
basic index set can be obtained easily frBim In general, the tableau-simplex algorithm in Section 3 can
be used to find the optimal basic index set of a standard LRemgliaking any feasible basic index ¢&t

as a starting point. Necessary modification of the algorithinstandard LP problems is that the entry index
4! € N is chosen from any with aj =0 andéé < 0 at Step 3. FoB3*, all but the indiceg for 5; andgy
satisfyég > 0. Therefore, one of the indices f@p will move into the basic index set first by the algorithm,
and it may take some iterations to get the initial optimakixdet for the two regularization problems.

A tableau contains all the information on the current LP gotuand the terms necessary for the next
update. To discuss the computational complexity of theetablupdating algorithm in Section 3.2.2, Tét
denote the tableau, &V + 1) x (M + 2) matrix associated with the current optimal basic indexet
For a compact statement of the updating formula, assuméh@aableau is rearranged such that the pivot
columns and the pivot rows precede the zeroth column anda$teraw and the penalty row, respectively.
For the entry index! and exit index! defined in the algorithmTé.l denotes itg'th column vectorjl'l;-z* the

iL.th row vector ofT!, andTj; ;: thed. j'th entry of T'. The proof of Theorem 11 in Appendix D implies the
following updating formula:

1 /
TH =Tl o <T§.l —e ) Tl (23)
Therefore, the computational complexity of the tableauatipd is approximately) (M N) for each iteration

in general.

For the three examples, tableau update can be further sineaim Exploiting the structure oA with
paired columns and fixed elements in the tableau associdtiediywe can compress each tableau, retaining
the information about the current tableau, and update tthecesl tableau instead. We leave discussion of
implementation details elsewhere, but mention that updatiich a reduced tableau has the complexity of
O((N4 — M)M) for each iteration, wher&/, is the reduced number of columnsAncounting only one for
each of the paired columns. As a result, when the tableauitigostops inJ iterations, the complexity of
both/;-norm SVM and;-norm QR as a whole i©((p + 1)n.J) while that of thef-step of structured SVM
is roughlyO(dnk.J), wherep is the number of variableg, is the number of kernel functions, aids the
number of classes.

5 A Closer Look at the [;-Norm Support Vector Machine
Taking thel;-norm SVM as a case in point, we describe the implicationheftableau-simplex algorithm

for generating the solution path. Zhu et al. (2004) providgpecific path-finding algorithm for thig-norm
SVM in the complexity-bounded formulation of (7) and giveaaeful treatment of this particular problem.
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We discuss the correspondence and generality of the tablegalex algorithm in comparison with their
algorithm.

5.1 Status Sets

For the SVM problem with the complexity bourdi.e. [|3]|; < s), letfy(s) andB(s) := (51(s),--- , Bp(s))
be the optimal solution at Zhu et al. (2004) categorize the variables and cases that\alved in the reg-
ularized LP problem as follows:

e Active set: A(s) :={j : Bj(s) #0, 5 =0,1,...,p}

e Elbow set:£(s) := {i: yi{fo(s) +x:B(s)} =1, i=1,...,n}
o Leftset:L(s) :={i:y{fo(s) +xB(s)} <1,i=1,...,n}

e Right set:R(s) := {i : yi{fo(s) +x:B(s)} > 1, i=1,...,n}.

Now, consider the solutior(s) given by the tableau-simplex algorithm as defined in Secti@and the
equality constraints oA z(s) = b, that is,

Az(s) := Bo(s)Y +diag(Y)XB(s) + ¢(s) = 1.

It is easy to see that for any solutiairs), its non-zero elements must be one of the following typed, an
hence associated with(s), L(s), andR(s):

e 3 (s)>0o0rg;(s) >0 (but not bothy= j € A(s);
e ((s)>0and¢ (s) =0 =ie L(s);
e ((s)=0and¢; (s) >0 = i€ R(s).

On the other hand, if;" (s) = 0 and¢; (s) = 0, theni € £(s), the elbow set.

5.2 Assumption

Suppose that thih joint solution ats = s' is non-degenerate. Ther(s!) > 0if and only if j € BL. This
gives
JA(sH] + 1£(5)] + IR(s")] = n.

Since&(s) U L(s) UR(s) = {1,...,n} for anys, the relationship thatd(s')| = |£(s')| must hold for all

the joint solutions. In fact, the equality of the cardinalif the active set and the elbow set is stated as an
assumption for uniqueness of the solution in the algoritfidhw et al. (2004). The implicit assumption of
lel > 0 at each jointimpliez!*! + 2!, the non-degeneracy assumption for the simplex algoritfimis the
simplex algorithm is less restrictive. In practice, theuasgtion that joint solutions are non-degenerate may
not hold, especially when important predictors are discmgtcoded categorical variables such as gender.
For instance, the initial solution of thie-norm SVM violates the assumption in most cases, requiring a
separate treatment for finding the next joint solution aiftéralization. In general, there could be more
than one degenerate joint solutions along the solution Fdtis would make the tableau-simplex algorithm
appealing as it does not rely on any restrictive assumption.
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5.3 Duality in Algorithm

To move from one joint solution to the next, the simplex aiipon finds the entry index’'. For thel;-norm
SVM, each index is associated with eith@r or ¢;. Under the non-degeneracy assumption, the variable
associated with' must change from zero to non-zero after the joint( s'). Therefore, only one of the
following “events” as defined in Zhu et al. (2004) can happemediately after a joint solution:

o 3;(s') = 0 becomes3;(s) # 0, i.e., an inactive variable becomes active;

e (i(s') = 0 becomeg;(s) # 0, i.e., an element leaves the elbow set and joins either thedeor the
right set.

In conjunction with the entry index, the simplex algorithmtermines the exit index, which accompanies
one of the reverse events.

The algorithm in Zhu et al. (2004), driven by the Karush-Ktihutker optimality conditions, seeks the
event with the smallestAloss/As,” in other words, the one that decreases the cost with thedaste.
The simplex algorithm is consistent with this existing aitfon. As in (10), recall that the entry indek is
chosen to minimizéc} /&) amongj € A"\ B' with & > 0. A"\ B’ contains those indices corresponding

toj ¢ A(s') ori € £(s). Analogous to the optimal moving directiath in (11), definev’ = (v], . .. ,v{v)’
such that ' ' '
vy, = —Ag Aj, vl =1, andv! = 0fori e N\ (B' U {j}).

Thend := (a) — dy AL'Aj) = dv/ x Asj ande) == (¢ — CuALAj) = v/ oc Aloss;. Thus, the
index chosen by the simplex algorithm in (10) maximizes #te of reduction in the cosf\loss/As.

The existingl;-norm SVM path algorithm needs to solve roughlgroups of|£|-variate linear equation
systems for each iteration. Its computational complexay eO(p|€|? + p|L|) if Sherman-Morrison
updating formula is used. On the other hand, the computtmmplexity of the tableau-simplex algorithm
is O(pn) for each iteration as mentioned in Section 4. Thereforefdtraer could be faster ifi/p is large;
otherwise, the tableau-simplex algorithm is faster.

Most of the arguments in this section also apply for the camapa of the simplex algorithms with the
extended solution path algorithm for thenorm multi-class SVM by Wang and Shen (2006).

6 Numerical Results

We illustrate the use of the tableau-simplex algorithm fargmetric LP in statistical applications with a
simulated example and analysis of real data, and discusglmsetection or variable selection problems
therein.

6.1 Quantile Regression

Quantile regression has been discussed in Sections 4.1.4ndA4simulation study is presented here to
illustrate the use of the computational algorithm for qilamegression with different penalties and for their
comparisons.

In the simulation study, 10 dimensional covariates are igead from the standard normal distribution
independently, that i := (X1,..., X10) ~ N(0,1). The response variable is defined¥y= Gy +x3+¢
for some fixeds, and 3, wheree ~ N(0,02), andx ande are assumed to be mutually independent. The
theoreticalrth conditional quantile function is then given by, (x) = c® (1) + 3y + X3, where® is the
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cdf of the standard normal distribution. Restricting taen functions only, suppose that an estimattd
conditional quantile function ig(x) = 5y + x3. Under the check function as a loss criterion, we can verify
that the theoretical risk of is given as

R(f:f0,B) = E{7(Y = fo—XB)s +(1=1)(Y ~ o~ XB)-}

- {@( o= )}(ﬁom
Jor + 18— Bl

24 18-8 [ (o5 .
i o exp{ 2<o—2+uﬁ—3u§>}' &9

For eachr, the risk of the true quantile functiom., (x) is (o/v/27) exp{—®~'(7)2/2}, which represents
the minimal achievable risk. Note that the maximum of theimai risks in this case occurs when= 0.5
(i.e., for the median), and the true conditional median fiands g 5(x) = 3y -+x3 with the risk ofo/v/27.

Suppose that the variables in the linear model form threapd 1, 2,3}, {4,5,6,7}, and{8,9,10}
of sizesp; = 3, po = 4, andps = 3, respectively, and they are alternatively indexed by (213),
(21,22,23,24), and (31,32,33). Then the linear model caestated as

J P

Y:ﬁo—i—zzwijﬁij—Fe

j=1i=1

with the number of groups/ = 3. We setg, = 0, 8 := (8],035,3%) with 3, = (2,3,2), B, =
(0,0,0,0), andB; = (—3,2,—2), ando? = 50. For the setting, the signal-to-noise ratio defined as
Var(X3)/o? is 0.68, and the minimal risk in estimating the median regjogsfunction iss/v/2m ~ 2.821.

In the study, 100 pairs of andy were generated independently from the model. Focusing®cdke
with 7 = 0.5, we applied median regression with thenorm penalty in Section 4.1 and grouped median
regression with thé,, norm penalty and the OSCAR penalty in Section 4.4 to the sitedldata.

Figure 1 shows typical solution paths of grouped medianesgion with the,, norm penalty indexed
by s. The estimated coefficients are plotted in the left panel,thair absolute values are plotted in the right
panel. They illustrate the general characteristic of geedlgrouped regression that the coefficients in each
group form a stem in the beginning and then branch out latea fietter fit to the data. From the figure, we
can see that the variable group 1 (in red) and the group 3 &) Istand out at the early stage of the solution
path as expected.

The risk associated with the solution at each point of thegp@ttheoretically available for this example,
and thus the optimal value of the regularization paramedarbe defined. However, in practicg,(or s)
needs to be chosen data-dependently, and this gives riseitgpartant class of model selection problems
in general. For the feasibility of data-dependent choicthefregularization parameter, we carried out cross
validation and made comparison with the theoreticallyroptivalues. The dashed lines in Figure 1 indicate
the optimal value o chosen by 10-fold cross validation under the check loss with0.5. The left panel
in Figure 2 displays the path of 10-fold cross validated risklack for median regression with the,,
norm penalty corresponding to the coefficient paths in Fduand the theoretical risk path in (24) in blue.
The figure also shows the cross validated risk paths of theamedgression fits witli; norm and OSCAR
penalties for comparison. In this case, the median regnedgiwith the F,, norm penalty produced the
smallest cross validated risk. Note that we normalized #rafty parametes in the figure for each of the
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Coefficients
Absolute Coefficients

Figure 1. The solution paths of grouped median regressidn tlve ., norm penalty for simulated data.
Colors (blue, green, and red) distinguish the three grofipariables. The left panel shows the regression
coefficients while the right panel shows their absolute eslu he vertical dashed line in each panel specifies
the values with the minimum ofl10-fold cross validated risk under the check lossice 0.5.

three penalties so that the valuessadire comparable across different penalties. Normalizatias done
by considering inherent difference in the expected sizeaohgenalty for a given model. Specifically, the
normalizing constants were determined such that the exgesize of each penalty should be the same if
B;'s are independent and identically distributed with a umifadistribution on a/2,a/2) for any given

a > 0.

To increase the smoothness of a risk path and the stabiliigeintification of the optimal value of a
tuning parameter in general, one may smooth out an indiVichoas validated risk curve or take the average
of multiple curves over different splits of the data. To th#ect, cross validation was repeated 20 times for
averaging in our experiment, and Figure 2 shows, in factatleeage cross validated risk paths.

F_infinity Norm L1 Norm OSCAR
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3.6
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Figure 2: The estimated risk paths of median regression Mgtmorm (left),/; norm (center), and OSCAR
penalty (right) by 10-fold cross validation for the simeldtdata used in Figure 1. In each panel, the black
curve is the cross validated risk, the blue curve is the #taal risk, and the vertical dashed line indicates
the values with the minimum cross validated risk. Horizontally, thdted line corresponds to the minimum
estimated risk, and the solid line marks the theoreticailyievable minimum risk.
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Parameter True value Penalty
F,norm /¢y norm OSCAR

Bi1 2 1.8096 1.5990 1.4902
B2 3 2.2862 2.5443  2.3869
B13 2 1.6697 1.4905  1.4504
B21 0 -0.0086 -0.0355 -0.0065
Ba2 0 0.0015 -0.0058  0.0270
Ba3 0 -0.0255 -0.0222 -0.0050
Bou 0 0.0163 0.0391  0.1200
B31 -3 -2.3156 -2.5095 -2.3715
B32 2 1.7857 15940 1.5525
-2

B33 -1.7348 -1.5360 -1.4397

Table 1. The mean estimates of regression coefficients évdhables in median regression fits wih,
norm,¢; norm, and OSCAR penalties over 400 replicates of simuladta. d

In order to compare the effect of the three different peasltin the accuracy of fitted median regression
function, we generated 400 replicates of simulated dataegmehted model fitting and selection by 10-fold
cross validation. For each replicate, we chose the valugh minimum cross validated risk to identify the
optimal model along the coefficient path of each method. a&€tbe 400 replicates, median regression with
the F.., norm penalty gave the mean minimum cross validated risk38%1 with standard error of 0.0127
while the/; norm penalty resulted in the mean risk of 3.0022 with stashéaror of 0.0133, and the OSCAR
penalty had the mean risk of 3.0275 with standard error df3L0 The mean risk of the grouped median
regression withf,, norm penalty is significantly smaller than those wifnorm and OSCAR penalties in
this example, probably due to the fact that fig group penalty directly utilizes the sparse structure o tru
regression coefficients.

However, the use of groupwigg, norm in theF,, penalty has an impact on the relative size of estimated
coefficients. Table 1 shows the estimated regression ceetfscfor the 10 variables in median regression
fits with F., norm, ¢; norm, and OSCAR penalties, respectively, averaged overeiilizates. Compared
to the individual/; norm penalty, we can see that thg, norm penalty tends to attenuate more extreme
coefficients and produce values pulled toward the mean @rabisolute value) within each group. See, in
particular, the variable groups 1 and 3 for the attenuatftace

In addition, Table 2 summarizes the proportion of inclusidreach of the 10 variables in the median
regression models fitted to those 400 replicates when tharmmdel is chosen by 10-fold cross validation.
Across the three different penalties, we see that the satysivf selecting a variable when it is active in
the true median regression function is very high. HoweVer,dpecificity of excluding a variable when it
is indeed inactive is quite low. ThE,, norm penalty gives the lowest specificity rates while it ggethe
highest sensitivity rates among the three penalties. Astithted in Figure 1, a possible explanation is that
cross validation tends to select models with extra varglmien attempt to improve prediction accuracy by
allowing larger coefficients for the relevant variables.

6.2 Income Data Analysis

For a real application, we take the income data in Hastie.g80D1), which are extracted from a mar-
keting database for a survey conducted in the Bay area (19879 data set is available at http://www-
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Parameter True value Penalty
F,norm /¢y norm OSCAR

Bi1 2 0.9925 0.9375 0.9025
B2 3 1.0000 0.9925  0.9750
B13 2 0.9875 0.9325 0.9050
B21 0 0.8300 0.6150  0.6300
Ba2 0 0.8350 0.6150 0.6225
Ba3 0 0.8300 0.6050  0.6500
Bou 0 0.8125 0.6350 0.6375
B31 -3 1.0000 0.9875 0.9725
B32 2 1.0000 0.9300 0.9250
B33 -2 0.9900 0.9175 0.9125

Table 2: The inclusion proportions of variables in the fitteddian regression models wiff},, norm, ¢,
norm, and OSCAR penalties for 400 replicates of simulatdd. da

stat.stanford.edu/tibs/ElemStatLearn/. It consists of 14 demographic aitdb with a mixture of categori-
cal and continuous variables, which include age, gendegatibn, occupation, marital status, householder
status (own home/rent/other), and annual income amongsotfibe main goal of the analysis is to predict
the annual income of the household (or personal incomegfe)jrirom the other 13 demographics attributes.

The original response of the annual income takes one of tleeviag income bracketsx 10, [10, 15),
[15, 20), [20, 25), [25, 30), [30, 40), [40, 50), [50, 75), and75 in the unit of $1,000. For simplification,
we created a proxy numerical response by converting eacdhkddranto its middle value except the first and
the last ones, which were mapped to some reasonable vaheis abitrary. Removing the records with
missing values yields a total of 6,876 records. Becauseeoftanularity in the response, the normal-theory
regression would not be appropriate. As an alternative, evesider median regression, in particulr,
norm median regression and grouped median regressiomfoitaneous variable selection and prediction.
In the analysis, each categorical variable withategories was coded by-1) 0-1 dummy variables with
the majority category treated as the baseline. Some gdpuineerical but bracketed predictors such as
age were also coded similarly as the response. As a resulgrizbles were generated from the 13 original
variables.

The data set was split into a training set of 2,000 obsemsaténd a test set of 4,876 for evaluation. All
the predictors were centered to zero and scaled to have tia@eshnorm equal to the training sample size
before fitting a model. Inspection of the marginal assamietiof the original attributes with the response
necessitated inclusion of a quadratic term for age. We tlasidered linear median regression with the
main effect terms only (35 variables plus the quadratic Jemna with additional two-way interaction terms.
There are potentially 531 two-way interaction terms byrigkihe product of each pair of the normalized
main effect terms from different attributes. In an attengekclude nearly constant terms, we screened
out any product with the relative frequency of its mode 90%wove. This resulted in addition of 69 two-
way interactions to the main effects model. Note that theratdtion terms were put in the partial two-way
interaction model without further centering and normadiama for the clarity of the model. Approximately
three quarters of the interactions had their norms withivh Hifference from that of the main effects.

Figure 3 shows the coefficient paths of the main effects muadldl ¢, penalty in the left panel and
that with F,, group penalty for the training data set. The coefficientshef dummy variables grouped
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for each categorical variable are of the same color. In batldets, several variables emerge at the early
stage as important predictors of the household income andineémportant throughout the paths. Note the
visible effect of theF,, group penalty on the coefficients of homeownership (hs.avahe.withFamily) for
small values ok in contrast with?; penalty. Among those, the factors positively associated household
income are home ownership (relative to renting), educatioral income due to marriage (relative to ‘not
married’), age, and being male. Marital status and occapadie also strong predictors. As opposed to
those positive factors, being single or divorced (relatvémarried’) and being a student, clerical worker,
retired or unemployed (relative to professionals/marg)gare negatively associated with the income. So is
the quadratic term of age as expected. In general, it woutddoeimplistic to assume that the demographic
factors in the data affect the household income additivElythful models would need to take into account
some high order interactions, reflecting the socio-econdatiric of the household income structure. Some
of the two-way interactions worthwhile to mention are ‘dumlomesx home ownership’, ‘home ownership
education’, and ‘married but no dual incomeducation’ with positive coefficients, and ‘singl@ducation’
and ‘home ownership age’ with negative coefficients.

As in the quantile regression simulation, we chose optinadlies ofs by cross validation with the
absolute deviation loss. Five-fold cross validation waseeded 5 times for different splits of the training
data, and the resulting risks were averaged. Figure 4 ¢isplee paths of actual risks over the test set for
the main effect models (left) and for the partial two-wayenaiction models (right) using, norm median
regression. The dashed lines indicate the minimizeo$ the averaged risks and the solid lines those of
the actual risks over the test set. Cross validation seemgyéoa reasonable choice efin terms of risk.
Note that there is a range of optimal values with about theesdsk in both panels, which suggests that one
may as well average the models in the range. A notable difter&etween the risk paths is the amount of
regularization desired to attain the minimum risk in conmar with the full models. That is, regularization
improves the two-way interaction models much more than thimreffects models. Moreover, the selected
two-way interaction model has a smaller risk over the testhea the main effect model in accordance with
our understanding of the data. On the basis of evaluationtbedest data, 95% confidence intervals of the
true risk associated with the main effects and the two-wtgraction models selected by the CV criteria are
7.799+0.238 and7.653 +-0.236, respectively. In particular, a 95% confidence intervaheftisk difference
of the main effects model from the two-way model is given(bi46 + 0.0585, which indicates that the
latter improves the former significantly in terms of the ri¥ie carried out similar analysis with,, group
penalty for the main effect model and the partial two-wagiattion model, and observed reduction in the
risk by the two-way interaction model. However, in compamisvith the plain/; norm penalty, the group
penalty did not bring any particular advantage in reduchmgrisk and providing a better model. Wit
norm penalty, 95% confidence intervals of the true risk7ag&3 + 0.241 for the main effect model and
7.780 + 0.238 for the two-way interaction model, respectively.

7 Discussion

Tapping into a rich theory of linear programming and its alfponic developments, we have provided a
broad and unified perspective on the properties of solutiorgswide family of regularization methods for
feature selection. We have shown that the solutions candracterized completely by using the parametric
linear programming techniques.

As for computational implementation, a single umbrellagedure can serve for all of the methods in
the family in order to generate the entire set of regulargedtions. Capitalizing on the generality of our
formulation, we have implemented the path generating #fgos presented in Section 4 with a modular
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Figure 3: The coefficient paths of the main effects model Witlpenalty (left) and that with,, group
penalty (right) for the income data. For each categoricalasée, the coefficients of the corresponding
dummy variables are plotted as a group of the same color. asleedl lines indicate the models chosen by
five-fold cross validation with the absolute deviation loss

treatment relying on a core algorithm for the tableau-semphethod! pRegPat h is an R package for the
implementation and currently available at http://wwwi.stsu.edutyao/software.html. Other extensions
can be easily added to the package by using the core algoritiificiency can be gained further when
the umbrella procedure is tailored to each individual methy utilizing the structure of the computational
elements specific to the method. Handling large scale ddtaaniegularization method is a computational
challenge in itself. For example, Kim et al. (2007) and Kotakt(2007) discuss solving large scdle
regularized least squares problem and logistic regregsmiem with interior point method. Making path
generating algorithms scalable with the sample size andithension of features would be another direction
to pursue.

As illustrated, the solution paths offer rich informatiomoait how constrained models evolve with fea-
tures. Especially, they make it easy to recognize pergiatures in the data, which are of general interest
in data analysis. In addition to facilitating computatiardauning, the path-finding algorithms for feature
selection can equip the data analyst with a useful tool fewalization of a model path. Combined with risk
measures, such a path can portray a full spectrum of padigrg@od models for selection and averaging.

This paper has focused on elucidating the link between ctatipoal problems with linear constraints
for feature selection in statistics and the linear programgrtheory. Beside those examples discussed in this
paper, there remain many possible applications of the patrantinear programming techniques. For exam-
ple, feature selection in nonparametric settings is wdnilamo investigate separately. Such an algorithm
that explores a vast model space by gradually elaboratidgelecting functional components or the kernels
generating them will be a valuable extension of its paraimetiunterpart for modeling and prediction.
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Figure 4: The paths of actual risks estimated over the téansktheir 95% confidence intervals for the main
effect models (left) and the partial two-way interactiondals (right) with/; norm median regression. The
solid vertical lines mark the minimum values. The dasheticadrlines indicate the values efminimizing
the average risks from five-fold cross validation repeateaitfiimes.

Appendix

A Lemma 13

Lemma 13 Suppose thaB'*! := B! U {j'} \ {i'}, wherei! := B!, . Letd' be defined as i11). Then
z4
Sl P gl
dh
Proof First observe that

I+1 -1 -1 -1 -1 l
ZBJ’Z_+1 — ABL+1b — ABH’lABlABl b - [ABL+1ABI:|ZBZ.

Without loss of generality, théth column vectorA,; of A is replaced WithA ;; to give Agii. For the
ABL+1 )

-1 -1 -1
[ABI+1ABL] == ABL A8l+1 (25)
l
- [817”’Jeifk—17uaeil*+17'”7eM]
_ 1 .
1 Uy
l
L Uy L]
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whereu! := A A = —d,. Thus, we have

— l -

u
1 1
. 1
ABL+1ABl = Uéz : (26)
o
L “ég i
Then it immediately follows that
! !
I+1 I I I
zBJ{H =ZzZp — d_édel - d_i'lell
Hencez!t! = 2! — (2, /d!,)d'. u
B Proof of (13)
Forl=0,---,J — 1, consider the following difference

/ /
[(c +na) - A (AL;}H) (Cpre1 + Alagm)} - [(c +na) - A (AL;}) (Cat + Alagl)}
/ !/ /
= A (Ag}) (Agl{rlABl> (CBl+1 + )\laBz+1) + A (Ag}) (CBl + )\laBz).

1

/
By the intermediate calculation in Lemma 13, we can showttiatifference is%A’ (Agl ) &, where

Cjt + Aiay n Z (c; + Nay)ul

Kx = (CBiz + /\laBiz ) - i i
- - U, , U,
15 ZG(BHI \ {jz}) 15
(e Nag) A Ay — (i + Nay)
o,
_ Cé-z + /\lag'l
’U,l )

il

Since); := _Cé-z/aé-u k, = 0, which proves (13).

C Proof of Theorem 7

LetB! :=BlU{j'}forl=0,---,J —1,andB’ := B/ U{N + 1}, whereB, B, andj’ are as defined in

the simplex algorithm. We will show that, for any fixed [s;, s;.1) (or s > s5), B (or B”) is an optimal
basic index set for the LP problem in (8).
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For simplicity, letj” := N 4+ 1, cy11 := 0, Ay41 := 0, and a;4; := 1. The inverse of

A;Bl _ |: ABL A]l :|

aBl/ ajl
is given by
— _ _ /
= ’:A§} 0 ]+— ! : ["AB}Aﬂ }[ —aBﬂAB}}
0 0 ajl - aBl,A[;l Ajl 1 1
fori=0,---,.J.
First, we show thaf\ y is a feasible basic index set of (8) for [s;, s;41], i.€.
Ayl (b +sb”) > 0. @27)
Recalling thatzl,, = Ag/'b, zj.l =0,s =adz = (ag'Ag}b), dy = —AL A, anddg.l = 1, we have
Agi(b+sb) = ék;}{[ 8 }4—3[ ? }} (28)
_ { Ag'b } G ag'Ag'b) { —ALA ]
0 ajl — aBl/AgllAjz 1
!
)
Zjl aji + ag dBl 41
Fromz"*t! — 2! = — (2!, /dl,)d ands; 1 — s = (271 — 2!) = — (2, /d}, ) (a;: +ag'd},), it can be shown
that

! I+1 !
Zpl s — 81 Z a1 Zpl
28) = + == — .
Thus, (28) is a convex combination ef and z!*! for s € [s;, s;41], and hence it is non-negative. This
proves the feasibility of\y for s € [s;,5,11] andl = 0,...,.J — 1. Fors > s/, we have

s {0 ][ V])

-1
_ [ AP ] + (s — ag/Agib) [ ’ ]

_ {A%}b]ﬂs_sﬂ[ﬂ > 0.

Next, we prove thatA%l is an optimal basic index set of (8) for € [s;, s;+1] by showingec —
A'(Ay) cgy > 0. Fori=1,--- | N, theith element of: — A'(Ay ) cgy is

SEEIN

le - CBl /AgllAjl

= ¢ —cg'AA; — 51 (a —ag'ALA)
B & — aBz/ABllAjl Bl

B d+Nd fori=1,--- N

a A fori =N+ 1.

28



Similarly, for s > s/,

/
Q—|:CB]:|A%5|:AZ:| = Ci_CBJ/Al;}Ai
- ¢/ fori=1,--- N
a 0 fori=N+1.

Clearly, the optimality condition holds by the non-negigivof all the elements as defined in the simplex
algorithm. This completes the proof.

D Proof of Theorem 11

i) By (26), we can update the pivot rows of the tableau as\to

(theith pivot row of B!*1) (29)
(theith pivot row of BY) — “Tl (theilth pivot row of BY)  for i # i';
U/_l

= 3

- (thei.th pivot row of 5) for i = i

**

Tk

If ul = 0, theith pivot row of B+ is the same as thiéh pivot row ofBl(é 0). Fori = i, theith pivot
row of Bt is (1/4l, ) (theith pivot row of ') L0 1 # it andu! < 0, which imply —ul/ul, >0,

the ith pivot row of B!+ > 0 since the sum of any two lexicographically positive vectarstill
lexicographically positive. According to the tableau uggdalgorithm, we havecﬁl > 0, wherei’

is the index number of the lexicographically smallest pira among all the pivot rows faB! with
ul > 0. Fori # i, andu! > 0, by the definition of’,

thei! th pivot row of B L theith pivot row of B

l l
i i

u
This implies that

(theith pivot row for Bi+1)

z
= (theith pivot row of B') — # (thei! th pivot row of B') 0.
i

IS

Therefore, all the updated pivot rows are lexicographycadisitive.

Remark 14 If 2!, = 0, (29) implies that:},, = 2" for i # i,, i € M. and zéjrl = 0. Hence
21 = 2z, On the other hand, it!, > 0, zéjrl = (z}/uly) > 0 while 2}, = 0 sincej’ ¢ B'. This

impliesz'** £ 2!. Thereforez*! = 2! if and only ifz}, = 0.

ii) When the basic index sé#' is updated ta3!*!, ég.l < 0. Sincej! € B, C?{l = 0 Then, (c;: —
CnAginAj) = (6 — CuAG Ay = (& =) > 0.
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Similarly as the proof of (13),
(c’ — chlAl;lHA) — (c’ — cglAl;lA) — mlegiAl;lA,

wherex! := (Cjyu! — cjl)/uéi. egiAl;lA is the i’ th pivot row for B!, which is lexicographically
positive. Since thg'th entry ofe/, A'A is strictly positive, that of ¢’ — ¢, AL A) — (¢ —

c’BlAg}A) must share the same sign with Thus, we have;' > 0. Then the updated cost row is
given as

[—C,Bl+1Agzl+1b7 ¢ — C’BmAg}HA}
= [~cAsb.C — duAGA] + ke [AgIDALA]

Clearly, the cost row foBB/+! is lexicographically greater than that f¢.
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