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Abstract

We consider statistical procedures for feature selection defined by a family of regularization problems
with convex piecewise linear loss functions and penalties of l1 nature. Many known statistical procedures
(e.g. quantile regression and support vector machines withl1 norm penalty) are subsumed under this
category. Computationally, the regularization problems are linear programming (LP) problems indexed
by a single parameter, which are known as ‘parametric cost LP’ or ‘parametric right-hand-side LP’ in
the optimization theory. Exploiting the connection with the LP theory, we lay out general algorithms,
namely, the simplex algorithm and its variant for generating regularized solution paths for the feature
selection problems. The significance of such algorithms is that they allow a complete exploration of the
model space along the paths and provide a broad view of persistent features in the data. The implications
of the general path-finding algorithms are outlined for a fewstatistical procedures, and they are illustrated
with numerical examples.

Keywords: Grouped Regularization,l1-Norm Penalty, Parametric Linear Programming, Quantile Re-
gression, Simplex Method, Structured Learning, Support Vector Machines

1 Introduction

Regularization methods cover a wide range of statistical procedures for estimation and prediction, and they
have been used in many modern applications. To name a few, examples are ridge regression (Hoerl and
Kennard, 1970), the LASSO regression (Tibshirani, 1996), smoothing splines (Wahba, 1990), and support
vector machines (SVM) (Vapnik, 1998).

Given a training data set,{(yi, xi) : xi ∈ Rp; i = 1, · · · , n}, many statistical problems can be phrased
as the problem of finding a functional relationship between the covariates,x ∈ Rp, and the responsey
based on the observed pairs. For example, a regularization method for prediction looks for a model or a rule
f(x;β) with unknown parametersβ that minimizes prediction error over the training data while controlling
its model complexity. To be precise, letL(y, f(x;β)) be a convex loss function for the prediction error
of f over a case(y, x) andJ(f) be a convex penalty functional that measures the model complexity of
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f . Formally, the solution to a regularization problem is defined to bef with the model parameterŝβ that
minimizes

n
∑

i=1

L(yi, f(xi;β)) + λ · J(f), (1)

whereλ ≥ 0 is a pre-specified regularization parameter. Theλ determines the trade-off between the pre-
diction error and the model complexity, and thus the qualityof the solution highly depends on the choice of
λ. Identification of a proper value of the regularization parameter for model selection or a proper range for
model averaging is a critical statistical problem. Note that β̂(λ) is a function ofλ. As in (1), each regular-
ization method defines a continuum of optimization problemsindexed by a tuning parameter. In most cases,
the solution as a function of the tuning parameter is expected to change continuously withλ. This allows
for the possibility of complete exploration of the model space asλ varies, and computational savings if (1)
is to be optimized for multiple values ofλ.

Alternatively, the regularization problem in (1) can be formulated to bound the model complexity. In
this complexity-bounded formulation, the optimal parameters are sought by minimizing:

n
∑

i=1

L(yi, f(xi;β)) subject toJ(f) ≤ s, (2)

wheres is an upper bound of the complexity.
For a certain combination of the lossL and the complexity measureJ , it is feasible to generate the

entire solution path of the regularization problem. Here, the path refers to the entire set of solutions to the
regularization problem, for instance,β̂(λ) in (1) as a function ofλ (or β̂(s) in (2) as a function of s). Some
pairs of the loss and the complexity are known to allow such fast and efficient path finding algorithms;
for instance, LARS (Efron et al., 2004), the standard binarySVM (Hastie et al., 2004), the multi-category
SVM (Lee and Cui, 2006), and thel1-norm quantile regression (Li and Zhu, 2008). Rosset and Zhu(2007)
study general conditions for the combination ofL andJ such that solutions indexed by a regularization
parameter are piecewise linear and thus can be sequentiallycharacterized. They provide generic path-finding
algorithms under some appropriate assumptions onL andJ .

In this paper, we focus on an array of regularization methodsaimed for feature selection with penalties
of l1 nature and piecewise linear loss functions. Many existing procedures are subsumed under this category.
Examples include thel1-norm SVM (Zhu et al., 2004) and its extension to the multi-class case (Wang and
Shen, 2006),l1-norm quantile regression (Li and Zhu, 2008), Sup-norm multi-category SVM (Zhang et al.,
2006), the functional component selection step (called “θ-step”) for structured multi-category SVM (Lee
et al., 2006), and the Dantzig selector (Candes and Tao, 2007). We also note that theǫ-insensitive loss in the
SVM regression (Vapnik, 1998) fits into the category of a piecewise linear loss. As for the penalty, the sup
norm gives rise to a linear penalty just as thel1 norm in general, and so does a certain combination of the
l1 norm and the sup norm for desired grouping and clustering of features such as OSCAR penalty (Bondell
and Reich, 2008).

There is a great commonality among these methods. That is, computationally the associated optimiza-
tion problems are all linear programming (LP) problems indexed by a single regularization parameter. This
family of LP problems are known as theparametric costlinear programming and have long been studied in
the optimization theory. There already exist general algorithms for generating the solution paths of paramet-
ric LP in the literature. See Saaty and Gass (1954) and Gass and Saaty (1955a,b) for example. Despite the
commonality, so far, only case-by-case treatments of computation for some of the procedures are available as
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in Zhu et al. (2004); Li and Zhu (2008) and Wang and Shen (2006). Although Wang and Shen (2006) notice
that those solution path algorithms have fundamental connections with theparametric right-hand-sideLP
(see (8) for the definition), such connections have not been adequately explored for other problems with full
generality. As noted, Rosset and Zhu (2007) have a comprehensive take on the computational properties of
regularized solutions. However, they did not tap into the LPtheory for general treatments of the problems of
the current focus. Rather, their approach centers on methods with loss functions of certain forms which need
notion of residual and thel1 norm penalty primarily, and adheres to a specific structure of the associated
computational problems. With the LP formalism, the scope ofrelated methods and computational problems
to handle can be broader, and their treatment can be far more general.

The goal of this paper is to make it more explicit the link between the parametric LP and a family of
computational problems arising in statistics for feature selection via regularization and put those feature
selection problems in perspectives. Linear programming techniques, in fact, have been used in statistics for
many other applications as well. For example, the least absolute deviation (LAD) regression, also known
asL1 regression in robust statistics, involves LP. See Wagner (1959); Fisher (1961); Bloomfield and Steiger
(1980) for reference and also Bloomfield and Steiger (1983) for historical background, algorithms, and
comprehensive literature on the subject. More generally, quantile regression entails LP and parametric
LP, in particular, when regression fits for every quantile parameter are sought. See Chapter 6 of Koenker
(2005) and references therein for computational aspects ofquantile regression. The main focus of this
paper is on parametric LP as a computational device to systematically explore a potentially large model
space with a modular treatment of each feature selection method under consideration. To this end, we pull
together relevant results from the linear programming literature and summarize them in an accessible and
self-contained fashion.

Section 2 begins with an overview of the standard LP and parametric LP problems, and gives a brief
account of the optimality conditions for their solutions. Section 3 presents the simplex algorithm and the
tableau-simplex algorithm for finding the entire solution paths of the parametric LP problems. Section 4
describes a few examples of LP for feature selection, paraphrasing their computational elements in the LP
terms. A detailed comparison of the simplex algorithm with the existing algorithm for thel1-norm SVM
(Zhu et al., 2004) is given in Section 5, highlighting the generality of the proposed approach. Numerical
examples and data application of the algorithm follow in Section 6 for illustration. Technical proofs except
for the key theorems are collected into Appendix.

2 Linear Programming

Linear programming (LP) is one of the cornerstones of the optimization theory. Since the publication of the
simplex algorithm by Dantzig in 1947, there has been a wide range of LP applications in operation research,
microeconomics, business management, and many other engineering fields. We give an overview of LP
here and describe the optimality conditions of the LP solution pertinent to our discussion of path-finding
algorithms later. Some properties of the LP to be described are well known in the optimization literature,
but they are included here for completeness along with theirproofs. Our treatment of LP closely follows
that in standard references. See Dantzig (1951); Murty (1983); Gill et al. (1991); Vanderbei (1997), and
Bertsimas and Tsitsiklis (1997). Some LP references contain discussions of the parametric LP; see Murty
(1983) and Bertsimas and Tsitsiklis (1997), for example, and Gass and Saaty (1955a,b);Ǵal (1979) for
earlier references. The readers are referred to them and references therein for more complete discussions.

Section 2.1 reviews basic notions in LP to mathematically characterize the optimality of a solution,
directly based on Section 3.1Optimality Conditionsof Bertsimas and Tsitsiklis (1997). Section 2.2 describes
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the important implications of the LP optimality condition for the parametric LP, mainly from Murty (1983),
Section 8.2The parametric cost simplex algorithm.

2.1 Standard Linear Programs

A standard form of LP is










min
z ∈ RN

c′z

s.t. Az = b
z ≥ 0,

(3)

wherez is anN -vector of variables,c is a fixedN -vector,b is a fixedM -vector, andA is anM × N fixed
matrix. Without loss of generality, it is assumed thatM ≤ N andA is of full row rank.

Geometrically speaking, the standard LP problem in (3) looks for the minimum of a linear function over
a polyhedron whose edges are defined by a set of hyperplanes. Therefore, if there exists a finite solution for
the LP problem, at least one of the intersection points (formally called basic solutions) of the hyperplanes
should attain the minimum. For formal discussion of the optimality, a brief review of some terminologies in
LP is provided. LetN denote the index set{1, · · · , N} of the unknowns,z, in the LP problem in (3).

Definition 1 A setB∗ := {B∗
1 , · · · , B∗

M} ⊂ N is called a basic index set, ifAB∗ := [AB∗
1
, · · · , AB∗

M
] is

invertible, whereAB∗
i

is theB∗
i th column vector ofA for i = 1, · · · ,M . AB∗ is called the basic matrix

associated withB∗. Correspondingly, a vectorz∗ ∈ RN is called the basic solution associated withB∗, if
z∗ satisfies

{

z∗
B∗ := (z∗B∗

1
, · · · , z∗B∗

M
)′ = A−1

B∗ b
z∗j = 0 for j ∈ N \ B∗.

Definition 2 Letz∗ be the basic solution associated withB∗.

• z∗ is called a basic feasible solution ifz∗
B∗ ≥ 0;

• z∗ is called a non-degenerate basic feasible solution ifz∗
B∗ > 0;

• z∗ is called a degenerate basic feasible solution ifz∗
B∗ ≥ 0 and z∗B∗

i
= 0 for somei ∈ M :=

{1, · · · ,M};

• z∗ is called an optimal basic solution ifz∗ is a solution of the LP problem.

Since each basic solution is associated with its basic indexset, the optimal basic solution can be identi-
fied with the optimal basic index set as defined below.

Definition 3 A basic index setB∗ is called a feasible basic index set ifA−1
B∗ b ≥ 0. A feasible basic index

setB∗ is also called an optimal basic index set if
[

c− A′
(

A−1
B∗

)′
cB∗

]

≥ 0.

The following theorem indicates that the standard LP problem can be solved by finding the optimal basic
index set.
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Theorem 4 For the LP problem in (3), letz∗ be the basic solution associated withB∗, an optimal basic
index set. Thenz∗ is an optimal basic solution.

Proof We need to showc′z ≥ c′z∗ or c′(z − z∗) ≥ 0 for any feasible vectorz ∈ RN with Az = b and
z ≥ 0. Setd := (d1, · · · , dN ) := (z − z∗). From

Ad = AB∗dB∗ +
∑

i∈N\B∗

Aidi = 0,

we have
dB∗ = −

∑

i∈N\B∗

A−1
B∗ Aidi.

Then,

c′(z − z∗) = c′d = c′B∗dB∗ +
∑

i∈N\B∗

cidi

=
∑

i∈N\B∗

(ci − c′B∗A−1
B∗ Ai)di.

Recall that fori ∈ N\B∗, z∗i = 0, which impliesdi := (zi−z∗i ) ≥ 0. Together with

[

c− A′
(

A−1
B∗

)′
cB∗

]

≥

0, it ensures(ci − c′B∗A−1
B∗ Ai)di ≥ 0. Thus, we havec′d ≥ 0.

2.2 Parametric Linear Programs

In practical applications, the cost coefficientsc or the constraint constantsb in (3) are often partially known
or controllable so that they may be modeled linearly as(c + λa) or (b + ωb∗) with some parametersλ and
ω ∈ R, respectively. A family of regularization methods for feature selection to be discussed share this
structure. Of main interest in this paper is generation of the solution path indexed by the control parameterλ
(or ω) as it corresponds to a trajectory of possible models or prediction rules produced by each regularization
method in the family. Although every parameter value creates a new LP problem in the setting, it is feasible
to generate solutions for all values of the parameter via sequential updates. The new LP problems indexed
by the parametersλ andω are called the parametric-cost LP and parametric right-hand-side LP, respectively.

The standard form of a parametric-cost LP is defined as










min
z ∈ RN

(c + λa)′z

s.t. Az = b
z ≥ 0.

(4)

Since the basic index sets of the parametric-cost LP do not depend on the parameterλ, it is not hard
to see that an optimal basic index setB∗ for some fixed value ofλ would remain optimal for a range ofλ
values, say,[λ, λ]. The interval is called the optimality interval ofB∗ for the parametric-cost LP problem.
The following result adapted from Section 8.2.1 of Murty (1983) shows how to find the lower and upper
bounds of the interval, given a fixed value ofλ, say,λ∗ and the associated optimal basic index setB∗.
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Corollary 5 For a fixedλ∗ ≥ 0, letB∗ be an optimal basic index set of the problem in (4) atλ = λ∗. Define

λ := max
{j : ǎ∗j > 0; j ∈ N \ B∗}

(

−
č∗j
ǎ∗j

)

(5)

and λ := min
{j : ǎ∗j < 0; j ∈ N \ B∗}

(

−
č∗j
ǎ∗j

)

,

whereǎ∗j := aj − a′B∗A
−1
B∗Aj andč∗j := cj − c′B∗A−1

B∗ Aj for j ∈ N . Then,B∗ is an optimal basic index set

of (4) forλ ∈ [λ, λ], which includesλ∗.

Proof From the optimality ofB∗ for λ = λ∗, we haveA−1
B∗ b ≥ 0 and

[

c− A′
(

A−1
B∗

)′
cB∗

]

+ λ∗

[

a− A′
(

A−1
B∗

)′
aB∗

]

≥ 0,

which implies thaťc∗j + λ∗ǎ∗j ≥ 0 for j ∈ N . To find the optimality interval[λ, λ] of B∗, by Theorem 4, we
need to investigate the following inequality for eachj ∈ N :

č∗j + λǎ∗j ≥ 0. (6)

It is easy to see thatA−1
B∗ AB∗

i
= ei for i ∈ M sinceAB∗

i
is theith column ofAB∗ . Consequently, the

jth entries of(c′ − c′B∗A−1
B∗ A) and(a′ − a′B∗A−1

B∗ A) are both 0 forj ∈ B∗, andč∗j + λǎ∗j = 0 for anyλ. So,
the inequality holds for anyλ ∈ R andj ∈ B∗. Whenǎ∗j > 0 (or ǎ∗j < 0) for j ∈ (N \B∗), (6) holds if and
only if λ ≥ −č∗j/ǎ∗j (or λ ≤ −č∗j/ǎ∗j ). Thus, the lower bound and the upper bound of the optimalityinterval

of B∗ are given by theλ andλ in (5).

Note thaťc∗j andǎ∗j define the relative cost coefficient ofzj . Since the number of basic index sets is finite
for fixed A, there exist only a finite number of optimal basic index sets of the problem in (4). Corollary 5
also implies that a version of the solution path of the problem as a function ofλ, z(λ), is a step function.

On the other hand, if the parametric cost LP in (4) is recast inthe form of (2), then the stepwise constant
property of the solution path changes. The alternative complexity-bounded formulation of (4) is given by



















min
z ∈ RN , δ ∈ R

c′z

s.t. Az = b
a′z + δ = s
z ≥ 0, δ ≥ 0.

(7)

It can be transformed into a standard parametric right-hand-side LP problem:










minz ∈ RN+1

′z

s.t. Az = b+ ωb∗z ≥ 0

(8)

by settingω = s, z =

[

z

δ

]

, 
 =

[

c
0

]

, b =

[

b
0

]

, b∗ =

[

0

1

]

, andA =

[

A 0

a′ 1

]

. Note that when

A in (8) is of full row rank, so isA. Let B∗ be an optimal basic index set of (8) atω = ω∗. Similarly, we

can show thatB∗ is optimal for anyω satisfyingzB∗ = A
−1
B∗(b+ ωb∗) ≥ 0, and there existω andω such

thatB∗ is optimal forω ∈ [ω, ω]. This implies that a version of the solution path of (8) is a piecewise linear
function.
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3 Generating the Solution Path

Standard techniques for solving LP include simplex method,dual simplex method, tableau method, and
interior point methods. Interior point methods (Karmarkar, 1984; Wright, 1992; Mehrotra, 1992; Wright,
1997) can be more effective in solving some large scale sparse LP problems than the simplex method.
However, they are generally perceived to lack an efficient warm-starting scheme, which is important in
generating the entire regularized solution path. For the reason, variants of simplex algorithms are considered
in this paper.

Based on the basic concepts and the optimality condition of LP introduced in Section 2, we describe the
simplex and tableau-simplex algorithms to generate the solution paths for (4) and (7). A similar treatment
of the parametric LP can be found in Saaty and Gass (1954), andour description of the tableau-simplex
algorithm is mainly adapted from Section 8.2 of Murty (1983).

Since the examples of the LP problem in Section 4 for feature selection involve non-negativea, λ, ands
only, we assume that they are non-negative in the following algorithms and takes = 0 (equivalentlyλ = ∞)
as a starting value.

3.1 Simplex Algorithm

3.1.1 Initialization

Let z0 := (z0
1 , · · · , z0

N )′ denote the initial solution of (7) ats = 0. a′z0 = 0 implies z0
j = 0 for all

j /∈ Ia := {i : ai = 0, i ∈ N}. Thus, by extracting the coordinates ofc, z, and the columns inA
corresponding toIa, we can simplify the initial LP problem of (4) and (7) to











min
zIa

∈ R|Ia|
cIa

′zIa

s.t. AIa
zIa

= b
zIa

≥ 0

, (9)

where|Ia| is the cardinality ofIa. Accordingly, any initial optimal basic index set,B0 of (4) and (7) contains
that of the reduced problem (9) and determines the initial solution z0.

3.1.2 Main Algorithm

For simplicity, we describe the algorithm for the solution path of the parametric-cost LP problem in (4) first,
and then discuss how it also solves the complexity-bounded LP problem in (7).

Let Bl be thelth optimal basic index set atλ = λl−1. For convenience, defineλ−1 := ∞, the starting
value of the regularization parameter for the solution pathof (4). GivenBl, let zl be thelth joint solution,
which is given byzl

Bl = A−1
Bl b andzl

j = 0 for j ∈ N \ Bl. Since the optimal LP solution is identified by
the optimal basic index set as in Theorem 4, it suffices to describe how to update the optimal basic index set
asλ decreases. By the invertibility of the basic matrix associated with the index set, updating amounts to
finding a new index that enters and the other that exits the current basic index set.

By Corollary 5, we can compute the lower bound of the optimality interval ofBl denoted byλl and
identify the entry index associated with it. Let

jl := arg max
{j : ǎl

j > 0; j ∈ (N \ Bl)}

(

−
čl
j

ǎl
j

)

, (10)
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whereǎl
j := (aj − a′

BlA
−1
Bl Aj) andčl

j := (cj − c′
BlA

−1
Bl Aj). Then, the lower bound is given byλl :=

−čl
jl/ǎl

jl, andBl is optimal forλ ∈ [λl, λl−1].

To determine the index exitingBl, consider the moving direction fromzl to the next joint solution.
Definedl := (dl

1, · · · , dl
N ) as

dl
Bl = −A−1

Bl Ajl , dl
jl = 1, and (11)

dl
i = 0 for i ∈ N \ (Bl ∪ {jl}).

Lemma 13 in Appendix shows thatdl is the moving direction atλ = λl in the sense thatzl+1 = zl + τdl

for someτ ≥ 0. For the feasibility ofzl+1 ≥ 0, the step sizeτ can not exceed the minimum of−zl
i/d

l
i for

i ∈ Bl with dl
i < 0, and the index attaining the minimum is to leaveBl. Denote the exit index by

il := arg min
i∈{j: dl

j<0, j∈Bl}

(

−zl
i

dl
i

)

. (12)

Therefore, the optimal basic index set atλ = λl is given byBl+1 := Bl ∪ {jl} \ {il}. More precisely, we
can verify the optimality ofBl+1 atλ = λl by showing that

(c + λla) − A′
(

A−1
Bl+1

)′
(cBl+1 + λlaBl+1) (13)

= (c + λla) − A′
(

A−1
Bl

)′
(cBl + λlaBl).

The proof is given in Appendix B. Then the fact thatBl is optimal atλ = λl implies thatBl+1 is also
optimal atλ = λl. As a result, the updating procedure can be repeated withBl+1 andλl successively until
λl < 0 or equivalently̌cl

jl ≥ 0. The algorithm for updating the optimal basic index sets is summarized as
follows.

1. Initialize the optimal basic index set atλ−1 = ∞ with B0.

2. GivenBl, thelth optimal basic index set atλ = λl−1, determine the solutionzl by zl
Bl = A−1

Bl b and
zl

j = 0 for j ∈ N \ Bl.

3. Find the entry index

jl = arg max
j : ǎl

j > 0; j ∈ N \ Bl

(

−
čl
j

ǎl
j

)

.

4. Find the exit index

il = arg min
i∈{j: dl

j<0, j∈Bl}

(

−zl
i

dl
i

)

.

If there are multiple indices, choose one of them.

5. Update the optimal basic index set toBl+1 = Bl ∪ {jl} \ {il} andλl−1 to λl.

6. Terminate the algorithm if̌cl
jl ≥ 0 or equivalentlyλl ≤ 0. Otherwise, increasel by 1 and repeat 2 –

5.

8



If −zl
il
/dl

il
= 0, thenzl = zl+1, which may result in the problem of cycling among several basic index

sets with the same solution. We defer the description of the tableau-simplex algorithm which can avoid the
cycling problem to Section 3.2. For brevity, we just assume that zl + τdl ≥ 0 for someτ > 0 so that
zl 6= zl+1 for eachl and call thisnon-degeneracyassumption. Under this assumption, suppose the simplex
algorithm terminates afterJ iterations with{(zl, λl) : l = 0, 1, · · · , J}. Then the entire solution path is
obtained as described below.

Theorem 6 The solution path of (4) is






z0 for λ > λ0

zl for λl < λ < λl−1, l = 1, · · · , J
τzl + (1 − τ)zl+1 for λ = λl andτ ∈ [0, 1], l = 0, · · · , J − 1.

(14)

Likewise, the solutions to the alternative formulation of (7) with the complexity bound can be obtained
as a function ofs. By the correspondence of the two formulations, thelth joint of the piecewise linear
solution is given bysl = a′zl, and the solution between the joints is a linear combinationof zl andzl+1 as
described in Theorem 7 below. Its proof is in Appendix C. To the best of our knowledge, this direct proof
of the piecewise linearity of the solution to (7) in the parametric right-hand-side LP formulation is new.

Theorem 7 For s ≥ 0, the solution path of (7) can be expressed as
{

sl+1 − s
sl+1 − sl

zl + s − sl
sl+1 − sl

zl+1 if sl ≤ s < sl+1 and l = 0, · · · , J − 1

zJ if s ≥ sJ .

Notice that when indexed byλ, the solutions at the jointsλl are not unique, but when parametrized bys,
the solution path is expressed uniquely as a piecewise linear function ofs by tracing those line segments of
two consecutive joint solutions. In essence, the solutionsgenerated by the simplex algorithm areindexed by
the optimal basic index setsBl, and the sequences ofλl andsl are completely determined byBl as a result.
Hence, to the extent that the optimal basic index sets are uniquely determined, the regularized solution path
is defined uniquely.

3.2 Tableau-Simplex Algorithm

The non-degeneracy assumption in the simplex method that any two consecutive joint solutions are different
may not hold in practice for many problems. When some columnsof a basic matrix are discrete, the
assumption may fail at some degenerate joint solutions. To deal with more general settings where the cycling
problem may occur in generating the LP solution path by the simplex method, we discuss thetableau-
simplexalgorithm.

A tableau refers to a matrix which contains all the information about the LP. It consists of the relevant
terms in LP associated with a basic matrix such as the basic solution and the cost.

Definition 8 For a basic index setB∗, its tableau is defined as

zeroth column pivot columns
cost row −c′B∗A−1

B∗ b c′ − c′B∗A−1
B∗ A

penalty row −a′B∗A−1
B∗ b a′ − a′B∗A−1

B∗ A
pivot rows A−1

B∗ b A−1
B∗ A

9



We follow the convention for the names of the columns and rowsin the tableau. For reference, see
Murty (1983) and Bertsimas and Tsitsiklis (1997). Note thatthe zeroth column containsz∗

B∗ := A−1
B∗ b, the

non-zero part of the basic solution,−c′B∗A−1
B∗ b = −c′z∗, the negative cost, and−a′B∗A−1

B∗ b = −a′z∗, the
negative penalty ofz∗ associated withB∗, and the pivot columns contaiňc∗j ’s andǎ∗j ’s. The algorithm to
be discussed updates the basic index sets by using the tableau, in particular, by ordering some rows of the
tableau. To describe the algorithm, we introduce the lexicographic order of vectors first.

Definition 9 For v andw ∈ Rn, we say thatv is lexicographically greater thanw (denoted byv
L
> w) if

the first non-zero entry ofv − w is strictly positive. We say thatv is lexicographically positive ifv
L
> 0.

Now, consider the parametric-cost LP in (4).

3.2.1 Initial Tableau

With the index setB0, initialize the tableau. Sincez0
B0 = A−1

B0 b ≥ 0 and the columns ofA can be
rearranged such that the submatrix with the firstM columns ofA−1

B0 A is I , we assume that the pivot rows,
[A−1

B0 b A−1
B0 A], of the initial tableau are lexicographically positive. Inother words, there is a permutation

π : N → N which mapsB0 to M := {1, · · · ,M}, and we can replace the problem with theπ-permuted
version (e.g.,zπ(N ) andAπ(N )).

3.2.2 Updating Tableau

Given the current optimal basic index setBl, the current tableau is

zeroth column pivot columns
cost row −c′

BlA
−1
Bl b c′ − c′

BlA
−1
Bl A

penalty row −a′
BlA

−1
Bl b a′ − a′

BlA
−1
Bl A

pivot rows A−1
Bl b A−1

Bl A

Suppose all the pivot rows of the current tableau are lexicographically positive. The tableau-simplex al-
gorithm differs from the simplex algorithm only in the way the exit index is determined. The following
procedure is generalization of Step 4 in the simplex algorithm for finding the exit index.

Step 4. Letul := (ul
1, · · · , ul

M )′ := A−1
Bl Ajl. For eachi ∈ M with ul

i > 0, divide theith pivot row
(including the entry in the zeroth column) byul

i. And, among those rows, find the index,il∗, of the lexico-
graphically smallest row. Then,il := Bl

il∗
is the exit index.

Remark 10 Sinceul = −dl
Bl , if il in (12) is unique withzl

il
> 0, then it is the same as the lexicographically

smallest row that the tableau-simplex algorithm seeks. Hence the two algorithms coincide. The simplex
algorithm determines the exit index based only on the zerothcolumn in the tableau while the lexicographic
ordering involves the pivot columns additionally. The optimality ofBl for λ ∈ [λl, λl−1] immediately follows
by the same Step 3, and (13) remains to hold true for the exit indexil of the tableau-simplex algorithm, which
implies the optimality ofBl+1 at λ = λl.

Some characteristics of the updated tableau associated withBl+1 are described in the next theorem. The
proof is adapted from that for the lexicographic pivoting rule in Bertsimas and Tsitsiklis (1997) p. 108–111.
See Appendix D for details.
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Theorem 11 For the updated basic index setBl+1 by the tableau-simplex algorithm,

i) all the pivot rows of the updated tableau are still lexicographically positive, and

ii) the updated cost row is lexicographically greater than that forBl.

SinceA−1
Bl+1b is the ‘zeroth column’ of the pivot rows, i) says that the basic solution forBl+1 is feasible,

i.e., zl+1 ≥ 0. Moreover, it implies that the updating procedure can be repeated withBl+1 and the new
tableau.

It is not hard to see thatzl+1 = zl if and only if zl
il

= 0 (see the proof of Theorem 11 in the Appendix
for more details). Whenzl

il
= 0, zl+1 = zl, however the tableau-simplex algorithm uniquely updatesBl+1

such that the previous optimal basic index setsBl’s never reappear in the process. This anti-cycling property
is guaranteed by ii). By ii), we can strictly order the optimal basic index setsBl based on their cost rows.
Because of this and the fact that all possible basic index sets are finite, the total number of iterations must
be finite. This proves the following.

Corollary 12 The tableau updating procedure terminates after a finite number of iterations.

Suppose that the tableau-simplex algorithm stops afterJ iterations withλJ ≤ 0. In parallel to the
simplex algorithm, the tableau-simplex algorithm outputsthe sequence{(zl, sl, λl) : l = 0, · · · , J}, and
the solution paths for (4) and (7) admit the same forms as in Theorem 6 and Theorem 7 except for any
duplicate jointsλl andsl.

4 Examples of LP for Regularization

We provide several concrete examples of LP problems that arise in statistics for feature selection via regular-
ization. For each example, we identify the elements in the standard LP form, and discuss their commonalities
across different examples and how they can be utilized for efficient computation.

4.1 l1-Norm Quantile Regression

Quantile regression is a regression technique, introducedby Koenker and Bassett (1978), intended to esti-
mate conditional quantile functions. It is obtained by replacing the squared error loss of the classical linear
regression for the conditional mean function with a piecewise linear loss called the check function. For a
general introduction to quantile regression, see Koenker and Hallock (2001).

For simplicity, assume that the conditional quantiles are linear in the predictors. Given a data set,
{(xi, yi) : xi ∈ Rp, yi ∈ R, i = 1, · · · , n}, theτ th conditional quantile function is estimated by

min
β0 ∈ R, β ∈ Rp

∑n
i=1 ρτ (yi − β0 − xiβ) , (15)

whereβ0 andβ := (β1, . . . , βp)
′ are the quantile regression coefficients forτ ∈ (0, 1), andρτ (·) is the

check function defined as

ρτ (t) :=

{

τ · t for t > 0
−(1 − τ) · t for t ≤ 0.

For example, whenτ = 1/2, the median regression function is estimated. The standardquantile regression
problem in (15) can be cast as an LP problem itself. Barrodaleand Roberts (1973) propose an improved
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tableau-simplex algorithm for median regression. Koenkerand D’Orey (1987) modify the algorithm to
process quantile regression. Koenker and D’Orey (1994) further generalize the algorithm for enumeration
of the entire range of quantile functions parametrized byτ , treating it as a parametric cost LP problem. Since
the problem is somewhat different from an array of statistical optimization problems for feature selection
that we intend to address in this paper, we skip discussion ofthe topic and refer the readers to Koenker and
D’Orey (1994) and Koenker (2005).

Aiming to estimate the conditional quantile function simultaneously with selection of relevant predic-
tors, Li and Zhu (2008) propose thel1-norm quantile regression. It is defined by the following constrained
optimization problem:

{

min
β0 ∈ R, β ∈ Rp

∑n
i=1 ρτ (yi − β0 − xiβ)

s.t. ‖β‖1 ≤ s,

wheres > 0 is a regularization parameter. Equivalently, with anothertuning parameterλ, the l1-norm
quantile regression can be recast as

{

min
β0 ∈ R, β ∈ Rp, ζ ∈ Rn

∑n
i=1{τ(ζi)+ + (1 − τ)(ζi)−} + λ‖β‖1

s.t. β0 + xiβ + ζi = yi for i = 1, · · · , n,
(16)

where(x)+ = max(x, 0) and (x)− = max(−x, 0). Now it is straightforward to formulate (16) as an
LP parametrized byλ, which is a common feature of the examples discussed in this section. For the non-
negativity constraint in the standard form of LP, consider both positive and negative parts of each variable
and denote, for example,((β1)+, . . . , (βp)+)′ by β+ and((β1)−, . . . , (βp)−)′ by β−. Note thatβ = β+ −
β− and thel1-norm‖β‖1 :=

∑p
i=1 |βi| is given by1′(β++β−) with 1 := (1, · · · , 1)′ of appropriate length.

LetY := (y1, · · · , yn)′, X := (x′1, · · · , x′n)′, ζ := (ζ1, · · · , ζn)′, and0 := (0, · · · , 0)′ of appropriate length.
Then the following elements define thel1-norm quantile regression in the standard form of a parametric-cost
LP in (4):

z := ( β+
0 β−

0 (β+)′ (β−)′ (ζ+)′ (ζ−)′ )′

c := ( 0 0 0
′

0
′ τ1′ (1 − τ)1′ )′

a := ( 0 0 1
′

1
′

0
′

0
′ )′

A := ( 1 −1 X −X I −I )
b := Y

with a total ofN = 2(1 + p + n) variables andM = n equality constraints.

4.2 l1-Norm Support Vector Machine

Consider a binary classification problem whereyi ∈ {−1, 1}, i = 1, · · · , n denote the class labels. The
Support Vector Machine (SVM) introduced by Cortes and Vapnik (1995) is a classification method that
finds the optimal hyperplane maximizing the margin between the classes. It is another example of a regular-
ization method with a margin-based hinge loss and the ridge regression typel2 norm penalty. The optimal
hyperplane (β0 + xβ = 0) in the standard SVM is determined by the solution to the problem:

min
β0 ∈ R, β ∈ Rp

n
∑

i=1

{1 − yi (β0 + xiβ)}+ + λ‖β‖2
2,

12



whereλ > 0 is a tuning parameter. Replacing thel2 norm with thel1 norm for selection of variables,
Bradley and Mangasarian (1998) and Zhu et al. (2004) arrive at a variant of the soft-margin SVM:

{

min
β0 ∈ R, β ∈ Rp, ζ ∈ Rn

∑n
i=1(ζi)+ + λ‖β‖1

s.t. yi(β0 + xiβ) + ζi = 1 for i = 1, · · · , n.
(17)

Similarly, this l1-norm SVM can be formulated as a parametric cost LP with the following elements in the
standard form:

z := ( β+
0 β−

0 (β+)′ (β−)′ (ζ+)′ (ζ−)′ )′

c := ( 0 0 0
′

0
′

1
′

0
′ )′

a := ( 0 0 1
′

1
′

0
′

0
′ )′

A := ( Y −Y diag(Y )X −diag(Y )X I −I )
b := 1.

This example will be revisited in great detail in Section 5.

4.3 l1-Norm Functional Component Selection

We have considered only linear functions in the original variables for conditional quantiles and separating
hyperplanes so far. In general, the technique ofl1 norm regularization for variable selection can be extended
to nonparametric regression and classification. Although many different extensions are possible, we discuss
here a specific extension for feature selection which is wellsuited to a wide range of function estimation
and prediction problems. In a nutshell, the space of linear functions is substituted with a rich function space
such as a reproducing kernel Hilbert space (Wahba, 1990; Schölkopf and Smola, 2002) where functions
are decomposed of interpretable functional components, and the decomposition corresponds to a set of
different kernels which generate the functional subspaces. Let an ANOVA-like decomposition off with,
say,d components bef = f1 + · · · + fd andKν , ν = 1, . . . , d be the associated kernels. Non-negative
weightsθν are then introduced for recalibration of the functional componentsfν . Treatingfν ’s as features
and restricting thel1 norm ofθ := (θ1, . . . , θd)

′ akin to the LASSO leads to a general procedure for feature
selection and shrinkage. Detailed discussions of the idea can be found in Lin and Zhang (2006); Gunn and
Kandola (2002); Zhang (2006); Lee et al. (2006). More generally, Micchelli and Pontil (2005) treat it as a
regularization procedure for optimal kernel combination.

For illustration, we consider the “θ-step” of the structured SVM in Lee et al. (2006), which yields
another parametric cost LP problem. For generality, consider ak-category problem with potentially different
misclassification costs. The class labels are coded byk-vectors;yi = (y1

i , . . . , y
k
i )′ denotes a vector with

yj
i = 1 and−1/(k − 1) elsewhere if theith observation falls into classj. L(yi) = (L1

yi
, . . . , Lk

yi
) is

a misclassification cost vector, whereLj′

j is the cost of misclassifyingj as j′. The SVM aims to find

f = (f1, . . . , fk)′ closely matching an appropriate class codey givenx which induces a classifierφ(x) =
arg maxj=1,...,k f j(x). Suppose that eachf j is of the formβj

0 +hj(x) := βj
0 +
∑n

i=1 βj
i

∑d
ν=1 θνKν(xi, x).

Define the squared norm ofhj as‖hj‖2
K := (βj)′

(

∑d
ν=1 θνKν

)

βj, whereβj := (βj
1, . . . , β

j
n)′ is thejth

coefficient vector, andKν is then by n kernel matrix associated withKν . With the extended hinge loss
L{yi, f(xi)} := L(yi){f(xi) − yi}+, the structured SVM findsf with β andθ minimizing

n
∑

i=1

L(yi){f(xi) − yi}+ +
λ

2

k
∑

j=1

‖hj‖2
K + λθ

d
∑

ν=1

θν (18)
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subject toθν ≥ 0 for ν = 1, . . . , d. λ and λθ are tuning parameters. By alternating estimation ofβ

andθ, we attempt to find the optimal kernel configuration (a linearcombination of pre-specified kernels)
and the coefficients associated with the optimal kernel. Theθ-step refers to optimization of the functional
component weightsθ givenβ. More specifically, treatingβ as fixed, the weights of the features are chosen
to minimize

k
∑

j=1

(L j)′

{

βj
01 +

d
∑

ν=1

θνKνβ
j − yj

}

+

+
λ

2

k
∑

j=1

(βj)′

(

d
∑

ν=1

θνKν

)

βj + λθ

d
∑

ν=1

θν ,

whereL j := (Lj
y1 , . . . , L

j
yn)′ andyj = (yj

1, . . . , y
j
n)′.

This optimization problem can be rephrased as














min
ζ ∈ Rnk, θ ∈ Rd

∑k
j=1(L

j)′(ζj)+ + λ
2

∑d
ν=1 θν

(

∑k
j=1(β

j)′Kνβj
)

+ λθ

∑d
ν=1 θν

s.t.
∑d

ν=1 θνKνβj − ζj = yj − βj
01 for j = 1, . . . , k

θν ≥ 0 for ν = 1, . . . , d.

Let gν := (λ/2)
∑k

j=1(β
j)′Kνβ

j , g := (g1, · · · , gd)
′, L :=

(

(L1)′, · · · , (L k)′
)′

, andζ :=
(

(ζ1)′, · · · , (ζk)′
)′

.
Also, let

X :=







K1β
1 · · · Kdβ

1

...
. . .

...
K1β

k · · · Kdβ
k






.

Then the following elements define theθ-step as a parametric cost LP indexed byλθ with N = (d + 2nk)
variables andM = nk equality constraints:

z := ( θ′ (ζ+)′ (ζ−)′ )′

c := ( g′ L ′
0
′ )′

a := ( 1
′

0
′

0
′ )′

A := ( X −I I )

b := ((y1 − β1
01)′, . . . , (yk − βk

01)′)′.

4.4 Regularization for Grouping or Clustering of Features via LP

In many real applications, covariates are often grouped in nature, where group selection may be more per-
tinent than individual variable or feature selection. For example, a set of dummy variables created for a
categorical variable or a factor form a natural group.

For description of grouped regularization, consider a standard linear model withJ groups of variables:

Y = β0 +
J
∑

j=1

Xjβj + ǫ,

whereY and ǫ are n-vectors,Xj is an n × pj matrix associated with thejth group of variables, and
βj := (β1j , · · · , βpjj)

′ is a coefficient vector of sizepj for j = 1, · · · , J . Let β := (β′
1, · · · ,β′

J)′ and
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X := (X1, · · · , XJ). For selection of important variable groups and estimationof the correspondingβ,
Yuan and Lin (2006) propose a grouped LASSO penalty defined as

‖β‖Glasso :=

J
∑

j=1

‖βj‖2

in the regression context. However, computationally different from the ordinary LASSO withℓ1 norm
penalty (Tibshirani, 1996), the solutionβ of the grouped LASSO is not piecewise linear in the regularization
parameterλ, and thus, it has to be calculated at eachλ in general.

For easier computation and complete enumeration of the solution by piecewise linearity, one may con-
sider an alternative penalty for grouped variable selection defined via the sup-norm:

‖β‖F∞ :=

J
∑

j=1

‖βj‖∞, (19)

which is suggested by Zou and Yuan (2008) originally for the SVM and named thefactorwise infinitynorm
penalty.

As another variant, by noticing that the sup-norm penalty tends to equalize coefficients, Bondell and
Reich (2008) propose the so-called OSCAR (Octagonal Shrinkage and Clustering Algorithm for Regression)
penalty. It combines theℓ1 norm and the sup norm for simultaneous selection and clustering of correlated
predictors which have a similar effect on the response. The OSCAR penalty forβ := (β1, . . . , βp)

′ is given
by

‖β‖Oscar :=
∑

1≤j≤k≤p

max{|βj |, |βk|}. (20)

The penalties for grouped regularization and clustering in(19) and (20) are of linear nature. When com-
bined with piecewise linear loss functions given in the previous subsections, they also produce parametric
LP problems. Hence, the algorithms in Section 3 are readily applicable.

For example, grouped median regression with theF∞ norm penalty in (19) finds the coefficients,β0 and
β that minimize

n
∑

i=1

|yi − β0 −
J
∑

j=1

xijβj | + λ‖β‖F∞ . (21)

By introducing non-negative slack variablesζ+, ζ−, ρ+ := (ρ+
1 , · · · , ρ+

J )′, andη+ := (η+
1
′
, · · · ,η+

J

′
)′,

which are defined through the following relations:

ζ := ζ+ − ζ− := Y − β0 −
J
∑

j=1

Xjβj,

ρ+
j 1 = β+

j + β−
j + η+

j with βj = β+
j − β−

j for j = 1, · · · , J,

the optimization problem in (21) can be formulated as a parametric LP:














min 1
′(ζ+ + ζ−)

s.t. ζ+ − ζ− = Y − (β+
0 − β−

0 ) −∑J
j=1 Xj(β

+
j − β−

j )

(ρ+
1 1

′
p1

, · · · , ρ+
J 1

′
pJ

)′ = β+ + β− + η+

ζ+, ζ−,ρ+,η+,β+,β− ≥ 0.

In the standard form of (4), it has
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z := ( (ζ+)′ (η+)′ (ζ−)′ β+
0 β−

0 (β+)′ (β−)′ (ρ+)′ )′

c := ( 1
′

0
′

1
′ 0 0 0

′
0
′

0
′ )′

a := ( 0
′

0
′

0
′ 0 0 0

′
0
′

1
′ )′

A :=

[

I
0

0

I
−I
0

1

0

−1

0

X
I

−X
I

0

−G

]

b :=

(

Y

0

)

,

whereG :=











1p1 0p1 · · · 0p1

0p2 1p2 · · · 0p2

...
...

. . .
...

0pJ
0pJ

· · · 1pJ











.

Similarly, the optimization problem for penalized groupedquantile regression can be written as the same
LP as the median regression except for the change in the cost vector

c := (τ1′,0′, (1 − τ)1′, 0, 0,0′,0′,0′)′.

Taking another example, if theℓ1 norm penalty for functional component selection in Section4.3 is
replaced with the OSCAR penalty on the recalibration parametersθ, the optimization problem of the struc-
tured SVM in (18) becomes



























min
ζ ∈ Rnk , θ ∈ Rd

∑k
j=1(L

j)′(ζj)+ + λ
2

∑d
ν=1 θν

(

∑k
j=1(β

j)′Kνβ
j
)

+λθ

∑

1≤ν≤µ≤d

max(θν , θµ)

s.t.
∑d

ν=1 θνKνβ
j − ζj = yj − βj

01 for j = 1, . . . , k.
θ ≥ 0.

(22)

Introduce slack variablesη := η+ − η− for all pairwise differences(θi − θj) for 1 ≤ i < j ≤ d. Let
ei be thed-vector with itsith element equal to 1 and 0 elsewhere. And let∆ denote ad(d − 1)/2 × d
matrix whose row vectors are(ei − ej) for 1 ≤ i < j ≤ d in the order of(θi − θj) in η. Then using the
same notation as in Section 4.3, the newθ-step for the SVM with the OSCAR penalty can be rephrased as a
parametric LP with

z := ( θ′ (η+)′ (η−)′ (ζ+)′ (ζ−)′ )′

c := ( g′ 0
′

0
′ L ′

0
′ )′

a := ( (d + 1)1′
1
′

1
′

0
′

0
′ )′

A :=

[

X
∆

0

−I
0

I
−I
0

I
0

]

b :=

(

Y − β0 ⊗ 1n

0

)

.

More examples can be found in Yao (2008).
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4.5 Computation

The LP problems for the examples in Sections 4.1 - 4.3 share a similar structure that can be exploited in
computation. First of all, theA matrix has bothI and−I as its sub-matrices, and the entries of the penalty
coefficient vectora corresponding toI and−I in A are zero. Thus, the ranks ofA andAIa

areM , and the
initial optimal solution exists and can be easily identified. Due to the special structure ofAIa

, it is easy to
find a basic index setB∗ ⊂ Ia for the initial LP problem in (9), which gives a feasible solution. For instance,
a feasible basic solution can be obtained by constructing a basic index setB∗ such that forbj ≥ 0, we choose
thejth index from those forI , and otherwise from the indices for−I . For theθ-step of structured SVM,B∗

itself is the initial optimal basic index set, and it gives a trivial initial solution. For thel1-norm SVM and
l1-norm quantile regression, the basic index set defined aboveis not optimal. However, the initial optimal
basic index set can be obtained easily fromB∗. In general, the tableau-simplex algorithm in Section 3 can
be used to find the optimal basic index set of a standard LP problem, taking any feasible basic index setB
as a starting point. Necessary modification of the algorithmfor standard LP problems is that the entry index
jl ∈ N is chosen from anyj with aj = 0 andčlj < 0 at Step 3. ForB∗, all but the indicesj for β+

0 andβ−
0

satisfy člj ≥ 0. Therefore, one of the indices forβ0 will move into the basic index set first by the algorithm,
and it may take some iterations to get the initial optimal index set for the two regularization problems.

A tableau contains all the information on the current LP solution and the terms necessary for the next
update. To discuss the computational complexity of the tableau updating algorithm in Section 3.2.2, letTl

denote the tableau, an(N + 1) × (M + 2) matrix associated with the current optimal basic index setBl.
For a compact statement of the updating formula, assume thatthe tableau is rearranged such that the pivot
columns and the pivot rows precede the zeroth column and the cost row and the penalty row, respectively.
For the entry indexjl and exit indexil defined in the algorithm,Tl

jl denotes itsjlth column vector,Tl′
il∗

the

il∗th row vector ofTl, andTil∗jl theil∗j
lth entry ofTl. The proof of Theorem 11 in Appendix D implies the

following updating formula:

Tl+1 = Tl − 1

Til∗jl

(

Tl
jl − eil∗

)

Tl′
il∗

. (23)

Therefore, the computational complexity of the tableau updating is approximatelyO(MN) for each iteration
in general.

For the three examples, tableau update can be further streamlined. Exploiting the structure ofA with
paired columns and fixed elements in the tableau associated with Bl, we can compress each tableau, retaining
the information about the current tableau, and update the reduced tableau instead. We leave discussion of
implementation details elsewhere, but mention that updating such a reduced tableau has the complexity of
O((Ng −M)M) for each iteration, whereNg is the reduced number of columns inA counting only one for
each of the paired columns. As a result, when the tableau algorithm stops inJ iterations, the complexity of
both l1-norm SVM andl1-norm QR as a whole isO((p + 1)nJ) while that of theθ-step of structured SVM
is roughlyO(dnkJ), wherep is the number of variables,d is the number of kernel functions, andk is the
number of classes.

5 A Closer Look at the l1-Norm Support Vector Machine

Taking thel1-norm SVM as a case in point, we describe the implications of the tableau-simplex algorithm
for generating the solution path. Zhu et al. (2004) provide aspecific path-finding algorithm for thel1-norm
SVM in the complexity-bounded formulation of (7) and give a careful treatment of this particular problem.
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We discuss the correspondence and generality of the tableau-simplex algorithm in comparison with their
algorithm.

5.1 Status Sets

For the SVM problem with the complexity bounds (i.e. ‖β‖1 ≤ s), letβ0(s) andβ(s) := (β1(s), · · · , βp(s))
be the optimal solution ats. Zhu et al. (2004) categorize the variables and cases that are involved in the reg-
ularized LP problem as follows:

• Active set:A(s) := {j : βj(s) 6= 0, j = 0, 1, . . . , p}

• Elbow set:E(s) := {i : yi{β0(s) + xiβ(s)} = 1, i = 1, . . . , n}

• Left set:L(s) := {i : yi{β0(s) + xiβ(s)} < 1, i = 1, . . . , n}

• Right set:R(s) := {i : yi{β0(s) + xiβ(s)} > 1, i = 1, . . . , n}.

Now, consider the solutionz(s) given by the tableau-simplex algorithm as defined in Section4.2 and the
equality constraints ofAz(s) = b, that is,

Az(s) := β0(s)Y + diag(Y )Xβ(s) + ζ(s) = 1.

It is easy to see that for any solutionz(s), its non-zero elements must be one of the following types, and
hence associated withA(s), L(s), andR(s):

• β+
j (s) > 0 or β−

j (s) > 0 (but not both)⇒ j ∈ A(s);

• ζ+
i (s) > 0 andζ−i (s) = 0 ⇒ i ∈ L(s);

• ζ+
i (s) = 0 andζ−i (s) > 0 ⇒ i ∈ R(s).

On the other hand, ifζ+
i (s) = 0 andζ−i (s) = 0, theni ∈ E(s), the elbow set.

5.2 Assumption

Suppose that thelth joint solution ats = sl is non-degenerate. Thenzj(s
l) > 0 if and only if j ∈ Bl. This

gives
|A(sl)| + |L(sl)| + |R(sl)| = n.

SinceE(s) ∪ L(s) ∪ R(s) = {1, . . . , n} for anys, the relationship that|A(sl)| = |E(sl)| must hold for all
the joint solutions. In fact, the equality of the cardinality of the active set and the elbow set is stated as an
assumption for uniqueness of the solution in the algorithm of Zhu et al. (2004). The implicit assumption of
zl
Bl > 0 at each joint implieszl+1 6= zl, the non-degeneracy assumption for the simplex algorithm.Thus the

simplex algorithm is less restrictive. In practice, the assumption that joint solutions are non-degenerate may
not hold, especially when important predictors are discrete or coded categorical variables such as gender.
For instance, the initial solution of thel1-norm SVM violates the assumption in most cases, requiring a
separate treatment for finding the next joint solution afterinitialization. In general, there could be more
than one degenerate joint solutions along the solution path. This would make the tableau-simplex algorithm
appealing as it does not rely on any restrictive assumption.
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5.3 Duality in Algorithm

To move from one joint solution to the next, the simplex algorithm finds the entry indexjl. For thel1-norm
SVM, each index is associated with eitherβj or ζi. Under the non-degeneracy assumption, the variable
associated withjl must change from zero to non-zero after the joint (s > sl). Therefore, only one of the
following “events” as defined in Zhu et al. (2004) can happen immediately after a joint solution:

• βj(s
l) = 0 becomesβj(s) 6= 0, i.e., an inactive variable becomes active;

• ζi(s
l) = 0 becomesζi(s) 6= 0, i.e., an element leaves the elbow set and joins either the left set or the

right set.

In conjunction with the entry index, the simplex algorithm determines the exit index, which accompanies
one of the reverse events.

The algorithm in Zhu et al. (2004), driven by the Karush-Kuhn-Tucker optimality conditions, seeks the
event with the smallest “∆loss/∆s,” in other words, the one that decreases the cost with the fastest rate.
The simplex algorithm is consistent with this existing algorithm. As in (10), recall that the entry indexjl is
chosen to minimize(čl

j/ǎl
j) amongj ∈ N \ Bl with ǎl

j > 0. N \ Bl contains those indices corresponding

to j /∈ A(sl) or i ∈ E(sl). Analogous to the optimal moving directiondl in (11), definevj = (vj
1, . . . , v

j
N )′

such that
v

j

Bl = −A−1
Bl Aj, v

j
j = 1, andvj

i = 0 for i ∈ N \ (Bl ∪ {j}).

Thenǎl
j := (aj − a′

BlA
−1
Bl Aj) = a′vj ∝ ∆sj andčl

j := (cj − c′
BlA

−1
Bl Aj) = c′vj ∝ ∆lossj. Thus, the

index chosen by the simplex algorithm in (10) maximizes the rate of reduction in the cost,∆loss/∆s.
The existingl1-norm SVM path algorithm needs to solve roughlyp groups of|E|-variate linear equation

systems for each iteration. Its computational complexity can beO(p|E|2 + p|L|) if Sherman-Morrison
updating formula is used. On the other hand, the computational complexity of the tableau-simplex algorithm
is O(pn) for each iteration as mentioned in Section 4. Therefore, theformer could be faster ifn/p is large;
otherwise, the tableau-simplex algorithm is faster.

Most of the arguments in this section also apply for the comparison of the simplex algorithms with the
extended solution path algorithm for thel1-norm multi-class SVM by Wang and Shen (2006).

6 Numerical Results

We illustrate the use of the tableau-simplex algorithm for parametric LP in statistical applications with a
simulated example and analysis of real data, and discuss model selection or variable selection problems
therein.

6.1 Quantile Regression

Quantile regression has been discussed in Sections 4.1 and 4.4. A simulation study is presented here to
illustrate the use of the computational algorithm for quantile regression with different penalties and for their
comparisons.

In the simulation study, 10 dimensional covariates are generated from the standard normal distribution
independently, that is,X := (X1, . . . ,X10) ∼ N(0, I ). The response variable is defined byY = β0+xβ+ǫ
for some fixedβ0 andβ, whereǫ ∼ N(0, σ2), andx andǫ are assumed to be mutually independent. The
theoreticalτ th conditional quantile function is then given bymτ (x) = σΦ−1(τ) + β0 + xβ, whereΦ is the
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cdf of the standard normal distribution. Restricting to linear functions only, suppose that an estimatedτ th
conditional quantile function isf(x) = β̂0 + xβ̂. Under the check function as a loss criterion, we can verify
that the theoretical risk off is given as

R(f ;β0,β) := E
{

τ(Y − β̂0 − Xβ̂)+ + (1 − τ)(Y − β̂0 − Xβ̂)−

}

=







τ − Φ





β̂0 − β0
√

σ2 + ‖β − β̂‖2
2











(β0 − β̂0)

+

√

σ2 + ‖β − β̂‖2
2

2π
exp

{

− (β̂0 − β0)
2

2(σ2 + ‖β − β̂‖2
2)

}

. (24)

For eachτ , the risk of the true quantile functionmτ (x) is (σ/
√

2π) exp{−Φ−1(τ)2/2}, which represents
the minimal achievable risk. Note that the maximum of the minimal risks in this case occurs whenτ = 0.5
(i.e., for the median), and the true conditional median function ism0.5(x) = β0+xβ with the risk ofσ/

√
2π.

Suppose that the variables in the linear model form three groups,{1, 2, 3}, {4, 5, 6, 7}, and{8, 9, 10}
of sizesp1 = 3, p2 = 4, andp3 = 3, respectively, and they are alternatively indexed by (11,12,13),
(21,22,23,24), and (31,32,33). Then the linear model can berestated as

Y = β0 +

J
∑

j=1

pj
∑

i=1

xijβij + ǫ

with the number of groups,J = 3. We setβ0 = 0, β := (β′
1,β

′
2,β

′
3)

′ with β1 = (2, 3, 2)′, β2 =
(0, 0, 0, 0)′ , andβ3 = (−3, 2,−2)′, andσ2 = 50. For the setting, the signal-to-noise ratio defined as
Var(Xβ)/σ2 is 0.68, and the minimal risk in estimating the median regression function isσ/

√
2π ≈ 2.821.

In the study, 100 pairs ofx andy were generated independently from the model. Focusing on the case
with τ = 0.5, we applied median regression with theℓ1 norm penalty in Section 4.1 and grouped median
regression with theF∞ norm penalty and the OSCAR penalty in Section 4.4 to the simulated data.

Figure 1 shows typical solution paths of grouped median regression with theF∞ norm penalty indexed
by s. The estimated coefficients are plotted in the left panel, and their absolute values are plotted in the right
panel. They illustrate the general characteristic of penalized grouped regression that the coefficients in each
group form a stem in the beginning and then branch out later for a better fit to the data. From the figure, we
can see that the variable group 1 (in red) and the group 3 (in blue) stand out at the early stage of the solution
path as expected.

The risk associated with the solution at each point of the paths is theoretically available for this example,
and thus the optimal value of the regularization parameter can be defined. However, in practice,λ (or s)
needs to be chosen data-dependently, and this gives rise to an important class of model selection problems
in general. For the feasibility of data-dependent choice ofthe regularization parameter, we carried out cross
validation and made comparison with the theoretically optimal values. The dashed lines in Figure 1 indicate
the optimal value ofs chosen by 10-fold cross validation under the check loss withτ = 0.5. The left panel
in Figure 2 displays the path of 10-fold cross validated riskin black for median regression with theF∞

norm penalty corresponding to the coefficient paths in Figure 1 and the theoretical risk path in (24) in blue.
The figure also shows the cross validated risk paths of the median regression fits withℓ1 norm and OSCAR
penalties for comparison. In this case, the median regression fit with theF∞ norm penalty produced the
smallest cross validated risk. Note that we normalized the penalty parameters in the figure for each of the
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Figure 1: The solution paths of grouped median regression with theF∞ norm penalty for simulated data.
Colors (blue, green, and red) distinguish the three groups of variables. The left panel shows the regression
coefficients while the right panel shows their absolute values. The vertical dashed line in each panel specifies
the values with the minimum of10-fold cross validated risk under the check loss forτ = 0.5.

three penalties so that the values ofs are comparable across different penalties. Normalizationwas done
by considering inherent difference in the expected size of each penalty for a given model. Specifically, the
normalizing constants were determined such that the expected size of each penalty should be the same if
βj ’s are independent and identically distributed with a uniform distribution on (−a/2, a/2) for any given
a > 0.

To increase the smoothness of a risk path and the stability inidentification of the optimal value of a
tuning parameter in general, one may smooth out an individual cross validated risk curve or take the average
of multiple curves over different splits of the data. To thateffect, cross validation was repeated 20 times for
averaging in our experiment, and Figure 2 shows, in fact, theaverage cross validated risk paths.
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Figure 2: The estimated risk paths of median regression withF∞ norm (left),ℓ1 norm (center), and OSCAR
penalty (right) by 10-fold cross validation for the simulated data used in Figure 1. In each panel, the black
curve is the cross validated risk, the blue curve is the theoretical risk, and the vertical dashed line indicates
the values with the minimum cross validated risk. Horizontally, the dotted line corresponds to the minimum
estimated risk, and the solid line marks the theoretically achievable minimum risk.
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Parameter True value Penalty
F∞ norm ℓ1 norm OSCAR

β11 2 1.8096 1.5990 1.4902
β12 3 2.2862 2.5443 2.3869
β13 2 1.6697 1.4905 1.4504
β21 0 -0.0086 -0.0355 -0.0065
β22 0 0.0015 -0.0058 0.0270
β23 0 -0.0255 -0.0222 -0.0050
β24 0 0.0163 0.0391 0.1200
β31 -3 -2.3156 -2.5095 -2.3715
β32 2 1.7857 1.5940 1.5525
β33 -2 -1.7348 -1.5360 -1.4397

Table 1: The mean estimates of regression coefficients for the variables in median regression fits withF∞

norm,ℓ1 norm, and OSCAR penalties over 400 replicates of simulated data.

In order to compare the effect of the three different penalties on the accuracy of fitted median regression
function, we generated 400 replicates of simulated data andrepeated model fitting and selection by 10-fold
cross validation. For each replicate, we chose the values with minimum cross validated risk to identify the
optimal model along the coefficient path of each method. Across the 400 replicates, median regression with
theF∞ norm penalty gave the mean minimum cross validated risk of 2.9551 with standard error of 0.0127
while theℓ1 norm penalty resulted in the mean risk of 3.0022 with standard error of 0.0133, and the OSCAR
penalty had the mean risk of 3.0275 with standard error of 0.0131. The mean risk of the grouped median
regression withF∞ norm penalty is significantly smaller than those withℓ1 norm and OSCAR penalties in
this example, probably due to the fact that theF∞ group penalty directly utilizes the sparse structure of true
regression coefficients.

However, the use of groupwiseℓ∞ norm in theF∞ penalty has an impact on the relative size of estimated
coefficients. Table 1 shows the estimated regression coefficients for the 10 variables in median regression
fits with F∞ norm,ℓ1 norm, and OSCAR penalties, respectively, averaged over 400replicates. Compared
to the individualℓ1 norm penalty, we can see that theF∞ norm penalty tends to attenuate more extreme
coefficients and produce values pulled toward the mean (in the absolute value) within each group. See, in
particular, the variable groups 1 and 3 for the attenuation effect.

In addition, Table 2 summarizes the proportion of inclusionof each of the 10 variables in the median
regression models fitted to those 400 replicates when the best model is chosen by 10-fold cross validation.
Across the three different penalties, we see that the sensitivity of selecting a variable when it is active in
the true median regression function is very high. However, the specificity of excluding a variable when it
is indeed inactive is quite low. TheF∞ norm penalty gives the lowest specificity rates while it yields the
highest sensitivity rates among the three penalties. As illustrated in Figure 1, a possible explanation is that
cross validation tends to select models with extra variables in an attempt to improve prediction accuracy by
allowing larger coefficients for the relevant variables.

6.2 Income Data Analysis

For a real application, we take the income data in Hastie et al. (2001), which are extracted from a mar-
keting database for a survey conducted in the Bay area (1987). The data set is available at http://www-
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Parameter True value Penalty
F∞ norm ℓ1 norm OSCAR

β11 2 0.9925 0.9375 0.9025
β12 3 1.0000 0.9925 0.9750
β13 2 0.9875 0.9325 0.9050
β21 0 0.8300 0.6150 0.6300
β22 0 0.8350 0.6150 0.6225
β23 0 0.8300 0.6050 0.6500
β24 0 0.8125 0.6350 0.6375
β31 -3 1.0000 0.9875 0.9725
β32 2 1.0000 0.9300 0.9250
β33 -2 0.9900 0.9175 0.9125

Table 2: The inclusion proportions of variables in the fittedmedian regression models withF∞ norm, ℓ1

norm, and OSCAR penalties for 400 replicates of simulated data.

stat.stanford.edu/∼tibs/ElemStatLearn/. It consists of 14 demographic attributes with a mixture of categori-
cal and continuous variables, which include age, gender, education, occupation, marital status, householder
status (own home/rent/other), and annual income among others. The main goal of the analysis is to predict
the annual income of the household (or personal income if single) from the other 13 demographics attributes.

The original response of the annual income takes one of the following income brackets:< 10, [10, 15),
[15, 20), [20, 25), [25, 30), [30, 40), [40, 50), [50, 75), and≥ 75 in the unit of $1,000. For simplification,
we created a proxy numerical response by converting each bracket into its middle value except the first and
the last ones, which were mapped to some reasonable values albeit arbitrary. Removing the records with
missing values yields a total of 6,876 records. Because of the granularity in the response, the normal-theory
regression would not be appropriate. As an alternative, we consider median regression, in particular,l1
norm median regression and grouped median regression for simultaneous variable selection and prediction.
In the analysis, each categorical variable withk categories was coded by (k-1) 0-1 dummy variables with
the majority category treated as the baseline. Some genuinely numerical but bracketed predictors such as
age were also coded similarly as the response. As a result, 35variables were generated from the 13 original
variables.

The data set was split into a training set of 2,000 observations and a test set of 4,876 for evaluation. All
the predictors were centered to zero and scaled to have the squared norm equal to the training sample size
before fitting a model. Inspection of the marginal associations of the original attributes with the response
necessitated inclusion of a quadratic term for age. We then considered linear median regression with the
main effect terms only (35 variables plus the quadratic term) and with additional two-way interaction terms.
There are potentially 531 two-way interaction terms by taking the product of each pair of the normalized
main effect terms from different attributes. In an attempt to exclude nearly constant terms, we screened
out any product with the relative frequency of its mode 90% orabove. This resulted in addition of 69 two-
way interactions to the main effects model. Note that the interaction terms were put in the partial two-way
interaction model without further centering and normalization for the clarity of the model. Approximately
three quarters of the interactions had their norms within 10% difference from that of the main effects.

Figure 3 shows the coefficient paths of the main effects modelwith ℓ1 penalty in the left panel and
that with F∞ group penalty for the training data set. The coefficients of the dummy variables grouped
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for each categorical variable are of the same color. In both models, several variables emerge at the early
stage as important predictors of the household income and remain important throughout the paths. Note the
visible effect of theF∞ group penalty on the coefficients of homeownership (hs.own and hs.withFamily) for
small values ofs in contrast withℓ1 penalty. Among those, the factors positively associated with household
income are home ownership (relative to renting), education, dual income due to marriage (relative to ‘not
married’), age, and being male. Marital status and occupation are also strong predictors. As opposed to
those positive factors, being single or divorced (relativeto ‘married’) and being a student, clerical worker,
retired or unemployed (relative to professionals/managers) are negatively associated with the income. So is
the quadratic term of age as expected. In general, it would betoo simplistic to assume that the demographic
factors in the data affect the household income additively.Truthful models would need to take into account
some high order interactions, reflecting the socio-economic fabric of the household income structure. Some
of the two-way interactions worthwhile to mention are ‘dualincome∗ home ownership’, ‘home ownership∗
education’, and ‘married but no dual income∗ education’ with positive coefficients, and ‘single∗ education’
and ‘home ownership∗ age’ with negative coefficients.

As in the quantile regression simulation, we chose optimal values ofs by cross validation with the
absolute deviation loss. Five-fold cross validation was repeated 5 times for different splits of the training
data, and the resulting risks were averaged. Figure 4 displays the paths of actual risks over the test set for
the main effect models (left) and for the partial two-way interaction models (right) usingℓ1 norm median
regression. The dashed lines indicate the minimizerss of the averaged risks and the solid lines those of
the actual risks over the test set. Cross validation seems togive a reasonable choice ofs in terms of risk.
Note that there is a range of optimal values with about the same risk in both panels, which suggests that one
may as well average the models in the range. A notable difference between the risk paths is the amount of
regularization desired to attain the minimum risk in comparison with the full models. That is, regularization
improves the two-way interaction models much more than the main effects models. Moreover, the selected
two-way interaction model has a smaller risk over the test set than the main effect model in accordance with
our understanding of the data. On the basis of evaluation over the test data, 95% confidence intervals of the
true risk associated with the main effects and the two-way interaction models selected by the CV criteria are
7.799±0.238 and7.653±0.236, respectively. In particular, a 95% confidence interval of the risk difference
of the main effects model from the two-way model is given by0.146 ± 0.0585, which indicates that the
latter improves the former significantly in terms of the risk. We carried out similar analysis withF∞ group
penalty for the main effect model and the partial two-way interaction model, and observed reduction in the
risk by the two-way interaction model. However, in comparison with the plainℓ1 norm penalty, the group
penalty did not bring any particular advantage in reducing the risk and providing a better model. WithF∞

norm penalty, 95% confidence intervals of the true risk are7.813 ± 0.241 for the main effect model and
7.780 ± 0.238 for the two-way interaction model, respectively.

7 Discussion

Tapping into a rich theory of linear programming and its algorithmic developments, we have provided a
broad and unified perspective on the properties of solutionsto a wide family of regularization methods for
feature selection. We have shown that the solutions can be characterized completely by using the parametric
linear programming techniques.

As for computational implementation, a single umbrella procedure can serve for all of the methods in
the family in order to generate the entire set of regularizedsolutions. Capitalizing on the generality of our
formulation, we have implemented the path generating algorithms presented in Section 4 with a modular
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Figure 3: The coefficient paths of the main effects model withℓ1 penalty (left) and that withF∞ group
penalty (right) for the income data. For each categorical variable, the coefficients of the corresponding
dummy variables are plotted as a group of the same color. The dashed lines indicate the models chosen by
five-fold cross validation with the absolute deviation loss.

treatment relying on a core algorithm for the tableau-simplex method.lpRegPath is an R package for the
implementation and currently available at http://www.stat.osu.edu/∼yao/software.html. Other extensions
can be easily added to the package by using the core algorithm. Efficiency can be gained further when
the umbrella procedure is tailored to each individual method by utilizing the structure of the computational
elements specific to the method. Handling large scale data with a regularization method is a computational
challenge in itself. For example, Kim et al. (2007) and Koh etal. (2007) discuss solving large scaleℓ1

regularized least squares problem and logistic regressionproblem with interior point method. Making path
generating algorithms scalable with the sample size and thedimension of features would be another direction
to pursue.

As illustrated, the solution paths offer rich information about how constrained models evolve with fea-
tures. Especially, they make it easy to recognize persistent features in the data, which are of general interest
in data analysis. In addition to facilitating computation and tuning, the path-finding algorithms for feature
selection can equip the data analyst with a useful tool for visualization of a model path. Combined with risk
measures, such a path can portray a full spectrum of potentially good models for selection and averaging.

This paper has focused on elucidating the link between computational problems with linear constraints
for feature selection in statistics and the linear programming theory. Beside those examples discussed in this
paper, there remain many possible applications of the parametric linear programming techniques. For exam-
ple, feature selection in nonparametric settings is worthwhile to investigate separately. Such an algorithm
that explores a vast model space by gradually elaborating and selecting functional components or the kernels
generating them will be a valuable extension of its parametric counterpart for modeling and prediction.
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Figure 4: The paths of actual risks estimated over the test set and their 95% confidence intervals for the main
effect models (left) and the partial two-way interaction models (right) withℓ1 norm median regression. The
solid vertical lines mark the minimum values. The dashed vertical lines indicate the values ofs minimizing
the average risks from five-fold cross validation repeated five times.

Appendix

A Lemma 13

Lemma 13 Suppose thatBl+1 := Bl ∪ {jl} \ {il}, whereil := Bl
il∗

. Letdl be defined as in(11). Then

zl+1 = zl − zl
il

dl
il

dl.

Proof First observe that

zl+1
Bl+1 = A−1

Bl+1b = A−1
Bl+1ABlA−1

Bl b = [A−1
Bl+1ABl ]zl

Bl .

Without loss of generality, theil∗th column vectorAil of ABl is replaced withAjl to giveABl+1. For the
ABl+1,

[A−1
Bl+1ABl ]−1 = A−1

Bl ABl+1 (25)
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whereul := A−1
Bl Ajl = −dl

Bl . Thus, we have

A−1
Bl+1ABl =
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




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. (26)

Then it immediately follows that

zl+1
Bl+1 = zl

Bl −
zl
il

dl
il

dl
Bl −

zl
il

dl
il

eil∗
.

Hence,zl+1 = zl − (zl
il
/dl

il
)dl.

B Proof of (13)

For l = 0, · · · , J − 1, consider the following difference
[

(c + λla) − A′
(

A−1
Bl+1

)′
(cBl+1 + λlaBl+1)

]

−
[

(c + λla) − A′
(

A−1
Bl

)′
(cBl + λlaBl)

]

= −A′
(

A−1
Bl

)′ (

A−1
Bl+1ABl

)′
(cBl+1 + λlaBl+1) + A′

(

A−1
Bl

)′
(cBl + λlaBl).

By the intermediate calculation in Lemma 13, we can show thatthe difference isκλl
A′
(

A−1
Bl

)′
eil∗

, where

κλl
:= (cB

il
∗

+ λlaB
il
∗

) −
cjl + λlajl

ul
il∗

+
∑

i∈
“

Bl+1 \ {jl}
”

(ci + λlai)u
l
i

ul
il∗

=
(cBl + λlaBl)′A−1

Bl Ajl − (cjl + λlajl)

ul
il∗

= −
čl
jl + λlǎl

jl

ul
il∗

.

Sinceλl := −čl
jl/ǎl

jl, κλl
= 0, which proves (13).

C Proof of Theorem 7

Let Bl := Bl ∪ {jl} for l = 0, · · · , J − 1, andB
J := BJ ∪ {N + 1}, whereBl, BJ , andjl are as defined in

the simplex algorithm. We will show that, for any fixeds ∈ [sl, sl+1) (or s ≥ sJ ), B
l (or B

J ) is an optimal
basic index set for the LP problem in (8).
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For simplicity, letjJ := N + 1, cN+1 := 0, AN+1 := 0, and aN+1 := 1. The inverse of

ABl =

[

ABl Ajl

aBl
′ ajl

]

is given by

A
−1
Bl =

[

A−1
Bl 0

0
′ 0

]

+
1

ajl − aBl
′A−1

Bl Ajl

[

−A−1
Bl Ajl

1

] [

−aBl
′A−1

Bl

1

]′

for l = 0, · · · , J .
First, we show thatABl is a feasible basic index set of (8) fors ∈ [sl, sl+1], i.e.

A
−1
Bl (b+ sb∗′) ≥ 0. (27)

Recalling thatzl
Bl = A−1

Bl b, zl
jl = 0, sl = a′zl = (al

B
′A−1

Bl b), dl
Bl = −A−1

Bl Ajl , anddl
jl = 1, we have

A
−1
Bl (b+ sb∗′) = A

−1
Bl

{[

b
0

]

+ s

[

0

1

]}

(28)

=

[

A−1
Bl b
0

]

+
(s − aBl

′A−1
Bl b)

ajl − aBl
′A−1

Bl Ajl

[

−A−1
Bl Ajl

1

]

=

[

zl
Bl

zl
jl

]

+
s − sl

ajl + aBl
′dl

Bl

[

dl
Bl

dl
jl

]

.

Fromzl+1−zl = −(zl
il
/dl

il
)dl andsl+1−sl = a′(zl+1−zl) = −(zl

il
/dl

il
)(ajl +aBl

′dl
Bl), it can be shown

that

(28) =

[

zl
Bl

zl
jl

]

+
s − sl

sl+1 − sl

{[

zl+1
Bl

zl+1
jl

]

−
[

zl
Bl

zl
jl

]

}

.

Thus, (28) is a convex combination ofzl andzl+1 for s ∈ [sl, sl+1], and hence it is non-negative. This
proves the feasibility ofABl for s ∈ [sl, sl+1] andl = 0, . . . , J − 1. Fors ≥ sJ , we have

A
−1
BJ

{[

b
0

]

+ s

[

0

1

]}

=

[

A−1
BJ b
0

]

+ (s − aBJ
′A−1

BJ b)

[

0

1

]

=

[

A−1
BJ b
0

]

+ (s − sJ)

[

0

1

]

≥ 0.

Next, we prove thatABl is an optimal basic index set of (8) fors ∈ [sl, sl+1] by showing
 −
A

′
(A

−1
Bl )′
Bl ≥ 0. Fori = 1, · · · , N , theith element of
−A

′
(A

−1
Bl )′
Bl is

ci −
[

cBl

cjl

]′

A
−1
Bl

[

Ai

ai

]

= ci − cBl
′A−1

Bl Ai −
cjl − cBl

′A−1
Bl Ajl

ajl − aBl
′A−1

Bl Ajl

(ai − aBl
′A−1

Bl Ai)

=

{

čl
i + λlǎl

i for i = 1, · · · , N
λl for i = N + 1.
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Similarly, for s ≥ sJ ,

ci −
[

cBJ

0

]′

A
−1
BJ

[

Ai

ai

]

= ci − cBJ
′A−1

BJ Ai

=

{

čJ
i for i = 1, · · · , N

0 for i = N + 1.

Clearly, the optimality condition holds by the non-negativity of all the elements as defined in the simplex
algorithm. This completes the proof.

D Proof of Theorem 11

i) By (26), we can update the pivot rows of the tableau as follows:

(theith pivot row ofBl+1) (29)

=











(theith pivot row ofBl) − ul
i

ul

il∗

(theil∗th pivot row ofBl) for i 6= il∗;

1
ul

il∗

(theil∗th pivot row ofBl) for i = il∗.

If ul
i = 0, theith pivot row ofBl+1 is the same as theith pivot row ofBl(

L
> 0). Fori = il∗, theith pivot

row ofBl+1 is (1/ul
il∗

) (theith pivot row ofBl)
L
> 0. If i 6= il∗ andul

i < 0, which imply−ul
i/u

l
il∗

> 0,

the ith pivot row ofBl+1
L
> 0 since the sum of any two lexicographically positive vectorsis still

lexicographically positive. According to the tableau update algorithm, we haveul
il∗

> 0, whereil∗

is the index number of the lexicographically smallest pivotrow among all the pivot rows forBl with
ul

i > 0. For i 6= il∗ andul
i > 0, by the definition ofil∗,

theil∗th pivot row ofBl

ul
il∗

L
<

theith pivot row ofBl

ul
i

.

This implies that

(theith pivot row forBl+1)

=
(

theith pivot row ofBl
)

− ul
i

ul
il∗

(

theil∗th pivot row ofBl
) L

> 0.

Therefore, all the updated pivot rows are lexicographically positive.

Remark 14 If zl
il

= 0, (29) implies thatzl
Bl

i

= zl+1
Bl

i

for i 6= il∗, i ∈ M. and zl+1
jl = 0. Hence

zl+1 = zl. On the other hand, ifzl
il

> 0, zl+1
jl = (zl

il
/ul

jl) > 0 while zl
jl = 0 sincejl /∈ Bl. This

implieszl+1 6= zl. Therefore,zl+1 = zl if and only ifzl
il

= 0.

ii) When the basic index setBl is updated toBl+1, čl
jl < 0. Sincejl ∈ Bl+1, čl+1

jl = 0 Then,(cjl −
c′
Bl+1A

−1
Bl+1Ajl) − (cjl − c′

BlA
−1
Bl Ajl) = (čl+1

jl − čl
jl) > 0.
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Similarly as the proof of (13),
(

c′ − c′Bl+1A−1
Bl+1A

)

−
(

c′ − c′BlA−1
Bl A

)

= κle′
il∗

A−1
Bl A,

whereκl := (c′
Blu

l − cjl)/ul
il∗

. e′
il∗

A−1
Bl A is the il∗th pivot row forBl, which is lexicographically

positive. Since thejlth entry ofe′
il∗

A−1
Bl A is strictly positive, that of(c′ − c′

Bl+1A
−1
Bl+1A) − (c′ −

c′
BlA

−1
Bl A) must share the same sign withκl. Thus, we haveκl > 0. Then the updated cost row is

given as
[

−c′Bl+1A−1
Bl+1b, c′ − c′Bl+1A−1

Bl+1A
]

=
[

−c′BlA−1
Bl b, c′ − c′BlA−1

Bl A
]

+ κle′il∗

[

A−1
Bl b, A−1

Bl A
]

.

Clearly, the cost row forBl+1 is lexicographically greater than that forBl.
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