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Abstract

Pharmacogenomics aims at co-development of a drug thatseaigsubgroup of pa-
tients for safety and efficacy and a device that identifies¢sponder group through
their genetic variations. Development of such a prognat#iice includes a training
stage and a validation stage. The transition from the tgisitage to the validation
stage typically involves change of platforms as a subsebtdntial genetic markers
predictive of drug response are identified in the first stage anly those are used
in the second stage. With the change in consideration, tgemconcerns how to
determine sample sizes for the validation stage to meespeeHied sensitivity and
specificity requirements in order to avoid futility of phaasmogenomic development.
In particular, taking microarrays as a medical device, Whiteasure gene expression
levels, we show how to decide the numbers of subjects peipgreplicated samples
per subject, replicated probes per gene for the validatipeement. The change of
platforms is taken into account in the sample sizes calomdty statistical model-
ing. Our formulation of sensitivity and specificity requinents calls for estimation
of both measures. Lower bounds with carefully calibratedficence levels can give
appropriate sample size to meet the requirements. The guioeas illustrated in a
proof-of-concept mice experiment.

Key Words: Change of platforms; Futility; Microarray; Pharmacogemgsn Sample
size; Sensitivity; Specificity.



1 Introduction

Pharmacogenomics aims at the co-development of a drugafgsts a subgroup of the
patients, and a device that predicts whether a patient isdrstibgroup. This subgroup
can be responders to the drug, or patients free of seriousrselevents (SAE). Typically,
subgroups are discovered by comparing the genetic profilpateents with different phe-
notypes, responders versus non-responders, or patieetsréim SAE versus patients who
experience SAE (Wang et al., 2007). Microarrays could be tselevelop such a diagnos-
tic device for identification of subgroups.

The development in pharmacogenomics includes two majgesta training stage and
a validation stage. The purpose of the training stage isaotity a biomarker positive (G+)
subgroup of patients and its complement, the biomarkertiveg@-) subgroup. Biomark-
ers historically refer to substances in biological samplemeasurements that indicate a
person’s disease state or response to a drug (Baker, 2008y dare crucial for efficient
drug development, and there are various types of biomagkeris as disease biomarkers,
surrogate endpoints, efficacy or outcome biomarkers. Bsbamarkers indicate the pres-
ence or likelihood of a particular disease in patients. kangple, gene expression profiles
linked with cancer can be taken as a disease biomarker inmatagenomics. The pur-
pose of the validation stage is then to prove that the bioarddund in the training stage
has sufficient sensitivity and specificity for clinical used to independently validate the
efficacy and safety of the drug for the target G+ subgroup.

Transition from the training stage to the validation stagedally involves a change of
platform as a subset of potential predictors of drug respams identified as a biomarker
in the first stage and only those are used in the second stagex&mple, MammaPrint
(van't Veer et al., 2002) is an FDA-approved microarraydhtest to predict the likelihood
of recurrence of breast cancer. In the training stage of Mafmnt, microarrays probing
approximately 25,000 genes were used, while in the secage sif validation, microarrays
probing 70 genes only were used. Generally, fewer genesnaadved in a diagnostic
device for use, and this change allows more replication obes and more replicated
samples from a subject in the validation stage than theitrgistage. To ensure that the
diagnostic algorithm derived from the training stage agplio expressions measured in
the validation stage, the platform change needs to be takeraccount when planning
a validation study and computing sample sizes requiredhierstudy. This issue is often
overlooked in the process of developing a diagnostic deWsestated in FDA (2005b),

When validating a gene or expression pattern, instead of afsadividual



biomarkers, a rigorous statistical approach should be tsatbtermine the
number of samples, and the methodology used for validatibims recom-
mended that the validation strategy be discussed in adwaiticé-DA.

At the end of the training stage, the sensitivity and spetyfiaf the diagnostic algo-
rithm for a validation trial need to be estimated. If both Hensitivity and specificity are
significantly high, pharmacogenomic development is recemuhed to proceed. Otherwise,
further pharmacogenomic development is likely to be futile

Generally speaking, sample size calculation is formulated problem of determining
the number of subjects in a prospective experiment, wheendam variable of interest
is measured for each of the subjects, and its distributionadeled with some unknown
parameter. The sample size is then calculated so that ndeseand decisions about the
parameter can be correctly made. It is customary to cakewample size based on power
(Adcock, 1997). That is, some hypotheses of interest arafsgein terms of the parameter
prior to the experiment, and then the sample size is deteuhtio achieve a desired power
at a fixed type | error rate. Chow et al. (2003) elucidate ttatistical approach to sample
size calculation and provide its justification for diffet@jectives in various clinical trials
settings.

Consider the example abacavir(brand name Ziagen), a potent antiretroviral for HIV-
1. About 8% of the patients treated wibacavirdevelop a serious adverse event (SAE) of
hypersensitive reaction. Mallal et al. (2002) reported oateospective study adbacavir
treated patients, looking for biomarkers in the HLA regidwatt can screen out patients
prone to this SAE. Three markers (HLA-B*5701, HLA-DR7, HLBQ3) were found to
be highly associated with the occurrence of the hyperseitgiSAE. Martin et al. (2004)
in a follow-up to the 2002 study also reported that five maskigiLA-B*5701, C4A6,
HLA-DRB1*0701, HLA-DQ3, Hsp70-Hom M493T) are highly assated with the hy-
persensitive reaction. In accordance with the pharmaawgéenconcept stated in FDA
(2005a,b), a double-blind randomized study involving &, @@atients from 19 countries
was then conducted to validate the HLA-B*5701 biomarkerdHkies et al., 2008; Mallal
et al., 2008). Their sample size for the validation study walsulated by specifying the
power to detect 4% drop in the SAE from the control group to the prospectivelesoed
group. In addition to a significant reduction in the SAE rdtey reported5% lower
confidence bounds &b.2% for sensitivity and5.5% for specificity.

For multiple hypothesis testing with several parametegpr@priate definitions of power,
type | error rate and the corresponding statistical testtfethypotheses of interest are nec-
essary. Lee (2004) calculates sample size required foroamiy experiments in which
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finding differentially expressed genes between a treatro@mdition and a control condi-
tion is of interest. In her approach, the number of subjeadetermined to achieve a desired
individual power level for a given mean number of false poeg of multiple hypotheses
(per-familywise type | error rate), when the ratio of meafiedence to standard deviation
for individual hypotheses and the anticipated number ofifteréntially expressed genes
are specified in advance. Depending on the purpose of expetsysample size can also be
specified to obtain optimal confidence regions for multipipdthesis testing. In particular,
for multiple comparisons using Tukey’s Multiple Pairwiser@parisons (MCA) method,
the constrained Multiple Comparisons with the Best (MCB)}hod, and Dunnett’s two-
sided Multiple Comparisons with a Control (MCC) method, H$888) suggests to calcu-
late sample size so that with a pre-specified probabilitycti&#idence intervals for mean
differences cover the true parameter values and be suffigiearrow.

For development of prognostic or diagnostic devices, ieisstble to determine sample
size to achieve specified levels of sensitivity and spetyfias they are common measures
of prediction accuracy for diagnostic rules. Pepe (2008kukis strategy to calculate sam-
ple size in the context of developing a medical device toed#fitiate a diseased group
from non-diseased group. In her approach, a device is ceresichaving minimally ac-
ceptable performance when the true positive fraction (TBRt least some value, say
TPR, and the false positive fraction (FPF) is at most, say J-Nete that the true positive
fraction is sensitivity and the false positive fraction iseominus specificity. By setting
a hypothesis to statistically prove that the device is maliynacceptable, that is, setting
Ho : TPF < TPR, or FPF > FPFR),, the sample sizes for the two groups are chosen so
that a positive conclusion would be drawn with a desired pat@ specified type | error
rate when the true TPF and FPF of the device are at some |&\¥s,and FPF. Here,
TPF (> TPR) and FPE(< FPR) are the values in the alternative hypothesis specified in
advance by researchers.

Determination of sample size for validation study in phacogenomics is more com-
plicated than the traditional sample size problem sinaavitlves multiple layers of sample
sizes and device-specific parameters. To design a micyoar@eriment for a validation
study, in addition to the number of subjects per group, thalmer of replicate samples for
each subject, the number of replicates of each probe on tpetble number of genes, and
the number of probes for each gene need to be decided.

We propose in this paper that the sample sizes and devic#isgearameters be de-
termined so that the probability of sensitivity and spettifiestimators being greater than
some minimally acceptable values is sufficiently high. Tdina our proposed procedure,



the number of genes as part of device-specific parameteeteslined first by controlling

a familywise type | error rate in multiple hypothesis tegtiior gene selection. Alterna-
tive gene selection procedures can be used if desired. Adsig rule is then built on
the basis of the selected genes. Other device-specific pégessrand the sample sizes are
then calculated to meet pre-specified minimal sensitivity apecificity requirements for
the diagnostic rule. Since the number of probes for each gedehe number of replicates
of each probe are generally subject to spatial limitatidmaigroarray platforms, typically
there are upper bounds on theses parameters, depending puarttber of selected genes.
A possible range of the number of replicated samples for sabliect may be limited as
well because the volume of a biological sample drawn fronheabject is finite.

The aforementioned change of platforms in the pharmacagensetting brings an-
other complication that the distributions of training datad validation data are not the
same. Only when the training and validation experimentgpavperly designed, as in the
proof-of-concept mice experiment to be shown later, thengkaof the distributions be-
tween two stages can be handled appropriately througlststatimodeling. Otherwise, it
does not seem feasible to deal with the change in a statigteancipled way.

Our formulation of sample size determination requires gty and specificity esti-
mates. We propose to use their confidence lower bounds bastx eanodel for training
and validation data. Compared to Pepe (2003)’s approachewlifeR and FPF are pre-
specified, the proposed approach of using a confidence laygrchis more data-adaptive,
and it also controls the probability of meeting the minimahsitivity or specificity re-
quirement directly. One may also use a model-based plugtimator of sensitivity and
specificity. However, it will be shown that sample sizes ghdted on the basis of a plug-in
estimator may be too optimistic in some cases. The bias caabedied by a confidence
lower bound.

Section 2 describes the mathematical formulation and géségps for sample sizes
calculation in pharmacogenomics. For simplicity, how ttedimine sample sizes for sen-
sitivity requirement is discussed only. Specificity regaient can be similarly dealt with.
Section 3 illustrates an application of the procedure ingteof-of-concept mice experi-
ment. Section 4 presents a simulation study for numeridalation of the proposed sample
sizes determination procedure followed by conclusionsctisn 5.



2 Formulation of Sample Size Calculation

2.1 Basic Setting for Training and Validation Data

Suppose that there ai€ potential predictors of drug response in a training stage of
pharmacogenomic study. Léf € RX be a random vector of the measurements of the
predictors from a subject and € {0,1} be an indicator of whether the subject is a re-
sponderY = 1) or a non-responde€ly” = 0). LetD,, = {(z;,v:)|i = 1,2,...,n} denote
the data withn subjects in the training stage, whergandy; are the observed&” covari-
ates and subgroup label of thih subject. The: observationgz;, y;) are assumed to be
independent and identically distributed with some unknalvgtribution P x y.

For validation data, letX*, Y*) denote a new case in the second stage, wiére R*
is a k-dimensional random vector, arid® € {0,1} is a subgroup label. Since only a
subset of potential predictors of drug response are idedtidis a biomarker in the first
stage and used in the second stages typically much smaller thak’. Let Q(x-y~) be
the distribution of(X*, Y*), which is different fromPx y because of the change of the
platform. If microarrays are used to develop a diagnosticae more replication of probes
and more replicated samples from a subject are allowed ivelgation stage. This change
yields smaller variance parametersiiy- -y than P x y. A concrete example of such a
change fromP x y to Qx-y+) is given in Section 3.

To take into account the change of platforms in a statidyigaincipled way, we con-
sider a model for the training data and derive a theoretiagttimal diagnostic rule that
predicts subgroup labels from the model for validation qgéd to be observed), reflecting
the corresponding change.

Let ¢y(z*; D,) denote such a theoretically optimal rule for the validatifata, which
depends on some unknown model parameters. The subscriptseisto emphasize that
the rule is for validation data. Us{ﬁ,(x*; D,,) to denote the plug-in diagnostic rule with
the model parameters replaced with estimates from thetigaolataD,,. In the validation
stage, these parameter estimates are held fixed, and[smmS; D,,) is considered fixed.
The sensitivity ongV(x*; D,,) is then defined as the probability of correctly calling a sabj
a responder given the subject is a responder:

Sen(dv) = P(dy(X";D,) = 1]Y* = 1).

For brevity,Seny is used to refer tcSen(gEV) in this paper.
Suppose that given a validation samplenefi.i.d pairs of (X;,Y}*),j = 1,2,...,m
with Y;* = 1, the true sensitivity oby, Seny, is estimated by a simple unbiased estimator
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Seny, the sample proportion of correctly predicting true pogisi by the diagnostic rulgy
over the validation data. That is,

o 1 - in * *
Seny = — Zl I(¢v(X;: Dy) = 1Y} =1). (1)
‘]:
Note thatm - Seny follows a binomial distributiorB(m, Seny).

2.2 Minimal Sensitivity Requirement

Now consider the problem of finding the number of subjects the responder group for
a validation study such that the probability of the estirdaﬁensitivity@zv exceeding a
pre-specified minimum level of sensitivityis at leastl — /3, that is,

P(Seny >7) >1—f. (2)

If Seny > ~, we say that the validation study is successful.

Figure 1 shows that givefi and the true sensitivityyeny (> +), the probability of
successful validatiom’(@\/ > ) oscillates as a function ofi and eventually surpasses
1 — g asm increases. As shown in the figure, there can be more than ossiieg points
of P(@zv > ~) and1 — 3, but for large enoughn, the inequality (2) holds. Hence,
it is sensible to define the desired sample sizeas the smallest number of subjects in
the subgroup such that for amy > m*, the sensitivity requirement (2) is satisfied, given
the minimal sensitivityy and the minimal probability of successful validatior- 5. The
following proposition shows that as long as the true sensijtis greater than the minimal
level~, m* is well-defined.

Proposition 1 If Seny > v, then the sample size* is finite.
Proof Sincem - Seny follows B(m, Seny), by Hoeffding’s inequality (Hoeffding, 1963),

— . _ 2
P(m - Seny < my) < exp(—2 (m - Seny —m)

) for my < m - Seny.
m

So, if the probability upper bound is at mgstthen (2) is satisfied, and the condition

(m - Seny — m~)?

exp(—2 - )< [
implies
log 3
m2 ~2(Seny —7)?° ©)

Thusm* must be finite O
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Figure 1: The probabilityP(@zv > ) as a function ofim and its lower bound —

I _senyy (m—my, my+1) when the true sensitivityeny is 0.90 and the minimal sensitivity
level v is 0.80. The horizontal dashed line indicates the minimal proligiif successful
validation1 — 3, with 3 fixed at0.05. my is the upper bound of sample size given by
Hoeffding's inequality in (3)my is the root ofl; _geny, (m — my, my + 1) = 3, andm* is
the desired sample size. In this examplg; = 74.9, mg = 36.8 andm* = 30.

Let my denote the upper bound given by Hoeffding’s inequality in (®/e can find
m* easily by backward search; starting frgmy, |, where[z] is the ceiling ofz, i.e. the
smallest integer greater than or equatt@nd decreasing the integer by one each time until
we reach the first integer for which the inequality (2) is natisfied. However, the upper
boundm g tends to be very large, and hence this algorithm may not beesiti

To sharpen the upper boundref, we consider a continuous lower envelopé%ﬁf%?zv >
) by using the relationship between the cdf of binomial disttion and the regularized
incomplete beta function. First observe that

P(m-Seny >my) > P(m-Seny > [my])
= 1—P(m-Seny < |my| —1)
= 1- ]1—Senv(m - Lm,}/L |_m7J + 1)7
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where | z] is the floor ofxz. The last equality comes from the fact that for a binomial
random variableX with B(n,p), P(X < k) = I,_,(n — k, k + 1) by integration by parts,
wherel,(a, b) is the cdf of Beta(a, b) atz, also known as the regularized incomplete beta
function. Since: andb in I (a, b) can be real values, and

1—- Il—Senv(m - LmVL Lm’}/J + 1) 2 1-— Il—Senv(m — mry, my + ]-)7 (4)

by allowingm to be a real value, we obtain the right hand side of (4) as aramis lower
envelope ofP(@zv > ~). The dashed line in Figure 1 depicts such a lower envelope.

For Seny > +, the functionl — Il—Senv<m — m7y, my + 1) is shown to be strictly
increasing inm. By equating the function té@ — § and solving form, we get a unique
solutionmy, which serves as an upper boundref. That is, for any integem > [my],
the minimal sensitivity requirement (2) is satisfieds is usually much smaller than;; as
illustrated in Figure 1. With this smaller initial poinfin, |, the aforementioned backward
search algorithm can be made more efficient. In summary, avefstm [m, | and decrease
m by one until the inequality (2) does not hold. Then thealue for the second last step is
m*, the number of subjects for the responder group needed tothreeminimal sensitivity
requirement. This algorithm is implemented in R and avddéa the second author’s
webpage.

Figure 2 illustrates how the sample size determined by thersthm varies depending
on the underlying true sensitivity when the probability eiceessful validation i95%.
Expectedly, the necessary sample gizedecreases as the true sensitivity increases, and a
larger sample size is required as the minimal lev@icreases.

2.3 Estimation of True Sensitivity

The true sensitivity of the diagnostic rulg, i.e. Seny for the inequality (2), is usually un-
known in practice, and it has to be estimated. As the diagnse is derived from a model
adjusting for the change of platforms, its true sensitiziiy be estimated by plugging in
estimated model parameters. However, it is well known thahsa plug-in estimator ex-
hibits an upward bias in estimating the true sensitivitgl hance the sample size calculated
based on the estimator could be smaller than necessaryngraktonservative approach,
we propose to determine sample sizes by replasing, by its confidence lower bound.
For fixedm, the binomial distributiorB(m, Seny) is stochastically increasing iSeny.
So, if P(X > m~y) > 1 — g for a binomial variableX of B(m,p) with p < Seny, then
(2) also holds because - @v is stochastically greater thaXi. This is the rationale for
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Figure 2: Sample sizes* necessary to meet the minimal sensitivity requirement ef
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replacing the true sensitivity with its confidence lower bdu Note that as in Proposi-
tion 1, for a proper sample size*, the confidence lower bound has to be greater than
This condition provides a statistical criterion for futylin the setting of pharmacogenomic
development.

3 Icelandic Mice Data Analysis

Hsu et al. (2009) describes an Icelandic mice experimenstwichinate five mouse strains.
Four strains (conveniently labeled groups A, B, C, and D)hdifferent mutations in Mitf
(Microphthalmia transcription factor) gene and one st(ibeled group W) is a wild type.
In the experiment, the five strains are differentiated onlthsis of the expression levels
of 99 genes regulated by Mitf gene in spleen tissues. To mimicitbatson in a pharma-
cogenomic study, consider classifying mice from two ssasay group A and group W.
Regard group A as the responder grdtip= 1) and group W as the non-responder group
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(Y = 0). The99 genes are taken as the potential genetic markers, from vehéthoset of
genes predictive of responder or non-responder will becsste This subset of genes are
considered a biomarker. A diagnostic algorith?m is then built based on these selected
genes. It classifies mice into two groups: the biomarkertimessubgroup ¢y = 1) and
the biomarker negative subgroupy( = 0). The sensitivity of the algorithm is then the
probability of predicting a mouse biomarker positive gitee mouse is in group A. The
specificity is the probability of predicting a mouse biomarkegative given the mouse is
in group W.

Custom-designed NimbleGen microarrays were used in ti@rastage of the exper-
iment. Each array hatl2 mini-arrays, and th@9 genes were probed in each mini-array.
For each gene, there wes2 probes, and each probe had two replicates. Design of the
experiment followed randomization, replication and blioagkprinciples, with four mice
(subjects) per group, and four replicated biological sasger mouse. See Hsu et al.
(2009) for details of the experimental design. Taking tlaning data from this exper-
iment, we demonstrate the proposed procedure for detemmisample sizes to achieve
desired precision of sensitivity in a validation trial.

3.1 Construction of Discriminant Rule

For statistical modeling of the data, leg,,,.,, denote the background-corrected, log trans-
formed and normalized probe intensity of a mutated or wilgetynouse for théth gene

(1 = 1,2,...,99), the sth sample § = 1,2, 3,4) for the mth mouse(m = 1,2,3,4)

in groupg (9 = A, B,C, D, W), the pth probe(p = 1,2,...,32), and therth replicate

(r = 1,2). The probe intensities can be modeled separately for eash gessumes; s,

to follow a linear mixed effect model:

Ligmspr = Hi + Tig + Mzm(g) + st(m(g)) + 7T]o(i) + €igmspr (5)

wherey; is the mean gene expression for tile gene,r;, is the gth group effect on the

ith gene,M;,,,() is themth subject effect in thgth group on theth gene,S;.)) is the

sth sample effect from theuth subject in thejth group on theth gene, andr, ;) is thepth
probe effect in théth gene. We assume thay,,.,, are independent and identically dis-
tributed withV (0, 07 ) within each gene. For the subject effects, we assumé\that,, are
independent and identically distributed witi(0, o2,,) regardless of the group. Similarly
for the sample effectsSi,.,(4)) are assumed to be independent and identically distributed
with N (0, 0%) regardless of the subject and group. Ehg,s,, Mgy aNd Sigan(g)) are

also assumed to be independent.
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Treating the problem in a general setting, suppose tha¢ @wen; genesy,, subjects
in each groupn, probes for each gene,, replicated samples for each subject, and
replicates of each probe on the chip. The sample sizeandn,, and the device-specific
parameters,;, n, andn, can be different from the training stage to a validation stalhe
linear mixed model in (5) now with these unspecified sam@essand parameters,, n,,

n, andn, can characterize clearly the transition fra?ry y to Qx- y+) due to the change
of platforms. Hereafter, the superscrigtendv are used to indicate the changefor
training andv for validation. In the mice experiment,, = 4, n} = 4, nj = 99, n, = 32,
andn! = 2.

Consider the normalized gene expression data from the mgtaop A and the wild
type group W. Genes that seem reasonably good in separatfrmAW were found by
the average mean differences, and multiplicity adjustmeag done by the resampling-
based partitioning test procedure described in Hsu et B09R The selected genes are
RB1, USF1, Pu.1, Oal, TPA1 and Bim, and their indicesdaret5, 31, 29, 67, and22,
respectively. These six genes are used to build a diagnalgiicithm for discriminating
the group A from the wild type W.

For simplicity, taking each mouse as a sampling unit, we ic@emgprediction rules that
use the average of probe intensities across the biologizapkes from the same mouse,
and replicates as a summary measure of expression for eaeh gke linear mixed effect
model for the training experiment implies that the disttibo of the averagé(fgm._. IS

N(pi + Tig, Oing + 055 /0 + 03 (”i”;”f«)) (6)

Suppose that a validation experiment hgssubjects (mice) in each group, probes
for each genep! replicated samples for each subject, arideplicates of each probe. If
validation data are obtained under the same probabilisichanism as the training data
other than the sample sizes and device-specific paramébers,the distribution of the
(unobserved) validation dat&,,, _is given as

N(pi + Tig, 0ing + 075 /0l + 0 (ngnyny)). (7)

For convenience, the selected genes are relabeled so ¢franttices are froni to n?,
the number of genes used in the array for validation. In theemakperimentp! = 6. As
in Section 2.1, le{X*, Y*) be a random vector for validation data. Then in this setting
X* consists ol components, and it is defined such that gi¥eén= g, the distribution of
X* = (X}, X5,..., X)) isthe same as the distribution(0t7,,, , X, s X, ) T

lgm...» “*2gm...» " n
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If we further assume independence across the selected, gee@ptimal classification
rule under the normal distribution setting is given by

ov(x” —argmmz (7 — (i + 7ig))”

o}y +0is/ny + i/ (ngniny)’

which is known as the diagonal linear discriminant anal{®isDA). The decision rulejy
can be estimated by a plug-in rule,

¢ ( —argmlnz p IL’ — Mz+TZg))

Gy + Oig /0y + 67/ (ngniny)’

wherej;, T4, 0inr, 0,5, ando;. are estimates of;, 7,,, o;nr, 0is, ando;. from the linear
mixed effect model (5) for the training data. We note that ésémates of the variance
components are based on the observations from all five stedthough the rule of our
main interest is concerned with discriminating groupYA+£ 1) from group W { = 0).

3.2 Sample Sizes Determination

In designing a validation experiment with microarrays,gibke values of the device-specific
parameters, the number of probes for each gen¢he number of replicates of each probe
n? and the size of replicated samples for each subjéare restricted due to the spatial
and biological limitations mentioned in Section 1. In thicenexperimenty) is supposed
to be the same as, = 32, as we believe that th& probes chosen by a biologist are suf-
ficiently sensitive in measuring the expression levels ahegene. Since fewer genes are
probed in each microarray for the validation stage thanrdiaing stage (from:! = 99 to
nY = 6), this change allows more space for replication of each @rabith 200 spots in
each mini-arrayp? can be increased from{. = 2 up to33. For each mouse, its spleen tis-
sue sample can only be divided into 4 to 6 pieces of replicadables due to the fact that
enough amount of a biological sample is required for efficierbridization. This gives a
range of 4 to 6 fon?.

Givenny, n;, andng, consider calculation of the number of subjeafs needed for
validation of ¢y as a binary decision rule such that the sensitivity requinen(2) is met.
In other words, we determine the sample sizeso thatP(@v > v) > 1-— 3, where
n, Seny follows B(ny,, Sen(dv)) with ¢y depending om?, n2, n?, and the training data.

Under the assumption for the validation data in (7), diredtwalation shows that the
true sensitivity ofpy is given by
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~

(91 — éO)Tigl [01 — %(90 + 91)}
Sen(oy) = ®

5l ®

(91 — 90)Ti;121,i;1(91 — 90):|
where @, = (1 + Tig,..., iy + Turg) ' for g = 0,1, X, = diago}y, + o75/n? +
o /(ninin?), i = 1,2,...,i), and@, and3, are plug-in estimates @, and%,. To

determine the sample sizé , the true sensitivity ofry needs to be estimated. A simple
plug-in estimator is

~

. (61— 60) TSt 161 — (60 + 91)} 6
Seny(ov) = ® =2(5 ). 9)

~ ~ ~ ~ “ N 1/2
(01 — OO)TZ 1202;1(01 — 90)i| 2

wheres is a sample version of the Mahalanobis distafitetween the two normal distri-
butions given as

e 1/2

(60075, (0, — 0} = [ 3 (i = 7o) o)

2 2 v 2 VUV
i=1 Oim + UiS/ns + Oje (npnsnr)

3.3 Confidence Lower Bound for Sensitivity

The simple plug-in estimator in (9) is generally observetiediased upward, often yield-
ing an optimistic estimate (McLachlan, 1992; Efron, 1988)ternatively, we can use a
confidence lower bound cﬂ’en(gﬁv) with appropriately chosen levél— «. The effect of
« on the sample sizes is investigated numerically in SectioBdsed on the numerical
results,a will be calibrated to attain the desired leve}- /3 for the probability of meeting
the sensitivity requirement in (2).

Lettingb = 3, 1(8, — 6,) anda = 1(6, + 8,), which are held fixed in the validation
stage, we have the true sensitivitydaf in (8) expressed as

X b' (6, —a)
Sen(py) = @ | ——=2 | . 11
en(gv) < A ) (11)

To construct a confidence lower bound fam gy ), itis sufficient to construct a confidence

lower bound of
_b'(6:—a)

Nab =
b'S,b
sinced®(-) is an increasing function.
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To derive a confidence lower bound®gf, givena andb, we first consider an estimator

of the form A
A bT(Ol —a)
Nap = T =

b X,b

For the numeratord, follows N(6,,%;/nt)), whereX, is a diagonal matrix with entries
ol + 0ig/nt + ol /(ninink), i =1,2,... nY. Forthe denominator,

nv?

b'S,b = bi(67y + bis/nl + 6%/ (npniny)).
i=1

From the AVOVA table for the linear mixed effect model (5), Wave the following ex-

pected mean squares:
2

EMSS(GM);) = U?Snzn;nf, + 0226,
it + ot + 02,

E(MSM(G);) = opynl,

where M SE;, MSS(GM);, and MSM(G); are the mean squares fer, S;i)), and
M), respectively. The variance componeafs;, o7, ando;. are then estimated by the

method of moment (Ravishanker and Dey, 2002). As a resulhave

6. = MSE;

52, = .MSS(G]tW)tZ-t—MSEZ-7 (12)
ntntnt

52 _ MSM(G); — MSS(GM);

e ntntnin! '

Hence .
bTNb =Y b (e MSM(G); + csMSS(GM); + cpMSE;),

1

i=1
WherecM:ﬁ,Csz Tooptot ttlttanch: uluu_tutt'
S ngngnpny ngnynpny, ngnin,ny. ngnpny ngnynpny,
nce
o, 2 : t ottt t
MSE; ~ d;;deE with dfp = n n, ngn,(n, — 1),

2ttt 2

UiSngnpnr +Ui5 2 . t t t
2 bttt 2ttt 2

i MgNsNyny + 0igngn,n, + o, ) P
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and they are mutually independent, by Satterthwaite appaton (Satterthwaite, 1946),
b %,b follows approximatelyd =,b/df)x?, with

v 2
(Zf;l B2 (exr MSM(G), + csMSS(GM); + cEMSEi)>

nv o [((BeuMSM@G))" | (bResMss(@M))T (BepMSE)T
Zi:l ( dfar + dfs + dfp

df =

By independence @, andb '3, b, wyTa,» TOllows approximately-distribution with de-
grees of freedomf and non-centrality parametey, ,, wherew, = \/ b'Y,b/(b" Ztb).

With w;, estimated by, = \/ b'S,b/ (bT%b), the distribution off),, can be approxi-
mated byt (pnap) /@b

A 100(1—a)% confidence lower bound af, , is then obtained by testinb : 7., = 1o
versusH, : n., > no With 7,;, as a test statistic and inverting the acceptance region
for n,,. To find the expression of the confidence lower boundylgt be the observed
value of7,;,. Denote thep-value for the one-sided test yny) = Py, (Dap > Nobs)- If
p(no) < «, Hy is rejected. UndeH), 7, follows t4(yno) /&y approximately, and for
fixed @y, 74 IS Stochastically increasing imy. Thusp(no) is increasing iy, and the
100(1 — a))% confidence lower bound foy, ; is given by the smallest possible valygs
such thap(n.g) > a. When sample sizes and device-specific parameters foirtgaitata
are largedfg, dfs, anddf,, tend to be large, which results in large degrees of freedom
df. In this casexflf/df ~ 1, and the random variabl, , can be further approximated by
N (Gpnap, 1) /. Figure 3 shows thg-values of the hypothesis tegty,) for 1., = 1.94,
which is the observed value f , from the mice data. Note that the valuergf; depends
on sample sizex{ and device-specific parameter$ andn; in the validation stage, and
they are set to; = 2, n, = 32, andn; = 2 in this example. As shown in the figure,
the 95% confidence lower bound of,, found by non-centrat (denoted byy. ;) is less
than that by normal approximation (denotediBY;). Generally, the normal approximation
gives a less conservative confidence lower bound.

Given the lower bound ofj,;, say,n.s, the confidence lower bound of sensitivity
D (n,,) is given byd(n.5). Figure 4 shows sensitivity estimates of the discriminale for
the mice data (A vs W) by using the simple plug-in estimatat B0 (1 — «)% confidence
lower bounds given by the proposed method. Clearly, the-plugensitivity estimates
are bigger than the confidence lower bounds. As the numbespdicated samples per
subjectn? increases, so does the true sensitivitygfin (11). Accordingly, the sensitivity
estimates increase witl{ as shown in the figure.
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Figure 3: The p-values as a functiongffor testingHy : 1,, = 1o Versust, : 1., > 1o
whenny = 2, njy = 32, n) = 2, and thusdf = 46.11 , @, = 2.15 andnes = 1.94
from the mice experiment. The solid line is for non-centrdistribution approach and the
dashed line is for normal approximation. TH&% confidence lower bounds af,, from
non-centrat and normal approximation arg , = 1.098 andn’; = 1.177, respectively.

Given a sensitivity estimate either by a simple plug-inmaator or100(1 — «)% confi-
dence lower bound as in Figure 4, now consider determinaf@ample size.?,. Figure
5 gives the combination of? andn?, necessary to meet the minimal sensitivity levehof
with at leastd5% of probability when we varyy from 0.75 to 0.95 in the same setting as
Figure 4. The left panel is for the simple plug-in estimatdile the right panel is fo#5%
confidence lower bound. For example, to attain a minimalllef/eensitivity of 90% with
ny = 2, ny, has to be at leagt0 from the left panel. Expectedly, as the minimal level of
sensitivity increases, necessary sample sizes increasellagnd relatively large sample
sizes are needed when confidence lower bounds are usedt@assiensitivity.
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Figure 4: Sensitivity estimates of the discriminant ruletfte mice data (A vs W) by the
simple plug-in estimator and confidence lower bounds (90&02%%96) for varied number
of replicated samples per subject wheh= 2 andn, = 32.

4 Numerical Study

We investigate the validity of the proposed sample sizesrdehation procedure by sim-
ulation. The procedure is designed for a microarray expenminin the second stage of
pharmacogenomics. Under the linear mixed effect modelragsan in (5) for probe level
data, training and validation data are generated from nbdietibutions as in (6) and (7),
respectively.

4.1 Simulation Module

For a numerical validation study, we take the following step

Step 1: Specify the number of gengsand true parameter values for me#s= (;; +
Tig, B2 + Tag: - - - flar +Turg) |, g = 0, 1, and variance component$,;, o7, ando?,,
i=1,2,...,nYin (6) and (7).
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Figure 5: The required number of subjects and number ofcafdd samples per subject
for various minimal sensitivity levels with 95% probability of successful validation when
sensitivity is estimated either by the simple plug-in estion (left panel) or by5% confi-
dence lower bounds (right panel). Theralues are in the right margin of each plot.

Step 2: After specifying sample size$, n;,, andn’, and device-specific parameters
andn’. in the training stage, generate directly such summaryssiegiof training data
as@, from N(8,,%,/n!,) and the values of mean squaresS E;, M SS(GM); and
MSM(G); from the scaled? distributions in (13). Given the mean squares, obtain
the estimates of variance componests 6%, andé?,, from Equation (12).

Step 3: Regarég, o2, 6%, andg?, from the previous step as if they were calculated from
raw probe-level training data. After specifying the samgileen? and the device-
specific parameters; andn,, calculate sample size;, for a validation study to
meet the minimal sensitivity requirement (2), as we did i@ thice experiment in

Section 3.

Step 4: Givem},, compute the successful validation rﬁ@zv > ~) using the fact that
nfnb/’e?zv ~ B(n?,, Sen(¢y)), where the true sensitivity of the plug-in classification
rule Sen(ggv) from the training data in Step 2 is explicitly given by (8).

Step 5: Repeat the previous steps for multiple times to nlataiinconditionalestimate of
the successful validation rafe(Seny > ) by averaging over replicates of training
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data.

If the unconditional estimate at Step 5 is greater than 3, the procedure of sample
size determination is deemed valid. Otherwise, it indisdtat the sample sizes specified
by the proposed approach are not large enough to meet themalisénsitivity requirement.

4.2 Results

To mimic the mice experiment, we set the true parameter gdlwremeand),, and variance
components?,, 0%, andoZ, i = 1,2,...,n?, to the actual estimates from the real data
for two groups (A vs W) first and fixed;, = 20, n}, = 4, n;, = 32, andn;. = 2. We varied
n? from 2 up to6 and the confidence levél— « for a lower bound of the true sensitivity
Seny from 90% down to50% in the simulation study. The simple plug-in estimator of
Seny in (9) was also considered for comparison. The desired lefvsliccesd — 3 was
set t00.95 and the minimal level of sensitivity was(0.85 for the study. By taking the steps
laid out, values of successful validation rﬂe@zv > ~) were obtained for 100 replicates
of training data simulated from the specified distribution.

Due to the skewness of the distribution of successful vabdaates from the replicates,
for each combination of? and(1 — «), the distribution ofP(§e\nv > ) is summarized
by the median as shown in Table 1. The table also shows theddeaitivity of $(6/2)
with ¢ in (10), which is the maximally achievable sensitivity (@mendent of data) in the
normal setting, and the median of true sensitivity in (8)thaa 100 replicates as a reference.
The interquartile range (IQR) of the true sensitivity asrd90 replicates is from 0.012 to
0.017, and the IQR of successful validation rates is frondD#® 0.018. With such a high
true sensitivity level (around 0.97) in this setting, we @he that there is only minor dif-
ference between the true sensitivity and its estimatessfmo#/n in the table), and therefore
estimating it by either a simple plug-in estimator or a coerfice lower bound does not
make much difference in sample sizes. Hence, the mediaewvalusuccessful validation
rates even with the plug-in estimator are all greater thardésired level of succe85.
With the simple plug-in estimator of the true sensitivitytoé normal discriminant rule, the
median number of subjects, required was for different values oh?.

In the second simulation study, the true mean parameteremSwere set to beé.14
closer than the actual estimates from the mice data so thafitb sensitivity is lower than
the previous setting. Except the mean parameters, all ddlotors were kept the same.
Table 2 summarizes the median and IQR values of succesdittian rates for the new
setting. As seen in the table, when the true sensitivity vgelo(around 92% to 94%),
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The levell00(1 — @)%  The number of replicated samples per subjet) (

for confidence lower bound 2 3 4 ) 6

90 0.994 0.996 0.997 0.997 0.996
85 0.993 0.995 0.994 0.995 0.996
80 0.992 0.993 0.995 0.995 0.995
75 0.991 0.993 0.994 0.995 0.995
70 0.990 0.992 0.993 0.994 0.995
65 0.990 0.991 0.993 0.994 0.993
60 0.988 0.991 0.993 0.992 0.993
55 0.987 0.991 0.991 0.992 0.992
50 0.987 0.991 0.991 0.991 0.992

Plug-in estimate in (9) 0.987 0.990 0.991 0.991 0.992

Ideal sensitivitytb(g) 0.974 0.980 0.982 0.983 0.984

True sensitivity in (8)  0.972 0.977 0.980 0.982 0.983

Table 1: Median values of successful validation ralt’eégé?zv > 0.85) by the sample size
calculation procedure for different values @f and confidence levell — «) from 100
replicates of simulated training data when the true seitsitis around 97% to 98%. Ideal
sensitivity and median values of true sensitivity in (8) iaréhe last two rows.
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The level100(1 — a)% The number of replicated samples per subje¢} (

for confidence lower bound 2 3 4 ) 6

90 0.999 (0.020) 0.998 (0.022) 0.997 (0.019) 0.997 (0.028) 98®(9.028)
80 0.988 (0.065) 0.987 (0.061) 0.987 (0.067) 0.986 (0.062) 8D(9.054)
75 0.979 (0.068) 0.982 (0.087) 0.979 (0.065) 0.982 (0.058) 8®(9.054)
70 0.970(0.081) 0.972(0.080) 0.973(0.064) 0.970(0.074) 69(9.068)
65 0.964 (0.113) 0.966 (0.087) 0.960 (0.080) 0.963 (0.073) 6B(9.065)
60 0.951(0.119) 0.951(0.096) 0.956 (0.078) 0.962 (0.069) 0.967 (0.069)
56 0.938 (0.123) 0.947 (0.092) 0.956 (0.076) 0.962 (0.075) 6D(9.078)
55 0.937 (0.116) 0.945(0.089) 0.956 (0.076) 0.956 (0.079) 59(9.078)
50 0.928 (0.127) 0.947 (0.086)0.950(0.082) 0.953(0.075) 0.955(0.069)

Plug-in estimate 0.928 (0.125) 0.947 (0.090) 0.948 (0.082953 (0.070) 0.955 (0.069)

Ideal sensitivity 0.929 0.937 0.942 0.945 0.947

True sensitivity 0.924 (0.035) 0.933(0.033) 0.938 (0.032)941 (0.032) 0.943(0.031)

Table 2: Median values (and IQR in parentheses) of sucdesdidation ratesP(@zv >
0.85) by the sample size calculation procedure for different galofn? and confidence
level (1 — ) when the true sensitivity is around 92% to 94%. Ideal sensitand median
values (and IQR) of true sensitivity in (8) are in the last twws.

successful validation rates vary more widely dependinghensensitivity estimator used.
The IQR of true sensitivity in (8) across 100 replicates suad 0.036, and that of suc-
cessful validation rates is in the range of 0.02 to 0.13. Tigallghted values in the table
are the smallest (unconditional) successful validatide that exceeds the desired level of
95% for eachn?, where a success is defined@zv being at leas85%. 50% confidence
lower bound and the simple plug-in estimator generally pogdsimilar successful valida-
tion rates. Whem! = 2 or 3, the confidence level needs to be at least 60% to guarantee
a successful validation experiment 95% of the time. Justdonparison with the higher
sensitivity setting, when the true sensitivity is estingaby the simple plug-in estimator,
the median numbers of subject$ necessary for a validation experiment increased to 27,
20, 20, 14, and 14 for? = 2, 3, 4, 5, and 6, respectively.

Setting the true mean parameters in Step 1 t@.Becloser than the actual estimates
from the real experiment, we examined further the impachefunderlying true sensitivity
on necessary sample sizes for a validation experiment. eTalghows the results when
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The levell00(1 — «)%
for confidence lower bound

The number of replicated samples per subje¢} (

2

3

4

5 6

90 0.998 (0.104) 0.993 (0.093) 0.993 (0.099) 0.990 (0.068) 8D(9.074)
85 0.983(0.136) 0.972(0.116) 0.976(0.114) 0.970 (0.110) 7®(9.102)
84 0.976 (0.142) 0.971(0.109) 0.974(0.098) 0.962 (0.113) 7®(9.110)
83 0.969 (0.145) 0.969 (0.114) 0.966 (0.118) 0.965 (0.115) 6®(9.112)
82 0.964 (0.165) 0.964 (0.129) 0.956 (0.119) 0.963 (0.123) 68(9.114)
81 0.959 (0.193) 0.960 (0.114) 0.954 (0.118) 0.960 (0.126) 59(9.112)
80 0.953(0.176) 0.954(0.138) 0.954(0.125) 0.959(0.124) 0.956(0.116)
75 0.931(0.169) 0.928 (0.127) 0.939 (0.143) 0.930 (0.150) 3®(9.118)
50 0.842 (0.205) 0.870(0.166) 0.876(0.167) 0.874 (0.149) 99(8.136)

Plug-in estimate

0.842 (0.203) 0.870(0.179) 0.876 (0.16BB85 (0.148) 0.898 (0.133)

Ideal sensitivity 0.896 0.907 0.912 0.915

True sensitivity

0.917

0.896 (0.028) 0.906 (0.027) 0.911 (0.02@)915 (0.027) 0.917 (0.027)

Table 3: Median values (and IQR) of successful validatidesﬁ’(@zv > 0.85) by the
sample size calculation procedure for different values’oénd confidence levéll — «)
when the true sensitivity is around 90% to 91%. ldeal sensitand median values (and
IQR) of true sensitivity in (8) are in the last two rows.

the true sensitivity is around 90% to 91%. The highlightetliga are again the smallest
successful validation rate exceeding the desired V&l for eachn?. The IQR of the true
sensitivity level for 100 replicates is around 0.03, and tifssuccessful validation rates is
in the range of 0.06 to 0.24, clearly showing larger varipthan the settings with higher
sensitivity values. The table suggests tkaf: confidence level is sufficient to obtain a
proper sample size for?, while using the simple plug-in estimates for sensitivitggny
equivalent to 50% of confidence) results in success ratef smaller thar95%. The low
success rate of the plug-in estimator is attributed to toetfaat it gives a smaller sample
size than necessary.

For reference, Table 4 provides median estimates of suhjeatequired in a validation
experiment under the same setting as Table 3 from the 10@aégd.

Lowering the true sensitivity further down to 87% to 89% bytisg the true mean
parameter$).23 closer than the actual estimates required about 95% cowfdenel for
sensitivity estimation to ensure that the rate of succésafigdation is more than 95%. The
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The levell00(1 — @)%  The number of replicated samples per subjet) (

for confidence lower bound 2 3 4 5) 6
90 317 164 127 107 94
85 174 104 80 74 67
84 160 94 74 67 60
83 147 94 74 60 57
82 134 87 67 60 54
81 127 80 67 54 54
80 120 74 60 54 54
75 94 60 54 47 40
50 40 34 27 20 20
Plug-in estimate 40 34 27 20 20

Table 4: Median number of subjecty, required from 100 replicates of simulated training
data for different values of? and confidence levéll — «) of lower bounds of the true
sensitivity.

results are not shown here, but successful validation vatesd significantly more than the
other settings with IQR values in the range of 0.22 to 0.62.aA€xtreme setting, when
the mean parameters were set so that the true sensitiviigllg above the pre-specified
minimal levely = 0.85, a large fraction of simulated data turned out to be statiyi
futile with confidence lower bounds for sensitivity smalliean 0.85.

The results from the simulation study can be used to caélitet confidence level— o
for estimation of the true sensitivity to attain the desisedcess level — 5. Generally, the
lower the true sensitivity level is, the higher confidenogeles necessary for estimation of
sensitivity. In particular, the simulation results suggésit under the specified setting, a
simple plug-in estimator (approximately 50% of confideneelld be sufficient when the
true sensitivity is around 97% or above, and 60% would beaefft for 93% of sensitivity
while 80% and 90% of confidence would be necessary for 90% 886 & sensitivity,
respectively.

5 Conclusion

The main objective of this paper is to calculate sample siz@afvalidation study to meet
pre-specified sensitivity and specificity requirement, tidew to avoid futility of pharma-
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cogenomic development. Change of platforms is taken into@at in the sample sizes
calculation by statistical modeling. The proposed forrtialafor meeting minimal sensi-
tivity and specificity requirements calls for estimationbafth measures. Their confidence
lower bounds can substitute the unknown true values in thgkasize calculation pro-
cedure. However, the confidence level has to be calibrateaijoropriate sample sizes to
ensure that the probability of a successful validation expent exceeds a desired level.
Our simulation study shows the relationship between thestyithg sensitivity and the
required confidence level in a normal distribution settirighe results can be used as a
practical guideline to set the level of confidence adapfivel

As a future direction, robustness of the proposed procecamebe further investigated
to see how sensitive the sample size calculation procedui® the model assumptions.
In principle, our approach can be extended to a general soewhere more complex
diagnostic rules than DLDA are considered to account foept&l correlations among
genes.
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