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Abstract

Pharmacogenomics aims at co-development of a drug that targets a subgroup of pa-

tients for safety and efficacy and a device that identifies theresponder group through

their genetic variations. Development of such a prognosticdevice includes a training

stage and a validation stage. The transition from the training stage to the validation

stage typically involves change of platforms as a subset of potential genetic markers

predictive of drug response are identified in the first stage and only those are used

in the second stage. With the change in consideration, this paper concerns how to

determine sample sizes for the validation stage to meet pre-specified sensitivity and

specificity requirements in order to avoid futility of pharmacogenomic development.

In particular, taking microarrays as a medical device, which measure gene expression

levels, we show how to decide the numbers of subjects per group, replicated samples

per subject, replicated probes per gene for the validation experiment. The change of

platforms is taken into account in the sample sizes calculation by statistical model-

ing. Our formulation of sensitivity and specificity requirements calls for estimation

of both measures. Lower bounds with carefully calibrated confidence levels can give

appropriate sample size to meet the requirements. The procedure is illustrated in a

proof-of-concept mice experiment.

Key Words: Change of platforms; Futility; Microarray; Pharmacogenomics; Sample

size; Sensitivity; Specificity.

1



1 Introduction

Pharmacogenomics aims at the co-development of a drug that targets a subgroup of the

patients, and a device that predicts whether a patient is in the subgroup. This subgroup

can be responders to the drug, or patients free of serious adverse events (SAE). Typically,

subgroups are discovered by comparing the genetic profiles of patients with different phe-

notypes, responders versus non-responders, or patients free from SAE versus patients who

experience SAE (Wang et al., 2007). Microarrays could be used to develop such a diagnos-

tic device for identification of subgroups.

The development in pharmacogenomics includes two major stages: a training stage and

a validation stage. The purpose of the training stage is to identify a biomarker positive (G+)

subgroup of patients and its complement, the biomarker negative (G-) subgroup. Biomark-

ers historically refer to substances in biological samplesor measurements that indicate a

person’s disease state or response to a drug (Baker, 2005). They are crucial for efficient

drug development, and there are various types of biomarkerssuch as disease biomarkers,

surrogate endpoints, efficacy or outcome biomarkers. Disease biomarkers indicate the pres-

ence or likelihood of a particular disease in patients. For example, gene expression profiles

linked with cancer can be taken as a disease biomarker in pharmacogenomics. The pur-

pose of the validation stage is then to prove that the biomarker found in the training stage

has sufficient sensitivity and specificity for clinical use,and to independently validate the

efficacy and safety of the drug for the target G+ subgroup.

Transition from the training stage to the validation stage typically involves a change of

platform as a subset of potential predictors of drug response are identified as a biomarker

in the first stage and only those are used in the second stage. For example, MammaPrint

(van ’t Veer et al., 2002) is an FDA-approved microarray-based test to predict the likelihood

of recurrence of breast cancer. In the training stage of MammaPrint, microarrays probing

approximately 25,000 genes were used, while in the second stage of validation, microarrays

probing 70 genes only were used. Generally, fewer genes are involved in a diagnostic

device for use, and this change allows more replication of probes and more replicated

samples from a subject in the validation stage than the training stage. To ensure that the

diagnostic algorithm derived from the training stage applies to expressions measured in

the validation stage, the platform change needs to be taken into account when planning

a validation study and computing sample sizes required for the study. This issue is often

overlooked in the process of developing a diagnostic device. As stated in FDA (2005b),

When validating a gene or expression pattern, instead of a set of individual
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biomarkers, a rigorous statistical approach should be usedto determine the

number of samples, and the methodology used for validation.It is recom-

mended that the validation strategy be discussed in advancewith FDA.

At the end of the training stage, the sensitivity and specificity of the diagnostic algo-

rithm for a validation trial need to be estimated. If both thesensitivity and specificity are

significantly high, pharmacogenomic development is recommended to proceed. Otherwise,

further pharmacogenomic development is likely to be futile.

Generally speaking, sample size calculation is formulatedas a problem of determining

the number of subjects in a prospective experiment, where a random variable of interest

is measured for each of the subjects, and its distribution ismodeled with some unknown

parameter. The sample size is then calculated so that inferences and decisions about the

parameter can be correctly made. It is customary to calculate sample size based on power

(Adcock, 1997). That is, some hypotheses of interest are specified in terms of the parameter

prior to the experiment, and then the sample size is determined to achieve a desired power

at a fixed type I error rate. Chow et al. (2003) elucidate this statistical approach to sample

size calculation and provide its justification for different objectives in various clinical trials

settings.

Consider the example ofabacavir(brand name Ziagen), a potent antiretroviral for HIV-

1. About 8% of the patients treated withabacavirdevelop a serious adverse event (SAE) of

hypersensitive reaction. Mallal et al. (2002) reported on aretrospective study ofabacavir-

treated patients, looking for biomarkers in the HLA region that can screen out patients

prone to this SAE. Three markers (HLA-B*5701, HLA-DR7, HLA-DQ3) were found to

be highly associated with the occurrence of the hypersensitivity SAE. Martin et al. (2004)

in a follow-up to the 2002 study also reported that five markers (HLA-B*5701, C4A6,

HLA-DRB1*0701, HLA-DQ3, Hsp70-Hom M493T) are highly associated with the hy-

persensitive reaction. In accordance with the pharmacogenomic concept stated in FDA

(2005a,b), a double-blind randomized study involving 1,956 patients from 19 countries

was then conducted to validate the HLA-B*5701 biomarker (Hughes et al., 2008; Mallal

et al., 2008). Their sample size for the validation study wascalculated by specifying the

power to detect a4% drop in the SAE from the control group to the prospectively screened

group. In addition to a significant reduction in the SAE rate,they reported95% lower

confidence bounds of85.2% for sensitivity and95.5% for specificity.

For multiple hypothesis testing with several parameters, appropriate definitions of power,

type I error rate and the corresponding statistical test forthe hypotheses of interest are nec-

essary. Lee (2004) calculates sample size required for microarray experiments in which
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finding differentially expressed genes between a treatmentcondition and a control condi-

tion is of interest. In her approach, the number of subjects is determined to achieve a desired

individual power level for a given mean number of false positives of multiple hypotheses

(per-familywise type I error rate), when the ratio of mean difference to standard deviation

for individual hypotheses and the anticipated number of undifferentially expressed genes

are specified in advance. Depending on the purpose of experiments, sample size can also be

specified to obtain optimal confidence regions for multiple hypothesis testing. In particular,

for multiple comparisons using Tukey’s Multiple Pairwise Comparisons (MCA) method,

the constrained Multiple Comparisons with the Best (MCB) method, and Dunnett’s two-

sided Multiple Comparisons with a Control (MCC) method, Hsu(1988) suggests to calcu-

late sample size so that with a pre-specified probability theconfidence intervals for mean

differences cover the true parameter values and be sufficiently narrow.

For development of prognostic or diagnostic devices, it is sensible to determine sample

size to achieve specified levels of sensitivity and specificity, as they are common measures

of prediction accuracy for diagnostic rules. Pepe (2003) uses this strategy to calculate sam-

ple size in the context of developing a medical device to differentiate a diseased group

from non-diseased group. In her approach, a device is considered having minimally ac-

ceptable performance when the true positive fraction (TPF)is at least some value, say

TPF0 and the false positive fraction (FPF) is at most, say FPF0. Note that the true positive

fraction is sensitivity and the false positive fraction is one minus specificity. By setting

a hypothesis to statistically prove that the device is minimally acceptable, that is, setting

H0 : TPF ≤ TPF0 or FPF ≥ FPF0, the sample sizes for the two groups are chosen so

that a positive conclusion would be drawn with a desired power at a specified type I error

rate when the true TPF and FPF of the device are at some levels,TPF1 and FPF1. Here,

TPF1(> TPF0) and FPF1(< FPF0) are the values in the alternative hypothesis specified in

advance by researchers.

Determination of sample size for validation study in pharmacogenomics is more com-

plicated than the traditional sample size problem since it involves multiple layers of sample

sizes and device-specific parameters. To design a microarray experiment for a validation

study, in addition to the number of subjects per group, the number of replicate samples for

each subject, the number of replicates of each probe on the chip, the number of genes, and

the number of probes for each gene need to be decided.

We propose in this paper that the sample sizes and device-specific parameters be de-

termined so that the probability of sensitivity and specificity estimators being greater than

some minimally acceptable values is sufficiently high. To outline our proposed procedure,
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the number of genes as part of device-specific parameters is determined first by controlling

a familywise type I error rate in multiple hypothesis testing for gene selection. Alterna-

tive gene selection procedures can be used if desired. A diagnostic rule is then built on

the basis of the selected genes. Other device-specific parameters and the sample sizes are

then calculated to meet pre-specified minimal sensitivity and specificity requirements for

the diagnostic rule. Since the number of probes for each geneand the number of replicates

of each probe are generally subject to spatial limitations of microarray platforms, typically

there are upper bounds on theses parameters, depending on the number of selected genes.

A possible range of the number of replicated samples for eachsubject may be limited as

well because the volume of a biological sample drawn from each subject is finite.

The aforementioned change of platforms in the pharmacogenomic setting brings an-

other complication that the distributions of training dataand validation data are not the

same. Only when the training and validation experiments areproperly designed, as in the

proof-of-concept mice experiment to be shown later, the change of the distributions be-

tween two stages can be handled appropriately through statistical modeling. Otherwise, it

does not seem feasible to deal with the change in a statistically principled way.

Our formulation of sample size determination requires sensitivity and specificity esti-

mates. We propose to use their confidence lower bounds based on the model for training

and validation data. Compared to Pepe (2003)’s approach where TPF1 and FPF1 are pre-

specified, the proposed approach of using a confidence lower bound is more data-adaptive,

and it also controls the probability of meeting the minimal sensitivity or specificity re-

quirement directly. One may also use a model-based plug-in estimator of sensitivity and

specificity. However, it will be shown that sample sizes calculated on the basis of a plug-in

estimator may be too optimistic in some cases. The bias can beremedied by a confidence

lower bound.

Section 2 describes the mathematical formulation and general steps for sample sizes

calculation in pharmacogenomics. For simplicity, how to determine sample sizes for sen-

sitivity requirement is discussed only. Specificity requirement can be similarly dealt with.

Section 3 illustrates an application of the procedure in theproof-of-concept mice experi-

ment. Section 4 presents a simulation study for numerical validation of the proposed sample

sizes determination procedure followed by conclusions in Section 5.
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2 Formulation of Sample Size Calculation

2.1 Basic Setting for Training and Validation Data

Suppose that there areK potential predictors of drug response in a training stage ofa

pharmacogenomic study. LetX ∈ RK be a random vector of the measurements of the

predictors from a subject andY ∈ {0, 1} be an indicator of whether the subject is a re-

sponder(Y = 1) or a non-responder(Y = 0). LetDn = {(xi, yi)|i = 1, 2, . . . , n} denote

the data withn subjects in the training stage, wherexi andyi are the observedK covari-

ates and subgroup label of theith subject. Then observations(xi, yi) are assumed to be

independent and identically distributed with some unknowndistributionP(X,Y ).

For validation data, let(X∗, Y ∗) denote a new case in the second stage, whereX∗ ∈ Rk

is a k-dimensional random vector, andY ∗ ∈ {0, 1} is a subgroup label. Since only a

subset of potential predictors of drug response are identified as a biomarker in the first

stage and used in the second stage,k is typically much smaller thanK. Let Q(X∗,Y ∗) be

the distribution of(X∗, Y ∗), which is different fromP(X,Y ) because of the change of the

platform. If microarrays are used to develop a diagnostic device, more replication of probes

and more replicated samples from a subject are allowed in thevalidation stage. This change

yields smaller variance parameters inQ(X∗,Y ∗) thanP(X,Y ). A concrete example of such a

change fromP(X,Y ) to Q(X∗,Y ∗) is given in Section 3.

To take into account the change of platforms in a statistically principled way, we con-

sider a model for the training data and derive a theoretically optimal diagnostic rule that

predicts subgroup labels from the model for validation data(yet to be observed), reflecting

the corresponding change.

Let φv(x∗;Dn) denote such a theoretically optimal rule for the validationdata, which

depends on some unknown model parameters. The subscript v isused to emphasize that

the rule is for validation data. Usêφv(x∗;Dn) to denote the plug-in diagnostic rule with

the model parameters replaced with estimates from the training dataDn. In the validation

stage, these parameter estimates are held fixed, and thusφ̂v(x∗;Dn) is considered fixed.

The sensitivity of̂φv(x∗;Dn) is then defined as the probability of correctly calling a subject

a responder given the subject is a responder:

Sen(φ̂v) := P (φ̂v(X∗;Dn) = 1|Y ∗ = 1).

For brevity,Senv is used to refer toSen(φ̂v) in this paper.

Suppose that given a validation sample ofm i.i.d pairs of (X∗

j , Y
∗

j ), j = 1, 2, . . . , m

with Y ∗

j = 1, the true sensitivity of̂φv, Senv, is estimated by a simple unbiased estimator
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Ŝenv, the sample proportion of correctly predicting true positives by the diagnostic rulêφv
over the validation data. That is,

Ŝenv =
1

m

m∑

j=1

I(φ̂v(X∗

j ;Dn) = 1|Y ∗

j = 1). (1)

Note thatm · Ŝenv follows a binomial distributionB(m, Senv).

2.2 Minimal Sensitivity Requirement

Now consider the problem of finding the number of subjectsm in the responder group for

a validation study such that the probability of the estimated sensitivityŜenv exceeding a

pre-specified minimum level of sensitivityγ is at least1 − β, that is,

P (Ŝenv ≥ γ) ≥ 1 − β. (2)

If Ŝenv ≥ γ, we say that the validation study is successful.

Figure 1 shows that givenβ and the true sensitivitySenv(> γ), the probability of

successful validationP (Ŝenv ≥ γ) oscillates as a function ofm and eventually surpasses

1 − β asm increases. As shown in the figure, there can be more than one crossing points

of P (Ŝenv ≥ γ) and1 − β, but for large enoughm, the inequality (2) holds. Hence,

it is sensible to define the desired sample sizem∗ as the smallest number of subjects in

the subgroup such that for anym ≥ m∗, the sensitivity requirement (2) is satisfied, given

the minimal sensitivityγ and the minimal probability of successful validation1 − β. The

following proposition shows that as long as the true sensitivity is greater than the minimal

levelγ, m∗ is well-defined.

Proposition 1 If Senv > γ, then the sample sizem∗ is finite.

Proof Sincem · Ŝenv follows B(m, Senv), by Hoeffding’s inequality (Hoeffding, 1963),

P (m · Ŝenv ≤ mγ) ≤ exp(−2
(m · Senv − mγ)2

m
) for mγ < m · Senv.

So, if the probability upper bound is at mostβ, then (2) is satisfied, and the condition

exp(−2
(m · Senv − mγ)2

m
) ≤ β

implies

m ≥ −
log β

2(Senv − γ)2
. (3)

Thusm∗ must be finite.2
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Figure 1: The probabilityP (Ŝenv ≥ γ) as a function ofm and its lower bound1 −

I1−Senv(m−mγ, mγ+1) when the true sensitivitySenv is0.90 and the minimal sensitivity

levelγ is 0.80. The horizontal dashed line indicates the minimal probability of successful

validation1 − β, with β fixed at0.05. mH is the upper bound of sample size given by

Hoeffding’s inequality in (3),m0 is the root ofI1−Senv(m − mγ, mγ + 1) = β, andm∗ is

the desired sample size. In this example,mH = 74.9, m0 = 36.8 andm∗ = 30.

Let mH denote the upper bound given by Hoeffding’s inequality in (3). We can find

m∗ easily by backward search; starting from⌈mH⌉, where⌈x⌉ is the ceiling ofx, i.e. the

smallest integer greater than or equal tox, and decreasing the integer by one each time until

we reach the first integer for which the inequality (2) is not satisfied. However, the upper

boundmH tends to be very large, and hence this algorithm may not be efficient.

To sharpen the upper bound ofm∗, we consider a continuous lower envelope ofP (Ŝenv ≥

γ) by using the relationship between the cdf of binomial distribution and the regularized

incomplete beta function. First observe that

P (m · Ŝenv ≥ mγ) ≥ P (m · Ŝenv > ⌊mγ⌋)

= 1 − P (m · Ŝenv ≤ ⌊mγ⌋ − 1)

= 1 − I1−Senv(m − ⌊mγ⌋, ⌊mγ⌋ + 1),
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where⌊x⌋ is the floor ofx. The last equality comes from the fact that for a binomial

random variableX with B(n, p), P (X ≤ k) = I1−p(n − k, k + 1) by integration by parts,

whereIx(a, b) is the cdf ofBeta(a, b) atx, also known as the regularized incomplete beta

function. Sincea andb in Ix(a, b) can be real values, and

1 − I1−Senv(m − ⌊mγ⌋, ⌊mγ⌋ + 1) ≥ 1 − I1−Senv(m − mγ, mγ + 1), (4)

by allowingm to be a real value, we obtain the right hand side of (4) as a continuous lower

envelope ofP (Ŝenv ≥ γ). The dashed line in Figure 1 depicts such a lower envelope.

For Senv ≥ γ, the function1 − I1−Senv(m − mγ, mγ + 1) is shown to be strictly

increasing inm. By equating the function to1 − β and solving form, we get a unique

solutionm0, which serves as an upper bound ofm∗. That is, for any integerm ≥ ⌈m0⌉,

the minimal sensitivity requirement (2) is satisfied.m0 is usually much smaller thanmH as

illustrated in Figure 1. With this smaller initial point,⌈m0⌉, the aforementioned backward

search algorithm can be made more efficient. In summary, we start from⌈m0⌉ and decrease

m by one until the inequality (2) does not hold. Then them value for the second last step is

m∗, the number of subjects for the responder group needed to meet the minimal sensitivity

requirement. This algorithm is implemented in R and available at the second author’s

webpage.

Figure 2 illustrates how the sample size determined by the algorithm varies depending

on the underlying true sensitivity when the probability of successful validation is95%.

Expectedly, the necessary sample sizem∗ decreases as the true sensitivity increases, and a

larger sample size is required as the minimal levelγ increases.

2.3 Estimation of True Sensitivity

The true sensitivity of the diagnostic rulêφv, i.e. Senv for the inequality (2), is usually un-

known in practice, and it has to be estimated. As the diagnostic rule is derived from a model

adjusting for the change of platforms, its true sensitivitycan be estimated by plugging in

estimated model parameters. However, it is well known that such a plug-in estimator ex-

hibits an upward bias in estimating the true sensitivity, and hence the sample size calculated

based on the estimator could be smaller than necessary. Taking a conservative approach,

we propose to determine sample sizes by replacingSenv by its confidence lower bound.

For fixedm, the binomial distributionB(m, Senv) is stochastically increasing inSenv.

So, if P (X ≥ mγ) ≥ 1 − β for a binomial variableX of B(m, p) with p < Senv, then

(2) also holds becausem · Ŝenv is stochastically greater thanX. This is the rationale for
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Figure 2: Sample sizesm∗ necessary to meet the minimal sensitivity requirement ofγ =

75%, 80% and85%, respectively, with95% of confidence as the true sensitivity varies.

replacing the true sensitivity with its confidence lower bound. Note that as in Proposi-

tion 1, for a proper sample sizem∗, the confidence lower bound has to be greater thanγ.

This condition provides a statistical criterion for futility in the setting of pharmacogenomic

development.

3 Icelandic Mice Data Analysis

Hsu et al. (2009) describes an Icelandic mice experiment to discriminate five mouse strains.

Four strains (conveniently labeled groups A, B, C, and D) have different mutations in Mitf

(Microphthalmia transcription factor) gene and one strain(labeled group W) is a wild type.

In the experiment, the five strains are differentiated on thebasis of the expression levels

of 99 genes regulated by Mitf gene in spleen tissues. To mimic the situation in a pharma-

cogenomic study, consider classifying mice from two strains, say group A and group W.

Regard group A as the responder group(Y = 1) and group W as the non-responder group
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(Y = 0). The99 genes are taken as the potential genetic markers, from whicha subset of

genes predictive of responder or non-responder will be selected. This subset of genes are

considered a biomarker. A diagnostic algorithm̂φv is then built based on these selected

genes. It classifies mice into two groups: the biomarker positive subgroup (̂φv = 1) and

the biomarker negative subgroup (φ̂v = 0). The sensitivity of the algorithm is then the

probability of predicting a mouse biomarker positive giventhe mouse is in group A. The

specificity is the probability of predicting a mouse biomarker negative given the mouse is

in group W.

Custom-designed NimbleGen microarrays were used in the training stage of the exper-

iment. Each array had12 mini-arrays, and the99 genes were probed in each mini-array.

For each gene, there were32 probes, and each probe had two replicates. Design of the

experiment followed randomization, replication and blocking principles, with four mice

(subjects) per group, and four replicated biological samples per mouse. See Hsu et al.

(2009) for details of the experimental design. Taking the training data from this exper-

iment, we demonstrate the proposed procedure for determining sample sizes to achieve

desired precision of sensitivity in a validation trial.

3.1 Construction of Discriminant Rule

For statistical modeling of the data, letxigmspr denote the background-corrected, log trans-

formed and normalized probe intensity of a mutated or wild type mouse for theith gene

(i = 1, 2, . . . , 99), the sth sample (s = 1, 2, 3, 4) for the mth mouse(m = 1, 2, 3, 4)

in groupg (g = A, B, C, D, W ), thepth probe(p = 1, 2, . . . , 32), and therth replicate

(r = 1, 2). The probe intensities can be modeled separately for each gene. Assumexigmspr

to follow a linear mixed effect model:

xigmspr = µi + τig + Mim(g) + Sis(m(g)) + πp(i) + ǫigmspr, (5)

whereµi is the mean gene expression for theith gene,τig is thegth group effect on the

ith gene,Mim(g) is themth subject effect in thegth group on theith gene,Sis(m(g)) is the

sth sample effect from themth subject in thegth group on theith gene, andπp(i) is thepth

probe effect in theith gene. We assume thatǫigmspr are independent and identically dis-

tributed withN(0, σ2
iǫ) within each gene. For the subject effects, we assume thatMim(g) are

independent and identically distributed withN(0, σ2
iM) regardless of the group. Similarly

for the sample effects,Sis(m(g)) are assumed to be independent and identically distributed

with N(0, σ2
iS) regardless of the subject and group. Theǫigmspr, Mim(g) andSis(m(g)) are

also assumed to be independent.

11



Treating the problem in a general setting, suppose that there areni genes,nm subjects

in each group,np probes for each gene,ns replicated samples for each subject, andnr

replicates of each probe on the chip. The sample sizesnm andns, and the device-specific

parametersni, np andnr can be different from the training stage to a validation stage. The

linear mixed model in (5) now with these unspecified sample sizes and parametersnm, ns,

np andnr can characterize clearly the transition fromP(X,Y ) to Q(X∗,Y ∗) due to the change

of platforms. Hereafter, the superscriptst and v are used to indicate the change;t for

training andv for validation. In the mice experiment,nt
m = 4, nt

s = 4, nt
i = 99, nt

p = 32,

andnt
r = 2.

Consider the normalized gene expression data from the mutant group A and the wild

type group W. Genes that seem reasonably good in separating Afrom W were found by

the average mean differences, and multiplicity adjustmentwas done by the resampling-

based partitioning test procedure described in Hsu et al. (2009). The selected genes are

RB1, USF1, Pu.1, Oa1, TPA1 and Bim, and their indices are42, 45, 31, 29, 67, and22,

respectively. These six genes are used to build a diagnosticalgorithm for discriminating

the group A from the wild type W.

For simplicity, taking each mouse as a sampling unit, we consider prediction rules that

use the average of probe intensities across the biological samples from the same mouse,

and replicates as a summary measure of expression for each gene. The linear mixed effect

model for the training experiment implies that the distribution of the averagēX t
igm... is

N(µi + τig, σ
2
iM + σ2

iS/nt
s + σ2

iǫ/(nt
sn

t
pn

t
r)). (6)

Suppose that a validation experiment hasnv
m subjects (mice) in each group,nv

p probes

for each gene,nv
s replicated samples for each subject, andnv

r replicates of each probe. If

validation data are obtained under the same probabilistic mechanism as the training data

other than the sample sizes and device-specific parameters,then the distribution of the

(unobserved) validation datāXv
igm... is given as

N(µi + τig, σ
2
iM + σ2

iS/nv
s + σ2

iǫ/(nv
sn

v
pn

v
r)). (7)

For convenience, the selected genes are relabeled so that their indices are from1 to nv
i ,

the number of genes used in the array for validation. In the mice experiment,nv
i = 6. As

in Section 2.1, let(X∗, Y ∗) be a random vector for validation data. Then in this setting

X∗ consists ofnv
i components, and it is defined such that givenY ∗ = g, the distribution of

X∗ := (X∗

1 , X
∗

2 , . . . , X
∗

nv
i
)⊤ is the same as the distribution of(X̄v

1gm..., X̄
v
2gm..., . . . , X̄

v
nv

i gm...)
⊤.
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If we further assume independence across the selected genes, the optimal classification

rule under the normal distribution setting is given by

φv(x∗) = arg min
g

nv
i∑

i=1

(x∗

i − (µi + τig))
2

σ2
iM + σ2

iS/nv
s + σ2

iǫ/(nv
pn

v
sn

v
r)

,

which is known as the diagonal linear discriminant analysis(DLDA). The decision ruleφv
can be estimated by a plug-in rule,

φ̂v(x∗) = arg min
g

nv
i∑

i=1

(x∗

i − (µ̂i + τ̂ig))
2

σ̂2
iM + σ̂2

iS/nv
s + σ̂2

iǫ/(nv
pn

v
sn

v
r)

,

whereµ̂i, τ̂ig, σ̂iM , σ̂iS, andσ̂iǫ are estimates ofµi, τig, σiM , σiS, andσiǫ from the linear

mixed effect model (5) for the training data. We note that theestimates of the variance

components are based on the observations from all five strains although the rule of our

main interest is concerned with discriminating group A (Y = 1) from group W (Y = 0).

3.2 Sample Sizes Determination

In designing a validation experiment with microarrays, possible values of the device-specific

parameters, the number of probes for each genenv
p, the number of replicates of each probe

nv
r and the size of replicated samples for each subjectnv

s are restricted due to the spatial

and biological limitations mentioned in Section 1. In this mice experiment,nv
p is supposed

to be the same asnt
p = 32, as we believe that the32 probes chosen by a biologist are suf-

ficiently sensitive in measuring the expression levels of each gene. Since fewer genes are

probed in each microarray for the validation stage than the training stage (fromnt
i = 99 to

nv
i = 6), this change allows more space for replication of each probe. With 200 spots in

each mini-array,nv
r can be increased fromnt

r = 2 up to33. For each mouse, its spleen tis-

sue sample can only be divided into 4 to 6 pieces of replicatedsamples due to the fact that

enough amount of a biological sample is required for efficient hybridization. This gives a

range of 4 to 6 fornv
s .

Given nv
p, nv

r , andnv
s , consider calculation of the number of subjectsnv

m needed for

validation ofφ̂v as a binary decision rule such that the sensitivity requirement (2) is met.

In other words, we determine the sample sizenv
m so thatP (Ŝenv ≥ γ) ≥ 1 − β, where

nv
mŜenv follows B(nv

m, Sen(φ̂v)) with φ̂v depending onnv
s , nv

p, nv
r , and the training data.

Under the assumption for the validation data in (7), direct calculation shows that the

true sensitivity ofφ̂v is given by
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Sen(φ̂v) = Φ




(θ̂1 − θ̂0)
⊤Σ̂−1

v

[
θ1 −

1
2
(θ̂0 + θ̂1)

]

[
(θ̂1 − θ̂0)⊤Σ̂−1

v ΣvΣ̂−1
v (θ̂1 − θ̂0)

]1/2


 , (8)

whereθg = (µ1 + τ1g, . . . , µnv
i

+ τnv
i g)

⊤ for g = 0, 1, Σv = diag(σ2
iM + σ2

iS/nv
s +

σ2
iǫ/(nv

pn
v
sn

v
r), i = 1, 2, . . . , ivn), and θ̂g and Σ̂v are plug-in estimates ofθg andΣv. To

determine the sample sizenv
m, the true sensitivity of̂φv needs to be estimated. A simple

plug-in estimator is

Ŝenv(φ̂v) = Φ




(θ̂1 − θ̂0)
⊤Σ̂−1

v

[
θ̂1 −

1
2
(θ̂0 + θ̂1)

]

[
(θ̂1 − θ̂0)⊤Σ̂−1

v Σ̂vΣ̂−1
v (θ̂1 − θ̂0)

]1/2


 = Φ

(
δ̂

2

)
, (9)

whereδ̂ is a sample version of the Mahalanobis distanceδ between the two normal distri-

butions given as

{(θ1 − θ0)
⊤Σ−1

v (θ1 − θ0)}
1/2 =




nv
i∑

i=1

(τi1 − τi0)
2

σ2
iM + σ2

iS/nv
s + σ2

iǫ/(nv
pn

v
sn

v
r)




1/2

. (10)

3.3 Confidence Lower Bound for Sensitivity

The simple plug-in estimator in (9) is generally observed tobe biased upward, often yield-

ing an optimistic estimate (McLachlan, 1992; Efron, 1983).Alternatively, we can use a

confidence lower bound ofSen(φ̂v) with appropriately chosen level1 − α. The effect of

α on the sample sizes is investigated numerically in Section 4. Based on the numerical

results,α will be calibrated to attain the desired level1 − β for the probability of meeting

the sensitivity requirement in (2).

Lettingb = Σ̂−1
v (θ̂1 − θ̂0) anda = 1

2
(θ̂0 + θ̂1), which are held fixed in the validation

stage, we have the true sensitivity ofφ̂v in (8) expressed as

Sen(φ̂v) = Φ

(
b
⊤(θ1 − a)√

b
⊤Σvb

)
. (11)

To construct a confidence lower bound forSen(φ̂v), it is sufficient to construct a confidence

lower bound of

ηa,b :=
b
⊤(θ1 − a)√

b
⊤Σvb

sinceΦ(·) is an increasing function.
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To derive a confidence lower bound ofηa,b givena andb, we first consider an estimator

of the form

η̂a,b =
b
⊤(θ̂1 − a)√

b
⊤Σ̂vb

.

For the numerator,̂θ1 follows N(θ1, Σt/n
t
m), whereΣt is a diagonal matrix with entries

σ2
iM + σ2

iS/nt
s + σ2

iǫ/(nt
pn

t
sn

t
r), i = 1, 2, . . . , nv

i . For the denominator,

b
⊤Σ̂vb =

nv
i∑

i=1

b2
i (σ̂

2
iM + σ̂2

iS/nv
s + σ̂2

iǫ/(nv
pn

v
sn

v
r)).

From the AVOVA table for the linear mixed effect model (5), wehave the following ex-

pected mean squares:

E(MSEi) = σ2
iǫ,

E(MSS(GM)i) = σ2
iSnt

gn
t
pn

t
r + σ2

iǫ,

E(MSM(G)i) = σ2
iMnt

gn
t
sn

t
pn

t
r + σ2

iSnt
gn

t
pn

t
r + σ2

iǫ,

whereMSEi, MSS(GM)i, andMSM(G)i are the mean squares forǫi, Si(m(g)), and

Mi(g), respectively. The variance componentsσ2
iM , σ2

iS, andσ2
iǫ are then estimated by the

method of moment (Ravishanker and Dey, 2002). As a result, wehave

σ̂2
iǫ = MSEi,

σ̂2
iS =

MSS(GM)i − MSEi

nt
gn

t
pn

t
r

, (12)

σ̂2
iM =

MSM(G)i − MSS(GM)i

nt
gn

t
sn

t
pn

t
r

.

Hence

b
⊤Σ̂vb =

nv
i∑

i=1

b2
i (cMMSM(G)i + cSMSS(GM)i + cEMSEi),

wherecM = 1
nt

gnt
snt

pnt
r
, cS = 1

nt
gnv

snt
pnt

r
− 1

nt
gnt

snt
pnt

r
andcE = 1

nv
snv

pnv
r
− 1

nt
gnv

snt
pnt

r
.

Since

MSEi ∼
σ2

iǫ

dfE
χ2

dfE
with dfE = nt

gn
t
mnt

sn
t
p(n

t
r − 1),

MSS(GM)i ∼
σ2

iSnt
gn

t
pn

t
r + σ2

iǫ

dfS
χ2

dfS
with dfS = nt

gn
t
m(nt

s − 1), (13)

MSM(G)i ∼
σ2

iMnt
gn

t
sn

t
pn

t
r + σ2

iSnt
gn

t
pn

t
r + σ2

iǫ

dfM

χ2
dfM

with dfM = nt
g(n

t
m − 1),
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and they are mutually independent, by Satterthwaite approximation (Satterthwaite, 1946),

b
⊤Σ̂vb follows approximately(b⊤Σvb/df)χ2

df with

df =

(∑nv
i

i=1 b2
i (cMMSM(G)i + cSMSS(GM)i + cEMSEi)

)2

∑nv
i

i=1

(
(b2i cMMSM(G)i)

2

dfM
+

(b2i cSMSS(GM)i)
2

dfS
+

(b2i cEMSEi)
2

dfE

) .

By independence of̂θ1 andb
⊤Σ̂vb, ωbη̂a,b follows approximatelyt-distribution with de-

grees of freedomdf and non-centrality parameterωbηa,b, whereωb =
√

b
⊤Σvb/(b⊤ Σt

nt
m

b).

With ωb estimated bŷωb =
√

b
⊤Σ̂vb/(b⊤ Σ̂t

nt
m

b), the distribution ofη̂a,b can be approxi-

mated bytdf (ω̂bηa,b)/ω̂b.

A 100(1−α)% confidence lower bound ofηa,b is then obtained by testingH0 : ηa,b = η0

versusHa : ηa,b > η0 with η̂a,b as a test statistic and inverting the acceptance region

for ηa,b. To find the expression of the confidence lower bound, letηobs be the observed

value of η̂a,b. Denote thep-value for the one-sided test byp(η0) = PH0
(η̂a,b ≥ ηobs). If

p(η0) < α, H0 is rejected. UnderH0, η̂a,b follows tdf (ω̂bη0)/ω̂b approximately, and for

fixed ω̂b, η̂a,b is stochastically increasing inη0. Thusp(η0) is increasing inη0, and the

100(1 − α)% confidence lower bound forηa,b is given by the smallest possible valueηLB

such thatp(ηLB) ≥ α. When sample sizes and device-specific parameters for training data

are large,dfE, dfS, anddfM tend to be large, which results in large degrees of freedom

df . In this case,χ2
df/df ≈ 1, and the random variablêηa,b can be further approximated by

N(ω̂bηa,b, 1)/ω̂b. Figure 3 shows thep-values of the hypothesis test,p(η0) for ηobs = 1.94,

which is the observed value ofη̂a,b from the mice data. Note that the value ofηobs depends

on sample sizenv
s and device-specific parametersnv

p andnv
r in the validation stage, and

they are set tonv
s = 2, nv

p = 32, andnv
r = 2 in this example. As shown in the figure,

the 95% confidence lower bound ofηa,b found by non-centralt (denoted byηt
LB) is less

than that by normal approximation (denoted byηN
LB). Generally, the normal approximation

gives a less conservative confidence lower bound.

Given the lower bound ofηa,b, say,ηLB, the confidence lower bound of sensitivity

Φ(ηa,b) is given byΦ(ηLB). Figure 4 shows sensitivity estimates of the discriminant rule for

the mice data (A vs W) by using the simple plug-in estimator and 100(1−α)% confidence

lower bounds given by the proposed method. Clearly, the plug-in sensitivity estimates

are bigger than the confidence lower bounds. As the number of replicated samples per

subjectnv
s increases, so does the true sensitivity ofφ̂v in (11). Accordingly, the sensitivity

estimates increase withnv
s as shown in the figure.
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Figure 3: The p-values as a function ofη0 for testingH0 : ηa,b = η0 versusHa : ηa,b > η0

whennv
s = 2, nv

p = 32, nv
r = 2, and thusdf = 46.11 , ω̂b = 2.15 and ηobs = 1.94

from the mice experiment. The solid line is for non-centralt-distribution approach and the

dashed line is for normal approximation. The95% confidence lower bounds ofηa,b from

non-centralt and normal approximation areηt
LB = 1.098 andηN

LB = 1.177, respectively.

Given a sensitivity estimate either by a simple plug-in estimator or100(1− α)% confi-

dence lower bound as in Figure 4, now consider determinationof sample sizenv
m. Figure

5 gives the combination ofnv
s andnv

m necessary to meet the minimal sensitivity level ofγ

with at least95% of probability when we varyγ from 0.75 to 0.95 in the same setting as

Figure 4. The left panel is for the simple plug-in estimator while the right panel is for95%

confidence lower bound. For example, to attain a minimal level of sensitivity of90% with

nv
s = 2, nv

m has to be at least20 from the left panel. Expectedly, as the minimal level of

sensitivity increases, necessary sample sizes increase aswell, and relatively large sample

sizes are needed when confidence lower bounds are used to estimate sensitivity.
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Figure 4: Sensitivity estimates of the discriminant rule for the mice data (A vs W) by the

simple plug-in estimator and confidence lower bounds (90% and 95%) for varied number

of replicated samples per subject whennv
r = 2 andnv

p = 32.

4 Numerical Study

We investigate the validity of the proposed sample sizes determination procedure by sim-

ulation. The procedure is designed for a microarray experiment in the second stage of

pharmacogenomics. Under the linear mixed effect model assumption in (5) for probe level

data, training and validation data are generated from normal distributions as in (6) and (7),

respectively.

4.1 Simulation Module

For a numerical validation study, we take the following steps.

Step 1: Specify the number of genesnv
i and true parameter values for meansθg = (µ1 +

τ1g, µ2 + τ2g, . . . , µnv
i
+ τnv

i g)
⊤, g = 0, 1, and variance componentsσ2

iM , σ2
iS, andσ2

iǫ,

i = 1, 2, . . . , nv
i in (6) and (7).
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Figure 5: The required number of subjects and number of replicated samples per subject

for various minimal sensitivity levelsγ with 95% probability of successful validation when

sensitivity is estimated either by the simple plug-in estimator (left panel) or by95% confi-

dence lower bounds (right panel). Theγ values are in the right margin of each plot.

Step 2: After specifying sample sizesnt
g, nt

m, andnt
s, and device-specific parametersnt

p

andnt
r in the training stage, generate directly such summary statistics of training data

asθ̂g from N(θg, Σt/n
t
m) and the values of mean squaresMSEi, MSS(GM)i and

MSM(G)i from the scaledχ2 distributions in (13). Given the mean squares, obtain

the estimates of variance componentsσ̂2
iǫ, σ̂2

iS , andσ̂2
iM from Equation (12).

Step 3: Regard̂θg, σ̂2
iǫ, σ̂

2
iS, andσ̂2

iM from the previous step as if they were calculated from

raw probe-level training data. After specifying the samplesizenv
s and the device-

specific parametersnv
p andnv

r , calculate sample sizenv
m for a validation study to

meet the minimal sensitivity requirement (2), as we did in the mice experiment in

Section 3.

Step 4: Givennv
m, compute the successful validation rateP (Ŝenv ≥ γ) using the fact that

nv
mŜenv ∼ B(nv

m, Sen(φ̂v)), where the true sensitivity of the plug-in classification

ruleSen(φ̂v) from the training data in Step 2 is explicitly given by (8).

Step 5: Repeat the previous steps for multiple times to obtain anunconditionalestimate of

the successful validation rateP (Ŝenv ≥ γ) by averaging over replicates of training
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data.

If the unconditional estimate at Step 5 is greater than1 − β, the procedure of sample

size determination is deemed valid. Otherwise, it indicates that the sample sizes specified

by the proposed approach are not large enough to meet the minimal sensitivity requirement.

4.2 Results

To mimic the mice experiment, we set the true parameter values for meansθg and variance

componentsσ2
iM , σ2

iS, andσ2
iǫ, i = 1, 2, . . . , nv

i , to the actual estimates from the real data

for two groups (A vs W) first and fixednt
m = 20, nt

s = 4, nt
p = 32, andnt

r = 2. We varied

nv
s from 2 up to6 and the confidence level1 − α for a lower bound of the true sensitivity

Senv from 90% down to50% in the simulation study. The simple plug-in estimator of

Senv in (9) was also considered for comparison. The desired levelof success1 − β was

set to0.95 and the minimal level of sensitivityγ was0.85 for the study. By taking the steps

laid out, values of successful validation rateP (Ŝenv ≥ γ) were obtained for 100 replicates

of training data simulated from the specified distribution.

Due to the skewness of the distribution of successful validation rates from the replicates,

for each combination ofnv
s and(1 − α), the distribution ofP (Ŝenv ≥ γ) is summarized

by the median as shown in Table 1. The table also shows the ideal sensitivity ofΦ(δ/2)

with δ in (10), which is the maximally achievable sensitivity (independent of data) in the

normal setting, and the median of true sensitivity in (8) forthe 100 replicates as a reference.

The interquartile range (IQR) of the true sensitivity across 100 replicates is from 0.012 to

0.017, and the IQR of successful validation rates is from 0.007 to 0.018. With such a high

true sensitivity level (around 0.97) in this setting, we observe that there is only minor dif-

ference between the true sensitivity and its estimates (notshown in the table), and therefore

estimating it by either a simple plug-in estimator or a confidence lower bound does not

make much difference in sample sizes. Hence, the median values of successful validation

rates even with the plug-in estimator are all greater than the desired level of success0.95.

With the simple plug-in estimator of the true sensitivity ofthe normal discriminant rule, the

median number of subjectsnv
m required was7 for different values ofnv

s .

In the second simulation study, the true mean parameters in Step 1 were set to be0.14

closer than the actual estimates from the mice data so that the true sensitivity is lower than

the previous setting. Except the mean parameters, all otherfactors were kept the same.

Table 2 summarizes the median and IQR values of successful validation rates for the new

setting. As seen in the table, when the true sensitivity is lower (around 92% to 94%),
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The level100(1 − α)% The number of replicated samples per subject (nv
s)

for confidence lower bound 2 3 4 5 6

90 0.994 0.996 0.997 0.997 0.996

85 0.993 0.995 0.994 0.995 0.996

80 0.992 0.993 0.995 0.995 0.995

75 0.991 0.993 0.994 0.995 0.995

70 0.990 0.992 0.993 0.994 0.995

65 0.990 0.991 0.993 0.994 0.993

60 0.988 0.991 0.993 0.992 0.993

55 0.987 0.991 0.991 0.992 0.992

50 0.987 0.991 0.991 0.991 0.992

Plug-in estimate in (9) 0.987 0.990 0.991 0.991 0.992

Ideal sensitivityΦ( δ
2
) 0.974 0.980 0.982 0.983 0.984

True sensitivity in (8) 0.972 0.977 0.980 0.982 0.983

Table 1: Median values of successful validation ratesP (Ŝenv ≥ 0.85) by the sample size

calculation procedure for different values ofnv
s and confidence level(1 − α) from 100

replicates of simulated training data when the true sensitivity is around 97% to 98%. Ideal

sensitivity and median values of true sensitivity in (8) arein the last two rows.
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The level100(1 − α)% The number of replicated samples per subject (nv
s)

for confidence lower bound 2 3 4 5 6

90 0.999 (0.020) 0.998 (0.022) 0.997 (0.019) 0.997 (0.028) 0.998 (0.028)

80 0.988 (0.065) 0.987 (0.061) 0.987 (0.067) 0.986 (0.062) 0.987 (0.054)

75 0.979 (0.068) 0.982 (0.087) 0.979 (0.065) 0.982 (0.058) 0.983 (0.054)

70 0.970 (0.081) 0.972 (0.080) 0.973 (0.064) 0.970 (0.074) 0.969 (0.068)

65 0.964 (0.113) 0.966 (0.087) 0.960 (0.080) 0.963 (0.073) 0.965 (0.065)

60 0.951(0.119) 0.951(0.096) 0.956 (0.078) 0.962 (0.069) 0.967 (0.069)

56 0.938 (0.123) 0.947 (0.092) 0.956 (0.076) 0.962 (0.075) 0.961 (0.078)

55 0.937 (0.116) 0.945 (0.089) 0.956 (0.076) 0.956 (0.079) 0.959 (0.078)

50 0.928 (0.127) 0.947 (0.086)0.950(0.082) 0.953(0.075) 0.955(0.069)

Plug-in estimate 0.928 (0.125) 0.947 (0.090) 0.948 (0.082)0.953 (0.070) 0.955 (0.069)

Ideal sensitivity 0.929 0.937 0.942 0.945 0.947

True sensitivity 0.924 (0.035) 0.933 (0.033) 0.938 (0.032)0.941 (0.032) 0.943 (0.031)

Table 2: Median values (and IQR in parentheses) of successful validation ratesP (Ŝenv ≥

0.85) by the sample size calculation procedure for different values ofnv
s and confidence

level (1 − α) when the true sensitivity is around 92% to 94%. Ideal sensitivity and median

values (and IQR) of true sensitivity in (8) are in the last tworows.

successful validation rates vary more widely depending on the sensitivity estimator used.

The IQR of true sensitivity in (8) across 100 replicates is around 0.036, and that of suc-

cessful validation rates is in the range of 0.02 to 0.13. The highlighted values in the table

are the smallest (unconditional) successful validation rate that exceeds the desired level of

95% for eachnv
s , where a success is defined aŝSenv being at least85%. 50% confidence

lower bound and the simple plug-in estimator generally produce similar successful valida-

tion rates. Whennv
s = 2 or 3, the confidence level needs to be at least 60% to guarantee

a successful validation experiment 95% of the time. Just forcomparison with the higher

sensitivity setting, when the true sensitivity is estimated by the simple plug-in estimator,

the median numbers of subjectsnv
m necessary for a validation experiment increased to 27,

20, 20, 14, and 14 fornv
s = 2, 3, 4, 5, and 6, respectively.

Setting the true mean parameters in Step 1 to be0.2 closer than the actual estimates

from the real experiment, we examined further the impact of the underlying true sensitivity

on necessary sample sizes for a validation experiment. Table 3 shows the results when
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The level100(1 − α)% The number of replicated samples per subject (nv
s)

for confidence lower bound 2 3 4 5 6

90 0.998 (0.104) 0.993 (0.093) 0.993 (0.099) 0.990 (0.068) 0.989 (0.074)

85 0.983 (0.136) 0.972 (0.116) 0.976 (0.114) 0.970 (0.110) 0.970 (0.102)

84 0.976 (0.142) 0.971 (0.109) 0.974 (0.098) 0.962 (0.113) 0.970 (0.110)

83 0.969 (0.145) 0.969 (0.114) 0.966 (0.118) 0.965 (0.115) 0.968 (0.112)

82 0.964 (0.165) 0.964 (0.129) 0.956 (0.119) 0.963 (0.123) 0.965 (0.114)

81 0.959 (0.193) 0.960 (0.114) 0.954 (0.118) 0.960 (0.126) 0.959 (0.112)

80 0.953(0.176) 0.954(0.138) 0.954(0.125) 0.959(0.124) 0.956(0.116)

75 0.931 (0.169) 0.928 (0.127) 0.939 (0.143) 0.930 (0.150) 0.938 (0.118)

50 0.842 (0.205) 0.870 (0.166) 0.876 (0.167) 0.874 (0.149) 0.898 (0.136)

Plug-in estimate 0.842 (0.203) 0.870 (0.179) 0.876 (0.163)0.885 (0.148) 0.898 (0.133)

Ideal sensitivity 0.896 0.907 0.912 0.915 0.917

True sensitivity 0.896 (0.028) 0.906 (0.027) 0.911 (0.027)0.915 (0.027) 0.917 (0.027)

Table 3: Median values (and IQR) of successful validation ratesP (Ŝenv ≥ 0.85) by the

sample size calculation procedure for different values ofnv
s and confidence level(1 − α)

when the true sensitivity is around 90% to 91%. Ideal sensitivity and median values (and

IQR) of true sensitivity in (8) are in the last two rows.

the true sensitivity is around 90% to 91%. The highlighted values are again the smallest

successful validation rate exceeding the desired level95% for eachnv
s . The IQR of the true

sensitivity level for 100 replicates is around 0.03, and that of successful validation rates is

in the range of 0.06 to 0.24, clearly showing larger variability than the settings with higher

sensitivity values. The table suggests that80% confidence level is sufficient to obtain a

proper sample size fornv
m while using the simple plug-in estimates for sensitivity (nearly

equivalent to 50% of confidence) results in success rates much smaller than95%. The low

success rate of the plug-in estimator is attributed to the fact that it gives a smaller sample

size than necessary.

For reference, Table 4 provides median estimates of subjectsnv
m required in a validation

experiment under the same setting as Table 3 from the 100 replicates.

Lowering the true sensitivity further down to 87% to 89% by setting the true mean

parameters0.23 closer than the actual estimates required about 95% confidence level for

sensitivity estimation to ensure that the rate of successful validation is more than 95%. The
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The level100(1 − α)% The number of replicated samples per subject (nv
s)

for confidence lower bound 2 3 4 5 6

90 317 164 127 107 94

85 174 104 80 74 67

84 160 94 74 67 60

83 147 94 74 60 57

82 134 87 67 60 54

81 127 80 67 54 54

80 120 74 60 54 54

75 94 60 54 47 40

50 40 34 27 20 20

Plug-in estimate 40 34 27 20 20

Table 4: Median number of subjectsnv
m required from 100 replicates of simulated training

data for different values ofnv
s and confidence level(1 − α) of lower bounds of the true

sensitivity.

results are not shown here, but successful validation ratesvaried significantly more than the

other settings with IQR values in the range of 0.22 to 0.62. Asan extreme setting, when

the mean parameters were set so that the true sensitivity is slightly above the pre-specified

minimal levelγ = 0.85, a large fraction of simulated data turned out to be statistically

futile with confidence lower bounds for sensitivity smallerthan 0.85.

The results from the simulation study can be used to calibrate the confidence level1−α

for estimation of the true sensitivity to attain the desiredsuccess level1−β. Generally, the

lower the true sensitivity level is, the higher confidence level is necessary for estimation of

sensitivity. In particular, the simulation results suggest that under the specified setting, a

simple plug-in estimator (approximately 50% of confidence)would be sufficient when the

true sensitivity is around 97% or above, and 60% would be sufficient for 93% of sensitivity

while 80% and 90% of confidence would be necessary for 90% and 88% of sensitivity,

respectively.

5 Conclusion

The main objective of this paper is to calculate sample size for a validation study to meet

pre-specified sensitivity and specificity requirement, in order to avoid futility of pharma-
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cogenomic development. Change of platforms is taken into account in the sample sizes

calculation by statistical modeling. The proposed formulation for meeting minimal sensi-

tivity and specificity requirements calls for estimation ofboth measures. Their confidence

lower bounds can substitute the unknown true values in the sample size calculation pro-

cedure. However, the confidence level has to be calibrated for appropriate sample sizes to

ensure that the probability of a successful validation experiment exceeds a desired level.

Our simulation study shows the relationship between the underlying sensitivity and the

required confidence level in a normal distribution setting.The results can be used as a

practical guideline to set the level of confidence adaptively.

As a future direction, robustness of the proposed procedurecan be further investigated

to see how sensitive the sample size calculation procedure is to the model assumptions.

In principle, our approach can be extended to a general scenario where more complex

diagnostic rules than DLDA are considered to account for potential correlations among

genes.
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