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Abstract

Variable selection plays an important role in high dimensional regression problems

where a large number of variables are given as potential predictors of a response of

interest. Typically, it arises at two stages of statistical modeling, namely screening and

formal model building, with different goals. Screening aims at filtering out irrelevant

variables prior to model building where a formal description of a functional relation

between the variables screened for relevance and the response is sought. Accordingly,

proper comparison of variable selection methods calls for evaluation criteria that reflect

the differential goals: accuracy in ranking order of variables for screening and prediction

accuracy for formal modeling.

Without delineating the difference in the two aspects, confounding comparisons

of various screening and selection methods have often been made in the literature,

which may lead to misleading conclusions. In this paper, we present comprehensive

numerical studies for comparison of three commonly used screening and selection pro-

cedures: correlation screening (a.k.a. sure independence screening), forward selection

and LASSO. By clearly differentiating these two aspects of variable selection, we high-

light the situations where the performance of the three approaches could differ and

propose a new method for cross validation for regularized model selection methods.

Keywords: Cross-Validation, Forward Selection, LASSO, ROC Curve, SIS
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Furthermore, we discuss connections to relevant comparison studies that appeared in

the recent literature to clarify the different findings and conclusions.

1 Introduction

Variable selection plays an important role in high dimensional regression analysis. Recent
developments in methodology have focused on the “large p small n” problems where the
number of predictive variables p is much larger than the sample size n. In this setting,
sparsity is often assumed in the sense that only few variables (denoted by q with q � p)
are supposed to be relevant to the response. The goal of variable selection is therefore to
identify these relevant variables based on data.

In general, variable selection arises at two different stages of modeling, namely screening
and formal model building. Screening is for reducing the number of predictors p to a moderate
size m, which is usually comparable to n, while trying to keep most of the relevant ones.
No formal modeling is required for variable screening. In contrast, variable selection for
model building involves construction of formal models and their evaluation. With proper
model evaluation criteria, model building typically aims to build a single best model. In
practice, screening is often implemented as an initial step prior to model building. An
efficient screening procedure can be beneficial to the model building process that follows,
largely by making the space of models amenable to fitting and evaluation, which generally
leads to enhanced performance of a final model.

In a typical screening process, a sequence of (usually nested) subsets of variables is
generated by ranking the variables with a simple measure of association with the response
or by varying a tuning parameter associated with a penalization method. For instance,
correlation screening or Sure Independence Screening (SIS) in Fan and Lv (2008) ranks all
the variables by the absolute value of empirical Pearson’s correlation coefficient between the
response and each predictor. Thereafter, a subset of size m (usually m < n) is retained
as the outcome of the screening process. In practice, the post-screening set size m can be
pre-determined as a reasonably large number but moderate enough to facilitate the model
building process, or it can be determined by a formal procedure for controlling such error
rates as the false discovery rate. As another example, LASSO (Tibshirani, 1996) generates a
sequence of variable subsets in a stepwise manner when the L1 penalty parameter λ is varied
from ∞ (corresponding to the null set of no variable) to 0 (corresponding to the “full” set
of all variables). In each step, only one variable is added to the current subset.

Given a subset of candidate variables after screening, formal models are fitted. The model
building process usually involves comparison of multiple candidate models and selection
among them. For model selection, a criterion is used to evaluate the goodness of each
candidate model. Popular choices of such criteria include prediction-error-based criteria such
as Mallows’ Cp or cross-validation (CV) error, and information-based criteria such as AIC,
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BIC or other variants. The quality of the final model is determined by both the algorithm
used to generate candidate models and the selection criterion.

There is difference in the objectives of variable selection for screening and model building.
For variable screening, it is desirable to order the variables accurately in terms of their
relevance, putting relevant variables above irrelevant ones. In contrast to screening, when
variable selection is concerned in the model building process, a great emphasis is placed
on the prediction accuracy of the model built on the set of selected variables. This makes
judging the accuracy of a variable selection method tricky as it is affected by both model
fitting algorithm given variables and the evaluation criterion as a driving factor for the model
choice. The influence of evaluation criteria on comparisons of variable selection procedures
has often been overlooked in the literature, which could lead to misleading conclusions.

In this paper, we present comprehensive simulation studies under a variety of settings
encompassing a range of signal-to-noise ratio and correlation among the variables for compar-
ison of variable selection methods by delineating the differential goals of variable selection for
screening and model building. Taking a broader perspective of a variable selection method
as a procedure that generates a sequence of subsets of variables, the studies include three
commonly used methods: Sure Independence Screening (SIS), Forward Selection (FS), and
LASSO.

The SIS and FS are classical methods known to work well in the traditional “large n small
p” setting when the variables are nearly independent. The SIS simply ranks all candidate
predictors by their absolute correlation coefficients with the response, while the FS as a
stepwise method adds the variable that would reduce the residual sum of squares most,
if added to the current variable subset for an ordinary least squares model, at each step.
Screening consistency has been established for both methods in high dimensional settings;
see Fan and Lv (2008) and Wang (2009). On the other hand, LASSO generates a sequence of
variable subsets by penalizing regression coefficients. There are a class of related penalized
regression methods such as the nonnegative garrote (Breiman, 1995; Yuan and Lin, 2007),
the SCAD (Fan and Li, 2001; Fan and Peng, 2004), the adaptive LASSO (Zou, 2006; Huang
et al., 2008), the elastic net (Zou and Hastie, 2005; Zou and Zhang, 2009), and the Dantzig
selector (Candes and Tao, 2007). They can substitute LASSO for subset generation. Here
LASSO is taken as a representative of this class of penalized regression methods.

We compare the screening performance of these procedures by investigating the quality
of the whole sequence of subsets generated from each procedure. For these comparisons,
we employ two different criteria: (a) the overall accuracy measured by the area under the
curve (AUC) in the receiver operating characteristic (ROC) analysis, and (b) the number of
relevant variables among the top m variables for a pre-determined set size m.

For model building, we examine the effect of model evaluation criteria on variable se-
lection by considering widely applied cross-validation criterion and Extended BIC (EBIC)
criterion proposed by Chen and Chen (2008). In addition, we investigate the effect of the
combination of each model fitting method and evaluation criteria. A series of papers (Leng
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et al., 2006; Meinshausen and Bühlmann, 2006; Meinshausen and Yu, 2009) have suggested
that LASSO coupled with minimum CV error tends to produce a model that includes a
large number of irrelevant variables. To alleviate this issue, we propose a new algorithm
to calculate CV error for LASSO by using OLS regression rather than LASSO fit for each
tuning parameter λ, and include this LASSO-OLS hybrid method in the numerical study.
We evaluate the performance of variable selection methods in the model building process in
terms of model size, number of selected relevant variables and prediction accuracy.

Our numerical studies suggest that LASSO, if properly compared in the context of screen-
ing, has the potential to be more effective than both SIS and FS under a wide range of set-
tings. We report the findings of the ROC analysis and fixed size screening in Section 2. For
model building, the results show that the proposed λ-based LASSO-OLS hybrid method can
reduce the size of final models substantially by eliminating many more irrelevant variables
than the plain cross-validated LASSO, while keeping the majority of relevant variables. It
generally outperforms other combinations considered in our study. We make comparisons of
the accuracy in selection and prediction for the final models chosen by combinations of vari-
able selection methods and evaluation criteria in Section 3, and further discuss differences
in the findings from other studies in the literature. We conclude in Section 4.

2 Variable Screening

This section focuses on comparison of the screening performance of FS, LASSO and SIS.
The main objective of variable screening is to eliminate a majority of irrelevant variables,
while keeping as many of the true predictors as possible, by reducing the size of candidate
variables to a moderate number m. Thus, the goodness of a screening method largely hinges
on the order in which relevant variables are added to the final subset and the choice of m.
To assess the accuracy of the rank order of variables, we examine the receiver operating
characteristics (ROC) of the sequence of variable subsets generated by a screening method.

2.1 Preliminaries

In our study, we evaluate the screening performance with two criteria: (a) AUC, the area
under a modified ROC curve, and (b) the number of relevant variables selected among the
top m variables, denoted by Tm. The ROC curve is generated by plotting the true positive
rate (TPR) against the false positive rate (FPR) given a sequence of variable subsets. For
each subset,

TPR =
number of selected relevant variables

total number of relevant variables
, (2.1)
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FPR =
number of selected irrelevant variables

total number of irrelevant variables
. (2.2)

For large p small n scenario considered in this paper, the definition of traditional ROC
curve needs to be modified. In this case, screening methods like LASSO or FS can select at
most n variables, which lowers the upper limit of FPR from 1 to n/(p − q). To make the
ROC plots comparable across different settings of p, q and n, we change the x-axis of ROC
plots to the size of each subset, which increases from 0 to n regardless of p and q. Hence, as
long as n is fixed, we can evaluate the screening performance of each method through the
AUC of its modified ROC curve.

There are two factors that influence the AUC: (a) the number of true predictors selected
by the full (or maximal) set, which decides the maximum TPR that is attainable, and (b) the
rank order of the true predictors, which determines the rate of increase in TPR. A method
which picks a majority of relevant variables in early stages is likely to yield a larger AUC.

2.2 Numerical Study

We conduct an extensive simulation study to compare the screening performance of the
three methods, LASSO, FS and SIS, in terms of both AUC and Tm under a variety of
settings obtained by controlling several critical factors such as the signal-to-noise ratio and
the covariance structure of the predictors. By doing so, we identify the settings favorable to
each method and thus provide guidance to an appropriate choice of method.

2.2.1 Experimental Settings

In this numerical study, we consider the following data generating model:

Y = Xβ + ε, (2.3)

where X ≡ (X1,X2, ...,Xp) is an n × p design matrix, β ≡ (β1, β2, ..., βq, βq+1, ..., βp)
T is

a vector of regression coefficients, Y ≡ (Y1, Y2, ..., Yn)T ∈ Rn is a vector of responses, and
ε ≡ (ε1, ε2, ..., εn)T . εi is i.i.d. with N(0, σ2). Without loss of generality, assume that the
first q (q � p) elements of β are non-zero and the last (p − q) elements are zero. Let
β(1) ≡ (β1, β2, ..., βq)

T and β(2) ≡ (βq+1, βq+2, ..., βp)
T = 0. In the same way, X is di-

vided accordingly into two parts with X(1) ≡ (X1,X2, ...,Xq) and X(2) ≡ (Xq+1,X2, ...,Xp).
Therefore, only a small subset of the predictors, X(1), are relevant to the mean response.

The design matrix X is generated from a multivariate normal distribution N(0,Σp×p).
We fix the sample size n at 100 and vary the dimension p. In addition, we fix the number of
true variables q at 10. Besides the dimension p that might affect screening performance, we
primarily control three other factors listed below (see summary in Table 1) and study the
difference of screening methods under combinations of the factor levels.
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1. Correlation between variables (ρ)

The covariance matrix Σ controls the correlation among the predictors. Generally,
strong correlation among the predictors makes discrimination of relevant variables from
irrelevant ones difficult. For simplicity, we adopt the compound symmetry structure
for Σ. That is, all the predictors are equally correlated with each other. Σ = [σij] has
diagonal elements σii = 1, i = 1, ..., p and equal off-diagonal elements σij = ρ, for all i 6=
j, 0 ≤ ρ ≤ 1. The levels of ρ are set to {0, 0.3, 0.6, 0.9}.

2. Signal-to-noise ratio (SNR)

The signal-to-noise ratio under regression setting is defined as

SNR =
Var(XTβ)

Var(ε)
=

βTΣβ

σ2
, (2.4)

which can be a dominant factor in many situations. Most methods perform fairly
well in a very high SNR setting and almost equally poorly in the opposite setting.
For meaningful comparisons, we consider three different levels of SNR from low (1) to
medium (5) to high (10) by setting the values of σ2 in (2.4).

3. Regression coefficients (BETA)

This is a factor often overlooked by some related studies. Not only the sizes of coeffi-
cients, but also their signs can be important. The signs affect the correlation between
the response Y and each predictor. Mainly focusing on the pattern of the signs, we
set up three levels with two extreme cases and one in the middle: (1) “pure”: all ten
non-zero coefficients are +1’s; (2) “half-half”: five +1’s and five −1’s; (3) “mixed”:
β(1) = (1, 1,−1, ...,−1). In addition, to investigate the impact of the size of coefficient,
we consider (4) “two-levels”: two groups of positive coefficients have different values as
given by β(1) = (1, ..., 1, 0.5, ..., 0.5). Mixing positive and negative coefficients for pos-
itively correlated variables creates scenarios that make marginal regression and joint
regression differ.

One hundred replicates of data are generated for each combination of all levels of the four
factors listed in Table 1. For each replicate, we generate the sequence of subsets of selected
variables using LASSO, SIS, or FS, and then record AUC and Tm accordingly. The averages
of both AUC and Tm (with m = 20, 40, 60, 80) over 100 replicates are used to evaluate the
screening performance.
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Table 1: Treatment levels of four factors: p, ρ, SNR and BETA.

Factor Levels

Number of variables (p) 200, 600, 1000

Correlation between variables (ρ) 0, 0.3, 0.6, 0.9

Signal-to-noise ratio (SNR) 1, 5, 10

Regression coefficients (BETA) pure, half-half, mixed, two-levels

2.2.2 Results of ROC Analysis

We first report the overall screening performance with the AUC described in Section 2.1. Fig-
ure 1 shows ROC curves from a randomly selected sample, where p = 1000, BETA=“pure”,
SNR = 10, and ρ varies from 0 to 0.9. In general, the AUC of all three methods decreases
significantly when ρ increases. LASSO is much better than the other two methods in terms
of AUC when ρ = 0, 0.3 or 0.6, and it is more robust against the increase in ρ. No method
produces satisfactory performance when ρ = 0.9. We observed similar results in other sam-
ples.

The AUC is calculated individually for each replicate and the average AUC is computed
for each combination of the four factors. We examine the pairwise differences of the average
AUC among these three methods. Define ∆AUCLF = AUCLASSO − AUCFS, ∆AUCLS =
AUCLASSO − AUCSIS and ∆AUCFS = AUCFS − AUCSIS. To summarize the results and
to visually compare the screening performance of LASSO, FS and SIS, we use boxplots of
the pairwise differences. Figure 2 displays the main effects of the four factors.

Evidently Figure 2 suggests that LASSO is better than both SIS and FS for screening in
terms of the AUC. In particular, in Figure 2(b) for LASSO and FS, an overwhelming majority
of ∆AUCLF are greater than 0, indicating that LASSO is superior to FS for screening
across a broad range of settings. Although the pattern is less pronounced for ∆AUCLS in
Figure 2(a), we observe that ∆AUCLS is positive on average in the most of the settings,
and it increases in both p and SNR. In the high noise setting of SNR = 1, no method can
effectively retrieve enough true variables. These results indicate that LASSO could be more
effective for screening in practically tractable high dimensional problems. The comparison
between SIS and FS, however, is less straightforward, as shown in Figure 2(c). Each method
has its own preferred settings, depending mainly on SNR. SIS outperforms FS when SNR=1
and is less favorable when SNR = 5 and 10. Similar to ∆AUCLS, ∆AUCFS increases steadily
in SNR, and its average stays above 0.

Besides the effect of SNR, high correlation seems to produce rather peculiar results for
∆AUCFS. When ρ = 0.6 or 0.9, the central box is well below the horizontal line of zero,
but the mean difference is dragged up to almost zero by several positive outliers. This
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Figure 1: Sample ROC curves of LASSO, SIS and FS for p = 1000, BETA =“pure”, SNR =

10 and ρ = 0, 0.3, 0.6 and 0.9.
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(a) ∆AUCLS (LASSO − SIS)
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(b) ∆AUCLF (LASSO − FS)
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(c) ∆AUCFS (FS − SIS)

Figure 2: Boxplots of pairwise differences in AUC against the four factors of p, SNR, ρ, and

BETA for the three methods, LASSO, FS and SIS. The red diamond represents the mean

value.
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phenomenon is associated with one special setting of BETA, “half-half”. Under this setting,
relevant variables are divided into two groups of the same size with different signs in the
true coefficients. As expected, SIS based on marginal correlation is much less effective than
FS and LASSO in the setting. For both LASSO and FS, all the relevant variables are much
more likely to be selected in early stages alternately from the two groups given the compound
symmetry covariance matrix with a positive correlation. This particular setting may not be
of practical importance, but nonetheless shows the difference of SIS from LASSO and FS.

Since our primary interest lies in the “large p small n” setting, we take a closer look
at the p = 1000 case. The boxplots of pairwise difference of AUC against the other three
factors for p = 1000 are displayed in Figure 3. The boxplots in Figure 3 are similar to those
in Figure 2 except for a few noticeable changes. As we expected, as a screening tool, LASSO
is even more superior to FS and SIS in the AUC when p = 1000 and there is no clear winner
between SIS and FS. Compared with Figure 2(c), the notable changes are that not only the
central box of ∆AUCFS for ρ = 0.9, but also the one for ρ = 0.6 is entirely below zero, which
suggests that FS suffers more from high correlation than SIS when p is relatively large, due
to its greediness.

We note that Genovese et al. (2009) also conducted similar ROC analysis in their study,
where the selection accuracy is measured by the Hamming distance. They showed that SIS
(marginal regression in their terms, fitting OLS models with the variables selected by SIS)
is competitive with LASSO as a screening tool and sometimes has a much lower prediction
error (measured by MSE) under the setting of p = 500 and q = 100 (much less sparse than
our setting). In addition, the norm of regression coefficients was set to two levels of 0.5 and
5, and it was shown that SIS enjoys significantly lower MSE only when the norm is 0.5. As
suggested by Tibshirani (1996), the performance of LASSO can be degraded significantly
when a large number of small effects exist.

2.2.3 Results of Fixed Size Screening

Next, we turn to the comparison of results of fixed-size screening in terms of Tm, the number
of relevant variables among the top m variables, which directly measures the quality of a
post-screening subset. Similar notations are used for pairwise differences in Tm as for the
differences in AUC, e.g. ∆TLF20 = TLASSO20 − T FS20 . Figure 4 shows the boxplots of pairwise
differences in Tm against the main factors of ρ, SNR and BETA when p = 1000.

As illustrated in Figure 4, LASSO again dominates the other two methods by a significant
margin when SNR = 5 and 10. One interesting exception is ∆TLF20 , implying that FS
occasionally selects more relevant variables in very early steps than LASSO, arguably under
high SNR and low correlation scenario. However, LASSO quickly catches up and surpasses
FS as m increases. Agreeing with the results in ROC analysis, the settings favorable to SIS
remain to be either of low SNR or high correlation, and FS generally does better than SIS in
the other settings. The close agreement between AUC and Tm shows that LASSO in general
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(b) ∆AUCLF (LASSO − FS)
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Figure 3: Boxplots of pairwise differences in AUC against the three factors of SNR, ρ, and

BETA for the three methods, LASSO, FS and SIS. p is fixed at 1000. The red diamond

represents the mean value.
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Figure 4: Boxplots of pairwise differences in the number of selected true variables against

the three factors of SNR, ρ, and BETA for the three methods, LASSO, FS and SIS, under

fixed subset size of m = 20, 40, 60 and 80, respectively (from left to right). p is fixed at

1000. The red diamond represents the mean value.
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does have some advantage in variable screening over SIS and FS, for a reasonably large m.

In addition, the trend in Tm with increasing m may provide some insights into how to
choose m in practice. The boxplots of Tm in Figure 5 reveal distinct patterns of Tm as m
increases. For LASSO, a significant improvement in Tm occurs when m increases from 20 to
40, and increasing m further does not seem to result in improvement in Tm as indicated by
the almost identical boxplots for m = 40, 60, and 80. Hence a moderate m is a reasonable
choice for LASSO. By contrast, the improvement in T FSm with increasing m is rather trivial.
If any true variables were selected by FS, it is most likely that the correct selection is likely to
occur in very early steps. Therefore a better choice of m should be relatively small compared
to n. For SIS, unlike TLASSOm and T FSm , T SISm constantly increases in m with a notable margin.
This makes large m a preferable choice for SIS.

In spite of the fact that even T SIS80 is usually much smaller than both TLASSO80 and T FS80

(when SNR is high), the method SIS itself possesses two unrivaled advantages. First, the
selection is solely based on the order of absolute marginal correlation between the response
and each individual predictor, so m can exceed n (up to p) when p > n. Second, the
computational cost is much smaller for SIS than both LASSO and FS. With these two
advantages combined, SIS can potentially be adopted as a computationally efficient screening
tool, reducing huge p to a moderate size m (possibly greater than n). Other selection
procedure can then be applied to the reduced variable set.

Fan and Lv (2008) (Section 4.2) also compared the screening performance of SIS and
LASSO through a simulation study, where the performance was evaluated by the percentages
of all relevant variables included in models fitted after screening. The results showed that
LASSO only slightly edges SIS in most cases. Their comparisons, however, raise some
concerns. First, the post-screening size was fixed at n for SIS, while the LASSO model
was chosen by minimizing CV, which leads to a model size much smaller than n in the
comparison. This difference puts the two methods on a quite different footing. Aside from
this, as pointed out by Levina and Zhu (2008) in their discussion paper, the SNRs of all
examples in Fan and Lv (2008) are extremely high (from 40 to 200), where any method
should have a reasonably good performance given a moderately large enough sample size n.

2.3 Summary

It is customary to view LASSO as a method for model building rather than screening. Our
simulation study, however, shows that LASSO as a screening method is better than both
FS and SIS by a noticeable margin in terms of AUC and Tm, given a reasonably large SNR.
It can capture most relevant variables with a moderate subset size. Meanwhile, Forward
Selection includes many relevant variables in very early stages, but with increasing m, it
becomes less effective than LASSO in general. On the other hand, SIS has slight advantage
only when SNR is low, where no methods perform reasonably well, and in all other situations,
it is much worse than the other two. However, SIS has the unique advantage of selecting
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Figure 5: Boxplots of the number of selected true variables when the subset size is fixed at

m = 20, 40, 60 and 80 respectively, for all three methods LASSO, FS and SIS, against the

main factors of SNR, ρ, and BETA. p = 1000, and the red diamond represents the mean

value.
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more than n variables and is computationally much faster than any penalized or stepwise
regression methods. So it could be useful for screening when p is extremely large and n is
comparatively very small.

3 Model Building

In this section, we compare the quality of final models built by different combinations of
subset generation (now as variable selection) methods, model fitting methods and model
evaluation criteria. A good model should have both high selection accuracy and prediction
accuracy. For better interpretability, it should also be as concise as possible.

3.1 Preliminaries

For model evaluation and selection, we include both prediction-based criteria and information-
based criteria in our study. For the former, we focus on widely used cross-validation (CV).
For the latter, we consider the extended BIC (EBIC), a model selection criterion designed
for high dimensional setting proposed by Chen and Chen (2008).

Cross-validation is commonly used in model evaluation due to its generality and ease of
implementation. For example, it is used as the default criterion for LASSO in the LARS
algorithm for selection of the penalty parameter λ. Despite wide applications of CV in prac-
tice, it is well known that selecting a model for a penalized procedure by minimizing CV
error tends to favor a very large model. LASSO as a shrinkage method tends to include
many irrelevant variables with small non-zero coefficients when the model is chosen by min-
imizing CV error; see Fan and Lv (2008); Leng et al. (2006); Meinshausen and Bühlmann
(2006); Meinshausen and Yu (2009). It is partly explained by the fact that shrinkage of the
coefficients for relevant variables generally yields larger CV error than the unpenalized coun-
terpart. Reducing the penalty parameter may lessen the extent of shrinkage, which leads to
reduced CV error at the cost of inclusion of many variables with negligible coefficients.

Another important issue when cross-validation is used in the large p small n case is that
the sequence of subsets generated by using the entire data tends to be very data-dependent.
Treating the subset sequence as given and cross-validating the models fitted based on the
subsets would make CV error fairly close to the in-sample error, which in turn, makes cross-
validation favor larger models. This selection bias is a critical issue in high dimensional
setting, especially for FS.

In this paper, we propose a variant of cross-validation algorithm for LASSO and call it
a λ-based LASSO-OLS hybrid method (abbreviated as LOλ or simply LO). In essence, the
hybrid method uses LASSO for subsets generation only, fits models by OLS, and calculates
CV error accordingly. Cross-validation based on the OLS models is expected to produce a
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relatively smaller model than the one picked by the standard CV for LASSO. A related idea
can be found in Meinshausen (2007). The hybrid method is described in Table 2.

Table 2: A λ-based LASSO-OLS hybrid algorithm (LOλ)

Step 1 : Use LASSO to generate the sequence of variable subsets corresponding

to the null model M0 to the full model Mt of size n. Record all the

corresponding values of the penalty parameter λ, λj for j = 0, 1, ..., t.

Step 2 : For K-fold cross-validation, split the data into approximately K equal

parts. For every λj, apply LASSO with λ = λj to the training data

without the ith part and denote the model byM[−i]
j for i = 1, ..., K. Then

fit an OLS model with those variables selected by M[−i]
j and record the

OLS estimate β̂
[−i]
j .

Step 3: For every λj, calculate the mean squared error (MSE) of the new OLS

estimates as cross validation error CV (λj).

Step 4: Find the minimizer λj∗ of CV (λj) and report the OLS model based on

the variables selected by Mj∗ as the final model.

In the proposed algorithm, note that the variables selected by M[−i]
j in Step 2 can be

quite different from those selected by Mj on the full data set. This feature is common to
the standard LASSO cross validation and the hybrid method. In contrast with standard
CV, this property mitigates the selection bias of cross-validation toward larger models due
to strong data-dependence of the subsets sequence to some extent.

As an alternative to cross validation, we consider the extended BIC (EBIC). The EBIC
modifies the classical BIC with an extra penalty term on the number of parameters p for
high dimensional setting. It is defined as

EBICγ(M) = log
1

n
RSS(M) +

1

n
|M|(log n+ 2γ log p), 0 ≤ γ ≤ 1, (3.1)

where |M| is the size of the model M, and RSS(M) is the residual sum of squares based
on the OLS model M. Chen and Chen (2008) proved that the selection consistency is
guaranteed under regularity conditions when p increases in any arbitrary polynomial rate of
n with γ = 1, and further suggested the choice of γ = 1 in practice.

Table 3 summarizes all the combinations of variable selection (or subset generation),
model fitting methods, and evaluation criteria to be compared in numerical studies along
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with their labels. For instance, the standard LASSO with CV is viewed as a procedure that
uses LASSO for both variable selection and fitting and denoted by LL (LASSO+LASSO).
Along with the standard approach of cross validation, we employ the heuristic “one-standard
error” rule suggested by Hastie et al. (2001). It picks the most parsimonious model whose
CV error is within one standard error of the minimum CV error.

Table 3: A summary of variable selection, fitting methods, and evaluation criteria

Method Label Variable Selection Fitting Evaluation Criteria

(Subset Generation)

LLmin

LASSO

LASSO
Minimize CV error

LL1se Apply “one-se rule” to CV error

LOmin

OLS

Minimize CV error

LO1se Apply “one-se rule” to CV error

LOEBIC Minimize EBIC

FSmin

FS

Minimize CV error

FS1se Apply “one-se rule” to CV error

FSEBIC Minimize EBIC

SISmin

SIS

Minimize CV error

SIS1se Apply “one-se rule” to CV error

SISEBIC Minimize EBIC

3.2 Numerical Study

Taking the results of screening in Section 2.2 as an input for model building, we compare
the performance of all combinations listed in Table 3 under the same simulation setup as in
Section 2.2.1. EBIC is calculated with γ = 1 in (3.1) based on the OLS fit while CV error is
calculated via ten-fold cross-validation. Here we focus on the p = 1000 scenario. Given the
sequence of subsets generated by each variable selection method in Section 2.2, we further
apply fitting algorithms and evaluation criteria to build and select final models.

We evaluate the goodness of the final models in terms of selection accuracy and prediction
accuracy. The selection accuracy is measured by the number of selected true predictors T
and model size |M|, and the prediction accuracy is reflected by Mean Squared Prediction
Errors (MSPE, see Appendix for more details). The average of each accuracy measure over
the 100 replicates is reported.
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Figure 6 provides an overview of the entire selection process for each method listed in
Table 3 on a randomly chosen replicate from the scenario with SNR = 10, BETA = “pure”
and ρ = 0. In this scenario, every selection method should be able to capture most of the
true predictors. CV error (averaged over 20 splits), EBIC and MSPE are calculated for every
candidate model and plotted against the model size in each panel. The models selected by
“min”, “1se” and “EBIC” are marked by symbols of different shapes and colors. A red
vertical line is drawn when a relevant variable is added. The pattern shown in the figure is
typical among 100 replicates.

Several observations are made from the overview plots. First, the CV error curves of FS
and LL are very flat, yet slowly decreasing as the number of variables increases. Compared to
LL, CV seems to work well for LO and selects much fewer irrelevant variables while retaining
all the true predictors. Second, the effect of “one-se” rule is only significant for LL for this
setup. Third, EBIC works well with FS in this high SNR case. However, when combined
with other selection methods, the final models tend to be too small to include many of the
relevant variables. We also point out that EBIC eventually gets below 0 when combined
with FS in general. Hence one needs to set an upper bound (m = 50 in our simulation) to
avoid selecting the full model. These observations are also confirmed by the summaries of
the results over the 100 replicates reported in Table 41, with complete results presented in
Table 5.

Another notable observation from Figure 6 is that the CV error curve for a sequence
of models may not be taken as a proxy for the corresponding MSPE curve. For example,
the CV error and MSPE for the model sequence generated by Forward Selection procedure
(upper left panel) exhibit a very different pattern after all relevant variables are included.
This discrepancy between CV curve and MSPE curve is even more obvious for the sequence
of models generated by SIS, whereas it is less severe for LL and LO. The numerical result calls
for further investigation of the effectiveness and validity of the cross-validation procedure in
high dimensional setting as it is widely used in practice for model evaluation and selection.
In addition, CV error is often taken as a performance measure in the absence of independent
test data for comparison of competing methods. The observed discrepancy cautions against
this practice.

Next we discuss findings about CV from the simulation study in detail with graphical
displays of the case with SNR =10 in Figure 7. In terms of selection accuracy, LO selects
about the same number of relevant variables as LL and FS with a considerably smaller model
in general, as illustrated by the left and middle panels of Figure 7. When the minimum value
of CV criterion is used to pick the final model, LOmin selects significantly smaller models
than both FSmin and LLmin, while missing only less than one relevant variable on average.

1SIS has been removed because the only scenario where SIS (combined with any criterion) has slight

advantage over both FS and LASSO is SNR=1 and ρ=0. Besides, as discussed in Section 2.2.2, BETA=“half-

half” is a very special setting that favors both LASSO and FS. We concentrate on the other three settings

of BETA. Because of their similarities, in Table 4, the results are averaged over BETA for brevity.
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Figure 7: The average number of relevant variables, final model size and MSPE of LO, LL

and FS when SNR=10.

The average loss in the number of selected relevant variables T is in the range of 0.5 to
1.3. The best performance of LOmin is achieved when SNR=10 and ρ=0, where the average
model size is 23 with 9.5 relevant variables. LOmin eliminates almost 40 more irrelevant
variables than LLmin, let alone FSmin. By contrast, FSmin tends to select extremely large
models (of nearly the same size as training data for cross-validation). The conciseness of the
model selected by LO is also confirmed in other simulation scenarios summarized in Table 4.

The right panel of Figure 7 shows the average MSPE for all levels of ρ in the case of SNR
= 10. In terms of the prediction accuracy of the final model, the models selected by LO have
MSPE values close to those picked by LL and smaller MSPE when ρ = 0. As correlation
among predictors increases, LL turns to perform slightly better, due to the increased model
size. Comparisons of all three methods for SNR = 5 are similar. Overall, the model selected
by LO is as competitive as the one chosen by LL in terms of prediction accuracy.

In our study, we observed that EBIC typically yields a model of very small size, and
its effectiveness depends heavily on the combination of SNR and the relative relationship
among n, p and q. The models selected by EBIC miss at least 4 or more true predictors due
to its preference for a small model size, as highlighted in Figure 6. The only exception is
the scenario with SNR = 10 and ρ = 0, where FSEBIC selects almost perfectly a model with
both the model size |M| and the number of selected relevant variables T close to 10.

Instead of selecting a model with the minimum value of CV criterion, applying the “one-
standard error” rule can further decrease the model size by a notable margin for LASSO,
but as a result, it would miss out slightly less than one relevant variable on average. Figure 7
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gives a summary of the comparison between the minimum rule and the “one-standard error”
rule, while Table 4 contains detailed results of |M|, T and MSPE of the models selected
by the “one-standard error” rule. It is clear that this “1-se” rule is only effective for LL and
LO, but not for FS. On average, the differences in |M| and T between LOmin and LO1se

are roughly 6 to 10 and 0.5 to 1, respectively, under all combinations of factor levels, while
the difference in MSPE is almost trivial. In general, it seems safe to apply this rule if the
goal is to establish a model as concise as possible.

4 Conclusions

In this paper, we have carefully distinguished two aspects of variable selection: screening and
model building and have conducted comprehensive numerical studies to compare the perfor-
mance of three methods: LASSO, SIS and FS for screening and model building separately,
with EBIC and CV error as two major evaluation criteria.

The studies indicate that generally LASSO has the best screening performance with a
notable margin over SIS and FS, given reasonably large signal-to-noise ratio. For model
building, it is demonstrated that the proposed LASSO-OLS hybrid method can significantly
reduce the number of irrelevant variables while keeping most of the relevant ones, bettering
the standard LASSO with CV. Meanwhile, EBIC is found to be an unstable criterion in
high-dimensional setting with its effectiveness being sensitive to the change in values of p
and n, when SNR is weak and dependence among predictors presents.

The studies also call for some caution in using cross validation for model evaluation and
selection in high dimensional setting. The result shows that there could be large discrepancy
between the CV error and the MSPE for certain model building and selection procedures.
More studies are needed to investigate the effectiveness of CV in different settings numerically
and to formalize proper conditions for the validity of CV theoretically.

Lastly, we have clarified different findings and conclusions from relevant comparisons in
the literature, pointing out the underlying reasons. Differential merits discussed in the stud-
ies can be used in practice to choose appropriate variable selection methods and evaluation
criteria for a broad range of situations.
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Appendix: MSPE Calculation for a Final Model

The Mean Squared Prediction Error (MSPE) serves as an evaluation criterion for the pre-
diction accuracy of a model. It is defined as

MSPE =
1

n
E[(Ynew − Ŷ)

T
(Ynew − Ŷ)|X], (4.1)

where Ynew = Xβ+εnew is a vector of n new observations at fixed design points X, and Ŷ is
the vector of predicted values from the given model. Suppose that the model being evaluated
involves r variables with coefficients β̂, and denote the corresponding partial design matrix
by Xr. Then Ŷ = Xrβ̂ is a prediction of Ynew based on the model.

For the OLS fit with coefficients β̂OLS,

Ŷ = Xrβ̂OLS = Xr(Xr
TXr)

−1
Xr

TY

= Xr(Xr
TXr)

−1
Xr

T (Xβ + ε) ≡ Hr(Xβ + ε). (4.2)

Therefore,

MSPE =
1

n
E[((Xβ + εnew)−Hr(Xβ + ε))T ((Xβ + εnew)−Hr(Xβ + ε))]

=
1

n
(E[((I−Hr)Xβ + εnew −Hrε)

T ((I−Hr)Xβ + εnew −Hrε)])

=
1

n
(((I−Hr)Xβ)T ((I−Hr)Xβ) + E[(Hrε)

THrε]) + E[εTnewεnew]

=
1

n
(Xβ)T (I−Hr)Xβ + rσ2 + nσ2)

=
1

n
βT(1)X

T
(1)(I−Hr)X(1)β(1) +

r

n
σ2 + σ2.

The first term is due to the bias in estimation of the mean regression function, and it
degenerates to 0 if and only if X(1) ∈ Xr. The second term is the estimation variance, and
it implies that MSPE linearly increases as irrelevant variables are added to the model. The
third term is the irreducible prediction error due to ε.

Such analytical expression of MSPE is not feasible for LASSO fit since no explicit form of
the solution is available in general. Instead, we approximate it by a Monte Carlo estimate,
following the steps below:

1. For fixed X, generate ε from N(0, σ2) and let Y = Xβ + ε. Similarly, generate εnew
from N(0, σ2) and let Ynew = Xβ + εnew.

2. Given λ, find the LASSO estimator β̂
λ

LASSO based on X and Y. Compute Ŷ =

Xrβ̂
λ

LASSO and M̂SPE = 1
n
(Ynew − Ŷ)

T
(Ynew − Ŷ).
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3. Repeat the above two steps m times and estimate MSPE by 1
m

m∑
i=1

M̂SPEi. m = 100

was used in our study.
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Table 4: A summary of the average model size |M|, the number of selected relevant variables

T and MSPE of the models selected by LOmin, LLmin, FSmin, LO1se, LL1se and FS1se,

respectively, for SNR=5 and SNR=10 scenarios. The standard errors are attached in the

brackets.

SNR=10 SNR=5

ρ Method |M| T MSPE |M| T MSPE

0

LOmin 23.31 (0.73) 9.46 (0.06) 1.21 (0.02) 26.38 (1.1) 8.49 (0.11) 2.75 (0.04)

LLmin 62.58 (0.79) 9.92 (0.02) 1.46 (0.01) 57.83 (0.91) 9.48 (0.05) 2.95 (0.02)

FSmin 88.18 (0.03) 9.87 (0.04) 1.65 (< 0.01) 88.16 (0.03) 8.85 (0.1) 3.33 (< 0.01)

LO1se 17.3 (0.44) 9.1 (0.07) 1.27 (0.03) 15.5 (0.48) 7.73 (0.11) 2.97 (0.06)

LL1se 38.91 (0.59) 9.83 (0.03) 1.6 (0.01) 33.72 (0.64) 9.03 (0.08) 3.35 (0.05)

FS1se 87.09 (0.05) 9.87 (0.04) 1.64 (< 0.01) 87.16 (0.05) 8.85 (0.11) 3.31 (< 0.01)

0.3

LOmin 37.53 (1.03) 8.07 (0.09) 3.99 (0.03) 30.04 (0.97) 6.13 (0.08) 7.92 (0.04)

LLmin 55.18 (0.8) 8.88 (0.06) 3.95 (0.02) 46.72 (0.79) 7.43 (0.09) 7.57 (0.03)

FSmin 88.14 (0.03) 6.44 (0.12) 4.89 (< 0.01) 88.07 (0.04) 4.44 (0.1) 9.77 (0.01)

LO1se 28.18 (0.69) 7.37 (0.11) 4.03 (0.03) 20.92 (0.66) 5.11 (0.06) 8.07 (0.05)

LL1se 41.89 (0.5) 8.7 (0.06) 4.03 (0.01) 35.58 (0.44) 6.96 (0.06) 7.75 (0.02)

FS1se 87.04 (0.05) 6.43 (0.12) 4.87 (< 0.01) 87.05 (0.05) 4.42 (0.05) 9.74 (0.01)

0.6

LOmin 32.51 (0.91) 5.45 (0.1) 6.47 (0.03) 25.86 (0.84) 3.44 (0.11) 12.27 (0.05)

LLmin 44.78 (0.75) 6.27 (0.09) 6.06 (0.02) 37.64 (0.67) 4.17 (0.08) 11.29 (0.04)

FSmin 88.15 (0.03) 3.56 (0.1) 8.06 (< 0.01) 88.12 (0.04) 2.38 (0.11) 16.03 (0.01)

LO1se 24.01 (0.69) 4.55 (0.11) 6.5 (0.03) 18.03 (0.59) 2.77 (0.12) 12.17 (0.04)

LL1se 36.3 (0.42) 6 (0.09) 6.15 (0.01) 30.31 (0.37) 3.94 (0.08) 11.4 (0.02)

FS1se 87.14 (0.05) 3.55 (0.1) 8.03 (0.01) 87.12 (0.05) 2.38 (0.11) 15.97 (0.01)

0.9

LOmin 20.88 (0.71) 1.66 (0.07) 7.87 (0.03) 15.76 (0.68) 0.82 (0.09) 14.71 (0.07)

LLmin 30.28 (0.73) 2.04 (0.08) 7.18 (0.04) 23.32 (0.67) 1.1 (0.09) 13.61 (0.09)

FSmin 88.07 (0.03) 1.42 (0.06) 11.1 (< 0.01) 88.12 (0.03) 1.11 (0.08) 22.12 (< 0.01)

LO1se 13.54 (0.43) 1.17 (0.06) 7.7 (0.02) 9.66 (0.33) 0.59 (0.04) 14.32 (0.03)

LL1se 24.13 (0.29) 1.89 (0.07) 7.07 (0.01) 18.67 (0.29) 0.98 (0.05) 13.37 (0.02)

FS1se 87.11 (0.05) 1.4 (0.06) 11.05 (< 0.01) 87.11 (0.05) 1.1 (0.06) 22.01 (0.01)
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Table 5: A summary of the average model size |M| and the number of selected relevant

variables T .

SNR=1

BETA Method
ρ=0 ρ=0.3 ρ=0.6 ρ=0.9

|M| T |M| T |M| T |M| T

Pure

FSEBIC 1.08 0.72 2.09 0.37 1.56 0.11 1 0.05

FSmin 88.14 3.28 9.15 0.83 5.16 0.28 2.22 0.07

FS1se 87.21 3.27 87.09 1.49 86.96 1 87.05 0.99

LOEBIC 1.06 0.69 1.64 0.29 1.33 0.1 1 0.05

LLmin 24.17 4.02 88.17 1.49 88.12 1.01 88.08 0.99

LL1se 10.03 2.74 22.94 1.89 17.58 0.85 9.63 0.26

LOmin 17.18 3.19 31.29 2.21 24.79 0.95 15.41 0.34

LO1se 5.92 1.99 12.66 1.21 9.97 0.49 4.64 0.11

SISEBIC 1.06 0.7 1.56 0.28 1.3 0.1 1 0.05

SISmin 29.2 4.91 20.05 1.57 15 0.73 8.78 0.24

SIS1se 23.65 4.55 6.74 0.7 3.99 0.22 1.81 0.07

Two-levels

FSEBIC 1.09 0.78 2.09 0.44 1.65 0.11 1 0.01

FSmin 88.11 3.65 88.17 1.59 88.1 1.14 88.11 0.89

FS1se 86.99 3.63 87.08 1.57 87.2 1.14 87.1 0.88

LOEBIC 1.08 0.82 1.73 0.39 1.44 0.13 1 0.01

LLmin 24.79 4.24 32.3 2.41 25.47 1.09 14.67 0.17

LL1se 11.13 3.25 22.63 2.13 17.01 0.9 9.69 0.13

LOmin 13.7 2.8 20.55 1.79 15.47 0.68 8.71 0.13

LO1se 6.18 2.05 11.21 1.27 7.96 0.46 4.07 0.11

SISEBIC 1.07 0.77 1.64 0.37 1.39 0.11 1 0.01

SISmin 27.64 4.72 8.36 1.12 4.81 0.33 2.2 0.08

SIS1se 22.14 4.47 6.53 0.96 3.84 0.27 1.8 0.05

Mixed

FSEBIC 1.04 0.68 1.57 0.5 1.38 0.14 1 0.05

FSmin 88.13 3.33 88.12 2.12 88.02 1.33 88.18 0.89

FS1se 87.22 3.32 87.14 2.1 86.98 1.32 87.06 0.88

LOEBIC 1.02 0.74 1.39 0.39 1.23 0.11 1 0.07

LLmin 23.08 4.11 29.21 2.83 22.29 1.39 15.89 0.45

LL1se 9.29 2.79 19.1 2.39 16.19 1.16 9.62 0.31

LOmin 17.68 3.05 20.3 2.12 14.01 1.01 8.7 0.28

LO1se 6.46 1.98 8.79 1.34 8.03 0.64 4.48 0.2

SISEBIC 1.02 0.66 1.34 0.4 1.19 0.12 1 0.05

SISmin 28.4 5.01 6.71 1.18 4.71 0.39 2.22 0.14

SIS1se 21.9 4.47 5.53 1.05 3.68 0.35 1.79 0.12

Half-half

FSEBIC 1.01 0.69 1.26 0.83 1.47 0.83 1.84 1

FSmin 88.06 3.55 88.12 3.71 88.12 3.3 88.12 3.66

FS1se 87.09 3.55 86.8 3.7 87.13 3.3 87.15 3.65

LOEBIC 1.01 0.7 1.15 0.77 1.24 0.74 1.55 0.97

LLmin 29.14 4.54 32.16 4.71 27.12 4.19 24.43 4.03

LL1se 11.37 3.04 13.19 3.31 10.68 2.88 9.46 2.71

LOmin 18.54 3.32 23.11 3.68 20.63 3.2 16.38 2.76

LO1se 7.93 2.17 8.74 2.36 7.6 2.12 4.5 1.58

SISEBIC 1.01 0.69 1.08 0.68 1.05 0.6 1.07 0.62

SISmin 29.77 5.05 17.32 3.64 10.18 2.17 6.05 1.21

SIS1se 22.74 4.5 13.55 3.2 8.24 1.92 4.46 1.1726



SNR=5

BETA Method
ρ=0 ρ=0.3 ρ=0.6 ρ=0.9

|M| T |M| T |M| T |M| T

Pure

FSEBIC 5.82 5.63 3.93 1.5 3.12 0.55 1.84 0.07

FSmin 88.23 9.21 88.1 3.68 88.19 2.05 88.12 1.06

FS1se 87.08 9.21 87 3.68 87.02 2.04 87.11 1.04

LOEBIC 2.12 2.02 2.99 1.16 2.71 0.48 1.59 0.1

LLmin 59.17 9.74 48.55 7.46 38.23 3.71 24.58 1.01

LL1se 35.01 9.38 40.04 7.14 32.12 3.64 18.88 0.87

LOmin 30.68 9.16 34.35 6.41 26.59 3.1 16.98 0.8

LO1se 18.7 8.48 25.22 5.22 19.95 2.53 9.97 0.55

SISEBIC 1.45 1.4 2.76 0.98 2.62 0.42 1.55 0.08

SISmin 31.73 7.82 15.52 2.85 10.43 1.25 4.56 0.26

SIS1se 24.68 7.41 12.21 2.51 8.15 1.04 3.58 0.2

Two-levels

FSEBIC 5.47 5.39 4.01 1.9 3.06 0.63 1.86 0.12

FSmin 88.15 8.54 88.09 3.87 88.15 2.03 88.09 0.97

FS1se 87.25 8.54 87.16 3.84 87.24 2.03 87.11 0.96

LOEBIC 3.88 3.79 3.17 1.52 2.58 0.54 1.6 0.12

LLmin 55.52 8.99 45.02 6.74 37.42 3.81 22.9 0.89

LL1se 32.34 8.53 36.03 6.41 31.35 3.76 18.93 0.86

LOmin 21.78 7.46 28.04 5.37 25.75 3.24 15.98 0.69

LO1se 11.48 6.53 19.31 4.44 18.21 2.51 10.01 0.49

SISEBIC 3.14 2.96 2.95 1.44 2.42 0.52 1.55 0.11

SISmin 26.77 6.51 13.41 2.83 10.27 1.29 4.78 0.21

SIS1se 21.41 6.31 11.32 2.71 8.24 1.14 3.61 0.2

Mixed

FSEBIC 4.65 4.51 3.26 2.35 2.66 1.07 1.63 0.28

FSmin 88.11 8.8 88.03 5.76 88.03 3.07 88.14 1.31

FS1se 87.15 8.8 86.99 5.75 87.09 3.06 87.11 1.29

LOEBIC 2.11 2 2.66 1.77 2.37 0.89 1.38 0.23

LLmin 58.79 9.72 46.58 8.09 37.26 5 22.49 1.39

LL1se 33.82 9.19 30.66 7.33 27.47 4.43 18.2 1.21

LOmin 26.69 8.85 27.72 6.62 25.25 3.99 14.31 0.97

LO1se 16.31 8.17 18.23 5.66 15.94 3.27 8.99 0.72

SISEBIC 1.55 1.48 2.45 1.63 2.3 0.77 1.36 0.25

SISmin 26.78 7.72 10.11 3.59 8.68 1.93 4.33 0.47

SIS1se 22.3 7.53 8.43 3.33 7.06 1.71 3.51 0.43

Half-half

FSEBIC 5.51 5.28 4.45 4.29 5.05 4.75 5.58 5.32

FSmin 88.16 9.14 88.1 8.76 88.11 8.88 88.1 9.27

FS1se 87.1 9.14 87.03 8.76 87.27 8.88 87 9.27

LOEBIC 2.03 1.9 2.16 2.01 2.27 2.02 2.63 2.38

LLmin 62.13 9.71 59.61 9.65 61.81 9.56 60.29 9.61

LL1se 37.23 9.36 35.75 9.23 35.57 9.05 38.01 9.33

LOmin 30.35 9.11 30.93 8.98 30.3 8.85 27.86 8.98

LO1se 18.79 8.51 17.45 7.85 18.38 8.1 18.22 8.39

SISEBIC 1.46 1.36 1.43 1.33 1.31 1.16 1.17 1.05

SISmin 31.76 7.87 19.78 5.91 15.73 4.21 9.15 2.55

SIS1se 25.22 7.57 16.08 5.53 12.88 3.84 7.82 2.43
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SNR=10

BETA Method
ρ=0 ρ=0.3 ρ=0.6 ρ=0.9

|M| T |M| T |M| T |M| T

Pure

FSEBIC 9.63 9.19 5.04 2.5 3.89 1.05 2.1 0.2

FSmin 88.19 9.79 88.09 5.21 88.13 2.81 88.09 1.27

FS1se 87.06 9.79 87.15 5.2 87.05 2.8 87.11 1.26

LOEBIC 5.46 4.83 3.53 1.4 3.24 0.7 2.1 0.22

LLmin 64.86 10 55.62 8.88 45.6 5.88 30.42 1.52

LL1se 40.64 9.98 44.45 8.9 38.72 5.83 24.32 1.44

LOmin 25.21 9.92 42.41 8.3 33.52 5.09 20.68 1.21

LO1se 19.9 9.77 32.01 7.59 26.8 4.34 13.91 0.86

SISEBIC 2.2 2.11 3.24 1.25 3.08 0.66 2.05 0.22

SISmin 30.97 8.23 18.9 3.55 13.58 1.81 6.54 0.46

SIS1se 27.82 8.14 15.64 3.24 10.81 1.51 5.3 0.37

Two-levels

FSEBIC 9.38 9.2 5.54 3.76 3.94 1.29 2.18 0.25

FSmin 88.17 9.9 88.23 5.75 88.12 3.09 88.06 1.3

FS1se 87.01 9.9 86.92 5.73 87.13 3.08 87.26 1.29

LOEBIC 5.85 5.57 4.02 2.36 3.29 0.95 2.05 0.2

LLmin 58.69 9.8 51.36 8.19 44.07 5.61 30.26 1.83

LL1se 35.94 9.56 41.69 7.96 38 5.45 24.75 1.71

LOmin 20.6 8.61 35.62 7.24 35.42 5.16 21.4 1.58

LO1se 13.57 7.89 26.95 6.47 25.27 4.1 14.82 1.15

SISEBIC 4.1 3.84 3.47 1.89 3.07 0.85 2.06 0.18

SISmin 25.92 6.78 17.18 3.63 12.36 1.82 6.33 0.52

SIS1se 19.76 6.49 14.72 3.47 10.71 1.72 5.39 0.41

Mixed

FSEBIC 9.58 9.29 4.94 4.06 3.29 1.82 2 0.44

FSmin 88.19 9.92 88.1 8.36 88.19 4.79 88.07 1.68

FS1se 87.2 9.92 87.06 8.36 87.23 4.76 86.96 1.65

LOEBIC 5.91 5.1 3 2.11 2.82 1.41 1.99 0.36

LLmin 64.2 9.97 58.55 9.58 44.67 7.31 30.16 2.77

LL1se 40.16 9.94 39.52 9.24 32.17 6.71 23.32 2.51

LOmin 24.11 9.84 34.55 8.66 28.6 6.11 20.57 2.19

LO1se 18.43 9.65 25.59 8.06 19.96 5.21 11.89 1.51

SISEBIC 1.97 1.92 2.64 1.8 2.65 1.23 1.94 0.36

SISmin 31.91 8.44 12.39 4.25 10.67 2.68 5.52 0.87

SIS1se 27.9 8.28 9.84 3.87 8.49 2.38 4.53 0.73

Half-half

FSEBIC 9.57 9.17 10.13 9.65 9.83 9.2 10.09 9.64

FSmin 88.11 9.71 88.15 9.96 88.14 9.66 88.17 9.93

FS1se 87.03 9.71 87.03 9.96 86.98 9.66 86.97 9.93

LOEBIC 5.68 4.96 5.95 4.98 5.73 4.8 6.24 5.19

LLmin 65.05 9.96 62.97 10 66.12 9.95 62.27 9.95

LL1se 40.58 9.92 39.46 9.91 41.2 9.87 39.5 9.93

LOmin 24.86 9.83 26.03 9.93 24.98 9.7 25.94 9.83

LO1se 18.92 9.59 18.97 9.66 19.57 9.48 19.04 9.56

SISEBIC 1.81 1.79 1.95 1.81 1.3 1.21 1.24 1.16

SISmin 32.85 8.36 23.51 6.46 16.76 4.59 8.28 2.87

SIS1se 28.11 8.16 20.08 6.17 15.54 4.37 7.94 2.84
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