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Abstract

Classification arises in a wide range of applications. A variety of statistical tools have been
developed for learning classification rules from data. Understanding of their relative merits and
comparisons help users to choose a proper method in practice. This paper focuses on theoretical
comparison of model-based classification methods in statistics with algorithmic methods in ma-
chine learning in terms of the error rate. Extending Efron’s comparison of logistic regression with
the LDA under the normal setting, we contrast such algorithmic methods as the support vector
machine and boosting with the LDA and logistic regression and study their relative efficiencies
based on the limiting behavior of the classification boundary of each method. In addition to the
theoretical study, we present results from numerical experiments under various settings for com-
parisons of finite-sample performance and robustness to mislabeling and model-misspecification.

Key words: Boosting; Classification; Efficiency; Error Rate; LDA; Logistic Regression; Misla-
beling; Robustness; SVM

1 Introduction

Classification arises in applications from diverse domains, for example, speech recognition, spam
filtering, fraud detection, and medical diagnosis. A variety of statistical tools have been developed
for learning a classification (or discrimination) rule with low error rates over novel cases. To name
a few, Fisher’s linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA)
are classical examples of a discriminant rule in the statistics literature, and modern statistical
tools include classification trees, logistic regression, neural networks, and kernel density based
methods. For reference to classification in general, see Hastie et al. (2001); Duda et al. (2000);
McLachlan (2004) and Devroye et al. (1996). More recent additions to the data analyst’s toolbox
for classification are the support vector machine (SVM) (Vapnik 1998; Cristianini and Shawe-Taylor
2000; Schölkopf and Smola 2002), boosting (Freund and Schapire 1997), and other margin-based
methods generally dubbed large-margin classifiers. They have drawn considerable attention in
machine learning for the last decade or so, and been successfully used in many applications of
data mining, engineering, and bioinformatics; for instance, hand-written digit recognition, text
categorization, and cancer diagnosis with genomic biomarkers.

Traditionally, in statistics, modeling approach to classification has been prevalent, where the
underlying probability model that generates data is estimated first, and then a discrimination rule
is derived from the estimated model. Logistic regression, LDA, QDA and other density based
methods exemplify the approach. In contrast, in machine learning, algorithmic approach is more
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common, where one aims at direct minimization of the error rate without estimating a probability
model explicitly by employing a convex surrogate criterion of the misclassification count (0-1). The
latter yields non-probability model based methods such as SVM, boosting and other large margin
classifiers.

In modern data analysis where typically high dimensional attributes are involved, refined statis-
tical modeling may not be as tractable as in the classical setting. Also, in parallel, computational
efficiency has become an ever more important factor in the applicability of a method. The contrast
between the model-based methods and algorithmic methods has brought many interesting theoret-
ical questions. For instance, the discrepancy of the 0-1 loss from the surrogate loss that is actually
used for training a classifier in the latter approach has generated an array of theoretical questions
regarding the Bayes risk consistency of the resulting rules under convex surrogate loss functions.
Zhang (2004); Bartlett et al. (2006); Lin (2002) and Steinwart (2005) delve into the issues and pro-
vide proper conditions for the surrogate loss to ensure the risk consistency. It is shown that only
minimal conditions are necessary in the binary classification problem. In particular, the hinge loss
for SVM and the exponential loss for boosting are properly calibrated for the Bayes risk consistency.
These results suggest that at least in terms of risk consistency, there is no difference between the
two approaches theoretically. They also confirm the common belief in machine learning that formal
modeling may not be necessary as less is required in pattern recognition (Devroye et al. 1996).

As a practical question, whether the ‘soft’ classification approach in statistics is more appro-
priate than the ‘hard’ classification approach in machine learning depends largely on the context
of applications. Certainly, in some applications, accurate estimation of the class conditional prob-
ability given the attributes is required for making better decisions than just prediction of a likely
outcome.

However, as a theoretical question, comparison of the two approaches remains open to investi-
gation. To the best of our knowledge, their relative merits and efficiency have not been rigorously
examined on the theoretical basis. Given the differences in the two paradigms of modeling versus
prediction, a basic question we pose here is whether probability modeling leads to more efficient
use of data in reducing the error rate than the algorithmic approach, and if so, how much efficiency
is gained by modeling. In general, answer to this question depends on the underlying probability
model, the classification method itself, and other factors which might affect the performance of the
method such as the dimension of attributes and sample size.

To simplify the question, we examine the effect of modeling on the error rate analytically in
the normal distribution setting by computing the asymptotic relative efficiency (ARE) of various
classification methods ranging from the full modeling approach of the LDA to the purely algo-
rithmic procedure of the SVM. Drawing on Efron’s framework for comparison of the LDA with
logistic regression (Efron 1975), we present similar analysis and large-sample comparison for some
of popular machine learning methods. In doing so, we use the asymptotic theory of M-estimators
to characterize the limiting distribution of a discriminant function and the associated error rate for
methods that are defined through convex loss criteria.

Under the normal setting, it is shown that the SVM is two fifths to two thirds as effective as
the LDA when the mean separation between two classes is substantially large with the Bayes error
rate of 4% to 10%. Boosting is shown to be one fifth to one half as effective as the LDA in the
same situation. Generally, the relative efficiency of algorithmic approach to modeling increases in
the direction of growing overlap between classes and diminishes quickly as the two classes become
sufficiently apart. However, we find that certain convex loss criteria work favorably for the normal
setting. For instance, a smooth variant of the SVM with squared hinge loss is shown to be even
more efficient than logistic regression.

To broaden the scope of the comparison, we also examine the first-order difference between
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the Bayes risk and the limiting minimal error of the classifiers under consideration, when the
underlying model (or the class of discriminant functions) is incorrectly specified and thus the Bayes
risk consistency is not guaranteed. In addition, we carry out a simulation study under the settings
not covered by the theoretical analysis to touch on the issue of robustness to mislabeling error in
the data.

The remainder of this paper is organized as follows. Section 2 describes the theoretical frame-
work for comparisons of classification methods. Section 3 states general result about the limiting
distribution of discriminant coefficients as M-estimators under some regularity conditions and its
applications for various classification methods. As the main result, the ARE comparisons based
on the limiting distributions are presented in Section 4 along with finite-sample comparisons of
excess error rates. Section 5 provides further comparisons of the methods in terms of robustness
to model-misspecification or data contamination. Concluding remarks are in Section 6.

2 Background and Framework for Comparison

Consider a classification problem where multivariate attributes are measured for each subject and
for a number of subjects, their class memberships are observed. Let X = (X1, . . . ,Xp) ∈ X = R

p

denote the attributes or predictors and Y be the class label which takes one of, say, k nominal values,
Y = {1, . . . , k}. Training data consist of a set of n observation pairs, Dn = {(xi, yi), i = 1, . . . , n},
where (xi, yi)’s are viewed as independent and identically distributed random outcomes of (X, Y )
from some unknown distribution PX,Y . Given the training data, we want to find a classification
rule, φ : X → Y, which can be generalized to future cases from the same distribution PX,Y with
a small error rate. Typically, the error of the rule φ over an individual case (x, y) is measured by
the 0-1 loss ρ(y, φ(x)) = I(y 6= φ(x)), and its overall error rate is given by the probability of error
R(φ) = P (Y 6= φ(X)). Then the theoretically optimal rule with the minimum error rate, which
is also known as the Bayes decision rule φB , can be characterized as φB(x) = argmaxj∈Y P (Y =
j | X = x).

For simplicity, we focus on classification with binary outcomes only (k = 2) in this paper and
use symmetric class labels Y = {−1, 1} whenever convenient. With the symmetric labels, the
optimal rule is expressed succinctly as φB(x) = sgn(p(x) − 1/2), where p(x) = P (Y = 1|X = x).
Many classification procedures in consideration can be viewed as a way of obtaining a real-valued
discriminant function f : Rp → R, which induces a rule φf (x) = sgn(f(x)), by minimizing the risk
under a convex surrogate loss of the 0-1 loss. Generally, a class of functions F is specified a priori
for the discriminant function f , for example, a linear space spanned by a set of basis functions or
a reproducing kernel Hilbert space with a kernel function K. As we mainly consider the setting
where φB is linear in x, we will restrict F to linear discriminant functions only in this paper.

2.1 Normal Distribution Setting

Suppose that the attributesX arise from one of two p-dimensional normal populations with different
means but the same covariance:

X ∼ Np(µ+,Σ) with probability π+ and

X ∼ Np(µ−,Σ) with probability π−, (1)

where π+ = P (Y = 1), π− = P (Y = −1), and π+ + π− = 1. Fisher’s linear discriminant analysis
(LDA) is a standard example of linear classifiers in statistics, which is proven to be optimal in
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minimizing the misclassification rate under the normality and equal covariance assumptions. The
optimal classification boundary is determined by Fisher’s linear discriminant function

f∗(x) = β∗
0 + β∗′x,

where β∗
0 = log(π+/π−)− (1/2)(µ++µ−)

′Σ−1(µ+−µ−) and β∗ = (β∗
1 , . . . , β

∗
p)

′ = Σ−1(µ+−µ−).
Since this general LDA setting can be transformed to the canonical setting by means of a linear

transformation, without loss of generality we will assume the following canonical LDA setting:

X| Y = 1 ∼ Np

(

∆

2
e1, I

)

and

X| Y = −1 ∼ Np

(

−∆

2
e1, I

)

, (2)

where e1 = (1, 0, . . . , 0)′, I is the p × p identity matrix, and ∆ = {(µ+ − µ−)
′Σ−1(µ+ − µ−)}

1
2

(known as the Mahalanobis distance between the two normal distributions). For the canonical
setting, Fisher’s linear discriminant coefficients are simplified to β∗

0 = log(π+/π−) and β∗ = ∆e1.
The Bayes decision rule induced by f∗ is then φB(x) = sgn(f∗(x)), and its error rate is Φ(−∆/2),
where Φ is the standard normal cdf.

2.2 Classification Methods

To make comparison of classification methods simple, we restrict the space of discriminant functions
to linear functions of x only. Now consider deriving a linear discriminant function based on the
training data. A host of classification methods can be applied to derive a linear discriminant rule.

If we model the data fully under the true LDA setting, we get the plug-in LDA discriminant
function f̂LDA with estimated means µ+ and µ− and covariance Σ. As an intermediate method
sitting half-way between the full modeling approach of the LDA and purely algorithmic approach,
logistic regression models the conditional distribution of Y given x with the distribution of x

unspecified. Also, it can be viewed as an M -estimator with deviance loss. The discriminant
function of logistic regression f̂LR is an estimate of the logit function,

f(x) = log(P (Y = 1|X = x)/P (Y = −1|X = x)) = β0 + β′x,

which is determined by maximizing the conditional log likelihood or minimizing the negative log
likelihood of (β0,β

′)′ ∈ R
p+1:

Ln(β0,β) =

n
∑

i=1

log
(

1 + exp(−yi(β0 + β′xi))
)

. (3)

In contrast to the LDA and logistic regression, discriminant functions for algorithmic methods
are obtained directly through consideration of the classification boundary itself, not the probability
model underlying the data. For example, the linear support vector machine finds the optimal
hyperplane β0 + β′x = 0 with a large margin between two classes by minimizing

1

n

n
∑

i=1

(1− yi(β0 + β′xi))+ +
λ

2
‖β‖2, (4)

where λ is a positive tuning parameter that controls the trade-off between the empirical risk under
the hinge loss (the first term) and the inverse of the margin as a penalty (the second term). It
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attempts to minimize the error rate directly by using a convex surrogate loss of the misclassification

count. The optimal hyperplane (β̂0+β̂
′
x = 0) found as a solution to (4) then yields the discriminant

function for the SVM, f̂SVM (x) = β̂0 + β̂
′
x. There are other variants of the SVM for large-margin

classification as well. For instance, the smooth SVM (Lee and Mangasarian 2001) uses squared
hinge loss as a loss criterion.

As another convex risk minimization method in machine learning, boosting (Freund and Schapire
1997) finds a discriminant function by sequentially updating the current fitted function to a weighted
version of data to minimize

Ln(β0,β) =

n
∑

i=1

exp(−yi(β0 + β′xi)) (5)

and combining the sequence of fitted functions. Although the discriminant function from boosting
in general is taken as a weighted sum of weak learners obtained stagewise, we take the simple view
of boosting as an M -estimator minimizing (5) in this paper, borrowing the perspective on boosting
in Friedman et al. (2000).

Consequently, the loss criterion employed to determine the discriminant function characterizes
the difference among logistic regression, the SVM, and boosting in terms of their statistical behavior
and classification accuracy. Each of the three methods can be described as an M -estimator under
the loss of binomial deviance l(s) = log(1 + exp(−s)), hinge (1 − s)+, and exponential exp(−s),
respectively, where s ≡ yf(x) for f(x) = β0 + β′x.

The main focus of this paper is to theoretically examine the effect of bypassing probability
modeling of data on the error rate. We investigate the issue by comparing the LDA, logistic
regression, the SVM, and boosting, which represent a wide spectrum of classification procedures
spanning from full model-based to algorithmic approaches.

2.3 Error Rates and Relative Efficiency

For a discriminant function f̂ from training data, let R(f̂) ≡ R(φf̂ ) be the error rate of the

associated discriminant rule, φf̂ (x) = sgn(f̂(x)). That is, for (X, Y ) independent of the data used

to determine f̂ ,
R(f̂) ≡ P (Y 6= sgn(f̂(X)) = P (Y f̂(X) < 0).

Note that R(f̂) is a random variable due to the fact that f̂ depends on the training data. R(f̂)−
R(φB) represents the excess error rate of f̂ compared to the Bayes decision rule φB with the
minimum error rate.

Efron (1975) compared logistic regression to the LDA in terms of the excess error rate by exam-
ining the asymptotic relative efficiency (ARE) of logistic regression (LR) to normal discrimination
(LDA), which is defined as

lim
n→∞

E(R(f̂LDA)−R(φB))

E(R(f̂LR)−R(φB))
.

In his analysis, logistic regression is shown to be between one half and two thirds as effective as
normal discrimination typically. The key fact in the analysis is that for a linear discriminant method

f̂(x) = β̂0 + β̂
′
x, if

√
n(β̂ − β∗)

d→ Np+1(0,Σβ) under the canonical setting, the expected excess

error rate, E(R(f̂)−R(φB)) is given by

π+φ(D1)

2∆n

[

σ00 −
2β∗

0

∆
σ01 +

(β∗
0)

2

∆2
σ11 + σ22 + · · · + σpp

]

+ o

(

1

n

)

, (6)
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where β̂ = (β̂0, β̂
′
)′, β∗ = (β∗

0 ,β
∗′)′, D1 = ∆/2+(1/∆) log(π+/π−), φ is the pdf of standard normal

distribution, and σij is the ijth entry of Σβ (i, j = 0, . . . , p). In other words, (6) shows that the

mean increased error rate of f̂ relative to φB can be expressed in terms of the variance of β̂ in

the limiting distribution. It indicates how the accuracy of the estimator β̂ of β∗ affects the excess

error rate of the discriminant rule with β̂ as its coefficients. When two procedures are consistent in
getting the Bayes decision rule, their asymptotic relative efficiency can be measured by the rate at
which the expected excess error goes to zero as the sample size n grows. With the same parametric
rate of 1/n in (6), we see that the efficiency of a procedure is determined by its leading coefficient
of 1/n in the expression of the excess error.

Borrowing Efron’s theoretical framework, we can extend the analysis to include those prediction-
oriented modern classification tools. In particular, the question we pose here is how much efficiency
is lost in terms of the excess error rate relative to the LDA if the SVM or boosting is used instead
when the attributes are normally distributed for each class.

3 Asymptotic Distribution of Discriminant Coefficients

To compare the relative efficiency of different ways to determine a linear discrimination rule, we
need to identify the asymptotic distribution of the coefficient vector for each method first. For the
LDA and logistic regression, Efron used large sample theory of the maximum likelihood estimators
in exponential family distributions. Under the canonical setting, it was shown that the limit
distribution of

√
n(β̂ − β∗) for the LDA is Np+1(0,Σβ) with

Σβ =
1

π+π−















1 + ∆2

4
∆
2 (π+ − π−) 0 · · · 0

∆
2 (π+ − π−) 1 + 2∆2π+π− 0

0 0 1 + ∆2π+π−
...

. . .

0 1 + ∆2π+π−















.

Since the coefficient vectors for logistic regression, the SVM and its variants, and boosting are
defined as a minimizer of a convex loss criterion, asymptotic theories for M -estimators in van der
Vaart (2000) and Hjort and Pollard (1993), for example, can be used to identify their limiting
distributions. See also Pollard (1991), Geyer (1994), Knight and Fu (2000) and Rocha et al.
(2009).

For general description of the asymptotics of M -estimators, let Ln(β0,β) ≡
∑n

i=1 ρ(yi,xi;β0,β)

for a convex loss ρ (with respect to β0 and β). Using β for short notation of (β0,β
′)′, define β̂

as the minimizer of Ln(β0,β). Let L(β) = Eρ(Y,X;β) be the true risk under ρ, and β∗ be the
population risk minimizer, argminL(β).

Under the following regularity conditions (adapted from Rocha et al. (2009)) that

C1. β∗ is bounded and unique,

C2. L(β) is bounded for each β,

C3. ρ(y,x;β) is differentiable with respect to β at β = β∗ for almost every (x, y) in PX,Y with

derivative
∂ρ(y,x;β)

∂β
and G(β∗) ≡ E

(

∂ρ(Y,X;β∗)

∂β

)(

∂ρ(Y,X;β∗)

∂β

)′

,
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C4. L(β) is twice differentiable with respect to β at β = β∗ with positive definite Hessian matrix

H(β∗) ≡
∂2L(β)

∂β · ∂β′

∣

∣

∣

∣

∣

β=β∗

,

we can establish asymptotic normality of β̂ as an M -estimator and its consistency. The convexity

of the loss ρ is a key condition in establishing the asymptotic normality of β̂. Although it can be
replaced with any set of conditions yielding uniform convergence of the risk functions over compact
sets, the convexity condition would suffice for our discussion.

Theorem 1. Under the regularity conditions C1-C4,

√
n(β̂ − β∗)

d→ Np+1(0,H(β∗)−1G(β∗)H(β∗)−1).

Note that the population minimizer β∗ depends on ρ, and under the canonical setting, β∗ may
have a different scale than the optimal coefficients in the theoretical LDA, depending on the method
used. The difference is to be discussed shortly.

3.1 Support Vector Machine

Koo et al. (2008) examined the limiting distribution of the linear SVM in general setting. Techni-
cally, the analysis exploits a close link between the SVM and median regression yet with categorical
responses, and applies the results on absolute deviation regression estimators in Pollard (1991) to
the linear SVM. Due to the penalty in (4) and a slightly different set of regularity conditions con-
sidered, the result in Koo et al. (2008) is not a direct application of Theorem 1. However, in a
nutshell, it shows that when the effect of the penalty gradually diminishes with λ = o(n−1/2), the
penalized coefficients of the linear SVM behave in the same way as what Theorem 1 would predict
asymptotically. In particular, it was shown in the paper that under the LDA setting with equal
proportions for the two classes, the classification boundary of the linear SVM coincides with that
of the LDA in the limit, ensuring classification consistency.

To extend the result to general case of arbitrary class proportions of π+ and π−, we first
identify the optimal discriminant coefficients β∗ under the hinge loss by minimizing the risk L(β) =

E(1 − Y · β′X)+ or equivalently finding the root of the equation S(β) ≡ ∂
∂βL(β) = 0. Under the

LDA setting, the equation becomes

π+Φ(ap) = π−Φ(am) (7)

[π+φ(ap) + π−φ(am)]Σ
1

2ω∗ = π+Φ(ap)µ+ − π−Φ(am)µ−, (8)

where

ap ≡
1− β∗

0 − µ′
+β

∗

‖Σ 1
2β∗‖

, am ≡ 1 + β∗
0 + µ′

−β
∗

‖Σ 1
2β∗‖

, and ω∗ ≡ Σ
1
2β∗

‖Σ 1
2β∗‖

. (9)

φ(·) and Φ(·) are the pdf and cdf of standard normal distribution, respectively.
Plugging (7) into (8) and solving for ω∗, we have

ω∗ =
π−Φ(am)

π+φ(ap) + π−φ(am)
Σ− 1

2 (µ+ − µ−). (10)
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Since the norm of ω∗ must be 1, taking the norm of both sides of the above equation yields

π−Φ(am)

π+φ(ap) + π−φ(am)
∆ = 1.

Further simplifying the equation using (7), we arrive at the following relation for ap and am given
∆:

φ(ap)

Φ(ap)
+

φ(am)

Φ(am)
= ∆. (11)

Then we can solve the equations (7) and (11) for ap and am numerically. Once ap and am are

obtained, from the relation ap + am = {2 − (µ+ − µ−)
′β∗}/‖Σ 1

2β∗‖ and (10), we can get the
optimal coefficients

β∗ =
2

[ap + am +∆]∆
Σ−1(µ+ − µ−), (12)

and the intercept

β∗
0 =

am − ap
ap + am +∆

− 1

2
(µ+ + µ−)

′β∗. (13)

Clearly from (7), if π+ = π−, then ap = am (call it a∗), and a∗ solves φ(a∗)/Φ(a∗) = ∆/2. The
values of a∗ can be tabulated when ∆ varies. See Table 1 for some a∗ values given a range of ∆.
In the balanced case, the optimal parameters become

β∗ =
2

(2a∗ +∆)∆
Σ−1(µ+ − µ−), and β∗

0 = −1

2
(µ+ + µ−)

′β∗.

Under the canonical LDA setting in particular, they are further simplified to

β∗ =
2

(2a∗ +∆)
e1, and β∗

0 = 0.

Note that the optimal parameters for linear SVM have the scale factor of cSVM ≡ 2/(2a∗∆+∆2) when
compared with the counterparts in Fisher’s linear discriminant function, that is, β∗

SVM
= cSVM ·β∗

LDA
.

From the results in Koo et al. (2008) with equal probabilities, we get the following expressions
for H(β∗) and G(β∗):

H(β∗) =
φ(a∗)(2a∗ +∆)

2

















1 0 . . . 0
0 1

4(∆ + 2a∗)2

... 1
. . .

0 1

















and

G(β∗) = Φ(a∗)

















1 0 · · · 0
0 −1

4(∆
2 + a∗∆− 4)

... 1
. . .

0 1

















.
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Hence the variance matrix in the limiting distribution of β̂ is given by

H(β∗)−1G(β∗)H(β∗)−1 =
4

Φ(a∗)
c2
SVM

















1 0 · · · 0

0 −4(∆2+a∗∆−4)
(∆+2a∗)4

... 1
. . .

0 1

















.

From the expression of the excess error in (6) and consideration of the scale factor cSVM for the
linear SVM, we can verify that the asymptotic relative efficiency of the linear SVM to LDA is given
by

ARESVM = Φ(a∗)(1 +
∆2

4
) =

2φ(a∗)

∆
(1 +

∆2

4
),

where a∗ is the constant satisfying φ(a∗)/Φ(a∗) = ∆/2. Some values of the relative efficiency
corresponding to a range of class separation ∆ will be given later for more concrete comparisons.

It is important to observe that when π+ 6= π− in general, the optimal parameters of linear
SVM in (12) and (13) are no longer proportional to those of LDA, which results in inconsistency.
Remedies for the inconsistency would require alternative ways to estimate the intercept once β̂ is
given.

3.2 Variants of Support Vector Machine

There are variants of the SVM built around smooth versions of the hinge loss motivated mainly for
computational ease. However, changes in the loss criterion lead to different asymptotic behavior of
the resulting discriminant functions.

3.2.1 Smooth SVM

Smooth SVM (Lee and Mangasarian 2001) refers to a variant of the SVM where the hinge loss
criterion is replaced with its square version l(s) = [(1− s)+]

2. The discriminant coefficients β̂0 and
β̂ are found by minimizing

1

n

n
∑

i=1

[(1 − yi(β0 + β′xi))+]
2 +

λ

2
‖β‖2. (14)

In contrast to the hinge loss, the squared hinge loss is differentiable everywhere.
The risk of β under the squared hinge loss in the LDA setting is given by

L(β) = π+σ
2
[

(a2p + 1)Φ(ap) + apφ(ap)
]

+ π−σ
2
[

(a2m + 1)Φ(am) + amφ(am)
]

,

where σ ≡
√

β′Σβ, and ap and am are defined in (9).
To identify the optimal coefficients β∗, we take the derivatives of L(β) and equate them to zero:

∂L(β)

∂β0
= −2π+σ [apΦ(ap) + φ(ap)] + 2π−σ [amΦ(am) + φ(am)] = 0

∂L(β)

∂β
= −2π+σ [apΦ(ap) + φ(ap)]µ+ + 2π+Φ(ap)Σβ

+2π−σ [amΦ(am) + φ(am)]µ− + 2π−Φ(am)Σβ = 0.
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Letting Θ(z) ≡ zΦ(z) + φ(z) and ω∗ ≡ Σ
1
2 β∗

‖Σ
1
2 β∗‖

, we can simplify the above equations to

π+Θ(ap) = π−Θ(am) (15)

[π+Φ(ap) + π−Φ(am)]Σ
1
2ω∗ = π+Θ(ap)µ+ − π−Θ(am)µ−. (16)

By solving the equations for β∗, we have the optimal parameters

β∗
0 =

am − ap
ap + am +∆

− 1

2
(µ+ + µ−)

′β∗ and β∗ =
2

[ap + am +∆]∆
Σ−1(µ+ − µ−),

where ap and am are the constants that solve the following equations:

π+Θ(ap) = π−Θ(am) (17)

π+Θ(ap)∆ = π+Φ(ap) + π−Φ(am). (18)

The second equation comes from the fact that ω∗ in (16) is a unit vector.
As in the standard SVM, the optimal parameters for the smooth SVM are not proportional to

those for the LDA in general if the probabilities of the two classes are not equal.
If π+ = π−, the equation (17) becomes Θ(ap) = Θ(am). Since Θ(z) = zΦ(z) + φ(z) is an

increasing function of z, we conclude ap = am. From the equation (18), the common value a∗ is
given as the constant that solves [aΦ(a) + φ(a)]∆ = 2Φ(a) given ∆. The third column in Table 1
shows the values of a∗ for the smooth SVM corresponding to the given values of ∆.

Under the canonical LDA setting with equal probabilities, the optimal parameters reduce to

β∗
0 = 0 and β∗ =

2

(2a∗ +∆)
e1.

Thus β∗
SSVM

= cSSVM · β∗
LDA

with cSSVM ≡ 2/(2a∗∆+∆2). When λ = o(n−1/2), the smooth SVM in
(14) provides a consistent estimator of cSSVM · β∗

LDA
.

In this setting, we can verify that

H(β∗) =





2Φ(a∗) 0

0 2Φ(a∗)Ip +MJp



 ,

where Jp = e1e
′
1 and M = ∆2

2 Φ(a∗)− 2(a∗ +∆)φ(a∗) and

G(β∗) = 8 cSSVMΦ(a
∗)





1 0

0 Ip +
∆2

4 Jp − cSSVM∆
2Jp



 .

Hence the limiting covariance matrix is

H(β∗)−1G(β∗)H(β∗)−1 = c2
SSVM

















κ1 0 · · · 0
0 κ2
... κ1

. . .

0 κ1
















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where

κ1 =
(2a∗ +∆)∆

Φ(a∗)
=

2

cSSVMΦ(a∗)
and κ2 =

8

(

1 + 1
4∆

2 − cSSVM∆
2

)

Φ(a∗)

cSSVM [2Φ(a∗) +M ]2
.

Under the canonical LDA setting with π+ = π−, the ARE of the smooth SVM to LDA is given
by

ARESSVM =
4Φ(a∗)(1 + ∆2/4)

∆(2a∗ +∆)
= 2cSSVMΦ(a

∗)(1 + ∆2/4).

Table 1: Values of a∗ as a function of ∆ for the linear SVM and its variants

∆ SVM Smooth SVM Huberized SVM
k = −1.5 k = −1 k = 0

1.0 0.518 1.937 1.937 1.934 1.371
1.5 0.076 1.071 1.071 1.062 0.691
2.0 −0.303 0.481 0.480 0.467 0.184
2.5 −0.647 0.006 0.003 −0.011 −0.242
3.0 −0.969 −0.407 −0.411 −0.426 −0.621
3.5 −1.276 −0.782 −0.786 −0.802 −0.971
4.0 −1.572 −1.131 −1.136 −1.151 −1.301

3.2.2 Huberized SVM

The Huberized SVM (Rosset and Zhu 2007) is another variant of the SVM inspired by Huber’s loss
for robust regression. It retains the robustness of the SVM for large margin classification yet with
differentiability in the loss. It replaces the hinge loss in (4) with

ρk(y,x;β0,β) =











2(k − 1)y(β0 + β′x) + (1− k2) if y(β0 + β′x) < k,

[1− y(β0 + β′x)]2 if k ≤ y(β0 + β′x) < 1,

0 if y(β0 + β′x) ≥ 1,

where k < 1 and as a bending constant, it demarcates the quadratic part of the loss. When k tends
to −∞, ρk approaches the squared hinge loss in the smooth SVM.

With some additional definition of constants depending on k, we have the true risk of β0 and
β under the ρk in the LDA setting expressed as

L(β) = π+σ
2
[

(a2p + 1)Φ(ap) + apφ(ap)
]

+ π−σ
2
[

(a2m + 1)Φ(am) + amφ(am)
]

+π+Φ(a
k
p)
[

(1− k)(ap + akp)σ − (a2p + 1)σ2
]

+ π−Φ(a
k
m)
[

(1− k)(am + akm)σ − (a2m + 1)σ2
]

−π+φ(a
k
p)a

k
pσ

2 − π−φ(a
k
m)akmσ2,

where akp ≡ k − β0 − β′µ+

‖Σ 1
2β‖

, and akm ≡ k + β0 + β′µ−

‖Σ 1
2β‖

.

11



Then

∂L(β)

∂β0
=− 2π+σ

[

apΦ(ap) + φ(ap)− akpΦ(a
k
p)− φ(akp)

]

+ 2π−σ
[

amΦ(am) + φ(am)− akmΦ(akm)− φ(akm)
]

, and

∂L(β)

∂β
=− 2π+σ

[

apΦ(ap) + φ(ap)− akpΦ(a
k
p)− φ(akp)

]

µ+ + 2π+

[

Φ(ap)− Φ(akp)
]

Σβ

+ 2π−σ
[

amΦ(am) + φ(am)− akmΦ(akm)− φ(akm)
]

µ− + 2π−

[

Φ(am)− Φ(akm)
]

Σβ.

With the earlier definition of Θ(z) = zΦ(z) + φ(z) and ω∗ ≡ Σ
1
2β∗

‖Σ
1
2β∗‖

, we can show that the

optimality equation S(β) = 0 becomes

π+[Θ(ap)−Θ(akp)] = π−[Θ(am)−Θ(akm)]
[

π+{Φ(ap)−Φ(akp)}+ π−{Φ(am)− Φ(akm)}
]

Σ
1
2ω∗ = π+[Θ(ap)−Θ(akp)]µ+ − π−[Θ(am)−Θ(akm)]µ−.

The expressions of the optimal parameters are the same as those of the smooth SVM:

β∗
0 =

am − ap
ap + am +∆

− 1

2
(µ+ + µ−)

′β∗ and β∗ =
2

[ap + am +∆]∆
Σ−1(µ+ − µ−),

except that ap and am are now defined as the constants that solve slightly different equations:

π+[Θ(ap)−Θ(akp)] = π−[Θ(am)−Θ(akm)] (19)

π+[Θ(ap)−Θ(akp)]∆ = π+[Φ(ap)− Φ(akp)] + π−[Φ(am)− Φ(akm)]. (20)

Note the relations that

akp = ap −
1− k

‖Σ 1
2β∗‖

, akm = am − 1− k

‖Σ 1
2β∗‖

, and ‖Σ 1
2β∗‖ =

2

ap + am +∆
.

Similar to other SVM type methods, except for the balanced case of π+ = π−, the optimal pa-
rameters of the Huberized SVM are not parallel to those of the LDA in general. For the balanced
case, we can show that ap = am(≡ a∗), and akp = akm(≡ a∗k) = ka∗ − (1− k)∆/2 from (19), and the
identities further simplify (20) to

[Θ(a∗)−Θ(ka∗ − (1− k)∆/2)]∆ = 2[Φ(a∗)− Φ(ka∗ − (1− k)∆/2)]. (21)

Given ∆ and fixed k, we can solve the equation for a∗. The last three columns in Table 1 show the
values of a∗ corresponding to the given values of ∆ when k = −1.5, −1, and 0, respectively.

In particular, under the canonical LDA setting with equal probabilities, the optimal parameters
of the Huberized SVM are given by

β∗
0 = 0 and β∗ =

2

(2a∗ +∆)
e1,

where a∗ is the constant satisfying (21). This yields β∗
HSVM

= cHSVM·β∗
LDA

with cHSVM ≡ 2/(2a∗∆+∆2)
taking the same form as in the smooth SVM.
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The Hessian matrix H is given by

H(β∗) =





2[Φ(a∗)−Φ(a∗k)] 0

0 2 [Φ(a∗)− Φ(a∗k)] Ip +MkJp



 ,

where Mk =
∆2

2
[Φ(a∗)− Φ(a∗k)] − 2∆ [φ(a∗)− φ(a∗k)] − 2 [a∗φ(a∗)− a∗kφ(a

∗
k)]. Having the hybrid

of a quadratic loss in the interval from k to 1 and a linear loss below k brings a slight change in
the form of the H as compared to the H matrix of the smooth SVM. With similar changes in the
elements, G matrix is given by

G(β∗) = 8cHSVM[Φ(a
∗)−Φ(a∗k)+

∆

2
(k−1)Θ(a∗k)]





1 0

0 Ip +
1
4∆

2Jp



−8cHSVMDk









0 0

0 Jp









,

where

Dk = cHSVM∆
2 [∆{a∗(Φ(a∗)− Φ(a∗k))− (φ(a∗)− φ(a∗k))} − (Φ(a∗)− Φ(a∗k))] −∆(k − 1)φ(a∗k).

Note that when k goes to −∞, H(β∗) and G(β∗) for the Huberized SVM above reduce to those
for the smooth SVM. The limiting covariance matrix is

H(β∗)−1G(β∗)H(β∗)−1 = c2
HSVM























κ1 0 · · · 0
0 κ2

κ1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 κ1























,

where

κ1 =
2[Φ(a∗)− Φ(a∗k) +

∆
2 (k − 1)Θ(a∗k)]

cHSVM

[

Φ(a∗)− Φ(a∗k)
]2 and

κ2 =

8

(

(1 + 1
4∆

2){Φ(a∗)− Φ(a∗k) +
∆
2 (k − 1)Θ(a∗k)} −Dk

)

cHSVM

[

2(Φ(a∗)− Φ(a∗k)) +Mk

]2 .

The ARE of the Huberized SVM to LDA is then given by

AREHSVM = 2cHSVM

(

1 +
∆2

4

) [Φ(a∗)− Φ(a∗k)]
2

Φ(a∗)− Φ(a∗k) +
∆
2 (k − 1)Θ(a∗k)

.

3.3 Boosting

Similarly, the limiting distribution of the discriminant coefficients for boosting can be found, and
its efficiency relative to the LDA in terms of the excess error rate can be evaluated. Without

13



diminishing the merit of boosting in expanding a model space with weak learners in the LDA
setting, we simply define the boosting estimator β̂ as the minimizer of (5) under the exponential
loss criterion ρ(y,x;β0,β) = exp(−y(β0 + β′x)).

Under the LDA setting in (1), the true risk is given by

L(β) = π+ exp
(

− β0 − β′µ+ +
1

2
β′Σβ

)

+ π− exp
(

β0 + β′µ− +
1

2
β′Σβ

)

.

Equating the gradient of L(β) to 0 for the population minimizer β∗, we have

S(β) = π+ exp(−β0 − β′µ+ +
1

2
β′Σβ)

(

−1
−µ+ +Σβ

)

+ π− exp(β0 + β′µ− +
1

2
β′Σβ)

(

1
µ− +Σβ

)

= 0.

By solving the equation for β, we have

β∗
0 =

1

2

(

log
π+
π−

− 1

2
(µ+ − µ−)

′Σ−1(µ+ + µ−)

)

and β∗ =
1

2
Σ−1(µ+ − µ−).

First, we see that for every π+ and π−, the optimal coefficient vector β∗ for boosting is proportional

to that of LDA, with the proportional constant cboost = 1/2. Thus β̂ is a consistent estimator of
(1/2)β∗

LDA
in general. This ensures the Bayes risk consistency of boosting. The H and G matrices

under the exponential loss in the general LDA setting are given by

H(β∗) =
√
π+π− exp

{

−1

8
(µ+ − µ−)

′Σ−1(µ+ − µ−)

}





2 (µ+ + µ−)
′

µ+ + µ− 2Σ+ (µ+ + µ−)(µ+ + µ−)
′





and

G(β∗) =





1 (π+µ+ + π−µ−)
′

π+µ+ + π−µ− Σ+ π+µ+µ
′
+ + π−µ−µ

′
−



 .

Under the canonical LDA setting (2) with equal class proportions, they are simplified to

H(β∗) = exp

(

−∆2

8

)

Ip+1, and G(β∗) =





1 0

0 Ip +
1
4Jp



 ,

where Jp = e1e
′
1. Hence the limiting covariance matrix of the discriminant coefficient vector is

H(β∗)−1G(β∗)H(β∗)−1 = exp

(

∆2

4

)

















1 0 · · · 0
0 1 + 1

4
... 1

. . .

0 1

















.

The asymptotic relative efficiency of boosting to LDA is then given by

AREboost =
1 +∆2/4

exp(∆2/4)
.

Notice that the denominator is an exponential function of ∆, which implies that the relative ef-
ficiency of boosting drops very quickly as ∆ grows. This is attributed to the characteristic of
boosting that it tends to focus heavily on misclassified cases or outliers in contrast to the LDA,
which is based on the average pattern of the cases.
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4 Comparisons Under Normal Setting

We compare the classification procedures theoretically by evaluating their relative efficiency for
various degrees of class separation ∆. To contrast model-based classification methods with algo-
rithmic methods in a simple theoretical framework, we focus on the balanced case of π+ = π− only,
where all the methods in consideration are proven to be consistent. We later discuss the first-order
comparison when the Bayes risk consistency is not generally guaranteed.

4.1 Theoretical Comparison with ARE

Under the canonical setting with equal proportions for two classes, the expression of the asymptotic
relative efficiency (ARE) of the SVM, its variants (Smooth SVM and Huberized SVM) and boosting
to the LDA has been derived on the basis of the limiting distribution of the discriminant coefficients
of each method.

To cover scenarios with different degree of overlap between the two classes, we vary ∆ from 1
to 4. This range of ∆ corresponds to the Bayes error rates from 31% to 2% approximately. Table
2 gives the ARE values of the various methods considered in the foregoing section.

First of all, the ARE values are less than one for each method compared to the LDA as a
plug-in rule with the maximum likelihood estimators of the model parameters. So, the main focus
of comparison in this normal setting is how much efficiency is lost in reducing the error rate when
we bypass modeling of the underlying probability distribution in full.

The SVM and boosting, as large margin classifiers widely used in applications, are shown to
be less efficient than logistic regression across the range of ∆ values. In other words, modeling
at least the conditional probability helps use data more efficiently than maximizing classification
margins under the hinge loss or the exponential loss. The efficiency of both methods relative to
LDA diminishes quickly when the two classes become more separable. Between the two, the SVM
is slightly more efficient than boosting as the latter heavily focuses on outlying observations near
the classification boundary. Especially when two classes are nearly separable, boosting becomes
very ineffective in using data. When the Bayes error is less than 6%, boosting requires more than
twice the data needed for the SVM to attain the same accuracy asymptotically.

Among the SVM and its variants, surprisingly, the smooth SVM turns out to be very efficient,
even better than logistic regression and the vanilla SVM for each value of ∆. Probably, it can be,
in part, explained by the analogue that regression with the squared error loss is often more efficient
than its counterpart with the absolute deviation loss in estimating the mean especially in such
situations as the normal setting. More explicitly, we note that there is a close connection between
Fisher’s LDA and a naive regression approach to classification with class labels as the response. It
can be shown that the least squares coefficient β̂ is identical up to a scalar multiple to the LDA
coefficient, that is, β̂ ∝ Σ̂−1(µ̂+ − µ̂−); see, for example, an exercise in Chapter 4 of Hastie et al.
(2001). From the relation

n
∑

i=1

(yi − β0 − β′xi)
2 =

n
∑

i=1

(1− yi(β0 + β′xi))
2,

we see that squaring the hinge loss has a similar effect as the squared error loss. Moreover, the
asymptotic analysis with the squared error loss confirms that the naive regression approach to
classification is equivalent to the LDA in the limit under the canonical LDA setting with equal
proportions. See Appendix A for details. Raising the power of the hinge loss further to three did
not improve the Smooth SVM in terms of ARE values. The cubed hinge loss was comparable to
logistic regression (the results not shown in the table).
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As an intermediate method, the Huberized SVM lies generally between the SVM and the smooth
SVM in term of the relative efficiency. As the bending constant k decreases, the Huberized SVM
approaches the smooth SVM and its relative efficiency converges to that of the smooth SVM. When
k is as small as −1.5 as shown in Table 2, the Huberized SVM is virtually as efficient as the smooth
SVM.

Table 2: Asymptotic relative efficiency of classification methods to LDA

∆ Bayes Error Logistic SVM Boosting Smooth Huberized SVM
Regression SVM k = −1.5 k = −1 k = 0

1.0 0.3085 0.995 0.872 0.974 0.999 0.999 0.999 0.968
1.5 0.2266 0.968 0.829 0.890 0.981 0.981 0.981 0.939
2.0 0.1587 0.899 0.762 0.736 0.925 0.925 0.924 0.876
2.5 0.1056 0.786 0.664 0.537 0.820 0.820 0.818 0.771
3.0 0.0668 0.641 0.541 0.343 0.678 0.678 0.676 0.633
3.5 0.0401 0.486 0.411 0.190 0.521 0.520 0.518 0.483
4.0 0.0228 0.343 0.290 0.092 0.371 0.371 0.369 0.343

NOTE: The column for logistic regression has been taken from Efron (1975).

4.2 Numerical Comparison with Finite-Sample Excess Error

To complement the theoretical comparison for large sample case, we carried out numerical compar-
isons of the expected excess error rates of the procedures for finite samples by varying the sample
sizes from small to large (50 to 1000).

Given sample size n, we generated training data from the canonical LDA setting with five
covariates (p = 5) and equal class proportions (π+ = π−). Two values of ∆ were considered for
simulation: ∆ = 2 with the Bayes error of 15.87%, and ∆ = 3 with the Bayes error of 6.68%. Then
we applied the classification methods in Table 2 to each simulated data set, and calculated the
excess error of each method analytically. We repeated this process 1000 times for each sample size,
and estimated the expected excess error rate by using the average of the data-specific error rates
over the 1000 replicates. To reduce the variance of the mean excess error estimate due to different
data realization along the sequence of sample sizes, we generated nested training data; training
data with smaller sizes are always included in the training data with larger sizes.

Figure 1 shows the mean excess error rates of the classification methods estimated for finite
samples. The scale on the x-axis is 1/n. The estimated mean excess error curves show strong linear
relationship with 1/n as the asymptotic theory suggests. Overall the excess error decreases to 0 at
the rate of 1/n. The LDA has the smallest slope (fastest reduction in error) followed by the Smooth
SVM, logistic regression, the SVM, and boosting in the respective order as implied by the ARE
comparison. This result suggests that the asymptotic comparisons are relevant even in moderate
sample size cases. Table 2 indicates that as two classes become more separable, the efficiency of
the other classification methods relative to the LDA drops. Figure 1 confirms that the increasing
loss of efficiency occurs with the larger value of ∆ for all the other methods in finite-sample cases.
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Figure 1: Finite-sample mean excess error rates of classification methods as the sample size varies.
Data are simulated from the five dimensional canonical LDA setting with equal class proportions
and (a) ∆ = 2 (Bayes error of 15.87%); (b) ∆ = 3 (Bayes error of 6.68%).

5 Comparisons Under Model Mis-specification or Data Contami-

nation

The analysis so far is under the LDA setting, expectedly yielding favorable results for the LDA.
In practice, there are many factors that may complicate proper modeling of data. For instance,
a model could be misspecified or part of data may not follow the specified model even when it is
correctly specified. By taking into account such realistic constraints in data modeling, we consider
two scenarios different from the LDA setting for more comprehensive comparisons while restricting
comparisons to linear classifiers only.

5.1 Mislabeling in LDA Setting

In the first scenario, we compare the robustness of the SVM and its variants when there is a
positive probability of mislabeling y. To generate mislabeled data, we first simulate data from the
canonical LDA setting and perturb the data by flipping the class labels of a certain proportion of
cases selected at random.

For simulation, the proportions of ±1 were set to equal, p = 5, and ∆ = 2.7, which yields the
Bayes error rate of 8.851%. The sample size was n = 100, and 400 replicates of mislabeled samples
with varying perturbation fractions were generated. Estimated discriminant functions were then
evaluated in terms of the excess error rate from the Bayes error.

Figure 2 displays the mean excess error rates of the SVM, smooth SVM and Huberized SVM
with k = −0.5 over the replicates as the perturbation fraction increases. When the perturbation
fraction is small, the smooth SVM remains to be better than the SVM. However, as the misla-
beling proportion increases, the SVM results in lower error rate than the smooth SVM due to its
robustness, analogous to the sample median and mean comparison in location parameter estima-
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Figure 2: Mean excess error rates of SVM and its variants from 400 replicates as the mislabeling
proportion varies when ∆ = 2.7, p = 5, and π+ = π− with the Bayes error rate of 8.851%,
and n = 100. The grey band indicates one standard error bound around the mean estimate for
Huberized SVM from the replicates.

tion. The Huberized SVM as a hybrid method strikes a balance between the two by combining the
squared hinge loss and the plain hinge loss. The result indicates a trade-off between efficiency and
robustness. Further details of the numerical comparisons in other settings and related discussions
can be found in Lee et al. (2011).

5.2 QDA Setting

The second scenario is when the Bayes error rate is not attainable due to model misspecification
for model-based procedures and limitation in the family of discriminant functions for algorithmic
procedures. As a scenario closely related to but different from the LDA setting, we consider a
quadratic discriminant analysis (QDA) setting, where the covariance of one class is a scalar multiple
of that of the other class:

X ∼ Np(µ+,Σ) with probability π+ = P (Y = 1) and

X ∼ Np(µ−, CΣ) with probability π− = P (Y = −1) (22)

with a constant C greater than 1. Figure 3 illustrates the optimal classification boundaries as C
increases. Under this setting with C > 1, the Bayes boundary is no longer linear. Hence all linear
classification methods compared here can not achieve the Bayes error as the sample size goes to
infinity, and we need to take into account the inconsistency of the procedures in comparison.

For more meaningful comparison, consider the following decomposition of the excess error of a
rule φn ∈ F (a restricted class of discriminant functions, for example, linear functions in our case)
based on a sample of size n:

R(φn)−R(φB) = {R(φn)−R(φ∞)}+ {R(φ∞)−R(φF )}+ {R(φF )−R(φB)},

where φF = argminφ∈F R(φ), and φ∞ is the limiting rule of φn as n goes to ∞. The first error
difference on the right hand side is called the estimation error in the machine learning literature.
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Figure 3: Contour plots of probability density functions (in red and green) and the Bayes classifi-
cation boundaries (in blue) when X|Y = 1 ∼ N(µ1,Σ) and X|Y = −1 ∼ N(µ2, CΣ)

It is due to finite sample and converges to zero as n increases. The third difference is known as the
approximation error, which is due to the restriction of F and common to all the linear procedures.
It indicates the non-ignorable gap between the smallest error rate attainable within the class F and
the Bayes error rate. Since the limiting rule φ∞ depends on the method used to choose φn from
F , we call the first term a method-specific estimation error and the second term a method-specific
approximation error. The method-specific approximation error is the key to capturing differences
among the linear procedures in this QDA setting, providing the first order comparison.

For a linear classifier φ ∈ F with discriminant coefficients β in the QDA setting, the error rate
of φ is given by

R(φ) ≡ R(β) = π+Φ

(

−β′µ+ + β0
σ

)

+ π−

[

1− Φ

(

−β′µ− + β0√
Cσ

)]

, (23)

where σ ≡
√

β′Σβ. Then the optimal linear classifier φF can be identified with the minimizer β∗

of R(β):

β∗ = Σ−1(µ+ − µ−),

β∗
0 =

√

C{(µ+ − µ−)
′β∗}2

(C − 1)2
+

Cσ2(2 log π+

π−

+ logC)

C − 1
− C

C − 1
(µ+ − µ−)

′β∗.

To compute the method-specific approximation error of each method under consideration, we
first obtain the limiting classification rule φ∞ within F by applying large sample theory to the
sample discriminant coefficients. The results are summarized in Appendix B.

For numerical illustration, suppose that p = 10, π+ = 0.5, Σ = I, µ+ = (−1, 0, . . . , 0)′, and

µ− = (1, 0, . . . , 0)′ (hence with ∆ ≡ {(µ+ − µ−)
′Σ−1(µ+ − µ−)}

1
2 = 2) in the QDA setting of
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Figure 4: (a) Decomposition of the minimum linear classification error into the Bayes error and
the approximation error; (b) Method-specific approximation error of linear classifiers in the QDA
setting with ∆ = 2, Σ = I, p = 10, and π+ = π−.

(22). The Bayes error rate is achieved by the theoretical quadratic discriminant analysis and can
be expressed as

R(φB) = π+P (χ2
p,λ1

> M) + π−P (χ2
p,λ2

<
M

C
),

where M =
C

(1− C)2
∆2 − C

1− C
(2 log

π+
π−

+ p logC), and χ2
p,λ1

and χ2
p,λ2

are the chi-square

random variables with degrees of freedom p and non-centrality parameters λ1 =
∆2

(1− C)2
, and

λ2 =
C∆2

(1− C)2
, respectively.

Figure 4(a) depicts the decomposition of the minimum linear classification error R(φF ) into
the Bayes error R(φB) and the approximation error, R(φF ) − R(φB), as we vary C from 1 to 4.
The height of the dark grey area shows the Bayes error rate, and that of the light grey region
indicates the approximation error when F is restricted to linear classifiers in the QDA setting.
C = 1 corresponds to the LDA setting, and the approximation error becomes zero. As C increases,
the approximation error increases.

Figure 4(b) shows the method-specific approximation errors for comparison as C varies. When
C > 1, the limiting error rates of the methods are greater than the smallest linear classification
error in general. However, the effect of “model misspecification” or restriction to linear classifiers
when, in fact, quadratic discriminant functions are needed, differs among the methods in terms of
the increased error, R(φ∞) − R(φF ). As the extent of misspecification increases, the linear SVM
turns out to be most robust to the change of C, followed by the LDA and smooth SVM. The
approximation error of boosting grows more substantially than the other methods as C increases.
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6 Conclusion

This paper has shown that many popular classification methods can be compared analytically in
terms of the efficiency in reducing error rates, using standard asymptotic techniques. Though the
results are obtained under a special setting where clean analysis is feasible, they lead to interesting
theoretical comparisons of the methods and shed light on their relative merits and drawbacks.

When modeling approach is compared with algorithmic approach under the normal setting, it is
found that modeling generally leads to more efficient use of data. In particular, the SVM is shown
to be between 40% and 67% as effective as LDA while boosting is between 20% and 54% as effective
as LDA, when the Bayes error rate of the normal setting ranges from 4% to 10%. However, a loss
function plays an important role in determining the efficiency of the corresponding procedure. The
smooth SVM with squared hinge loss turns out to be more effective than logistic regression under
the normal setting.

Since the correct form of a model is not known a priori in practice, it is important to understand
the impact of model misspecification on the error rate, which is closely linked to robustness of clas-
sification methods. The comparisons under the QDA setting and the LDA setting with mislabeling
of y indicate that there is a trade-off between efficiency and robustness.

The theoretical comparisons presented in this paper can be extended in many directions. To
extend the scope of comparison to more complex settings with a nonlinear boundary, various prob-
ability models for two classes can be considered together with expanding families for discriminant
functions. Possible models include the QDA setting with quadratic discriminant functions as an
immediate extension of the current setting, and a mixture of several Gaussian components for each
class. Further nonparametric generalization can be achieved via expansion of discriminant fea-
tures, either by basis expansion or feature mapping through a kernel (Schölkopf and Smola 2002).
Undoubtedly, analytical comparisons will become increasingly complex for the progression from
parametric to nonparametric setting.

Another direction of extension is to allow the dimension p to grow with n. In the current analysis,
the dimension of the attributes p is assumed fixed, and the limiting behavior of a discriminant
function for each method is examined as the sample size n goes to ∞. In the classical asymptotics
setting, a probability model of modest complexity can be estimated reasonably well with a sufficient
number of observations. However, one of the main challenges faced in modern data analysis is high
dimensionality of data. Practical successes of such prediction-oriented classification procedures as
the SVM and boosting partly lie in their ability to handle high dimensional features. In one of
the earlier references of the SVM, Cortes and Vapnik (1995) noted how quickly the number of
parameters to estimate increases in Fisher’s normal discriminant paradigm as the dimension of
the feature space increases, and proposed to aim at classification boundary directly, instead of
probability model parameters. Empirical evidence from numerical studies also points to potential
advantages of non model-based methods for high dimensional data. To cope with the dimensionality,
it is necessary to put the procedures under consideration in a regularization framework for both
technical and computational reasons. It would be interesting to extend the current analysis to
high dimensional setting with proper regularization of discriminant coefficients and to study the
effect of a different style of regularization on the error rate and efficiency. Theory of constrained
(or penalized) M -estimators will be useful for comparisons of relative merits of the competing
procedures; see, for example, Bühlmann and Van De Geer (2011), and see also Bickel and Levina
(2004) and Rocha et al. (2009) for related results.
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Appendix A: Naive Regression Approach

The naive regression approach to classification finds the discriminant coefficients β0 and β by
minimizing the residual sum of squares or equivalently the empirical risk under ρ(y,x;β0,β) =
(1− y(β0 + β′x))2. Under the LDA setting in (1),

L(β) = Eρ(Y,X;β) = π+(1− β0 − β′µ+)
2 + π−(1 + β0 + β′µ−)

2 + σ2

= π+σ
2(a2p + 1) + π−σ

2(a2m + 1),

where σ, ap, and am are the constants defined before. Taking the derivatives of L(β), and setting
them equal to 0, we have the following equations:

∂L(β)

∂β0
=− 2π+σap + 2π−σam = 0

∂L(β)

∂β
=− 2π+σapµ+ + 2π−σamµ− + 2Σβ = 0.

The above equations are simplified to

π+ap = π−am

Σ
1
2ω∗ = π+apµ+ − π−amµ−,

which are similar to (7) and (8). Solving S(β) = 0 for β, we get

β∗
0 =

am − ap
ap + am +∆

− 1

2
(µ+ + µ−)

′β∗

and

β∗ =
2

(ap + am +∆)∆
Σ−1(µ+ − µ−),

where ap = 1/(π+∆) and am = 1/(π−∆). With simple expressions for the constants ap and am,
the calculation of H(β∗) and G(β∗) becomes straightforward.

When π+ = π−, the optimal parameters reduce to

β∗
0 = −1

2
(µ+ + µ−)

′β∗

β∗ =
2

(2a∗ +∆)∆
Σ−1(µ+ − µ−) =

2

4 + ∆2
Σ−1(µ+ − µ−),

and they are proportional to the LDA parameters with the proportional constant cNR ≡ 2
4+∆2 .

Under the canonical LDA setting with equal class proportions in particular, β∗
0 = 0 and β∗ =

cNRβ
∗
LDA, and we obtain

H(β∗) = 2





1 0

0 Ip +
∆2

4 Jp





and

G(β∗) =
16

4 + ∆2







1 0

0 Ip +
∆2(∆2−4)
4(∆2+4)

Jp






.
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Hence, the covariance matrix in the limit distribution of the discriminant coefficients is

H(β∗)−1G(β∗)H(β∗)−1 =
4

4 +∆2























1 0 · · · 0

0 4(∆4+16)
(∆2+4)3

1
. . .

...
...

. . .
. . .

0
0 · · · 0 1























.

Using this result, we can see that the relative efficiency of the naive regression method to LDA is
actually 1 for every ∆.

Appendix B: Limiting Discriminant Coefficients in QDA Setting

Using the standard asymptotics to the sample LDA coefficients, we get the following limiting
discriminant coefficients for LDA:

β∗
0 = log

π+
π−

− 1

2(π+ + Cπ−)
(µ+ − µ−)

′Σ−1(µ+ + µ−),

β∗ =
1

π+ + Cπ−
Σ−1(µ+ − µ−),

which reduce to the theoretical LDA coefficients when C = 1. Application of Theorem 1 to the rest
of the methods yields the desired limiting rules. The SVM has the limiting rule with the coefficients
given by

β∗
0 =

√
Cam − ap

ap +
√
Cam +∆

− 1

2
(µ+ + µ−)

′β∗

β∗ =
2

[ap +
√
Cam +∆]∆

Σ−1(µ+ − µ−),

where

∆ = {(µ+ − µ−)
′Σ−1(µ+ − µ−)}

1
2 , ap =

1− β∗
0 − µ′

+β
∗

σ
and am =

1 + β∗
0 + µ′

−β
∗

√
Cσ

,

and ap and am solve the following equations:

π+Φ(ap) = π−Φ(am)

φ(ap)

Φ(ap)
+

√
C
φ(am)

Φ(am)
= ∆.

The coefficients for the smooth SVM have exactly the same form as those for the SVM, but ap and
am solve different equations akin to (17) and (18) in the LDA setting:

π+Θ(ap) = π−
√
CΘ(am)

π+Θ(ap)∆ = π+Φ(ap) + π−CΦ(am).
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Identification of β∗ for boosting is straightforward, and it can be shown that

β∗
0 =

1

2
log

π+
π−

− 1

2(1 + C)
(µ+ − µ−)

′Σ−1(µ+ + µ−) +
1− C

4(1 + C)2
∆2

β∗ =
1

1 +C
Σ−1(µ+ − µ−).

On the contrary, β∗ for logistic regression is defined as the solution to the following integral equa-
tions without any closed form expression:

π+

∫ ∞

−∞

exp[σt− (β0 + β′µ+)]

1 + exp[σt− (β0 + β′µ+)]
exp(− t2

2
)dt

= π−

∫ ∞

−∞

exp[
√
Cσt+ (β0 + β′µ−)]

1 + exp[
√
Cσt+ (β0 + β′µ−)]

exp(− t2

2
)dt

and

π+

∫ ∞

−∞

(

tΣβ

σ
− µ+

)

exp[σt− (β0 + β′µ+)]

1 + exp[σt− (β0 + β′µ+)]
exp(− t2

2
)dt

= π−

∫ ∞

−∞

(√
CtΣβ

σ
+ µ−

)

exp[
√
Cσt+ (β0 + β′µ−)]

1 + exp[
√
Cσt+ (β0 + β′µ−)]

exp(− t2

2
)dt.

Nevertheless, the approximation error of logistic regression can be numerically obtained.
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