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Abstract

Statistical optimality in multipartite ranking is investigated as an extension of bipartite rank-
ing. We consider the optimality of ranking algorithms through minimization of the theoretical
risk which combines pairwise ranking errors of ordinal categories with differential ranking costs.
The extension shows that for a certain class of convex loss functions including exponential loss,
the optimal ranking function can be represented as a ratio of weighted conditional probability
of upper categories to lower categories, where the weights are given by the misranking costs.
This result also bridges traditional ranking methods such as proportional odds model in statis-
tics with various ranking algorithms in machine learning. Further, the analysis of multipartite
ranking with different costs provides a new perspective on non-smooth ranking measures such
as the discounted cumulative gain (DCG) and preference learning. We illustrate our findings
with simulation study and real data analysis.

1 Introduction

The need for ranking given instances arises in a wide range of applications as in collaborative
filtering, information retrieval, recommender systems, and computational biology. For example,
given a query, we want to rank web pages according to their relevance to the query. As a supervised
learning problem, ranking concerns how to learn a general rule to order instances from training
data with attributes and associated labels that determine the desired preference between observed
instances. Using the observed ordering of instances, we estimate a ranking (or scoring) function
such that the resulting scores reflect the ordinal relation among the labels.

There are various forms of ranking problems in the machine learning literature, including bi-
partite ranking, multipartite ranking, preference learning, and multilabel ranking in the context
of multilabel classification. Bipartite ranking is a special form of ranking, where instances have
only binary labels (e.g. positive or negative). A desired ranking function, whose scores induce an
ordering over the instance space, would assign higher scores to positive instances than negative
instances. The standard loss used in bipartite ranking penalizes violation of the order of a pair of
instances with known preference. Minimization of the proportion of misordered pairs is shown to
be equivalent to maximization of the Area Under the ROC Curve (AUC) through the link between
the AUC criterion and the Wilcoxon-Mann-Whitney statistic; see Hanley and McNeil (1982) and
Cortes and Mohri (2004).

∗Lee’s research was supported in part by National Science Foundation grant DMS-12-09194.
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There is a great parallel between binary classification and bipartite ranking. From this per-
spective, bipartite ranking has been studied quite extensively from computational to theoretical
aspects. Several ranking algorithms are inspired by analogous classification methods. For exam-
ple, RankBoost (Freund et al. 2003), RankNet (Burges et al. 2005), and AUC maximizing support
vector machine (SVM) (Brefeld and Scheffer 2005, Rakotomamonjy 2004) are a ranking version
of AdaBoost, logistic regression, and SVM. In general, the computational strategy of convex risk
minimization with a surrogate loss for classification has been adopted for bipartite ranking.

On the theoretical front, the notion of the Bayes ranking function or the best ranking function
with minimum ranking error has been established in parallel with the the Bayes classification rule in
classification. Clémençon et al. (2008) and Uematsu and Lee (2011) showed that the theoretically
optimal ordering over the instance space is determined by the likelihood ratio of the positive label
to the negative label, and the best ranking functions under some convex loss criteria produce the
same ordering. Uematsu and Lee (2011) further examined the ranking calibration condition for
a family of convex surrogate loss criteria to ensure ranking consistency akin to the classification
calibration condition in Bartlett et al. (2006) and identified the explicit form of optimal ranking
functions under some loss criteria. With the theory of U -processes, Clémençon et al. (2008) studied
the consistency of empirical risk minimizers in bipartite ranking. Agarwal et al. (2005) and Agarwal
and Niyogi (2005) obtained generalization bounds for ranking, using the standard learning theory.
Recently, Kot lowski et al. (2011) and Agarwal (2013) investigated bipartite ranking consistency
through regret bounds when discriminant functions from binary classification are directly used as
ranking functions.

The aim of this paper is to investigate the notion of optimal ranking functions under extension
of the bipartite ranking error on the population level when there are more than two ordered labels,
and to generalize the results in bipartite ranking to the multipartite case. This optimality is then
used to define consistency in multipartite ranking.

Through the framework of pairwise ranking with differential costs, we show that for a certain
class of convex loss functions, the optimal ranking function can be represented as a ratio of a
weighted sum of conditional probabilities of upper categories to that of lower categories, where the
weights are given by the misranking costs. Based on the results, we investigate the link between
statistical methods including subset ranking using regression in Cossock and Zhang (2008), ordinal
regression in Chu and Keerthi (2007) and Shashua and Levin (2003), proportional odds model in
McCullagh (1980) and other pairwise ranking methods as in Agarwal and Niyogi (2009), and show
that the optimal function in each method can be represented as such a ratio. Further we investigate
the consistency of risk minimization with a convex surrogate loss in the multipartite case and
propose several convex risk minimization techniques that can guarantee ranking consistency.

In addition, we consider non-smooth ranking measures that capture the practical need for ac-
curacy of the instances near the top of the list in many ranking applications. There are several
non-smooth ranking measures: for example, the average precision (AP), normalized discounted cu-
mulative gain (NDCG) and others (Rudin 2009, Cossock and Zhang 2008, Clémençon and Vayatis
2007, Le and Smola 2007). Many papers have proposed optimization methods for such ranking
measures; see Xu and Li (2007) and Yue et al. (2007), for instance, and Chen et al. (2009) for theo-
retical investigation. We provide a new perspective on non-smooth ranking measures in connection
with pairwise ranking with differential costs.

Some earlier work on performance measures and optimal ranking functions in multipartite
ranking includes Waegeman and Baets (2011), Waegeman et al. (2008), and Clémençon et al. (2011).
These references are concerned about maximization of the Volume Under the ROC Surface (VUS)
as the main evaluation metric, which differs from minimization of the expected pairwise ranking
cost in this paper. The analysis of optimality in Clémençon et al. (2011) employs a stringent

2



condition called the likelihood ratio monotonicity, which assumes that the order of instances given
by likelihood ratio for any pair of lower and upper categories is the same. This assumption is so
strong that it reduces multipartite ranking to a collection of bipartite ranking problems, which is in
contrast with minimization of the average pairwise ranking cost and ordinal regression considered
in this paper.

This paper is organized as follows. Section 2 reviews the problem setting and basic results about
the optimal ranking functions and consistency in bipartite ranking. Section 3 introduces a pairwise
loss function weighing misranking costs for multipartite ranking, and extends the theoretically
optimal ranking function in bipartite ranking to the multipartite case as a minimizer of the ranking
risk under the loss. Section 4 examines the relation between the optimal ranking function for the
pairwise approach and the population version of the target ranking function for commonly used
ordinal regression methods such as ordinal regression boosting, support vector ordinal regression,
and proportional odds model. Alternatively, Section 5 considers convex risk minimization with
surrogate loss functions, and discusses necessary adjustment to ensure ranking consistency. Further,
connection between pairwise ranking risk minimization and optimization of non-smooth ranking
measures is investigated. Section 6 presents numerical analysis using simulation data and MovieLens
data for illustration, followed by conclusion in Section 7.

2 Review of Bipartite Ranking

Let X be the space of objects or instances that we want to rank and Y be the space of labels.
Suppose that we have training data for ranking which consist of independent pairs of (X,Y ) from
X × Y. Each object has associated attributes X for ranking and an ordinal response Y .

A ranking function is a real-valued function defined on X , f : X → R, whose values determine
the ordering of instances. An object x is considered to be preferred to x′ by f if f(x) > f(x′).
From the training data, we want to learn a ranking function f such that objects with higher label
are generally scored higher than those with lower label, that is, f(x) > f(x′) if y > y′ for a pair of
(x, y) and (x′, y′).

For example, consider constructing a movie recommender system which produces an ordered list
of movies to users based on movie attributes (e.g. genre and release year) and user characteristics
(e.g. gender and age). In this case, a ranking function f for the system assigns scores to movies
for recommendation using the information about a movie and a user. Given training data of movie
ratings in Y with attributes of movies and users in X , we can learn a scoring function by considering
two distinctive ratings y and y′ with corresponding movie and user information x and x′ in a pairwise
manner. The scoring function is expected to preserve the observed orderings, satisfying the relation
that f(x) > f(x′) if y > y′ for a pair of (x, y) and (x′, y′).

As a special case of ranking, bipartite ranking refers to the case when there are only two labels
represented as Y = {1,−1}. The labels are called positive and negative, respectively, analogous to
binary classification. We review the concepts and results obtained for bipartite ranking first as the
most basic form of ranking and discuss their extensions to multipartite ranking.

For each pair of a positive object x and a negative object x′, the bipartite ranking loss of f is
defined as

L0(f ; x, x′) = I(f(x) < f(x′)) +
1

2
I(f(x) = f(x′)), (1)

where I(·) is the indicator function. Note that the loss is invariant under any order-preserving
transformation of f . L0(f ; x, x′) can be expressed as l0(f(x) − f(x′)), where l0(s) = I(s < 0) +
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1
2I(s = 0). The theoretical ranking risk of f is then defined as

R0(f) = EX,X′ [L0(f ; X,X ′)]

= P (f(X) < f(X ′)|Y = 1, Y ′ = −1) +
1

2
P (f(X) = f(X ′)|Y = 1, Y ′ = −1).

Ranking risk minimization is shown to be equivalent to the AUC maximization as the AUC is one
minus the ranking risk.

Assuming that X is a continuous random variable or vector, let g+ be the pdf of X for the
positive category, and let g− be that for the negative category. We further assume that 0 < g+(x) <
∞ and 0 < g−(x) < ∞ for x ∈ X in this paper. Under this setting, the optimal ranking function for
bipartite ranking is shown to be any order-preserving function of the likelihood ratio of x under two
categories g+(x)/g−(x) as stated in the following theorem. See Clémençon et al. (2008), Uematsu
and Lee (2011), Kot lowski et al. (2011) and Agarwal (2013).

Theorem 1. Let f∗
0 (x) ≡ g+(x)/g−(x). For any ranking function f ,

R0(f∗
0 ) ≤ R0(f).

Let p1(x) = P (Y = 1|X = x). Then, alternatively, the optimal ranking function can be
represented by p1(x)/(1 − p1(x)), which is proportional to g+(x)/g−(x). We will use a similar
representation of the optimal ranking function for multipartite ranking in later sections.

It is worth noting that p1(x)/(1 − p1(x)) is essential not only in ranking but also regression
and classification. It is known that c∗(x) = sign[log{p1(x)/(1 − p1(x))}] achieves the Bayes risk in
classification (the minimum error rate). Hence, consistent classification methods that estimate the
conditional probability p1(x) or equivalently logit can be used for ranking. In regression, the least
squares estimator approximates E[Y |x] = P (Y = 1|x) − P (Y = −1|x), which can be expressed
as 1 − 2{1 + p1(x)/(1 − p1(x))}−1, a monotonic transformation of p1(x)/(1 − p1(x)). Thus the
difference among regression, soft classification (probability model based classification) and ranking
is not essential in bipartite ranking asymptotically, and it is justified to tackle ranking via soft
classification or even regression on the population level.

2.1 Consistency in Bipartite Ranking

Given the training data with n+ positive objects {xi}
n+

i=1 and n− negative ones {x′
j}

n−

j=1, we can
define the best ranking function on the sample level as the function f minimizing the empirical
ranking risk by considering all pairs of positive and negative instances in the training data:

Rn+,n−
(f) =

1

n+n−

n+
∑

i=1

n−
∑

j=1

l0(f(xi) − f(x′
j)).

However, Rn+,n−
is computationally hard to minimize over f since l0 is a non-convex function.

To circumvent the computational issue, many researchers have proposed ranking algorithms that
replace the bipartite ranking loss with a convex surrogate loss, for example, RankBoost (Freund
et al. 2003), RankNet (Burges et al. 2005), and support vector ranking (Brefeld and Scheffer 2005).

Given a ranking function f and a pair of a positive instance x and a negative instance x′,
consider a non-negative, non-increasing convex function l : R → R

+ ∪ {0} as a surrogate loss
function, which defines l(f(x) − f(x′)) as a ranking loss. For example, the RankBoost algorithm
takes the exponential loss, l(s) = exp(−s), and the support vector ranking takes the hinge loss,
l(s) = (1 − s)+ as a surrogate loss.
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When a surrogate loss l is used instead of l0, there arises the issue of whether f∗ minimizing the
surrogate risk Rl(f) ≡ E[l(f(X)−f(X ′))] among all measurable functions f : X → R may actually
minimize the ranking error R0(f). A similar issue arises in binary classification, and conditions
for surrogate loss functions to ensure classification consistency or classification calibration have
been identified (see, for example, Bartlett et al. 2006). As a ranking analogue, Uematsu and Lee
(2011) studied conditions of surrogate loss functions for ranking consistency or ranking calibration in
bipartite ranking and further identified the forms of the optimal ranking functions under surrogate
losses. See also Agarwal et al. (2005), Agarwal and Niyogi (2005), and Agarwal and Niyogi (2009)
for AUC generalization bounds, and Kot lowski et al. (2011) and Agarwal (2013) for bipartite
ranking consistency through regret bounds when discriminant functions from binary classification
are directly used as ranking functions.

The following theorem from Uematsu and Lee (2011) states conditions for ranking calibration,
and shows that for a ranking-calibrated loss l, the optimal ranking function f∗ under l preserves
the order of the likelihood ratio f∗

0 .

Theorem 2. Suppose that l is convex, non-increasing, differentiable, and l′(0) < 0. Let f∗ ≡

arg minf Rl(f). For almost every (x, z) ∈ X × X , g+(x)
g−(x) > g+(z)

g−(z) implies f∗(x) > f∗(z).

The theorem provides justification for RankBoost and RankNet since l(s) = exp(−s) and l(s) =
log(1+exp(−s)) satisfy the conditions above and thus the optimal ranking function f∗ derived under
l preserves the order of the likelihood ratio without ties.

On the other hand, l(s) = (1 − s)+, the hinge loss in support vector ranking has a singularity
point at s = 1 and does not satisfy the conditions. Uematsu and Lee (2011) have shown that the
optimal ranking function under the hinge loss can produce ties between objects with distinct values
of the likelihood ratio, which leads to ranking inconsistency. Further, the theoretical analysis of
ranking under the hinge loss in the paper suggests that the support vector ranking could produce
granularity in ranking scores.

3 Extension to Multipartite Ranking

For extension of the results in bipartite ranking, we begin with loss functions for multipartite rank-
ing. Several evaluation metrics for ranking error have been proposed; see, for example, Waegeman
et al. (2008), and Hand and Till (2001). We briefly review some of the evaluation criteria designed
for multipartite ranking.

Consider a K-partite ranking problem where the ordinal responses yi in the training data,
{(x1, y1), . . . , (xn, yn)}, are in Y = {1, . . . ,K}. Let nj be the number of observations in the category
j ∈ {1, . . . ,K}. Waegeman et al. (2008) considered the following evaluation metrics for a given
ranking function f :

Ûpairs(f) =
1

∑

l′<l nl′nl

∑

yi<yj

I(f(xi) < f(xj)). (2)

Ûovo(f) =
2

K(K − 1)

∑

l′<l

Âl′l, where Âl′l =
1

nl′nl

∑

yi=l′

∑

yj=l

I(f(xi) < f(xj)). (3)

Ûcons(f) =
1

K − 1

K−1
∑

l=1

B̂l, where B̂l =
1

∑l
i=1 ni

∑K
j=l+1 nj

∑

yi≤l

∑

yj>l

I(f(xi) < f(xj)). (4)
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Given a pair of (x, y) and (x′, y′) with y > y′, let Lt(f ; x, x′) = I(f(x) ≤ f(x′)), where a tie is
considered as an error, for simplicity. For the evaluation metrics, define R̂pairs(f) = 1 − Ûpairs(f),
R̂ovo(f) = 1 − Ûovo(f), and R̂cons(f) = 1 − Ûcons(f), respectively.

Then we see that R̂pairs(f) is the empirical ranking risk under the simple loss function Lt

evaluated over all the pairs of (yi, yj) with yi > yj. On the other hand, R̂ovo (Hand and Till 2001)
can be regarded as the average of the (1−AUC) values by considering all pairs of the categories in
the “one versus one” (abbreviated as “ovo”) fashion, where Âl′l equals the AUC for the ranking
function f when l′ and l are considered. Just as the AUC is related to Mann-Whitney statistic
for a two-sample location problem, Ûovo is related to Jonckheere-Terpstra statistic for a K-sample
location problem. The rationale behind R̂cons is to transform multipartite ranking into (K − 1)
bipartite ranking problems, where two categories are formed by taking the first “consecutive” l
categories, {1, . . . , l} as negative, and the rest {l + 1, . . . ,K} as positive for l = 1, . . . ,K − 1. Then
R̂cons is the average of the (1−AUC) values for the (K − 1) bipartite ranking problems, where B̂l

is the AUC of f for the lth problem.
These metrics are easy to interpret, and their differences mainly lie in the way the weights are

assigned to the ranking risk of f for each pair of categories, as a function of sample sizes {ni}
K
i=1.

On the other hand, these evaluation metrics do not reflect potentially different consequence of
misranking categories. For example, misranking of instances in categories 1 and K is more serious
than misranking of instances in categories 1 and 2 or categories K − 1 and K. To take such
differential costs into account, we consider a general representation of a loss function for ranking
analogous to multicategory classification with differential costs.

For K ≥ 2 and a pair of (x, y) and (x′, y′) with y > y′, we define a loss L0 for ranking function
f as

L0(f ; (x, y), (x′, y′)) = cy′y

[

I(f(x) < f(x′)) +
1

2
I(f(x) = f(x′))

]

, (5)

where cy′y is a non-negative cost of incorrectly ranking y′ above y. L0 is an extension of the bipartite
ranking loss in (1). It encompasses existing loss functions for multipartite ranking.

Let c = {cji|j < i for i, j = 1, . . . ,K} represent a set of misranking costs. Then under the loss
L0, the ranking risk of f is given as

R0(f ; c) = E[L0(f ; (X,Y ), (X ′, Y ′))|Y > Y ′]

=
∑

1≤j<i≤K

cjiP (f(X) < f(X ′)|Y = i, Y ′ = j, Y > Y ′)P (Y = i, Y ′ = j|Y > Y ′)

+
1

2

∑

1≤j<i≤K

cjiP (f(X) = f(X ′)|Y = i, Y ′ = j, Y > Y ′)P (Y = i, Y ′ = j|Y > Y ′)

=
∑

1≤j<i≤K

cjiP (f(X) < f(X ′)|Y = i, Y ′ = j)P (Y = i, Y ′ = j)/P (Y > Y ′)

+
1

2

∑

1≤j<i≤K

cjiP (f(X) = f(X ′)|Y = i, Y ′ = j)P (Y = i, Y ′ = j)/P (Y > Y ′).

If cji = I(j < i), then R0(f ; c) is the probability of misranking a pair of objects by f . Minimizing
R0(f ; c) is equivalent to maximizing the expected pairwise AUC.

When ties occur with probability zero, the evaluation criteria, R̂pairs(f), R̂ovo(f) and R̂cons(f)
can be viewed as estimates of R0 under L0 with a specific cost structure c. Define R̂0(f ; c) as the

empirical ranking risk over the training data by assigning the equal weight of
1

∑

l′<l nl′nl

to each

6



pair of (xj, yj) and (xi, yi) with yj < yi. When ties occur with probability zero,

R̂0(f ; c) =
∑

1≤l′<l≤K

cl′l

∑

yi=l′

∑

yj=l

I(f(xi) > f(xj))/
∑

l′<l

nl′nl.

When cji = I(j < i), R̂0(f ; c) = R̂pairs(f). Similarly, if cji = 2
K(K−1)

(

P

l′<l nl′nl

ninj

)

, R̂0(f ; c) =

R̂ovo(f), and if cji = 1
K−1

(
∑

l′<l nl′nl

)
∑i−1

l=j (
∑l

k=1 nk

∑K
k′=l+1 nk′)−1, R̂0(f ; c) = R̂cons(f).

Agarwal and Niyogi (2009) have considered the general notion of “ranking preference” to rep-
resent the misranking cost for a pair of (x, y) and (x′, y′), and used |y − y′| as the preference. This
corresponds to the cost of cy′y = y − y′ for y > y′.

Now we identify the theoretical ranking function that minimizes the risk defined above under
some mild conditions on misranking costs. The result can be viewed as a generalized version of
Theorem 1 to multipartite ranking. Proof of the theorem is given in Appendix. It uses a similar
argument as in bipartite ranking based on structured decomposition of the difference of the risks
for an arbitrary ranking function and the optimal function.

Theorem 3.

(i) When K = 3, let f∗
0 (x) :=

c12P (Y = 2|x) + c13P (Y = 3|x)

c13P (Y = 1|x) + c23P (Y = 2|x)
.

Then for any ranking function f ,

R0(f∗
0 ; c) ≤ R0(f ; c).

(ii) When K > 3, let

f∗
0 (x) :=

∑K
i=2 c1iP (Y = i|x)

∑K−1
j=1 cjKP (Y = j|x)

.

If c1Kcji = c1icjK − c1jciK for all 1 ≤ j < i ≤ K, then for any ranking function f ,

R0(f∗
0 ; c) ≤ R0(f ; c).

Theorem 3 implies that for pairwise multipartite ranking, optimal ranking depends on the
ratio of conditional probabilities weighted by misranking costs. Under the natural assumption of
c11 = cKK = 0, the optimal ranking function can be also expressed as

f∗
0 (x) =

E(c1Y |X = x)

E(cY K |X = x)
,

which is the ratio of the expected misranking costs when an instance x from category Y is compared
with the lowest category and the highest category. When higher categories are more likely for x, f∗

0

tends to produce a high ranking score as c1y increases in y while cyK decreases in y. By contrast,
when lower categories are more likely for x, the ratio of the expected costs tends to be small.

The condition on the ranking costs in Theorem 3 (ii) is not too restrictive, and it is satisfied by
a variety of reasonable cost schemes. For example, cji = (i− j)I(i > j) considered by Agarwal and
Niyogi (2009) meets the condition.
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For illumination of the condition, consider a “normalized” cost cij/c1K , where we regard c1K

(usually expected to be the maximum cost) as a normalization term. Then, the condition above is
equivalent to the requirement that for 1 ≤ j < i ≤ K − 1,

cji

c1K

=

(

cjK

c1K

)(

ciK

c1K

)(

c1i

ciK

−
c1j

cjK

)

.

Note the exclusion of i = K in the restatement of the condition as the restriction in the theorem
becomes void when i = K. Here,

cjK

c1K
and ciK

c1K
can be considered as relative weights attached to

labels j and i, and
(

c1i

ciK
−

c1j

cjK

)

can be viewed as relative spacing between the two labels in terms

of cost. Observe that the relative spacing induced in the cost space is additive in the sense that for
1 ≤ k < j < i ≤ K − 1,

(

c1i

ciK

−
c1j

cjK

)

+

(

c1j

cjK

−
c1k

ckK

)

=
c1i

ciK

−
c1k

ckK

.

If we take (c1i/ciK) for i = 1, . . . ,K − 1 as a scale on the label space, then the relative spacing in
the cost can be determined by the corresponding difference on the scale.

Letting wi and si (i = 1, . . . ,K) denote weights and a scale on the label space, respectively, we
can treat the cost scheme in Theorem 3 generally given in the form of cji = wiwj(si − sj)I(i > j).
Application of Theorem 3 to the cost scheme yields the following corollary.

Corollary 1. Suppose that cji = wiwj(si−sj)I(i > j) for some increasing {sj}
K
j=1 and non-negative

{wj}
K
j=1. Let

f∗
0 (x) =

∑K
i=1 siwiP (Y = i|x)

∑K
j=1 wjP (Y = j|x)

.

Then for any ranking function f ,
R0(f∗

0 ; c) ≤ R0(f ; c).

Corollary 1 implies that optimal ranking under the cost scheme with equal weights preserves
the ordering of the expected scale sY given x. For example, when sj = j (a linear scale) and
wj = 1, cji = (i − j)I(i > j) and hence f∗

0 (x) = E[Y |X = x], which is known as the “expected
relevance” given x (Li et al. 2007). Equivalently, the regression approach to ranking in Cossock
and Zhang (2008) by minimization of squared loss

∑n
i=1(f(xi) − yi)

2 leads to estimation of the
expected relevance.

In addition, Corollary 1 indicates that the weights wj have the effect of adjusting the conditional
probability of each category on optimal ranking. When there is discrepancy in the proportions of
categories in training data and the target population, differential weights can be used for desired
adjustment.

4 Relation to Ordinal Regression

The mathematical formulation of multipartite ranking through pairs of low and high labels in the
previous section is conceptually simple and straightforward. However, it is general consensus that
pairwise ranking requires more computational resources than itemwise ranking as the number of
pairs of instances to consider increases in the order of n2, where n is the sample size. Instead,
ordinal regression is commonly used in practice to analyze data with multiple ordinal categories
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as a way of itemwise ranking. Many ranking algorithms are formulated as ordinal regression, for
instance, ordinal regression boosting (ORBoost) and support vector ordinal regression (SVOR).

In this section we consider the relationship between the optimal ranking functions in ordinal
regression and the minimizers of pairwise ranking risk. We show that the solutions to some ordinal
regression methods can be viewed as a special case of the optimal function in multipartite ranking.

Ordinal responses are often modeled as discretized outcomes of a continuous latent variable.
In this case, modeling amounts to finding a real-valued function f(x) associated with the tail
probability of the latent variable given x and thresholds {θi}

K−1
i=1 . Given f and the thresholds, the

estimated response of an instance x is taken as i if θi−1 < f(x) ≤ θi, where θ0 = −∞ and θK = ∞.
Based on these facts, a typical form of loss in ordinal regression for f with thresholds {θi}

K
i=0 is

given by
l(f, {θi}

K
i=0 ; x, y) = l(f(x) − θy−1) + l(θy − f(x)),

and it is often expected that θ1 ≤ . . . ≤ θK−1.
For given loss function l, the risk of f is represented as

EX,Y [l(θY − f(X)) + l(f(X) − θY −1)] =

k
∑

j=1

EX [pj(X)(l(θj − f(X)) + l(f(X) − θj−1))],

where pj(x) = P (Y = j|X = x).
To find f∗ that minimizes the risk, consider the conditional risk given X = x. For fixed x,

K
∑

j=1

pj(x){l(θj−f(x))+l(f(x)−θj−1)} = p1l(f(x)+∞)+pK l(∞−f(x))+

K−1
∑

j=1

pjl(θj−f(x))+pj+1l(f(x)−θj).

If |f(x)| < ∞, the first and the second terms are limx→∞ l(x), which does not depend on f(x). Then
it is necessary that f∗(x) ≡ t∗, the value of the optimal ranking function for fixed θ1, . . . , θK−1,
satisfies

d

dt





K−1
∑

j=1

pj l(θj − t) + pj+1l(t − θj)





∣

∣

∣

∣

t=t∗
=

K−1
∑

j=1

pj+1l
′(t∗ − θj) −

K−1
∑

j=1

pjl
′(θj − t∗) = 0. (6)

4.1 Ordinal Regression Boosting

Ordinal regression boosting in Lin and Li (2006) takes exponential loss, l(s) = exp(−s). The
necessary condition in (6) with the loss leads to

f∗(x) =
1

2
log

∑K
i=2 P (Y = i|x) exp(θ∗i−1)

∑K−1
j=1 P (Y = j|x) exp(−θ∗j )

. (7)

To see the relationship between ORBoost and multipartite ranking in Corollary 1, given θ∗j , let

sj = [1+exp(−θ∗j −θ∗j−1)]−1 and wj = exp(θ∗j−1)(1+exp(−θ∗j −θ∗j−1)) with θ∗0 = −∞ and θ∗K = ∞.
Then cji = exp(θ∗i−1 − θ∗j ) − exp(θ∗j−1 − θ∗i ) for i > j. The ordering restriction on the thresholds
(θ∗i ≥ θ∗j ) yields non-negative ranking costs (cji ≥ 0).

From the following relation

∑K
i=1 siwiP (Y = i|x)

∑K
j=1 wjP (Y = j|x)

=

(

∑K−1
j=1 exp(−θ∗j )P (Y = j|x)

∑K
i=2 exp(θ∗i−1)P (Y = i|x)

+ 1

)−1

,
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we see that the optimal ranking function f∗ in (7) is a monotonic transformation of the function f∗
0

in Corollary 1, and hence the optimal ranking by ORBoost provides a solution to pairwise ranking
risk.

It is hard to specify thresholds analytically. They should be specified numerically in practice. At
least it is guaranteed that there exist {θ∗i }

K−1
i=1 such that the ranking function in (7) is well-defined.

4.2 Proportional Odds Model

One of classical ordinal regression methods in statistics is the proportional odds model. Take
the “nonparametric” version of cumulative logits model proposed by McCullagh (1980), which is
defined as

log
P (Y > j|x)

P (Y ≤ j|x)
= f(x) − θj,

where −∞ = θ0 < θ1 ≤ . . . ≤ θK−1 < θK = ∞. The log likelihood of {yi}
n
i=1 given {xi}

n
i=1 under

the model is

n
∑

i=1

log

(

1

1 + exp(θyi−1 − f(xi))
−

1

1 + exp(θyi
− f(xi))

)

=

n
∑

i=1

log(1 − exp(θyi−1 − θyi
)) − [log (1 + exp(−f(xi) + θyi−1)) + log (1 + exp(−θyi

+ f(xi)))] .

Hence, given {θi}
K
i=0, maximizing the log likelihood amounts to ordinal regression with l(s) =

log(1 + e−s); see Rennie (2006) for further discussions. By considering the population version of
the likelihood above, we arrive at the following equation for optimal ranking f∗ :

d

dt





K−1
∑

j=1

pj+1(x) log (1 + exp(θj − t)) + pj(x) log (1 + exp(t − θj))





∣

∣

∣

∣

t=t∗
= 0,

where f∗(x) ≡ t∗. This is equivalent to the condition:

K−1
∑

j=1

pj(x) + pj+1(x)

1 + exp(θj − t∗)
= 1 − p1(x).

The equation above is valid for general K, but an explicit solution may not be obtainable.
When K = 3, 1 − p1(x) = p2(x) + p3(x). Thus, the equation above is equivalent to

(1 − p3(x))(1 + exp(f∗(x) − θ2)) = (1 − p1(x))(1 + exp(θ1 − f∗(x))),

and since ef∗(x) > 0, it has an explicit solution given by

ef∗(x) =
q(x) − 1 +

√

(q(x) − 1)2 + 4eθ1−θ2q(x)

2e−θ2
, (8)

where

q(x) =
p2(x) + p3(x)

p1(x) + p2(x)
.

This implies that f∗ for the proportional odds model preserves the ordering of q. Note that
q is the ranking function minimizing pairwise ranking risk when c12 = c13 = c23 = 1. Hence the
proportional odds model corresponds to pairwise ranking risk minimization with a special cost
scheme. The implicit ranking cost scheme associated with the proportional odds model, however,
may not be deemed desirable.
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4.3 Support Vector Ordinal Regression

Support vector ordinal regression (SVOR) is an ordinal regression method using the “large margin
principle”, which stems from Support Vector Machine for classification; see Herbrich et al. (2000),
Shashua and Levin (2003) and Chu and Keerthi (2007). It takes the hinge loss l(s) = (1− s)+. We
look at two versions of SVOR.

The first version in Shashua and Levin (2003) aims to minimize the empirical ranking risk under

l(f, {θj}
K
j=0 ; x, y) = (1 − (f(x) − θy−1))+ + (1 − (θy − f(x)))+.

Note that this loss function does not always guarantee the monotonicity of {θj}. Chu and Keerthi
(2007) showed a numerical experiment where the thresholds are not properly ordered.

To discuss some special characteristics of the theoretically optimal ranking function under hinge
loss, we focus on K = 3. The conditional risk given an instance x is

p1(x)l(θ1 − f(x)) + p2(x)[l(f(x) − θ1) + l(θ2 − f(x))] + p3(x)l(f(x) − θ2).

Piecewise linearity of the risk makes identification of f∗ in this case somewhat tedious and enumer-
ative.

With abbreviation of pi(x) as pi, the conditional risk is represented as follows:

Case 1: θ1 ≤ θ2 and θ1 + 1 ≥ θ2 − 1,































p2(1 + θ1) + p3(1 + θ2) − (p2 + p3)f(x) if f(x) ≤ θ1 − 1.

p1(1 − θ1) + p2(1 + θ1) + p3(1 + θ2) + (p1 − p2 − p3)f(x) if θ1 − 1 ≤ f(x) ≤ θ2 − 1.

p1(1 − θ1) + p2(2 + θ1 − θ2) + p3(1 + θ2) + (p1 − p3)f(x) if θ2 − 1 ≤ f(x) ≤ θ1 + 1.

p1(1 − θ1) + p2(1 − θ2) + p3(1 + θ2) + (p1 + p2 − p3)f(x) if θ1 + 1 ≤ f(x) ≤ θ2 + 1.

p1(1 − θ1) + p2(1 − θ2) + (p1 + p2)f(x) if θ2 + 1 ≤ f(x).

Case 2: θ1 ≤ θ2 and θ1 + 1 ≤ θ2 − 1,































p2(1 + θ1) + p3(1 + θ2) − (p2 + p3)f(x) if f(x) ≤ θ1 − 1.

p1(1 − θ1) + p2(1 + θ1) + p3(1 + θ2) + (p1 − p2 − p3)f(x) if θ1 − 1 ≤ f(x) ≤ θ1 + 1.

p1(1 − θ1) + p3(1 + θ2) + (p1 − p3)f(x) if θ1 + 1 ≤ f(x) ≤ θ2 − 1.

p1(1 − θ1) + p2(1 − θ2) + p3(1 + θ2) + (p1 + p2 − p3)f(x) if θ2 − 1 ≤ f(x) ≤ θ2 + 1.

p1(1 − θ1) + p2(1 − θ2) + (p1 + p2)f(x) if θ2 + 1 ≤ f(x).

Hence the minimum is achieved when f(x) is either θ1 − 1, θ2 − 1, θ1 + 1 or θ2 + 1 according to
the sign of p1 − p2 − p3, p1 − p3 and p1 + p2 − p3 in both Cases 1 and 2.

Case 3: θ2 ≤ θ1 and θ2 + 1 ≥ θ1 − 1,































p2(1 + θ1) + p3(1 + θ2) − (p2 + p3)f(x) if f(x) ≤ θ2 − 1.

p2(2 + θ1 − θ2) + p3(1 + θ2) − p3f(x) if θ2 − 1 ≤ f(x) ≤ θ1 − 1.

p1(1 − θ1) + p2(2 + θ1 − θ2) + p3(1 + θ2) + (p1 − p3)f(x) if θ1 − 1 ≤ f(x) ≤ θ2 + 1.

p1(1 − θ1) + p2(2 + θ1 − θ2) + p1f(x) if θ2 + 1 ≤ f(x) ≤ θ1 + 1.

p1(1 − θ1) + p2(1 − θ2) + (p1 + p2)f(x) if θ1 + 1 ≤ f(x).

In this case the minimum is attained when f(x) is either θ1 − 1 or θ2 + 1 depending on the sign
of p1 − p3.
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Case 4: θ2 ≤ θ1 and θ2 + 1 ≤ θ1 − 1,































p2(1 + θ1) + p3(1 + θ2) − (p2 + p3)f(x) if f(x) ≤ θ2 − 1.

p2(2 + θ1 − θ2) + p3(1 + θ2) − p3f(x) if θ2 − 1 ≤ f(x) ≤ θ2 + 1.

p2(2 + θ1 − θ2) if θ2 + 1 ≤ f(x) ≤ θ1 − 1.

p1(1 − θ1) + p2(2 + θ1 − θ2) + p1f(x) if θ1 − 1 ≤ f(x) ≤ θ1 + 1.

p1(1 − θ1) + p2(1 − θ2) + (p1 + p2)f(x) if θ1 + 1 ≤ f(x).

Hence the minimum risk is achieved as long as f(x) is between θ2 + 1 and θ1 − 1.
Define r(x) ≡ (1 − 2p1(x))/p2(x), thresholding of which is very conducive to expressing the

signs of the coefficients of linear terms in the conditional risk. Since p1 + p2 + p3 = 1, the following
equivalence holds:

p1 − p2 − p3 = 2p1 − 1 ⋚ 0 ⇔ r(x) R 0,

p1 − p3 = 2p1 + p2 − 1 ⋚ 0 ⇔ r(x) R 1,

p1 + p2 − p3 = 2p1 + 2p2 − 1 ⋚ 0 ⇔ r(x) R 2.

Then for instance, when θ1 − θ2 ≤ 0 (Cases 1 and 2), there is the following correspondence
between f∗ and r:

r(x) (−∞, 0) (0, 1) (1, 2) (2,∞)

f∗(x) θ1 − 1 min(θ1 + 1, θ2 − 1) max(θ1 + 1, θ2 − 1) θ2 + 1

Similarly, when 0 ≤ θ1 − θ2 ≤ 2 (Case 3), we observe the following relation:

r(x) (−∞, 1) (1,∞)

f∗(x) θ1 − 1 θ2 + 1

Thus the optimal ranking function f∗ is a step function of r, which takes a very different form than
the minimizers of multipartite ranking in our framework as in Theorem 3.

On the other hand, we can see that when θ1 ≤ θ2, r corresponds to the median of Y given x
from the relation:

r(x) (−∞, 0) (0, 2) (2,∞)

Probability p1(x) ≥ 1
2 p1(x) < 1

2 ≤ p1(x) + p2(x) p1(x) + p2(x) < 1
2

Median(Y |X = x) 1 2 3

The second version of SVOR proposed by Chu and Keerthi (2007) is called implicit constraints
method. The new loss function as a modified version of Shashua and Levin (2003)’s is defined as

l(f, {θj}
K
j=0 ; x, y) =

y−1
∑

j=1

(1 − (f(x) − θj))+ +

K−1
∑

j=y

(1 − (θj − f(x)))+.

The loss function does not have the “typical” form of ordinal regression, but it is shown that the
monotonicity of {θj} is always satisfied. For fixed instance x, the conditional risk given x is

p1[l(θ1 − f(x)) + l(θ2 − f(x))] + p2[l(f(x) − θ1) + l(θ2 − f(x))] + p3[l(f(x) − θ1) + l(f(x) − θ2)].
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Again, due to piecewise linearity of the risk, case-by-case consideration is necessary to find f∗(x).
The conditional risk is represented as follows:

Case 1: θ1 + 1 ≥ θ2 − 1






























































p2(1 + θ1) + p3(2 + θ1 + θ2) − (p2 + 2p3)f(x) if f(x) ≤ θ1 − 1.

p1(1 − θ1) + p2(1 + θ1)

+p3(2 + θ1 + θ2) + (p1 − p2 − 2p3)f(x) if θ1 − 1 ≤ f(x) ≤ θ2 − 1.

p1(2 − θ1 − θ2) + p2(2 + θ1 − θ2)

+p3(2 + θ1 + θ2) + (2p1 − 2p3)f(x) if θ2 − 1 ≤ f(x) ≤ θ1 + 1.

p1(2 − θ1 − θ2) + p2(1 − θ2)

+p3(1 + θ2) + (2p1 + p2 − p3)f(x) if θ1 + 1 ≤ f(x) ≤ θ2 + 1.

p1(2 − θ1 − θ2) + p2(1 − θ2) + (2p1 + p2)f(x) if θ2 + 1 ≤ f(x).

Hence the minimum is achieved when f(x) is either θ1 − 1, θ2 − 1, θ1 + 1 or θ2 + 1 depending
on the sign of p1 − p2 − 2p3, 2p1 − 2p3 and 2p1 + p2 − p3.

Case 2: θ1 + 1 ≤ θ2 − 1



















































p2(1 + θ1) + p3(2 + θ1 + θ2) − (p2 + 2p3)f(x) if f(x) ≤ θ1 − 1.

p1(1 − θ1) + p2(1 + θ1)

+p3(2 + θ1 + θ2) + (p1 − p2 − 2p3)f(x) if θ1 − 1 ≤ f(x) ≤ θ1 + 1.

p1(1 − θ1) + p3(1 + θ2) + (p1 − p3)f(x) if θ1 + 1 ≤ f(x) ≤ θ2 − 1.

p1(2 − θ1 − θ2) + p2(1 − θ2)

+p3(1 + θ2) + (2p1 + p2 − p3)f(x) if θ2 − 1 ≤ f(x) ≤ θ2 + 1.

p1(2 − θ1 − θ2) + p2(1 − θ2) + (2p1 + p2)f(x) if θ2 + 1 ≤ f(x).

In this case the minimum risk is achieved when f(x) is either θ1−1, θ1 +1, θ2−1 or θ2 +1 according
to the sign of p1 − p2 − 2p3, p1 − p3 and 2p1 + p2 − p3.

Consider r(x) = {1−p1(x)}/{1−p3(x)} for succinct expressions of the signs of linear coefficients
in the conditional risk of the second version:

p1 − p2 − 2p3 = 2p1 − p3 − 1 ⋚ 0 ⇔ r(x) R
1

2
,

p1 − p3 ⋚ 0 ⇔ r(x) R 1,

2p1 + p2 − p3 = 1 + p1 − 2p3 ⋚ 0 ⇔ r(x) R 2.

Using the equivalence, we can express the relation between the optimal ranking function f∗ and r
as follows:

r(x) (0, 1
2 ) (1

2 , 1) (1, 2) (2,∞)

f∗(x) θ1 − 1 min(θ1 + 1, θ2 − 1) max(θ1 + 1, θ2 − 1) θ2 + 1

Hence the optimal ranking function f∗ is a step function that is monotonically increasing in

1 − p1

1 − p3
=

p2 + p3

p1 + p2
.
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Asymptotically, implicit constraints method and proportional odds model are based on the same
function (p2 + p3)/(p1 + p2) for their ranking. However, there is a critical difference between them.
The ranking function from implicit constraints method is a step function that produces many ties
among instances. This could increase the risk of misranking and cause poor performance when
used in applications. On the other hand, the ranking function from proportional odds model is a
strictly increasing function of (p2 + p3)/(p1 + p2).

4.4 Relation to Multicategory Classification

Finally we briefly discuss the case where l(x) = I(x < 0). The corresponding conditional risk is

K−1
∑

j=1

pjI(θj < f(x)) +
K
∑

j=2

pjI(f(x) < θj−1).

If θi−1 < f(x) < θi, the conditional risk above is
∑i−1

j=1 pj +
∑K

j=i+1 pj = 1−pi. Hence f∗(x) can be
any value in (θj∗−1, θj∗) for j∗ = argmaxj pj(x), and so the case is essentially the same as multiclass
classification. Dembczyński et al. (2008) pointed out the same result.

When K = 3, there is no {cji} such that f∗
0 (x) =

c12p2(x) + c13p3(x)

c13p1(x) + c23p2(x)
is a monotonic transfor-

mation of argmaxj pj(x). Thus, there is essential difference between the use of an indicator function
and a convex loss function in ordinal regression unlike bipartite ranking and binary classification.

5 Convex Risk Minimization and Other Extensions

5.1 Convex Risk Minimization for Multipartite Ranking

As in bipartite ranking, one may consider convex risk minimization by replacing the misranking loss
with a convex loss. This approach derives methods different from ordinal regression for multipartite
ranking. As expected from multicategory classification (Lee et al. 2004, Zhang 2004, Tewari and
Bartlett 2007), proper extension of convex risk minimization from bipartite to multipartite ranking
may not be straightforward, and some care has to be taken to ensure ranking consistency of such
extensions.

To examine the issue for the simple extension of replacing the indicator in the misranking loss
with a convex loss l, define a convex loss function for ranking function f as follows:

L(f ; (x, y), (x′, y′)) = cy′yl(f(x) − f(x′)).

The corresponding risk is

Rl(f) = E[L(f ; (X,Y ), (X ′, Y ′))|Y > Y ′]

=
∑

1≤j<i≤K

cjiE[l(f(X) − f(X ′))|Y = i, Y ′ = j, Y > Y ′]P (Y = i, Y ′ = j|Y > Y ′)

=
∑

1≤j<i≤K

cjiE[l(f(X) − f(X ′))|Y = i, Y ′ = j]P (Y = i, Y ′ = j)/P (Y > Y ′).

It turns out that minimizing the convex risk above alone does not lead to the best ranking
function f∗

0 with the minimum pairwise ranking risk characterized in Theorem 3. Duchi et al. (2010)
also proved inconsistency of convex risk minimization in more general setting of label ranking with
graph-based losses defined over preference graphs; see Lemma 10 in the paper.
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The next theorem shows that some modification of the risk is needed to obtain a desirable
ranking function that is consistent with f∗

0 in multipartite ranking. The optimal ranking function
f∗ of the modified risk is easily derived as a simple application of the results in bipartite ranking.

Theorem 4. Suppose that l satisfies the condition for ranking calibration in Theorem 2.

(i) When K = 3, f∗ minimizing

Rl(f) +
c12c23

c13
E[l(f(X) − f(X ′))|Y = 2, Y ′ = 2]

P (Y = 2, Y ′ = 2)

P (Y > Y ′)

is a monotonic transformation of

f∗
0 (x) =

c12P (Y = 2|x) + c13P (Y = 3|x)

c13P (Y = 1|x) + c23P (Y = 2|x)
.

(ii) When K > 3 and c1Kcji = c1icjK − c1jciK for all 1 ≤ j < i ≤ K, f∗ minimizing

Rl(f) +
∑

1≤j<i≤K

c1jciK

c1K
E[l(f(X) − f(X ′))|Y = i, Y ′ = j]

P (Y = i, Y ′ = j)

P (Y > Y ′)

+
K−1
∑

i=2

c1iciK

c1K

E[l(f(X) − f(X ′))|Y = i, Y ′ = i]
P (Y = i, Y ′ = i)

P (Y > Y ′)

+
∑

1≤j<i≤K

c1jciK

c1K

E[l(f(X) − f(X ′))|Y = j, Y ′ = i]
P (Y = j, Y ′ = i)

P (Y > Y ′)

is a monotonic transformation of

f∗
0 (x) =

∑K
i=2 c1iP (Y = i|x)

∑K−1
j=1 cjKP (Y = j|x)

.

The key point of Theorem 4 is that an extra term (e.g.
c12c23

c13
E[l(f(X) − f(X ′))|Y = 2, Y ′ =

2]P (Y = 2, Y ′ = 2)/P (Y > Y ′) when K = 3) is necessary to guarantee consistency under ranking-
calibrated loss l in the pairwise framework. This is a major difference from the bipartite case. In
practice, the extra term has to be estimated from the data, but it is straightforward to include the
extra term in the empirical version of a given convex risk.

5.2 Extension to Non-Smooth Ranking Measures

As explained before, the ranking accuracy defined through the pairwise loss function we have
discussed is an extension of AUC. Alternatively, non-smooth ranking measures such as average
precision (AP) (Yue et al. 2007), and normalized discounted cumulative gain (NDCG) (Järvelin
and Kekäläinen 2000) are frequently used in multipartite ranking. They are for measuring the
accuracy of top-ranked instances and essentially different from AUC. In this section, we try to find
the connection between the pairwise ranking loss and non-smooth ranking measures. Especially
we show that the optimization of non-smooth ranking measures can be cast in the framework of
minimizing pairwise ranking risk.

First we investigate the general structure of non-smooth ranking measures. Given a ranking
function f , we have a permutation based on the rankings of xi by f , πf : {1, . . . , n} 7→ {1, . . . , n}
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Table 1: Ranking measures for the bipartite case

G(y) D(i)

AUC I(y = 2) n − i
p−Norm Push I(y = 2) (n − i)p

Precision at m (P@m) I(y = 2) I(i ≤ m)/m
Mean Reciprocal Rank (MRR) I(y = 2) 1/i

such that f(xπf (1)) ≥ f(xπf (2)) ≥ · · · ≥ f(xπf (n)). Given {xi}
n
i=1, we can specify πf (i) ∈ {1, . . . , n}

for each i and regard πf (i) as fixed. Non-Smooth ranking measures are generally of the following
form:

R̂G,D
n (f) ≡

n
∑

i=1

G(yπf (i))D(i), (9)

where G : Y 7→ R
+ is a gain function and D : {1, . . . , n} 7→ R

+ is a discount function decreasing
in i. For example, Table 1 shows commonly used ranking measures for the bipartite case with
corresponding gain and discount functions for each measure.

Given a gain function G and a discount function D, consider finding f that maximizes the
expected ranking measure by examining the conditional measure

E(R̂G,D
n (f)|{Xi}

n
i=1) = E

[

n
∑

i=1

G(Yπf (i))D(i)

∣

∣

∣

∣

{Xi}
n
i=1

]

=
n
∑

i=1

Cf (i)D(i),

where Cf (i) = E[G(Yπf (i))|{Xi}
n
i=1] =

∑K
j=1 G(j)P (Yπf (i) = j|{Xi}

n
i=1). Note that Cf : {1, . . . , n} →

R
+ and it depends on f . Since D is non-negative and decreasing, to maximize the conditional mea-

sure as a weighted sum of D(i)’s, f must be a function such that Cf (1) ≥ Cf (2) ≥ · · · ≥ Cf (n).
Let C(i) ≡ E[G(Yi)|{Xi}

n
i=1], which is identical to E[G(Yi)|Xi] due to the independence as-

sumption. As explained above, for each i, πf (i) is regarded as fixed given {Xi}
n
i=1. This means

that Cf (i) = E[G(Yπf (i))|{Xi}
n
i=1] ∈ {C(1), . . . , C(n)}. Hence ordering of {Cf (i)}n

i=1 is equivalent
to ordering of {C(i)}n

i=1. Consequently, the optimal ranking function should be based on

f∗(x) =
K
∑

j=1

G(j)P (Y = j|X = x).

Note that the discount component D(i) does not affect f∗ at all as long as it is decreasing and non-
negative. Similar results have been discussed in the literature, for instance, Theorem 1 in Cossock
and Zhang (2008) for the special case of G(y) = y, Proposition 7 in Clémençon and Vayatis (2008)
for the bipartite case only, and Corollary 1 in Duchi et al. (2012) for NDCG.

For example, the discounted cumulative gain (DCG) can be interpreted as a ranking measure
with G(y) = 2y − 1 and D(i) = 1/ log(1 + i). Application of the result above indicates that the
optimal ranking function for DCG preserves the ordering of

∑K
j=1(2j − 1)P (Y = j|X = x), which

is the same as f∗
0 in Corollary 1 with si = 2i − 1 and wj = 1. Hence, the optimal ranking with

respect to DCG is equivalent to pairwise ranking with cji = (2i − 2j)I(i > j). Li et al. (2007) also
considered maximization of DCG by relating the DCG measure to multiple classification error, and
derived an empirical version of f∗ as a ranking function.
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Other than the ranking measures in Table 1 for the bipartite case, the average precision (AP)
is commonly used, which is given by

AP(f) =

n
∑

i=1

I(yπf (i) = 2)
1

i

i
∑

j=1

I(yπf (j) = 2) =

n
∑

i=1

1

i
I(yπf (i) = 2)



1 +

i−1
∑

j=1

I(yπf (j) = 2)



 .

Notice that AP does not depend only on yπf (i) but also on yπf (1), . . . , yπf (i−1) for the ith rated item,
so the representation in (9) is not available. However, it can be shown that the optimal ranking for
AP also depends on P (Y = 2|X = x) as with other measures in Table 1.

To this end, examine the conditional expectation of AP:

E[AP(f)|{Xi}
n
i=1] =

n
∑

i=1

1

i
P (Yπf (i) = 2|{Xi}

n
i=1)



1 +

i−1
∑

j=1

P (Yπf (j) = 2|{Xi}
n
i=1)





=
n
∑

i=1

pf (i)

i



1 +
i−1
∑

j=1

pf (j)



 ,

where pf (i) ≡ P (Yπf (i) = 2|{Xi}
n
i=1). Note that pf (i) ∈ {P (Yi = 2|{Xi}

n
i=1)}n

i=1 = {P (Yi =
2|Xi)}

n
i=1. For k = 2, . . . , n, fix pf (k + 1), . . . , pf (n) and consider the conditional expectation

of AP as a function of pf (1), . . . , pf (k), simply denoted by APk(p1, . . . , pk) with (p1, . . . , pk) ≡
(pf (1), . . . , pf (k)). To find the optimal ordering of pi for maximal APk, take the following k per-
mutations of (p1, . . . , pk): for l = 1, . . . , k, let pl = (p1, . . . , pl−1, pk, pl, . . . , pk−1), where p1 =
(pk, p1, . . . , pk−1) and pk = (p1, . . . , pk−1, pk). Then for l = 1, . . . , k − 1,

APk(pl+1) − APk(pl) = (pl − pk)

(

1 +

l−1
∑

i=1

pi

)

1

l(l + 1)
.

Hence the necessary condition that APk(pk) ≥ APk(pk−1) ≥ · · · ≥ APk(p1) is pl ≥ pk for any
l = 1, . . . , k − 1 and k = 2, . . . , n. This implies that a ranking function f with pf (1) ≥ pf (2) ≥
· · · ≥ pf (n) maximizes E[AP(f)|{Xi}

n
i=1], and thus the optimal ranking should be based on P (Y =

2|X = x), which is the same conclusion as other ranking measures in bipartite ranking.

6 Numerical Illustration

6.1 Simulation Study

First we consider tripartite ranking to illustrate the results on ordinal regression. A balanced
sample with three categories (500 observations in each category) was generated from a mixture of
normal distributions: X|Y = 1 ∼ N(−2, 1), X|Y = 2 ∼ N(0, 1) and X|Y = 3 ∼ N(2, 1). For
estimation of a ranking function, we applied four methods to the sample: pairwise ranking risk
minimization, proportional odds model, ORBoost and SVOR with implicit constraints in Chu and
Keerthi (2007).

For pairwise ranking risk minimization, exponential loss, l(s) = exp(−s), was employed as a
convex surrogate loss with the cost scheme of c12 = c23 = c13 = 1. See Theorem 4 for theoretical
justification of this choice for ranking consistency. In the training process of each of the first three
methods, we adopted a gradient descent algorithm (boosting) with a weak learner. We set weak
learners to be Gaussian kernel, fθ(x) = exp(−(x−θ)2/2σ2), where the parameter θ was taken from
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the observed values xi and σ2 = 0.5. At each iteration, a weak ranking function was chosen and
added to the current ranking function with weight determined to minimize the respective empirical
risk (pairwise ranking risk or risk under ordinal regression loss). We iterated the boosting process
for 300 times to combine weak rankings and obtained the final ranking function. For validation of
the number of iterations and testing, we generated another sample of the same size as the training
data.

In ordinal regression, thresholds have to be estimated. When K = 3, there are two thresholds
θ1 and θ2 (θ1 ≤ θ2), but without loss of generality we can fix one of them. We fixed θ2 to be 0 and
estimated θ1(≤ 0) only in our experiment. The estimated threshold in this study was θ̂1 = −2.06 in
ORBoost, and θ̂1 = −4.37 in proportional odds model. For SVOR, Gaussian kernel with σ2 = 0.5
was used and the tuning parameter C was set to 10. The estimated thresholds in this case were
θ̂1 = −1.2 and θ̂2 = 1.1, which fall into Case 2 in Section 4.3.

Theoretically, the optimal ranking function via pairwise ranking risk minimization and that
derived from proportional odds model are monotonically related to

f∗
0 (x) =

P (Y = 2|X = x) + P (Y = 3|X = x)

P (Y = 1|X = x) + P (Y = 2|X = x)
=

e2x + e2

e−2x + e2
.

So is the population minimizer of SVOR with implicit constraints in Chu and Keerthi (2007). In
particular, from the result in Uematsu and Lee (2011), f∗ for pairwise ranking risk minimization
under exponential loss is given by 1

2 log f∗
0 up to a constant. On the other hand, f∗ for ORBoost is

approximately given as

1

2
log

e2x + e2+θ̂1

e−2x−θ̂1 + e2

and that for proportional odds model is approximately

log
f∗
0 (x) − 1 +

√

(f∗
0 (x) − 1)2 + 4eθ̂1f∗

0 (x)

2
.

Figure 1 shows the estimated ranking functions (solid) and their theoretical counterparts (dot-
ted). They are centered to zero except for SVOR with implicit constraints. The estimated ranking
function for implicit constraints method has steps at about −1, 0 and 1, which correspond to the
theoretical values of −1.02, 0 and 1.02 that yield f∗

0 (x) = 1
2 , 1 and 2, respectively. All the ranking

functions are increasing in x although there is some difference in the functional form. The dotted
lines lie close to the solid lines over [−3, 3], where the data density is relatively high. This implies
that the theoretical results describe actual ranking scores very well. As discussed, SVOR with
implicit constraints minimizes hinge risk and the optimal ranking function is a step function of f∗

0

theoretically. Clearly, the estimated ranking function by the method exhibits features of a step
function as suggested by the theory. This feature could increase pairwise ranking risk compared
with the other ranking functions. Similar discussions can be found in Uematsu and Lee (2011) for
the bipartite case.

Comparison of the ranking function for ORBoost with those for pairwise ranking or proportional

odds model in Figure 1 indicates that the difference in cost schemes (c13 = e−θ̂1 = e2.06 = 7.846
versus c13 = 1) has little effect on the actual ordering of instances in this case.

To further examine the effect of ranking costs, let c12 = c23 = 1 and c13 ≥ 1 in K = 3 case, and
compare the contours of the underlying ranking function

P (Y = 2|x) + c13P (Y = 3|x)

c13P (Y = 1|x) + P (Y = 2|x)
=

p2(x) + c13(1 − p1(x) − p2(x))

c13 · p1(x) + p2(x)
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Figure 1: Theoretical ranking function (dotted line) and estimated ranking function (solid line) for
pairwise ranking risk minimization with exponential loss, ORBoost, proportional odds model and
SVOR with implicit constraints.
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Figure 2: Contours of the underlying ranking functions, p2(x)+p3(x)
p1(x)+p2(x) for proportional odds model and

SVOR with implicit constraints (left), p2(x)+2p3(x)
2p1(x)+p2(x) for expected relevance (middle) and 1−2p1(x)

p2(x) for

Shashua and Levin’s SVOR (right). The change in color from green to brown indicates the change
in score from high to low.

over the space of (p1(x), p2(x)) for the simulation setting as c13 varies. Figure 2 shows such contours
when c13 = 1 in the left panel and when c13 = 2 in the middle panel where the equivalence sets form
parallel lines. Depending on c13 (either 1 or 2), two objects can be ranked differently. However,
the sets in the left and the middle are fairly similar to each other, implying that it is less likely
to observe substantial differences in ranking. By contrast, the right panel shows the contours of
1−2p1(x)

p2(x) , the underlying function for support vector ordinal regression in Shashua and Levin (2003).

Figure 2 suggests that the rankings derived from Shashua and Levin (2003)’s method may be quite
different from the other two methods.

6.2 Application to Movie-Lens Data

We applied ordinal regression and ranking methods to Movie-Lens data (GroupLens-Research 2006)
collected for building movie recommender systems. The main focus of our analysis is in the com-
parison of pairwise ranking and ordinal regression methods and investigation of the effect of the
cost schemes implicitly assumed by those methods in real applications.

The data set consists of 100,000 ratings for 1,682 movies by 943 users. The ratings are on a scale
of 1 to 5. In addition to the ratings, the data include content information about the movies such
as release date and genres and demographic information about the users such as age, gender and
occupation. We followed the preprocessing steps taken in Uematsu and Lee (2011) for exclusion
of ratings with incomplete data and ratings from six unusual users. The remaining ratings are
97,139 in total, and there are 5,039, 10,846, 26,448, 33,842 and 20,964 cases for 1 to 5 ratings in
the respective order. We standardized the predictors for ranking.

Three Categories

There are five categories in the original data, but we transformed them into three categories first
(“Low”, “Middle” and “High”) to compare numerical results with more specific analytical results
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in the tripartite case. “Low” corresponds to ratings of 1, 2 and 3, “Middle” to 4 and “High” to 5.
We consider the following six ranking methods in this analysis:

• PAIRRANK1: pairwise ranking risk minimization with (c12, c13, c23) = (1, 1, 1)

• PAIRRANK2: pairwise ranking risk minimization with (c12, c13, c23) = (1, 2, 1)

• REG: regression (squared error minimization)

• PROPODDS: (nonparametric) proportional odds model

• ORBOOST: ordinal regression boosting

• SVOR-IMC: support vector ordinal regression with implicit constraints in Chu and Keerthi
(2007)

Except for support vector ordinal regression, we implemented the first five ranking methods
using a gradient descent algorithm with univariate Gaussian kernels defined for each predictor as
weak learners as described in the simulation study. Boosting involved 500 iterations initially and
the optimal number of iterations was determined later by validation data. For support vector
ordinal regression, we used the algorithm in Chu and Keerthi (2007) with a multivariate Gaussian
kernel. We set the bandwidth of the multivariate Gaussian kernel to σ2 = 44 × 0.5 = 22 with 44
standardized variables included in regression and set the tuning parameter C to 500 for effective
hinge risk minimization.

The theoretical results in the foregoing sections suggest particular functional relations among
ranking functions from the methods in consideration. For example, the proof of Corollary 1 implies
that a ranking score of instance x from PAIRRANK2 is represented as

1

2
log

∑3
j=1 jP (Y = j|x) − 1

3 −
∑3

j=1 jP (Y = j|x)
=

1

2
log

sr(x) − 1

3 − sr(x)

up to a constant, where sr(x) = E(Y |x) is the theoretical ranking score from REG. This identity
shows the expected relation between scores from the two methods. Given thresholds θ1 and θ2, we
can also specify the relation between ORBoost and pairwise ranking. As in the simulation, θ2 was
fixed at zero, and only θ1 was estimated for ordinal regression in our experiment. This yields the
cost scheme of c12 = c23 = 1 and c13 = e−θ1 for ORBoost. Hence, ranking scores from ORBoost can
be replicated with pairwise ranking theoretically by setting c12 = c23 = 1 and c13 = e−θ1 . Similarly,
scores from proportional odds model can be replicated with PAIRRANK1 from the equation (8)

and the fact that a ranking function of PAIRRANK1 converges to 1
2 log p2(x)+p3(x)

p1(x)+p2(x) up to a constant.
We empirically verify the relations using ranking scores from those methods. Figure 3 shows

scatter plots of the ranking scores derived from the methods when they were applied to the Movie-
Lens data. The scores are from a training sample of size 3,000 chosen at random while the pro-
portions of the three categories in the sample are approximately kept at those in the full data. In
each panel, ranking scores from a given method are plotted against those from pairwise ranking
with the value of c13 specified for their correspondence, and the solid line indicates the theoretical
relation. Note that the solid lines are determined up to an additive constant in the horizontal
direction and scores from pairwise ranking were shifted by matching the average ranking scores for
a pair of methods in each panel. The estimated threshold θ1 for ORBoost and proportional odds
model was −0.183 and −1.615, respectively, which amounts to e−θ1 = 1.201 as the corresponding
ranking cost c13 for ORBoost. Generally, the observed relations among the ranking scores show
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good agreement with their theoretical counterparts for ORBoost, regression, and proportional odds
model in relation to pairwise ranking.

For support vector ordinal regression, the estimates of θ1 and θ2 are −1.39 and 0.61 and satisfy
the relation θ1 + 1 = θ2 − 1, which implies three clusters of scores around θ1 − 1, θ1 + 1(= θ2 − 1)
and θ2 +1 or (−2.39,−0.39, 1.61) theoretically. However, due to the smoothness of Gaussian kernel
used as basis functions in SVOR and a limited range of pairwise ranking scores, the stepwise feature
expected from the theory is hardly discernible in the scores from SVOR. Nevertheless, the plot for
SVOR exhibits a noticeably different pattern from other methods as indicated by the theoretical
analysis. In general, regularization and the type of a basis function (its smoothness or monotonicity)
will affect the empirical relation between SVOR and pairwise ranking scores.

Using the same data, we further examine the effect of differential cost c13 in tripartite ranking
on pairwise ranking scores when c12 = c23 = 1. Figure 4 displays scatter plots of pairwise ranking
scores when the cost c13 varies from 1 to 10. Clearly, they exhibit a strongly positive linear relation
and increasing c13 has the effect of widening the range of scores with little change in the rankings.

Five Categories

We consider analysis with the original five ratings. Since theoretical results available for the five
category case are less specific than the three category case, we focus on comparisons of the methods
in terms of ranking error.

The theoretical results in the previous sections indicate that the class-conditional probabilities
P (Y = k|x) are the key factors for optimal ranking, which depend on the distribution of instances
within each label and the proportion of each label, πk = P (Y = k). To examine the impact of
the proportions, we experimented with two samples of size 2,500 with different proportions. A
balanced sample contains 500 observations chosen at random for each rating, and an unbalanced
sample of the same size contains 130, 280, 680, 870, and 540 cases for 1 to 5 ratings, approximately
reflecting the proportions (5.18%, 11.17%, 27.23%, 34.84%, 21.58%) in the original data. Random
sampling was done 50 times, yielding two sets of 50 replicates. The same sampling process was used
to generate two sets (balanced and unbalanced) of validation data of the same size as training and
test data of size 5,000. Three ranking methods (pairwise ranking, proportional odds model, and
ORBoost) were then applied to each of the training samples. The setting for training was the same
as in the tripartite case. Univariate Gaussian kernels were used as weak learners and the number
of iterations was 300 initially and determined by validation data later. The final ranking functions
were evaluated over test data. The exponential loss l(s) = e−s was employed as a convex surrogate
loss for pairwise ranking, and a linear cost scheme of cji = i− j for i > j was used as given below:

j\i 1 2 3 4 5

1 1 2 3 4
2 1 2 3
3 1 2
4 1
5

Cost schemes affect the expression of the optimal ranking function in multipartite ranking
theoretically, and could change actual rankings of instances practically. For comparison, the
misranking cost implied by ORBoost can be calculated using its relation to thresholds: cji =
exp(θi−1 − θj) − exp(θj−1 − θi) for i > j. In our experiment, θ4 was fixed at 0 without losing gen-
erality and θ1, θ2, and θ3 (θ1 ≤ θ2 ≤ θ3) were estimated. On average, the estimates for θ1, θ2 and
θ3 were −0.0932 (0.0015), −0.0656 (0.0014), −0.0386 (0.0009) in the balanced case, and −0.7742

22



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
0.

0
0.

2
0.

4

PAIRRANK with c13 = 1.201

O
R

B
oo

st

−1.0 −0.5 0.0 0.5
1.

0
1.

5
2.

0
2.

5

PAIRRANK with c13 = 2

R
eg

re
ss

io
n

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

−
2.

5
−

1.
5

−
0.

5

PAIRRANK with c13 = 1

P
ro

po
rt

io
na

l O
dd

s

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
10

−
5

0
5

10
15

PAIRRANK with c13 = 1

S
V

O
R

−
IM

C

Figure 3: Scatter plots of ranking scores from ORBoost, regression, proportional odds model,
and SVOR against pairwise ranking scores with matching cost c13 for MovieLens data with three
categories. The solid lines indicate theoretical relation between ranking scores.
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(0.0013), −0.7742 (0.0013), −0.4183 (0.0008) in the unbalanced case. The values in parentheses
are their standard errors. It was observed that θ̂1 = θ̂2 for every replicate in the unbalanced
case. Table 2 shows the implicit cost schemes corresponding to the average estimated thresholds
in both cases. Compared to the linear scheme, ORBoost induces an exponential scale in general,
which could penalize misranking of instances in nonadjacent labels increasingly more than adjacent
ones, depending on the scale of thresholds. However, in this analysis, the estimated thresholds for
ORBoost have a rather narrow range, which actually results in the opposite effect.

Table 2: Implicit cost schemes for ORBoost in the balanced (left) and unbalanced (right) cases

j\i 1 2 3 4 5

1 1 1.028 1.056 1.098
2 0.053 0.116 1.068
3 0.063 1.039
4 1
5

j\i 1 2 3 4 5

1 1 1 1.427 2.169
2 0.299 0.966 2.169
3 0.539 1.519
4 1
5

Table 3 gives the average ranking error rates evaluated over test sets along with their standard
errors. Difference in the error rates of the three methods is not substantial. Comparison of pairwise
ranking and ORBoost suggests that the difference in the cost scheme has little effect on the error
rate. The difference between the balanced and unbalanced cases is relatively large for pairs of low
ratings (e.g. 1 vs 2). The balanced case gave lower error rates than the unbalanced case except for
pairs of high ratings. Since lower ratings have smaller proportions, the observed merit of balancing
labels could be attributed to the increase in sample size for low ratings. In general, the pairwise
approach requires relatively more data for stable results than the itemwise approach in ordinal
regression. The numerical results show that for the ratings with smaller sample sizes, pairwise
ranking is less effective than proportional odds model, but it gains relative efficiency as the sample
size increases.

The alternative expression of f∗
0 in Theorem 3 in terms of the proportions πj and the distribution

function of X in each label gives a dual interpretation that the proportions of a training sample
modify a given cost scheme. Large proportions of labels i and j have the effect of increasing the
nominal cost of c1i and cjK as multiplicative factors. For example, in pairwise ranking, c12 = c45 = 1
and the proportions for ratings 2 and 4 in the unbalanced case are approximately 11.17% and
34.84%. Since c12π2 = 0.1117 < 0.2 while c45π4 = 0.3484 > 0.2, more ranking errors are expected
for (1, 2) pair in the unbalanced case than the balanced case while the opposite is expected for (4,
5) pair. The numerical result in Table 3 for (1, 2) and (4, 5) pairs might be explained by this effect
of imbalance in proportions apart from the sample size effect.

7 Conclusion

We have considered multipartite ranking as an extension of bipartite ranking by employing a ranking
loss which combines pairwise ranking errors of ordinal categories with differential ranking costs.
The extension shows that the optimal ranking function can be represented as a ratio of a weighted
sum of conditional probability functions of upper categories to that of lower categories, and the
optimal ranking derived from ORBoost, proportional odds model and a version of support vector
ordinal regression is related to a ratio of the form. This result enhances our understanding of
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Table 3: Mean ranking error rates for a pair of ratings and their standard errors in parentheses from
50 replicates of training samples of size 2,500. The smallest error rate for each pair is highlighted
in bold.

Balanced Unbalanced
Pair PAIR PROP OR PAIR PROP OR

RANK ODDS BOOST RANK ODDS BOOST

1 vs 2 0.4485 0.4413 0.4431 0.4545 0.4529 0.4533
(0.0020) (0.0019) (0.0020) (0.0025) (0.0023) (0.0023)

1 vs 3 0.3875 0.3833 0.3853 0.4006 0.4014 0.4012
(0.0019) (0.0018) (0.0019) (0.0030) (0.0026) (0.0028)

1 vs 4 0.3193 0.3164 0.3195 0.3341 0.3346 0.3343
(0.0016) (0.0016) (0.0016) (0.0029) (0.0027) (0.0027)

1 vs 5 0.2607 0.2620 0.2637 0.2740 0.2768 0.2746
(0.0018) (0.0015) (0.0015) (0.0028) (0.0027) (0.0027)

2 vs 3 0.4368 0.4395 0.4399 0.4443 0.4472 0.4464
(0.0017) (0.0018) (0.0017) (0.0023) (0.0023) (0.0024)

2 vs 4 0.3652 0.3687 0.3707 0.3749 0.3780 0.3768
(0.0018) (0.0018) (0.0018) (0.0024) (0.0023) (0.0024)

2 vs 5 0.3023 0.3094 0.3103 0.3107 0.3167 0.3135
(0.0019) (0.0019) (0.0018) (0.0021) (0.0022) (0.0022)

3 vs 4 0.4266 0.4280 0.4295 0.4295 0.4300 0.4297
(0.0017) (0.0018) (0.0018) (0.0016) (0.0016) (0.0015)

3 vs 5 0.3601 0.3655 0.3658 0.3622 0.3665 0.3640
(0.0019) (0.0019) (0.0019) (0.0016) (0.0016) (0.0015)

4 vs 5 0.4313 0.4351 0.4340 0.4307 0.4345 0.4323
(0.0018) (0.0018) (0.0019) (0.0015) (0.0016) (0.0016)
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commonly used ranking algorithms by pinning down the limiting target function for each ranking
algorithm and further allows us to see their relations. In addition, it sheds light on multipartite
ranking consistency and proper ranking calibration with convex losses for minimization of pairwise
ranking risk.

The numerical results presented in this paper indicate that the effect of differential costs on
ranking is practically little while sample size and proportions could have more substantial effect
on the finite-sample performance of ranking methods. In particular, ordinal regression appears
relatively more effective than the pairwise ranking approach in small samples. The situation seems
reverse as the sample size gets large at the expense of increased computational load for the pairwise
approach. Other factors also influence the properties of ranking functions estimated from a finite
sample and in turn affect their performance. Basis functions, regularization, and selection of tuning
parameters all affect the quality of estimated ranking functions different from the limiting target
functions that we have theoretically characterized. For instance, a regularized ranking function
from support vector ordinal regression with a linear kernel would considerably deviate from the
undesirable stepwise function identified in Section 4.3.

The first-order analysis of the theoretical ranking functions of various algorithms for multipartite
ranking in this paper shows that they (except for SVOR) have a monotone relation on the population
level. However, the range of ranking scores differs, depending on the algorithm and the internal
degree of difficulty of a given problem. To understand relative merits of ranking algorithms in
terms of sampling variation and its effect on the ranking error rate, a second-order comparison will
be called for. Further, extension of generalization bounds and regret bounds for bipartite ranking
to the multipartite case will be another avenue for theoretical development.

Appendix

Proof of Theorem 3

For an arbitrary ranking function f and the f∗
0 defined, consider the following partition of X ×X ,

which depends on f and f∗
0 :

f∗
0 (x) < f∗

0 (x′) f∗
0 (x) = f∗

0 (x′) f∗
0 (x) > f∗

0 (x′)

f(x) < f(x′) A1 A2 A3

f(x) = f(x′) A4 A5 A6

f(x) > f(x′) A7 A8 A9

That is, X × X = ∪9
j=1Ai, where A1 = {(x, x′)|f(x) < f(x′) and f∗

0 (x) < f∗
0 (x′)}, for instance.

(i) Let gi(x) be pdf or pmf of X with label i. To express the expected misranking cost or the
ranking risk, consider the following identity:

∑

1≤j<i≤3

cjiP (Y = i, Y ′ = j|Y > Y ′)gi(x)gj(x
′) (10)

= −
c12c23

c13

P (Y = 2)P (Y ′ = 2)

P (Y > Y ′)
g2(x)g2(x′)

+
1

c13P (Y > Y ′)
[c13g3(x)P (Y = 3) + c12g2(x)P (Y = 2)]

×[c13g1(x′)P (Y ′ = 1) + c23g2(x′)P (Y ′ = 2)]
.
= D(x, x′) + C(x, x′).
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Then the ranking risks of f and f∗
0 are given by

R0(f) =

∫∫

A1∪A2∪A3

[D(x, x′) + C(x, x′)]dxdx′ +
1

2

∫∫

A4∪A5∪A6

[D(x, x′) + C(x, x′)]dxdx′.

R0(f∗
0 ) =

∫∫

A1∪A4∪A7

[D(x, x′) + C(x, x′)]dxdx′ +
1

2

∫∫

A2∪A5∪A8

[D(x, x′) + C(x, x′)]dxdx′.

The difference R0(f) − R0(f∗
0 ) is then given by

∫∫

A3

[D(x, x′) + C(x, x′)]dxdx′ −

∫∫

A7

[D(x, x′) + C(x, x′)]dxdx′

+
1

2

∫∫

A2∪A6

[D(x, x′) + C(x, x′)]dxdx′ −
1

2

∫∫

A4∪A8

[D(x, x′) + C(x, x′)]dxdx′.

From C(x, x′)/C(x′, x) = f∗
0 (x)/f∗

0 (x′),
∫∫

A3
C(x, x′)dxdx′ >

∫∫

A3
C(x′, x)dxdx′. By switch-

ing x and x′, we can show that
∫∫

A3
C(x′, x)dxdx′ =

∫∫

A7
C(x, x′)dxdx′. Hence,

∫∫

A3
C(x, x′)dxdx′ >

∫∫

A7
C(x, x′)dxdx′. Similarly, we get

∫∫

A6
C(x, x′)dxdx′ >

∫∫

A4
C(x, x′)dxdx′

and
∫∫

A2
C(x, x′)dxdx′ =

∫∫

A8
C(x, x′)dxdx′.

Since D(x, x′) = D(x′, x),
∫∫

A3
D(x, x′)dxdx′ =

∫∫

A3
D(x′, x)dxdx′ =

∫∫

A7
D(x, x′)dxdx′.

Likewise
∫∫

A6
D(x, x′)dxdx′ =

∫∫

A4
D(x, x′)dxdx′ and

∫∫

A2
D(x, x′)dxdx′ =

∫∫

A8
D(x, x′)dxdx′.

Hence, R0(f) − R0(f∗
0 ) > 0 unless f is an order-preserving transformation of f∗

0 .

(ii) Consider the following generalization of the identity in (i).

∑

1≤j<i≤K

cjiP (Y = i, Y ′ = j|Y > Y ′)gi(x)gj(x
′) (11)

= −

K−1
∑

i=2

c1iciK

c1K

P (Y = i)P (Y ′ = i)

P (Y > Y ′)
gi(x)gi(x

′)

+
1

c1KP (Y > Y ′)

(

K
∑

i=2

c1igi(x)P (Y = i)

)





K−1
∑

j=1

cjKgj(x
′)P (Y ′ = j)





+
∑

1≤j<i≤K

P (Y ′ = j)P (Y = i)

P (Y > Y ′)

(

cjic1K − c1icjK

c1K
gi(x)gj(x

′) −
c1jciK

c1K
gi(x

′)gj(x)

)

.
= D(x, x′) + C(x, x′) +

∑

1≤j<i≤K

P (Y ′ = j)P (Y = i)

P (Y > Y ′)
Rji(x, x′).

Since D(x, x′) = D(x′, x),
∫∫

A3
D(x, x′)dxdx′ =

∫∫

A7
D(x, x′)dxdx′,

∫∫

A6
D(x, x′)dxdx′ =

∫∫

A4
D(x, x′)dxdx′ and

∫∫

A2
D(x, x′)dxdx′ =

∫∫

A8
D(x, x′)dxdx′.

Since C(x, x′)/C(x′, x) = f∗
0 (x)/f∗

0 (x′) by a similar argument as in (i),
∫∫

A3
C(x, x′)dxdx′ >

∫∫

A7
C(x, x′)dxdx′,

∫∫

A6
C(x, x′)dxdx′ >

∫∫

A4
C(x, x′)dxdx′ and

∫∫

A2
C(x, x′)dxdx′ =

∫∫

A8
C(x, x′)dxdx′.
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For Rji(x, x′), the condition on the misranking costs implies that

∫∫

A3

Rji(x, x′)dxdx′ −

∫∫

A7

Rji(x, x′)dxdx′

=
cjic1K − c1icjK + c1jciK

c1K

(
∫∫

A3

gi(x)gj(x′)dxdx′ −

∫∫

A7

gi(x)gj(x′)dxdx′

)

= 0.

Likewise
∫∫

A6
Rji(x, x′)dxdx′ =

∫∫

A4
Rji(x, x′)dxdx′, and

∫∫

A2
Rji(x, x′)dxdx′ =

∫∫

A8
Rji(x, x′)dxdx′.

Hence, R0(f) − R0(f∗
0 ) > 0 unless f is an order-preserving transformation of f∗

0 .

�

Proof of Corollary 1

It is easy to check that cy′y = c1K(sy − sy′)tyty′I(y > y′) satisfies the condition in Theorem 3.
Application of Theorem 3 leads to

f∗
0 (x) =

∑K
i=2 c1iP (Y = i|x)

∑K−1
j=1 cjKP (Y = j|x)

=
t1
tK

∑K
i=2(si − s1)wiP (Y = i|x)

∑K−1
j=1 (sK − sj)wjP (Y = j|x)

.

Further note that

∑K
i=2(si − s1)wiP (Y = i|x)

∑K−1
j=1 (sK − sj)wjP (Y = j|x)

=

PK
i=1 siwiP (Y =i|x)

PK
j=1 wjP (Y =j|x)

− s1

sK −
PK

i=1
siwiP (Y =i|x)

PK
j=1

wjP (Y =j|x)

.

It is clearly a monotonic transformation of f∗
0 (x), and thus it also minimizes the risk.

�

Proof of Theorem 4

The ranking risk of f under loss l is given by

Rl(f) =

∫

X

∫

X
l(f(x) − f(x′))

∑

1≤j<i≤K

cjiP (Y = i, Y ′ = j|Y > Y ′)gi(x)gj(x′)dxdx′.

(i) When K = 3, from the equation (10), we have

Rl(f) +
c12c23

c13
E[l(f(X) − f(X ′))|Y = 2, Y ′ = 2]

P (Y = 2, Y ′ = 2)

P (Y > Y ′)

=
[c13P (Y = 3) + c12P (Y = 2)][c13P (Y ′ = 1) + c23P (Y ′ = 2)]

c13P (Y > Y ′)

∫

X

∫

X
l(f(x) − f(x′))h+(x)h−(x′)dxdx′,

where

h+(x) =
c12g2(x)P (Y = 2) + c13g3(x)P (Y = 3)

c12P (Y = 2) + c13P (Y = 3)

and

h−(x′) =
c13g1(x′)P (Y ′ = 1) + c23g2(x′)P (Y ′ = 2)

c13P (Y ′ = 1) + c23P (Y ′ = 2)
.
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Since h± ≥ 0 and
∫

X h±(x)dx = 1, we can interpret
∫

X

∫

X l(f(x) − f(x′))h+(x)h−(x′)dxdx′

as E[l(f(X∗)−f(X ′
∗))], where h± are the pdf or pmf of X∗ and X ′

∗, respectively. By applying
Theorem 2, we can see that the optimal ranking function f∗ minimizing the risk above is a
monotonic transformation of the modified likelihood ratio

h+(x)

h−(x)
∝

c12g2(x)P (Y = 2) + c13g3(x)P (Y = 3)

c13g1(x)P (Y ′ = 1) + c23g2(x)P (Y ′ = 2)
=

c12P (Y = 2|x) + c13P (Y = 3|x)

c13P (Y ′ = 1|x) + c23P (Y ′ = 2|x)
.

(ii) As in (i), we use the equation (11) to show that

Rl(f) +
∑

1≤j<i≤K

c1jciK

c1K
E[l(f(X) − f(X ′))|Y = i, Y ′ = j]

P (Y = i, Y ′ = j)

P (Y > Y ′)

+

K−1
∑

i=2

c1iciK

c1K
E[l(f(X) − f(X ′))|Y = i, Y ′ = i]

P (Y = i, Y ′ = i)

P (Y > Y ′)

+
∑

1≤j<i≤K

c1jciK

c1K
E[l(f(X) − f(X ′))|Y = j, Y ′ = i]

P (Y = j, Y ′ = i)

P (Y > Y ′)

=

[

∑K
i=2 c1iP (Y = i)

] [

∑K−1
j=1 cjKP (Y ′ = j)

]

c1KP (Y > Y ′)

∫

X

∫

X
l(f(x) − f(x′))h+(x)h−(x′)dxdx′,

where

h+(x) =

∑K
i=2 c1igi(x)P (Y = i)
∑K

i=2 c1iP (Y = i)
and h−(x′) =

∑K−1
j=1 cjKgj(x

′)P (Y ′ = j)
∑K−1

j=1 cjKP (Y ′ = j)
.

The same result as in (i) applies to f∗ for general K.

�
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