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Abstract

Quantile regression provides estimates of a range of conditional quantiles.
This stands in contrast to traditional regression techniques, which focus on a
single conditional mean function. Lee et al. (2012) proposed efficient quantile
regression by rounding the sharp corner of the loss. The main modification gen-
erally involves an asymmetric ℓ2 adjustment of the loss function around zero.
We extend the idea of ℓ2 adjusted quantile regression to linear heterogeneous
models. The ℓ2 adjustment is constructed to diminish as sample size grows.
Conditions to retain consistency properties are also provided.

KEYWORDS: Check loss function; heteroscedasticity; quantile regression

1 Introduction

Quantile regression has emerged as a useful tool for providing conditional quantiles
of a response variable Y given values of a predictor X. This allows us to estimate
not only the center, but also the upper or lower tail of the conditional distribution
of interest. Due to the ability of quantile regression to capture the full distribu-
tional aspects, rather than only the conditional mean, quantile regression has been
widely applied. Koenker and Bassett (1978) pioneered quantile regression and proved
consistency properties. Bassett and Koenker (1978) showed efficiency of median re-
gression, when the median is more efficient than the mean in a location model. To

∗This research was supported in part by National Security Agency grant H98230-10-1-0202 and
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overcome the restriction of iid errors in linear quantile regression, Gutenbrunner and
Jurečková (1992), Koenker and Zhao (1994), and He (1997) developed heterogeneous
error models. A comprehensive review is provided in Koenker (2005).

Quantile regression employs asymmetric absolute loss, the so-called “check loss”,
as a criterion for minimization. Since the derivative of the check loss does not exist
at its minimum, care must be taken with computation. Two main computational
strategies exist: linear programming techniques can be used to minimize the crite-
rion function, and hence to solve the problem exactly, (Koenker and D’Orey; 1987;
Koenker and Park; 1996), or the cusp of the check loss can be smoothed to allow com-
putational techniques that rely on differentiability. For the latter approach, Horowitz
(1998) employed a smooth kernel under median regression, and Nychka et al. (1995)
suggested a tiny, symmetric quadratic adjustment of the loss function over the inter-
val (−ǫ, ǫ) which is a small enough adjustment to be effectively zero relative to the
scale of the data.

Lee et al. (2012) proposed a carefully tailored quadratic adjustment to the loss
function that differs in intent from the computational adjustment, and that produces
quite different results. Their modification is intended to make quantile regression
more efficient, and the modification is asymmetric, except for median regression.
The modification leads to superior finite sample performance by exploiting the bias-
variance trade-off. To obtain the requisite reduction in variance, the interval of ad-
justment is not vanishingly small, as are the computationally-motivated adjustments,
but is of substantial size. Jung et al. (2010) present a practical rule for choosing the
magnitude of adjustment.

Many real applications of regression often call for heterogeneous error models.
Although the modified quantile regression in Lee et al. (2012) allows for different
local densities around regression quantiles, we expect further efficiency gain in quan-
tile estimation when the differences in the local densities are accounted for. In this
paper, we extend the efficient quantile regression method in Lee et al. (2012) to mod-
els with heterogeneous error distributions and demonstrate its effectiveness in data
analysis. Subsequent sections provide a brief overview of efficient quantile regression,
theoretical development for heterogeneous error models, practical strategies for imple-
mentation of the method, and documentation of its performance through simulations
and data analysis.

2 Overview of Efficient Quantile Regression

To estimate the qth regression quantile, the check loss function ρq is employed:

ρq(r) =

{

qr for r ≥ 0
−(1 − q)r for r < 0.

(1)

We first consider a linear model of the form yi = x⊤
i β + ui, where xi, β ∈ Rp and

the ui’s are iid from some distribution with qth quantile equal to zero. The quantile
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regression estimator β̂ is the minimizer of

L(β) =

n
∑

i=1

ρq(yi − x⊤
i β). (2)

To treat the observations in a systematic fashion, Lee et al. (2012) introduce case-
specific parameters γi which change the linear model to yi = x⊤

i β + γi +ui. From the
fact that this is a super-saturated model, γ = (γ1, ..., γn)

⊤ should be penalized. To-
gether with the case-specific parameters and an additional penalty for γ, the objective
function to minimize given in (2) is modified to be

L(β, γ) =
n

∑

i=1

ρq(yi − x⊤
i β − γi) +

λγ

2
J(γ), (3)

where J(γ) is the penalty for γ and λγ is a penalty parameter. Since the check loss
function is piecewise linear, the quantile regression estimator is inherently robust.
For improving efficiency, an ℓ2 type penalty for the γ is considered. As detailed in
Lee et al. (2012), a desired invariance suggests an asymmetric ℓ2 penalty of the form
J(γi) ≡ {q/(1−q)}γ2

i++{(1−q)/q}γ2
i−, where γi+ = max(γi, 0) and γi− = max(−γi, 0).

With the J(γi), let us examine the values of the γi which minimizes (3), given β. First,
note that minγ L(β̂, γ) decouples to minimization over individual γi. Hence, given β̂

and a residual ri = yi − x⊤
i β̂, γ̂i is now defined to be

arg min
γi

Lλγ
(β̂, γi) ≡ ρq(ri − γi) +

λγ

2
J(γi), (4)

and is explicitly given by

− q

λγ
I
(

ri < − q

λγ

)

+ riI
(

− q

λγ
≤ ri <

1 − q

λγ

)

+
1 − q

λγ
I
(

ri ≥
1 − q

λγ

)

.

Plugging γ̂ in (4) produces the ℓ2 adjusted check loss,

ρM
q (r) =























(q − 1)r − q(1−q)
2λγ

for r < − q
λγ

λγ

2
1−q

q
r2 for − q

λγ
≤ r < 0

λγ

2
q

1−q
r2 for 0 ≤ r < 1−q

λγ

qr − q(1−q)
2λγ

for r ≥ 1−q
λγ

.

(5)

Figure 1 displays the quadratically adjusted check loss when q > 0.5. Note that
the modified check loss is continuous and differentiable everywhere. The interval of
quadratic adjustment is (−q/λγ , (1−q)/λγ), and we refer to the length of this interval,
1/λγ, as the “window width”. With the loss in (5), we can define the efficient quantile

regression estimator β̂M as the minimizer of

Lλγ
(β) =

n
∑

i=1

ρM
q (yi − x⊤

i β). (6)
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r
0− q λγ (1 − q) λγ

− λ

ρq
M (r)

Figure 1: ℓ2 adjusted check loss in (5) when q > 0.5.

When the window width of ρM
q is properly chosen, the modified procedure is expected

to realize its advantage to the full. See Jung et al. (2010) for the details of the window
width selection.

3 Efficient Quantile Regression under Heteroge-

neous Errors

The method described in Lee et al. (2012) relies on conditional independence of yi

given xi, and on correct specification of the quantile function. It does not assume
that the ui are identically distributed. As a consequence, the results on consistency
and asymptotic normality apply quite broadly. However, one might expect that an
estimator that makes use of differences in the distributions of ui would be more
efficient. As we show in this section, this is indeed the case.

There are two main approaches to extending quantile regression from the homo-
geneous error model to the heterogeneous error model. The first approach directly
scales the deviations from the quantile surface, so that one considers ρq(wi(yi−x⊤

i β))
in place of ρq(yi − x⊤

i β), where the values wi are used to produce densities for scaled
ui which are locally constant over i. This is our primary focus in this work. A second
approach plays off the duality between rescaling residuals and attaching weights to
cases. This approach mimics the use of weights in weighted least squares. It also
translates into approaches for traditional quantile regression where the linearity of
the check loss function allows us to write ρq(wi(yi − x⊤

i β)) = wiρq(yi − x⊤
i β). How-
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ever, this equality does not hold when ρq is replaced by ρM
q which combines both

linear and quadratic terms. Nevertheless, there is some evidence that this second
approach under ρM

q improves upon quantile regression, as shown in the sequel (also
see Jung (2010)). We view this second approach mainly as an ad-hoc improvement
on traditional techniques.

In the next two subsections, we first describe the scaled efficient QR when the scale
factors are known, and then consider the case of unknown scales under a location-scale
model.

3.1 Scaled efficient QR with known local densities

In this subsection, we provide a consistency result for efficient quantile regression
based on the modified loss function in (5). We pursue an approach where the scaling
occurs inside the loss function, and note the close connection to Koenker (2005). We
retain his notation, describing the scale in terms of (its inverse) a weight.

Allowing a potentially different error distribution for each observation, let Y1, Y2, . . .
be independent random variables with cdfs F1, F2, . . ., and suppose that each Fi has
continuous pdf fi. Assume that the qth conditional quantile function of Y given x is
linear in x and given by x⊤β(q), and let ξi denote the true quantiles x⊤

i β(q). First
consider the following regularity conditions:

(C-1) fi(ξ), i = 1, 2, . . ., are uniformly bounded away from 0 and ∞ at ξi.

(C-2) fi(ξ), i = 1, 2, . . ., admit a first-order Taylor expansion at ξi, and f ′
i(ξ) are

uniformly bounded at ξi.

(C-3) There exists a positive definite matrix D0 such that limn→∞ n−1
∑

xix
⊤
i = D0.

(C-4) There exists a positive definite matrix D1 such that limn→∞ n−1
∑

fi(ξi)xix
⊤
i =

D1.

(C-5) There exists a positive definite matrix D2 such that limn→∞ n−1
∑

f 2
i (ξi)xix

⊤
i =

D2.

(C-6) maxi=1,...,n ‖xi‖/
√

n → 0.

(C-1), (C-3), (C-4), and (C-6) are the conditions considered for the limiting distri-
bution of the standard regression quantile estimator, and (C-5) for the weighted (or
scaled) version of it in Koenker (2005), while (C-2) is an additional assumption that
we make.

Under conditions (C-1) through (C-6), Theorem 5.1 in Koenker (2005) states that
for β̃ = arg minβ∈Rp

∑n
i=1 wiρq(yi − x⊤

i β) = arg minβ∈Rp

∑n
i=1 ρq(wi(yi − x⊤

i β)) with
wi = fi(ξi), √

n(β̃ − β)
d→ N(0, q(1 − q)D−1

2 ).
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Koenker (2005) proves the result by using the fact that the limiting behavior of

Zn(δ) ≡
n

∑

i=1

wi{ρq(ui − x⊤
i δ/

√
n) − ρq(ui)} =

n
∑

i=1

{ρq(wi(ui − x⊤
i δ/

√
n)) − ρq(wiui)}

determines the limiting distribution of δ̃n =
√

n(β̃ − β), where δ̃n minimizes Zn(δ)
and ui = yi − x⊤

i β(q).
We define the scaled efficient quantile regression estimator as

β̃M ≡ arg min
β∈Rp

n
∑

i=1

ρM
q (wi(yi − x⊤

i β)).

Similarly, we will consider the limiting behavior of

ZM
n (δ) =

n
∑

i=1

{ρM
q (wi(ui − x⊤

i δ/
√

n)) − ρq(wiui)}. (7)

To get a consistent estimator, we set the λγ in ρM
q (·) to be of the form c · nα, where

c is a constant, n is the sample size, and α is a positive constant. Details of the
choice of parameters are in Jung et al. (2010) for efficient quantile regression with
equal weights wi = 1. Under the same condition on α as in the equal weight setting,
we can show that the scaled quantile regression estimator under ρM

q is consistent and
asymptotically normal when the wi’s are proportional to the local densities around
the true quantiles fi(ξi).

Theorem 1. Under the conditions (C-1) through (C-6), if α > 1/3 and wi = fi(ξi),
then √

n(β̃M − β)
d→ N(0, q(1 − q)D−1

2 ).

The proof of the theorem is in the appendix. Lee et al. (2012) show that the
unscaled version of β̂M defined in (6) has an asymptotic variance of q(1−q)D−1

1 D0D
−1
1 .

To compare β̃M with β̂M , we examine their asymptotic variances. Let

D =

(

D2 D1

D1 D0

)

= lim
n→∞

n−1
n

∑

i=1

(

f 2
i fi

fi 1

)

⊗ xix
⊤
i , (8)

where ⊗ represents the Kronecker product. D is a non-negative definite matrix since
the matrices in the right hand side of (8) are non-negative definite and the non-
negative definiteness is preserved under the Kronecker product, summation and limit
operations. Since all Di in (8) are non-negative definite by (C-3), (C-4), and (C-5),
there exists an orthogonal matrix P such that

P⊤DP =

(

D2 0
0 D0 − D1D

−1
2 D1

)

.

The fact that D0 − D1D
−1
2 D1 is non-negative definite and that D1 is nonsingular

imply that D−1
1 D0D

−1
1 − D−1

2 is also non-negative definite. Consequently, the scaled
version, β̃M , is more efficient than β̂M .
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3.2 Scaled efficient QR with unknown linear scales

In practice, the true scales of errors are unlikely to be known, and we will be faced
with the task of estimating them on the basis of the data. In many circumstances,
estimation of the scales will not change the asymptotic properties of the estimators
of β, although we do require a reasonably effective estimator of the scales. In this
subsection, we present a result for a location-scale model where both the regression
coefficients and the scale of the errors are to be estimated. The model is

yi = x⊤
i β + (x⊤

i τ)ui, (9)

where ui’s are iid from distribution F with finite density f . The scale for the ith
error is given by x⊤

i τ , leading to the weight wi = 1/(x⊤
i τ). Note that this linear

heteroscedastic model is a special case of the heterogeneous error model in the previous
section when fi(yi) = 1

σi
f(ui + F−1(q)) with σi ≡ x⊤

i τ > 0. Some of the regularity
conditions are slightly modified and restated below for this special case:

(D-5) There exists a positive definite matrix D∗
2 such that limn→∞ n−1

∑ xix
⊤

i

(x⊤

i τ)2
= D∗

2.

(D-6) maxi=1,...,n ‖xi/(x⊤
i τ)‖ = O(n1/4).

(D-6) strengthens (C-6), and it is used to establish a limiting result when τ is esti-
mated from data to define the linear scales x⊤

i τ . Koenker and Zhao (1994) define the
weighted quantile regression estimator β̌τ as arg minβ∈Rp

∑n
i=1 ρq((yi − x⊤

i β)/x⊤
i τ).

With any
√

n-consistent estimator of τ up to a scale, τ̂ = κτ + Op(n
−1/2), they show

that the asymptotic behavior of β̌τ is the same as β̌τ̂ , where τ̂ is plugged in. That

is,
√

n(β̌τ̂ −β)
d→ N(0, q(1−q)

f2(F−1(q))
D∗

2
−1), which has a smaller asymptotic variance than

that of the unweighted version. Note that τ need only be estimated up to an arbitrary
scale factor, as the value of κ does not effect the minimization procedure.

Now, with ρM
q (·), the modified quantile regression estimator β̌M

τ is defined as

β̌M
τ = arg min

β∈Rp

n
∑

i=1

ρM
q ((yi − x⊤

i β)/x⊤
i τ). (10)

With a similar argument as above, a
√

n-consistent estimator of τ up to a scale will
maintain the same consistency properties. Thus, we consider

β̌M
τ̂ = arg min

β∈Rp

n
∑

i=1

ρM
q ((yi − x⊤

i β)/x⊤
i τ̂).

Theorem 2. Assume that x⊤
i τ > 0 for all i and that τ̂ = κτ + Op(n

−1/2) for some
scalar κ. Then, under (C-1) through (C-3), (D-5), and (D-6), if α > 1/3, then

√
n(β̌M

τ̂ − β)
d→ N(0,

q(1 − q)

f 2(F−1(q))
D∗

2
−1).
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See the appendix for proof. Again, the above estimator is asymptotically more
efficient than the unscaled version, and it achieves the same efficiency as weighted
quantile regression estimates.

The analogy, that weighted least squares is to least squares as weighted quan-
tile regression is to quantile regression, is telling. In addition to motivating both
scaled and weighted modified quantile regression, our simulation reveals the type of
improvement we expect when we incorporate more features of the model into the
analysis. The analogy is farther reaching. If we have approximately correct scales,
we expect to see improvement over the unscaled analysis. This suggests the use of a
relatively simple model for the scales, perhaps coupled with a more complex model
for the quantile function.

3.3 Estimation of scale factors

In this section, we outline two practical methods for estimation of the scale factors.
Many other strategies are possible and merit future investigation. All such methods
require some measure that can reveal heteroscedasticity in the data if it is present.
With this in mind, and motivated by location-scale models we consider a robust
estimate of scale, such as the interquartile range (conditional on x), IQR(x). Quantile
regression provides a means of estimating this scale function. The fitted IQR at ith

observation is ÎQRi = x⊤
i (β̂ .75 − β̂ .25), with the β̂q coming from a pair of quartile

regression fits of the data. This allows us to define ŵi = 1/ÎQRi and to set τ̂ =
β̂ .75− β̂ .25 for a connection to the theoretical results in the previous subsection. Since
β̂ .25 and β̂ .75 are

√
n-consistent, τ̂ will satisfy the required asymptotic rate in Theorem

2. We note that the quantile regression fit used to generate the β̂q can be replaced
with a modified quantile regression fit from ρM

q (·). Our subsequent investigations
suggest the effectiveness of this modification.

A second approach focuses on departures of observations from the median regres-
sion. Specifically, scale factors can be obtained with the following steps. First, fit a
median regression and store the absolute residuals, |ri|. Second, again fit a median
regression of |ri| on xi, and obtain a fitted value, m̂i, for each case. Finally set the
weight to wi = 1/m̂i and proceed to build a scaled quantile regression. In this ex-
ample, we implicitly set τ̂ to be the estimate of regression coefficient at q = 0.5 for
(xi, |ri|). The intuitive explanation of this method is that, asymptotically, the median
regression surface for |ri| given xi captures half of the absolute residuals below the
surface and half above the surface. If the model is correct, this holds for all x. Taking
twice this spread gives an interval which (asymptotically) captures half of the proba-
bility density at each xi. In the case of a symmetric error distribution, 2m̂i provides
an estimate of IQRi. The asymptotic properties of this method are more difficult
to establish, as they depend upon a pair of quantile regressions which removes the
independence of the |ri|.

There are many other ways to estimate the scale factors for these procedures. A
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natural approach is to attempt to estimate each fi directly, with a method that is local
in nature, avoiding the assumption of a location-scale family for the yi. While direct
estimates of the local density–perhaps kernel density estimates–have great appeal,
they also suffer from relatively poor rates of convergence. The theoretical treatment
of the previous subsection which echoes results in Koenker and Zhao (1994) suggests
the need for a

√
n-consistent estimator.

Our philosophical perspective is to seek a stable estimate of the scale (hence
the weights) that is reasonably close to consistent, thereby obtaining the bulk of
the improvement provided by adjusting for different scales. This pushes us in the
direction of relatively robust estimates of the scale and toward approximations such
as the location-scale model. It also suggests that we might tweak the estimates in
the direction of stability. For example, we might use methods that force separation
among the quantiles to prevent the estimated scale from being too close to 0: see
He (1997). Or, we might begin with the estimated scales and then shrink them
toward uniform scales, yielding a stable procedure which can be considered as midway
between unscaled and scaled quantile regression.

Once we have estimated scales in hand, we can apply them to standard quantile
regression (QR) and modified quantile regression (QR.M), to produce the correspond-
ing scaled versions. The effectiveness of the scaled procedures is demonstrated in the
simulations and real data analyses in the following sections. Our belief is that any
appropriate scale estimator that is able to account for the variations in scale will be
advantageous. The effect of adjusting for scales in some fashion is strong enough that
the wide range of procedures we have investigated all show a benefit. The aforemen-
tioned methods are but two examples of how to produce estimates of scale factors.

4 Simulations

4.1 Univariate case

A simple simulation with a heterogeneous error model given below is considered, first
with fixed x. The heterogeneous error model is given by

yi = β0 + β1xi + xiui,

where the ui’s are iid standard normal, (β0, β1)
⊤ = (1, 2)⊤, and x takes one of three

values from the set {1, 2, 3}. 2000 data sets are generated from the model for each
of two sample sizes, n = 300 and n = 900. In each case, 1/3 of the sample assumes
each of the three possible covariate values.

Five different models are fit to the data; standard quantile regression (QR),
weighted QR (WQR), modified quantile regression (QR.M), and two versions of QR.M
(WQR.M and WQR.M2) that account for heterogeneous errors. For these versions,
WQR.M2 follows the scaling approach and minimizes

∑n
i=1 ρM

q (wi(yi − x⊤
i β)), while

WQR.M results from minimization of the weighted sum
∑n

i=1 wiρ
M
q (yi − x⊤

i β).
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The estimate of the weight (or scale) for cases with covariate x is derived from
an estimate of the IQR at x. The IQR can be estimated in a robust fashion, and,
for the normal distributions, the IQR is about 1.35σ. Specifically, we find the fitted
quartile surfaces (q = 0.75 and q = 0.25) with unweighted (or unscaled) linear quantile

regressions (using either QR or QR.M), and then set ÎQR(x) equal to the difference
between these two surfaces at x. The fitted IQR values from QR are used to derive
weights for WQR while those from QR.M are used for WQR.M. It is natural to take

the scaling approach and minimize
∑n

i=1 ρM
q ((yi − x⊤

i β)/ÎQRi). Alternatively, the

value 1/ÎQRi can be used as a weight for the ith observation. Note that these two
calculations become equivalent for ρq(·). In this way, we fit WQR, WQR.M, and

WQR.M2 with wi = 1/ÎQRi and compare them to their unweighted (or unscaled)
counterparts. The true qth quantile regression line passes through the three points
(1, 3 + Φ−1(q)), (2, 5 + 2Φ−1(q)), and (3, 7 + 3Φ−1(q)) for each 0 < q < 1, where Φ(·)
is cumulative distribution function of standard normal distribution.

The mean squared error (MSE) between the true quantile line and each of the
five fitted lines is computed for the 2000 data sets for each quantile from q = 0.1
to 0.5. Table 1 reveals an interesting pattern. The weighted (or scaled) versions
(WQR, WQR.M, and WQR.M2) perform better than the unweighted (or unscaled)
counterparts in nearly every case. We suspect that the lone reversal of this pattern
for QR and WQR is due to simulation variation. Surprisingly, QR.M outperforms
WQR when q > 0.3. In these instances, WQR.M performs even better than QR.M.

Table 1: Point estimate of MSE and standard error of the estimate in parentheses
(multiplied by 1000), based on 2000 replicates with n = 300, and n = 900, at selected
quantiles.

Method q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5
n = 300

QR 85.71 (2.45) 60.64 (1.74) 51.75 (1.43) 48.44 (1.33) 47.03 (1.30)
WQR 82.91 (2.40) 58.12 (1.69) 50.27 (1.43) 47.64 (1.31) 46.08 (1.27)
QR.M 88.81 (2.40) 58.63 (1.60) 45.60 (1.24) 41.07 (1.14) 39.05 (1.10)
WQR.M 80.11 (2.22) 54.61 (1.53) 43.65 (1.21) 39.75 (1.19) 37.98 (1.07)
WQR.M2 86.72 (2.35) 55.94 (1.59) 43.00 (1.18) 37.47 (1.03) 35.20 (0.99)

n = 900
QR 28.56 (0.76) 20.15 (0.56) 17.32 (0.47) 15.61 (0.42) 15.50 (0.41)
WQR 27.39 (0.75) 19.47 (0.55) 16.97 (0.46) 15.22 (0.41) 15.18 (0.41)
QR.M 28.85 (0.74) 19.33 (0.54) 15.84 (0.43) 13.87 (0.37) 13.19 (0.36)
WQR.M 27.49 (0.71) 18.25 (0.51) 15.25 (0.42) 13.54 (0.37) 12.95 (0.35)
WQR.M2 28.43 (0.80) 18.62 (0.54) 15.01 (0.42) 12.95 (0.35) 12.06 (0.32)

In many data analyses, the covariates are best viewed as arising at random. Our

10



second simulation examines this case. We generate the xi independently from the
uniform distribution over the set {1, 2, 3}.

Under the heterogeneous model mentioned above, 2000 data sets are simulated
with a sample size of 300. Standard normal and exponential with mean one error
distributions are considered. Again, the MSE is employed to measure the accuracy
of the five fitted models. Table 2 summarizes the simulation results and illustrates
that all of the MSEs for the weighted (or scaled) methods (WQR, WQR.M, and
WQR.M2) are smaller than their counterparts (QR, QR.M), by 3-5% on average.
The MSE for WQR.M and WQR.M2 is less than that for WQR, except for q = 0.1,
under the normal distribution. This assessment demonstrates a clear benefit from use
of the weights or scales.

Table 2: Point estimate of MSE and standard error of the estimate in parentheses
(multiplied by 1000), based on 2000 replicates with n = 300 under standard normal
and Exponential(1) error distributions at selected quantiles.

Method q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5
N(0,1)

QR 77.70 (2.05) 55.19 (1.42) 46.53 (1.17) 44.57 (1.09) 43.74 (1.08)
WQR 75.89 (1.93) 54.07 (1.39) 45.08 (1.16) 42.62 (1.04) 41.91 (1.04)
QR.M 79.49 (1.95) 50.55 (1.26) 40.67 (1.00) 36.67 (0.91) 34.96 (0.85)
WQR.M 73.57 (1.81) 47.55 (1.20) 38.71 (0.97) 35.11 (0.87) 33.62 (0.83)
WQR.M2 79.23 (2.01) 49.33 (1.28) 38.49 (0.97) 34.00 (0.84) 32.29 (0.79)

Exp(1)
QR 3.26 (0.09) 6.80 (0.19) 11.34 (0.30) 17.70 (0.49) 27.34 (0.72)
WQR 3.14 (0.09) 6.52 (0.18) 10.96 (0.28) 17.06 (0.46) 26.36 (0.70)
QR.M 2.60 (0.08) 5.69 (0.16) 9.74 (0.27) 15.79 (0.43) 26.87 (0.71)
WQR.M 2.46 (0.08) 5.37 (0.15) 9.17 (0.26) 14.72 (0.40) 24.35 (0.64)
WQR.M2 2.42 (0.08) 5.36 (0.15) 9.23 (0.26) 15.22 (0.43) 26.70 (0.75)

4.2 Multivariate case

A more realistic case involves more than one covariate. To examine the performance
of our method in this setting, we consider a model with 8 covariates (p = 8) and
sample size 500:

yi = β0 + x⊤
i β + |x⊤

i β|ui,

where ui
iid∼ N(0, σ2). Let xi be iid copies of X, where X follows the multivariate

normal distribution with mean 5 · 1p, and variance Σ = [ ρ|i−j| ] with ρ = 0.5, and
assume that X and u are independent. To measure the accuracy of the estimates of the
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qth quantile, we use the MSE for the fitted surface, integrated over the distribution
of X. The MSE can be expressed as

MSE(β̂) = Eβ̂,X{(X⊤β̂q + β̂q
0) − (X⊤β + β0 + |X⊤β| · σΦ−1(q)}2,

where β̂q and β̂q
0 are estimates of β and β0 at the qth quantile, respectively, and

σΦ−1(q) (or, shortly Φ−1
σ,q) is the qth quantile of N(0, σ2). The MSE does not depend

on the value of β0 used in the simulation, and so, without loss of generality, we
set β0 = 0 and consider three scenarios of regression coefficients: i) Sparse: β =
(5, 0, 0, 0, 0, 0, 0, 0)⊤, ii) Intermediate: β = (3, 1.5, 0, 0, 2, 0, 0, 0)⊤, and iii) Dense: β =
(2, 2, 2, 2, 2, 2, 2, 2)⊤. To keep the signal-to-noise ratio comparable across the three
scenarios, we set the value of σ such that V ar(|X⊤β|u) = 1. In other words, σ2 =
1/β⊤(Σ + µµ⊤)β.

Under each scenario, 500 data sets are generated, each with sample size n = 500.
When X⊤β is substantial and positive, which is practically the case under our settings
of design matrix and parameter values, we can drop the absolute value about |X⊤β|,
which makes essentially no difference in the calculation of MSE. The following
derivation shows that an estimate of the MSE can be computed from the estimates
of β without involving the sampled value of X:

MSE(β̂)

= Eβ̂,X{X⊤(β̂q − β − βΦ−1
σ,q)}2 + 2Eβ̂,X [X⊤(β̂q − β − βΦ−1

σ,q)(β̂
q
0 − β0)] + Eβ̂(β̂q

0 − β0)
2

= Eβ̂[(β̂q − β)⊤(Σ + µµ⊤)(β̂q − β)] − 2Eβ̂[(β̂q − β)⊤(Σ + µµ⊤)βΦ−1
σ,q]

+(Φ−1
σ,q)

2β⊤(Σ + µµ⊤)β + 2Eβ̂[µ⊤(β̂q − β − βΦ−1
σ,q)(β̂0 − β0)] + Eβ̂(β̂0 − β0)

2,

where µ = 5 · 18 in our simulation setting and thus µµ⊤ = 25J with J denoting the
matrix of ones.

For the estimates of weight, wi = 1/|x⊤
i β|, first we fit a standard quantile regres-

sion at q = 0.5, then obtain residuals and fitted values. Then, treating the absolute
value of the residuals as a response variable and the fitted values as an explanatory
variable, we fit another standard median regression from which the fitted values are
used as 1/ŵi. Once we obtain the estimates of weight (and scale), they are used for
WQR, WQR.M, and WQR.M2. Note that this approach for estimation of weight (or
scale) is different from that in Section 4.1.

Table 3 shows the MSE values for five methods at selected quantiles. WQR shows
uniform improvement over QR, and QR.M shows uniform improvement over WQR.
In all cases, the two best performing methods are WQR.M and WQR.M2, with a
relatively even split between the two for smallest MSE. The results demonstrate the
value of both modification of the check loss and the use of scale or weight across the
sparse, intermediate, and dense scenarios.
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Table 3: Point estimate of integrated MSE and standard error of the estimate in
parentheses (multiplied by 1000), based on 500 replicates with n = 500 at selected
quantiles.

Method q = 0.1 q = 0.25 q = 0.5 q = 0.8 q = 0.9
Sparse

QR 33.50 (1.016) 20.22 (0.620) 17.48 (0.529) 23.23 (0.754) 31.89 (1.074)
WQR 31.95 (1.001) 19.50 (0.611) 16.74 (0.499) 21.83 (0.713) 29.78 (1.009)
QR.M 31.60 (0.971) 17.10 (0.548) 13.92 (0.453) 20.33 (0.667) 30.19 (1.016)
WQR.M 29.51 (0.916) 16.10 (0.518) 12.89 (0.419) 18.93 (0.621) 27.62 (0.917)
WQR.M2 29.34 (0.974) 16.03 (0.517) 13.54 (0.433) 19.22 (0.655) 28.08 (0.950)

Intermediate
QR 39.79 (1.125) 23.86 (0.649) 21.08 (0.553) 27.63 (0.797) 38.14 (1.133)
WQR 39.03 (1.078) 23.44 (0.634) 20.40 (0.529) 27.00 (0.774) 37.06 (1.094)
QR.M 36.92 (1.052) 20.19 (0.561) 16.83 (0.479) 23.78 (0.693) 35.41 (1.054)
WQR.M 36.17 (1.055) 19.79 (0.547) 16.23 (0.455) 23.22 (0.677) 34.18 (1.029)
WQR.M2 35.78 (1.031) 19.82 (0.552) 16.33 (0.463) 23.07 (0.679) 34.55 (1.039)

Dense
QR 53.26 (1.235) 32.26 (0.704) 27.65 (0.554) 36.49 (0.825) 51.61 (1.186)
WQR 52.49 (1.208) 31.67 (0.676) 27.37 (0.544) 36.05 (0.817) 51.13 (1.170)
QR.M 47.40 (1.078) 27.00 (0.573) 22.26 (0.456) 31.40 (0.697) 46.62 (1.067)
WQR.M 46.81 (1.089) 26.70 (0.569) 21.86 (0.443) 31.11 (0.699) 46.20 (1.063)
WQR.M2 47.08 (1.082) 27.06 (0.574) 22.01 (0.468) 30.65 (0.682) 46.49 (1.058)

5 Empirical Examples

5.1 GDP growth data

In this section, we apply the heterogeneous error model developed in Section 3 to an
economic growth data set. The data consist of 161 observations on determinants of
cross-country gross domestic product (GDP) growth rates and were used in Koenker
and Machado (1999). The first 71 observations are on the period 1965-75, the remain-
der on 1975-85. There are 13 covariates and one response variable, “Annual Change
Per Capita GDP”. The response variable indicates the rate of annual GDP growth
with most of the observed values between −0.05 and 0.05. Our analysis focuses on
the relationship between one of the covariates, “% of Female High School Graduate
or More” and the response variable. The five methods (QR, WQR, QR.M, WQR.M,
and WQR.M2) are applied to the data, and the weights/scales are estimated using
IQR in Section 4.1. Before analyzing the data, we removed two extreme outliers be-
cause their inclusion resulted in negative weights under QR, as the fitted first quartile
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exceeded the fitted third quartile within the range of the data. There was no such
problem with QR.M, reaffirming a pattern observed elsewhere, that QR.M reduces
crossings of the fitted quantile surfaces.

The top panels in Figure 2 show the fitted lines from the four methods. First, QR
and WQR produce quite different fits, especially for the lower and upper quantiles,
while QR.M and WQR.M yield similar fits. We conjecture that this arises from the

poor fit of QR (this view is supported by the simulation study). The ÎQR or the
fitted weights provide a clearer view of this. The rightmost observation in Figure 2
has the largest weight for both WQR and WQR.M. However, the QR fit produces
a weight of 0.4883 for this observation (with the weights normalized to sum to one,
this gives a mean weight of 1/159 ≈ 0.0063) which is about 78 times the mean weight
and almost two hundred times larger than the smallest weight. The weight for this
observation from QR.M is only 0.0265, approximately four times the mean weight.
We believe that the more moderate swing in weights is preferable for this data set,
and so prefer the weights generated by QR.M to those generated by QR.

The eventual fits of the models under WQR and WQR.M show only minor dif-
ferences for small values of the covariate, but big differences for large values of the
covariate. The estimated differences between the 10th and 90th percentiles when no
females graduate from high school are 0.075927 and 0.075280, while the estimated
difference when 50% of females have graduated from high school are 0.002497 and
0.025519. We find the modest spread estimated under the WQR.M method to be far
more plausible than the near-degeneracy of 80% of the distribution estimated under
the WQR method.

To further compare QR.M and WQR.M in terms of prediction accuracy, we used
cross validation. Given the modest size of the data set, we used 1000 repetitions of
5-fold cross validation. For each repetition, the data were randomly partitioned into
five sets (or folds) of near equal size. The model was fit to four of the folds and with
the fifth fold reserved for validation. This was repeated with each fold serving as
the validation data. To create the cross validation score, we used the defining loss
function for a quantile, the check loss function. The parameters in the check loss
were adjusted to allow examination of a number of quantiles. The mean discrepancy
between the fitted and observed values appears as a single dot in Figure 3 with pre-
specified q, giving us 5000 points in each panel. The figure conveys a clear advantage
for the weighted method, with the bulk of the points falling below the 45 degree line.
A numerical summary of the cross validation score (CV score) appears in Table 4. In
a similar way, WQR.M2 is also compared to QR.M in Figure 4.

As explained in Section 4, weights (or scales) are estimated from the fitted IQR
with unweighted QR or QR.M for fitting the weighted (or scaled) counterparts at q
= (0.25, 0.5, 0.75). For the more extreme quantiles q = 0.1 and 0.9, we have used the
reciprocal of the fitted distance between q = 0.9 and 0.1 in place of the fitted IQR.
The weights or scales are then used for WQR, WQR.M and WQR.M2 as before.
Estimating the weights or scales with a range that extends beyond the upper and
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Figure 2: The two panels show quantile regression lines estimated by QR and WQR
(left) and by QR.M and WQR.M (right) at q = (0.05 , 0.1, 0.25, 0.5, 0.75, and 0.9).

lower quartiles generally improves the fits, (equivalently reduces the CV score) at
extreme quantiles such as q = 0.1 and 0.9.

5.2 Corrected Boston Housing data

The Boston Housing data set was originally examined by Rubinfeld (1978) to detect
social and environmental factors that affect house prices in the Boston Metropolitan
area. The data set is composed of 506 census tracts (observations) with 14 variables
where median house value is considered as the response variable. Gilley and Pace
(1996) provide details of corrections made to some of the data. The response variable
and 13 explanatory variables are CMEDV (corrected median values of owner-occupied
housing in USD 1000), CRIM (crimes per capita), ZN (proportion of residential land
zoned for lots over 25,000 sqft), INDUS (proportion of non-retail business acres per
town), CHAS (a factor with levels 1 if tract borders Charles River; 0 otherwise), NOX
(nitric oxides concentration in parts per 10 million), RM (average number of rooms
per dwelling), AGE (proportion of owner-occupied units built prior to 1940), DIS
(weighted distance to five Boston employment centers), RAD (index of accessibility
to radial highways), TAX (full-value property-tax rate per USD 10,000), PTRATIO
(pupil-teacher ratio), B (1000(AA − 0.63)2 where AA is the proportion of African
American), and LSTAT (percentage values of lower status population).

To begin the analysis, we explored the data set by fitting weighted and unweighted
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Figure 3: CV scores by QR.M and WQR.M at q = (0.1, 0.25, 0.5, 0.75, and 0.9) with
a line of slope 1 from “Annual Change Per Capita GDP” data. Weights are estimated
from IQR at q = (0.25, 0.5, 0.75), while the distance between 0.9 and 0.1 fitted lines
is used to estimate the weights at q = (0.1, 0.9).
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Figure 4: CV scores by QR.M and WQR.M2 at q = (0.1, 0.25, 0.5, 0.75, and 0.9)
with a line of slope 1 from “Annual Change Per Capita GDP” data. Weights are
estimated from IQR at q = (0.25, 0.5, 0.75), while the distance between 0.9 and 0.1
fitted lines is used to estimate the weights at q = (0.1, 0.9).
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Table 4: Point estimate of mean cross validated score (CV score) and standard error
of the estimate in parentheses (multiplied by 10,000), based on 1000 different splits
of “Annual Change Per Capita GDP” data. CV score is measured by check loss
function.

Method q = 0.1 q = 0.25 q = 0.5 q = 0.75 q = 0.9
QR 7.147 (0.0678) 5.959 (0.0948) 6.082 (0.0621) 8.298 (0.1024) 7.801 (0.0970)
WQR 7.189 (0.0674) 6.034 (0.1009) 5.204 (0.0598) 5.347 (0.0902) 7.946 (0.0942)
QR.M 6.901 (0.0535) 5.403 (0.0574) 5.567 (0.0484) 5.193 (0.0523) 3.626 (0.0519)
WQR.M 6.689 (0.0545) 5.647 (0.0582) 4.847 (0.0491) 4.812 (0.0536) 3.429 (0.0521)
WQR.M2 6.911 (0.0482) 5.207 (0.0569) 4.599 (0.0479) 3.989 (0.0468) 3.515 (0.0504)

quantile regression models. This led us in the same direction as Rubinfeld (1978),
and we transformed a number of variables for the subsequent analysis. We used
log(CMEDV ), log(DIS), log(RAD), log(LSTAT ), NOX2, and RM2. Since ZN
and INDUS are rarely significant at various quantiles, they were excluded and one
gigantic outlier was removed before the data analysis. In shorthand notation, the
final model we build is,

log(CMEDV ) = CRIM + CHAS + NOX2 + RM2 + AGE + log(DIS)+
log(RAD) + TAX + PTRATIO + B + log(LSTAT ).

(11)

The model is fit with five procedures, QR, WQR, QR.M, WQR.M, and WQR.M2,
for q ranging from 0.1 to 0.9. Weights (or scales) are estimated in two steps. First,
a standard median regression is fit, and the fits and residuals are obtained. Second
comes another single-predictor median regression treating the fit as the independent
variable and the absolute value of the residual as the response. Use of the fit as a
single predictor stabilizes the second regression, leading to more stable weights (and
scales). The weights are taken to be the reciprocals of the fitted values from the
second regression.

To compare the performance of the five methods of fitting the model, prediction
accuracy is examined through 5-fold cross validation as in Section 5.1. A summary
of 500 different partitions of the data is given in Table 5.

In overall terms, the weighted and scaled versions perform better than their coun-
terparts, although there are some exceptions. These exceptions appear to be driven
by a departure of our implicit model for the scale of the error distribution. The actual
data show a departure from the linear relationship we have used for the scale, and so a
more flexible model for weights and scales is desirable. Additionally, the appropriate
local scale seems to depend on q, the quantile under examination. This suggests the
need for a more refined method for determining the weights and scales. We do not
pursue such a method here, but do indicate directions to explore in the discussion
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Table 5: Point estimate of mean cross validated score (CV score) and standard error
of the estimate in parenthesis (multiplied by 10,000), based on 500 different splits of
“Corrected Boston Housing” data. CV score is measured by check loss function.

Method q = 0.05 q = 0.1 q = 0.25 q = 0.5 q = 0.7 q = 0.95
QR 187.8 (0.25) 304.2 (0.22) 537.5 (0.33) 717.5 (0.45) 699.4 (0.55) 374.1 (0.68)
WQR 186.6 (0.22) 304.0 (0.24) 538.2 (0.33) 715.9 (0.46) 697.8 (0.54) 373.5 (0.69)
QR.M 187.2 (0.23) 303.5 (0.22) 535.5 (0.33) 714.2 (0.45) 694.3 (0.53) 370.8 (0.65)
WQR.M 185.7 (0.21) 303.5 (0.23) 535.2 (0.31) 712.1 (0.42) 695.7 (0.52) 369.4 (0.67)
WQR.M2 185.2 (0.21) 302.6 (0.22) 536.0 (0.32) 714.0 (0.43) 695.1 (0.52) 370.4 (0.67)

section. In any event, even with misspecification of the weights (or scales), weighting
(and scaling) produces an overall net benefit.

A second feature of Table 5 is even more striking. The fits from the l2 adjusted
check loss (QR.M and WQR.M) show uniformly smaller CV score values than that
from the original check loss (QR and WQR, respectively). Modification of the check
loss to enhance efficiency is undoubtedly worthwhile.

To further investigate the effect of weights and scales on the fit of the model,
the estimated coefficients from the four methods are drawn in Figure 5 for a range
of quantiles from 0.1 to 0.9. The (transformed) covariates are standardized before
fitting the above model so that the coefficients are comparable. The coefficients under
the various fits truly differ. Some of the more noticeable differences appear at the
extreme quantiles of RM2, log(RAD), and log(LSTAT ). Another change is that the
extent of negative effects on house price are alleviated in both WQR and WQR.M
(compared to QR and QR.M, respectively) when the house price is high. These
systematic differences that cut across both WQR and WQR.M suggest that these
qualitative aspects of the analysis which are heavily tied to substantive interpretation
of the data are directly related to the success of the models in capturing, however
imperfectly, the heteroscedasticity which is present in the data.

6 Discussion

We have proposed a new quantile regression method for analyzing heteroscedastic
data, which extends the methodology developed in Lee et al. (2012) to allow for het-
erogeneity in the error distributions. Asymptotic results establish the large-sample
behavior of the method, placing it on a firm theoretical footing. Details of implemen-
tation have been considered, and a practical method to implement the technique has
been proposed. The success of the method relative to standard quantile regression
has been shown through simulation studies and an examination of a data set. We
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attribute the success of WQR.M and WQR.M2 relative to WQR partly to improved
estimation of weights (and scales) with QR.M instead of QR and partly to the mod-
ification of the check loss function. There are many variations on the general theme
presented here. We indicate a few promising directions.

The technique we have developed relies on a two-stage strategy, where the scale
of the error distribution is estimated in a first stage, yielding scale factors used to
estimate the quantile surface in the second stage. In our first scale-estimation scheme,
an iterative algorithm can be used in the first stage, wherein scales are estimated,
WQR.M is used to estimate the upper and lower quartile surfaces, with scales derived
from these estimated surfaces. The second stage would then make use of these (more
accurate) scales for final estimation of the quantile surfaces. In our second scale-
estimation scheme, estimation of the median regression for the absolute residuals can
be replaced by WQR.M estimation of the regression, again leading to more accurate
estimates of the scales.

Throughout the simulations and data analysis, we have chosen to use a common
scale estimate for estimation of the various quantile surfaces. This is in keeping with
the notion of the errors following a scale family. Alternative approaches exist and
would be appropriate when the assumption of a scale family is noticeably violated.
Our methods can be focused directly on the scale near a particular quantile, say
the upper quartile. For the first method, we can use, say, the difference between
the estimated 90th and 60th percentile surfaces to obtain an estimate of the average
density over this range of quantiles. With larger sample sizes, the band about the
upper quartile can be shrunk, asymptotically focusing on the average density in a
vanishingly small region about the upper quartile. The second method can also be
focused on a quantile. Again considering a regression for the upper quartile, the two
steps in the procedure can be altered as follows. First, fit the upper quartile surface
to the data (xi, yi) with QR (or QR.M). Extracting the residuals, ri, from this fit
provides an estimate of local deviations from the quartile surface. Second, run QR
(or QR.M) with the absolute residuals as the response, using (xi, |ri|) as the data for
the regression. The choice of quantile in this second regression determines how closely
the scale estimate focuses on the density around the upper quartile. A regression for
the 20th percentile extracts a scale estimate from one fifth of the distribution of
the residuals; a regression for the 10th percentile extracts a scale estimate from one
tenth of the distribution of residuals, and so on. Larger sample sizes support stable
estimates of low percentile surfaces in this second regression, allowing us to better
capture the densities near the upper quartile surface.

In this work, we have focused exclusively on linear quantile regression, but the
proposed method can be readily extended to nonlinear quantile regression with het-
erogeneous errors. To do so, we need only modify the stage where the scale (as a
function of covariates) is estimated. Following the path laid out here, we could esti-
mate the upper and lower quartile surfaces through nonlinear quantile regression and
obtain scale factors that vary locally, using these scales in the second stage.
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On the implementation side, we fit the standard quantile regression by rq in the
R package quantreg and its weighted version with an additional input argument
for the weights. The modified quantile regression method was directly implemented
by specifying the derivative of (5) in the rlm function in the MASS package. The rlm

function allows both scaling and weighting to treat cases differently: one through case
weights (wt.method="case") and the other through scales (wt.method ="inv.var").
Again, simply adding one argument for the weights (or scales) produces the weighted
(or scaled) counterpart which we have found enhances the accuracy of estimation.

Appendix

Proof of Theorem 1.

ZM
n (δ) =

∑n
i=1{ρM

q (wi(ui − x⊤
i δ/

√
n)) − ρq(wiui)} can be decomposed into

n
∑

i=1

{ρM
q (wi(ui − x⊤

i δ/
√

n)) − ρq(wi(ui − x⊤
i δ/

√
n))} + Zn(δ).

Using similar arguments as in Lee et al. (2012) for consistency of modified quantile
regression, we show that the first term becomes asymptotically negligible in deter-
mining the minimizer of ZM

n (δ). First, we consider the expectation of the first term
of the above decomposition.

E
(

n
∑

i=1

{ρM
q (wi(ui − x⊤

i δ/
√

n)) − ρq(wi(ui − x⊤
i δ/

√
n))}

)

+
nq(1 − q)

2λγ

=
n

∑

i=1

∫
1−q

λγwi
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i δ/
√

n
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i δ/
√

n
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2

qw2
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1 − q

(
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i δ√
n

)2

− qwi

(

u − x⊤
i δ√
n

)

+
q(1 − q)

2λγ

)

fi(ξi + u)du

+

n
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i=1

∫ x⊤

i δ/
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n

− q

λγwi
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i δ/
√

n

(λγ

2

(1 − q)w2
i

q

(

u − x⊤
i δ√
n

)2

− (q − 1)wi

(

u − x⊤
i δ√
n

)

+
q(1 − q)

2λγ

)

fi(ξi + u)du

=
n

∑

i=1

∫
1−q

λγwi
+x⊤

i δ/
√

n

x⊤

i δ/
√

n

λγ

2

qw2
i

1 − q

(

u − x⊤
i δ√
n

− 1 − q

λγwi

)2

fi(ξi + u)du

+
n

∑

i=1

∫ x⊤

i δ/
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− q

λγwi
+x⊤

i δ/
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λγ

2

(1 − q)w2
i

q

(

u − x⊤
i δ√
n

+
q

λγwi

)2

fi(ξi + u)du.

Making use of a Taylor series expansion of fi at ξi from (C-2), we can show that for
λγ = cnα, the above expression is given by

q(1 − q)

6c2n2α

n
∑

i=1

fi(ξi)

wi
+

q(1 − q)

6c2n2α

n
∑

i=1

f ′
i(ξi)x

⊤
i δ

wi

√
n

+ o(n−2α+1/2).
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Note that
∑n

i=1 fi(ξi)/wi = O(n) for wi = fi(ξi), and
∑n

i=1{f ′
i(ξi)/wi}(x⊤

i δ/
√

n) =
O(

√
n) as f ′

i(ξi)/wi, i = 1, . . . , n are uniformly bounded from the condition (C-2),
and (C-1), and |x⊤

i δ| ≤ ‖xi‖2‖δ‖2 ≤ (‖xi‖2
2 + ‖δ‖2

2)/2 while
∑n

i=1 ‖xi‖2
2 = O(n) from

the condition (C-3). Thus, we have

E

n
∑

i=1

{(ρM
q (wi(ui − x⊤

i δ/
√

n)) − (ρq(wi(ui − x⊤
i δ/

√
n))} − Cn → 0 if α > 1/4,

where Cn ≡ −q(1 − q)/(2cnα−1) + q(1 − q)/(6c2n2α)
∑n

i=1 fi(ξi)/wi. And similarly,

V ar
(

n
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{ρM
q (wi(ui − x⊤

i δ/
√

n)) − ρq(wi(ui − x⊤
i δ/

√
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)

=

n
∑

i=1

q2(1 − q)2fi(ξi)

20c3n3αwi
+ o(n−3α+1) → 0 for α > 1/3

Thus, under the condition that α >1/3,

ZM
n (δ)−Zn(δ)−Cn =

n
∑

i=1

{ρM
q (wi(ui −x⊤

i δ/
√

n))− ρq(wi(ui −x⊤
i δ/

√
n))}−Cn

p→ 0.

Finally, Theorem 5.1 of Koenker (2005) shows that Zn(δ)
d→ −δW̌ + 1

2
δ⊤D2δ where

W̌ ∼ N(0, q(1 − q)D2), which completes the proof. �

Proof of Theorem 2.

The proof of convergence is similar to the proof of Theorem 1, except that ui is now
expressed as (yi−x⊤

i β)/(x⊤
i τ). The behavior of

√
n(β̌M

τ −β) follows from consideration

of
∑n

i=1{ρM
q (ui − x⊤

i δ

x⊤

i τ
1√
n
) − ρq(ui)}. First, we decompose the above expression.
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i δ
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i τ
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n
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i δ
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i τ

1√
n

) − ρq(ui −
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i δ
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i τ

1√
n

)} + Z∗
n(δ),

where Z∗
n(δ) =

∑n
i=1{ρq(ui − x⊤

i δ

x⊤

i τ
1√
n
) − ρq(ui)}. Similar to the proof in Theorem 1,

for α > 1/3, it can be observed that ZM∗
n (δ) − Z∗

n(δ) − C∗
n

p→ 0, where

C∗
n ≡ −q(1 − q)/(2cnα−1) + q(1 − q)/(6c2n2α)

n
∑

i=1

fi(ξi)(x
⊤
i τ)

= −q(1 − q)/(2cnα−1) + q(1 − q)/(6c2n2α)(n · f(F−1(q))).
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Thus, asymptotic behavior of β̌M
τ is equivalent to that of β̌τ . Koenker and Zhao

(1994) show that
√

n(β̌τ − β)
d→ N(0, q(1−q)

f2(F−1(q))
D∗

2
−1). Now, β̌τ̂ with a

√
n-consistent

estimator of τ up to scale will have the same asymptotic behavior as β̌τ as shown in
Theorem 2.1 of Koenker and Zhao (1994). �
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