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Abstract

Principal component analysis (PCA) for binary data, known as logistic PCA, has
become a popular alternative to dimensionality reduction of binary data. It is moti-
vated as an extension of ordinary PCA by means of a matrix factorization, akin to
the singular value decomposition, that maximizes the Bernoulli log-likelihood. We
propose a new formulation of logistic PCA which extends Pearson’s formulation of a
low dimensional data representation with minimum error to binary data. Our formu-
lation does not require a matrix factorization, as previous methods do, but instead
looks for projections of the natural parameters from the saturated model. Due to this
difference, the number of parameters does not grow with the number of observations
and the principal component scores on new data can be computed with simple matrix
multiplication. We derive explicit solutions for data matrices of special structure and
provide computationally efficient algorithms for solving for the principal component
loadings. Through simulation experiments and an analysis of medical diagnoses data,
we compare our formulation of logistic PCA to the previous formulation as well as
ordinary PCA to demonstrate its benefits.

Keywords : Binary data; Exponential family; Logistic PCA; Principal component analysis

1 Introduction

Principal component analysis (PCA) is perhaps the most popular dimensionality reduction
technique (see Jolliffe, 2002, for example). It is useful for data compression, visualization,
and feature discovery. PCA can be motivated either by maximizing the variance of linear
combinations of the variables (Hotelling, 1933) or by minimizing the reconstruction error of
a lower dimensional projection of the cases (Pearson, 1901). There is an implicit connection
between standard PCA and the Gaussian distribution in Pearson’s formulation. Tipping
and Bishop (1999) also showed that PCA provides the maximum likelihood estimate for a
factor model, where the data are assumed to be Gaussian.

Although PCA is commonly used for dimensionality reduction for various types of data
in practice, the fact that PCA finds a low-rank subspace by implicitly minimizing the re-
construction error under the squared error loss renders direct application of PCA to non-
Gaussian data such as binary responses or counts conceptually unappealing. Moreover, the
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probabilistic interpretation of PCA with normal likelihood in Tipping and Bishop (1999) sug-
gests the possibility of proper likelihood-based loss functions in defining the best subspace of
a given rank for other types of data. With this motivation, Collins et al. (2001) proposed a
generalization of PCA to exponential family data using the generalized linear model (GLM)
framework, and Schein et al. (2003), Tipping (1998) and de Leeuw (2006) examined similar
generalizations for binary data in particular, using the Bernoulli likelihood, which is referred
to as logistic PCA. Generalized PCA estimates the natural parameters of a data matrix in a
lower dimensional subspace by minimizing the negative log-likelihood under an exponential
family distribution. In the Gaussian case, generalized PCA is shown to be equivalent to the
truncated singular value decomposition (SVD).

In this paper, we argue that Collins et al. (2001)’s logistic PCA is more closely related
to SVD than PCA because it aims at a low-rank factorization of the natural parameters
matrix. Consequently, each case has its own latent factor associated with it and the number
of parameters increases with the number of cases. The drawback of the formulation becomes
apparent when it comes to prediction. To apply logistic PCA to new data, one needs to
carry out another matrix factorization, which is prone to overfit. This is in contrast with
standard PCA where the principal component scores for the new data are simply given by
linear combinations of the observed values of the variables.

Retaining the structure of standard PCA, we generalize PCA in such a way that the
principal component scores are linear functions of the data. This is done by interpreting
Pearson (1901)’s formulation in a slightly different manner. A projection of the data with
minimum reconstruction error under squared loss can be viewed alternatively as a projection
of the natural parameters of a saturated model with minimum deviance for Gaussian data.
This alternative interpretation allows a coherent generalization of standard PCA to expo-
nential family distributions. When the distribution is Gaussian, this generalization simplifies
to standard PCA. Due to the prevalence of binary data and for simplicity of exposition of
the new generalization of PCA, we focus on logistic PCA in this paper.

Our formulation has several benefits over Collins et al. (2001)’s formulation. The number
of parameters does not increase with the number of observations, the principal component
scores are easily interpretable as linear functions of the data, and applying principal com-
ponents to a new set of data only requires a matrix multiplication. Furthermore, while very
little is known about solutions to Collins et al. (2001)’s formulation, some explicit solutions
to our formulation can be derived for data matrices with special structures.

Computationally, our formulation of logistic PCA, like the previous one, leads to a non-
convex problem. We derive two practical algorithms for generating solutions. The first
algorithm involves iterative spectral decompositions, using the majorization-minimization
(MM) algorithm (see Hunter and Lange, 2004). The second algorithm involves a convex
relaxation of low-rank projection matrices. Using these algorithms, we apply our formulation
of logistic PCA to several datasets, examining the advantages and trade-offs with existing
methods.

The rest of the paper is organized as follows. Section 2 gives background on PCA and
logistic PCA. In Section 3, we introduce our formulation of generalized PCA and qualitatively
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compare it to the previous formulation. In Section 4, we derive the first-order optimality
conditions for logistic PCA solutions and characterize explicit solutions that satisfy the
conditions for data matrices with special structures. In Section 5, we derive two algorithms
for logistic PCA. Section 6 shows the potential benefits of our formulation via data analyses
with simulated and real data. Finally, Section 7 concludes the paper with a discussion and
possible extensions of the proposed logistic PCA to exponential family data.

2 Background

Pearson (1901) considered a geometric problem of finding an optimal representation of mul-
tivariate data in a low dimension with respect to mean squared error. Assume that the
data consist of xi ∈ Rd, i = 1, . . . , n. To project the original d-dimensional data into lower
dimensions, say, k < d, we represent each x by µ+ UUT (x− µ), where µ ∈ Rd and U is a
d × k matrix with orthonormal columns. Pearson (1901) showed that the minimum of the
mean squared error of the k-dimensional representation,

min
µ∈Rd, UTU=Ik

n∑
i=1

‖xi − µ−UUT (xi − µ)‖2 (2.1)

is attained when µ equals the sample mean and U is a matrix with the first k eigenvectors
of the sample covariance matrix.

The MSE criteria is closely linked to a Gaussian assumption. Borrowing the characteri-
zation of PCA in Collins et al. (2001), suppose that xi ∼ N (θi, Id), and θi are constrained to
lie in a k-dimensional subspace. That is, θi are in the span of a k-dimensional orthonormal
basis {bl ∈ Rd, l = 1, . . . , k} so that θi =

∑k
l=1 ailbl for some ail. In this case, the negative

log-likelihood is proportional to

n∑
i=1

‖xi − θi‖2 = ‖X−ABT‖2F , (2.2)

where X is the n × d matrix with xTi in the ith row, A is an n × k matrix with elements
ail, B is a d × k matrix made up of the k basis vectors, and ‖ · ‖F is the Frobenius norm.
It is well known (Eckart and Young, 1936) that this objective function is minimized by the
rank k truncated singular value decomposition (SVD) of X, where B consists of the first k
right singular vectors and A consists of the first k left singular vectors scaled by the first k
singular values or, equivalently, A = XB. The fact that the columns in B span the same
subspace as the first k eigenvectors of XTX yields the equivalence in the solutions of PCA
and SVD. Note that xi in (2.2) is assumed to be mean-centered. Otherwise, xi is to be
replaced with xi − µ as in (2.1).

Using the equivalence and the alternative formulation of PCA through the mean space
approximation under a Gaussian distribution, Collins et al. (2001) extended PCA to ex-
ponential family data. Such an extension would be useful for handling binary, count, or
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non-negative data that abound in practice since the Gaussian assumption may be inappro-
priate. The authors proposed to extend PCA to exponential family distributions in a similar
way that generalized linear models (GLMs) (McCullagh and Nelder, 1989) extend linear re-
gression to response variables that are non-Gaussian. Assuming that x1, . . . ,xn are a sample
from an exponential family distribution with corresponding natural parameters θ1, . . . ,θn,
the goal of generalized PCA is to minimize the negative log-likelihood, subject to the con-
straint that the estimated natural parameters belong to a k-dimensional subspace. This is
done by approximating the n×d matrix of the natural parameters Θ = [θij] by factorization
of the form Θ = ABT , where A and B are of rank k.

Based on this generalization of PCA, Schein et al. (2003) and de Leeuw (2006) have
developed algorithms specifically for binary data. Schein et al. (2003) also extended the
specification of the natural parameter space in Collins et al. (2001) by introducing variable
main effects or biases, µ, so that Θ = 1nµ

T + ABT . In an extension of probabilistic PCA
(Tipping and Bishop, 1999), Tipping (1998) proposed a factor model for binary data with
a similar structure, where the case-specific factors in A are assumed to come from a k
dimensional standard normal distribution. The marginal distribution of X is then used to
define a likelihood of B and µ and is maximized with respect to B and µ. Like other methods,
estimating principal component scores on new data requires additional computation to solve
for the parameters on the new cases. More recently, Lee et al. (2010) extended sparse PCA
to binary data by adding a sparsity-inducing L1 penalty to B. In recommendation systems,
Johnson (2014) showed that logistic PCA can capture the latent features of a binary matrix
more efficiently than matrix factorization with a squared error loss.

3 New Formulation of Generalized PCA

We propose a new formulation of generalized PCA and demonstrate its conceptual and
computational advantages over the current formulation. For the new formulation, we begin
with a new interpretation of standard PCA as a technique for low dimensional projection
of the natural parameters of the saturated model, which are the same as the data under the
normal likelihood.

To elaborate on this perspective, recall that for a data matrix X, the d× k matrix with
the first k principal component loading vectors minimizes

n∑
i=1

‖xi − µ−UUT (xi − µ)‖2 = ‖X− 1nµ
T − (X− 1nµ

T )UUT‖2F (3.1)

among all d × k matrices U such that UTU = Ik. The principal component loadings are
given by the first k eigenvectors of the sample covariance matrix. To draw the connection
to the Gaussian model and GLMs, assume that xij are normally distributed with known
variance. With the identity function as the canonical link, the natural parameter θij is the
mean itself in this case, and the saturated model, which is the best possible fit to the data,
is the model with natural parameters θ̃ij = xij.
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For Gaussian data, the natural parameters of the saturated model are equal to the data
and minimizing the squared error in (3.1) is equivalent to minimizing the deviance. Hence,
standard PCA can be viewed as a technique for projecting the natural parameters of the
saturated model into a lower dimensional space by minimizing the Gaussian deviance.

3.1 Alternative formulation to logistic PCA

When the data are binary, assume instead that xij are from Bernoulli(pij). The natural
parameter for the Bernoulli distribution is θij = logit pij. Let θ̃ represent the natural
parameters of the saturated model. The saturated model occurs when pij = xij, which
means that

θ̃ij =

{
−∞ if xij = 0

∞ if xij = 1
.

To apply an equivalent principal component analysis to binary data, we need to minimize
the Bernoulli deviance by projecting the natural parameters of the saturated model onto a k-
dimensional space. For convenience, define qij = 2xij−1, which converts the binary variable
from taking values in {0, 1} to {−1, 1}. Let Q = 2X − 1n1

T
d be the matrix with elements

qij. For practical purposes, we will approximate θ̃ij by m · qij for a large number m and show
how the choice of m affects the analysis in Section 6.1.3. Therefore, Θ̃ = mQ approximates
the matrix of natural parameters for the saturated model.

Define D(X; Θ) as the deviance of estimated natural parameter matrix Θ with the data
matrix X. As in standard PCA, the natural parameters are estimated with a matrix of the
form Θ = 1nµ

T + (Θ̃ − 1nµ
T )UUT . The objective function to minimize is the Bernoulli

deviance,

D(X; 1nµ
T + (Θ̃− 1nµ

T )UUT ) = −2
(

log p(X; 1nµ
T + (Θ̃− 1nµ

T )UUT )− log p(X; Θ̃)
)

= −2〈X,1nµT + (Θ̃− 1nµ
T )UUT 〉

+ 2
n∑
i=1

d∑
j=1

log
(

1 + exp(µj + [UUT (θ̃i − µ)]j)
)
, (3.2)

subject to UTU = Ik, where 〈A,B〉 = tr(ATB) is the trace inner product.

3.2 Generalized PCA formulation

As alluded to in the previous section, this methodology can be extended to any distribution
in the exponential family. If x comes from a one-parameter exponential family distribution,
then the deviance D(x; θ) is proportional to {−xθ + b(θ) + c(x)}, where θ is the canonical
parameter, and E(X) = b′(θ). Let g(·) be the canonical link function, such that g(b′(θ)) = θ.
The saturated model with the lowest possible deviance occurs when θ̃ = g(x).
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For a given distribution, using the appropriate b(θ), g(·), and θ̃, generalized PCA can be
cast as

min
µ∈Rd, UTU=Ik

−〈X,1nµT + (Θ̃− 1nµ
T )UUT 〉+

n∑
i=1

d∑
j=1

b
(
µj + [UUT (θ̃i − µ)]j

)
.

For example, for the Bernoulli distribution b(θ) = log(1+exp(θ)) and θ̃ = logit x, for Poisson
b(θ) = exp(θ) and θ̃ = log x, and for Gaussian b(θ) = θ2/2 and θ̃ = x.

Further, this formulation can handle matrices with multiple types of data. Each column
of the saturated natural parameter matrix will correspond to the particular member of the
exponential family and bj(θ) will change by column.

3.3 Comparison to previous techniques

The main advantage of the proposed formulation is that we only solve for the principal
component loadings and not simultaneously for the principal component scores. The previous
method for logistic PCA posits that the logit of the probability matrix, logit P, can be
represented by a low-rank matrix factorization

Θ = ABT ,

assuming µ = 0 here to simplify exposition. Our formulation, on the other hand, assumes
the logit of the probability matrix has the form

Θ = Θ̃UUT .

To highlight the difference between the two formulations, we will call the previous formu-
lation logistic SVD (LSVD) and our formulation logistic PCA (LPCA). The d× k principal
component loading matrices for LSVD and LPCA are B and U, respectively, and the n× k
matrices of principal component scores are A and Θ̃U. The loading matrices are compara-
ble, but the score matrices take different forms. The form of Θ̃U, along with m, can act as
an implicit regularizer. While there is no restriction on how large the elements of A can be,
the elements of Θ̃U are bound between −m

√
d and m

√
d, for instance.

We illustrate a number of advantages of the alternative formulation. Conceptually, when
the main effects are not included in logistic SVD, the cases and variables are treated inter-
changeably. That is, an analysis of X will produce the same low-rank fitted matrix as an
analysis of XT , and the loadings of X will equal the scores of XT and vice versa. Logistic
PCA, however, will very likely have a different solution for the respective loadings and scores.
Since the intent of PCA is typically to explain the dependence of the variables, we believe
that it is desirable to maintain the inherent difference between cases and variables in the
analysis.

Another difference is that the proposed formulation allows quick and easy evaluation of
principal component scores for new data. Let x∗ ∈ {0, 1}d be a new observation. We wish to
calculate the principal component scores for this new data point assuming that the loadings
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have already been estimated using another dataset. Let B̂ and Û be the principal component
loadings estimated from the LSVD and LPCA formulations, respectively. To determine the
new principal component scores, a∗ ∈ Rk, for LSVD, one needs to find

a∗ = arg min
a∈Rk

d∑
j=1

[
−x∗jaT b̂j· + log

(
1 + exp(aT b̂j·)

)]
, (3.3)

where b̂j· is the jth row of B̂. This is equivalent to a logistic regression problem, where the

d-dimensional response vector is x∗ and the d× k design matrix is B̂. The a∗ can be viewed
as the coefficient vector that maximizes the likelihood defined through x∗.

In contrast, the LPCA formulation only requires a matrix multiplication for the new
principal component scores:

ÛT θ̃
∗
,

where θ̃
∗

:= m(2x∗−1) := mq∗ is taken as the approximate natural parameters for x∗ under
the saturated model. This process is analogous to computing the principal components for
new data in standard PCA, where x∗ itself acts as θ̃

∗
, a set of the natural parameters for

the saturated model. Further, predicting a low-rank estimate of the natural parameters on
a set of new data only requires calculating

Θ̂
∗

= Θ̃
∗
ÛÛT . (3.4)

Quick evaluation of principal component scores for new data can be particularly useful
in a number of situations. For example, principal component regression (or classification)
(see Hastie et al., 2009, §3.5) can be extended to logistic PCA when all the covariates are
binary. If it is necessary to make predictions for a large amount of new data or predictions
are required in real-time, the LSVD method may be too slow. Further, our proposed method
will be much more efficient when the number of principal components to retain is chosen
by cross validation (Jolliffe, 2002, §6.1.5). In this case, we select the number of components
that best reconstruct the dataset on held-out observations, and the cross-validation requires
applying logistic PCA to new data repeatedly.

Another major difference between this formulation and the previous one is that the
alternative formulation entails much fewer parameters. In particular, LSVD has kn− k(k−1)

2

additional parameters in the A matrix, if the columns are constrained to be orthogonal to
each other. This additional number of parameters could potentially be very large and be
ripe for over-fitting. As Welling et al. (2008) discussed, logistic SVD can be viewed as an
estimation method for a factor model. Instead of marginalizing over the case-specific factors,
which are latent variables in factor analysis, logistic SVD takes a degenerate approach to
computing point estimates for them. Since the number of latent factors is proportional to
the number of observations, overfitting can easily occur.

The alternative formulation of logistic PCA does have an additional parameter, m, that
previous formulations do not. We treat m as a tuning parameter. As m gets larger, the
elements of Θ̃ will get closer to ±∞ and therefore the estimated probabilities will be close
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to 0 or 1. Conversely, if m is small, the probability estimates will be close to 0.5. If the
user has domain knowledge of the range of the likely probabilities, they can use this to guide
their choice of m. We have found that cross validation is an effective way to choose m.
Simulations in Section 6.1 show the potential benefits of correctly choosing m.

Because LSVD has many more parameters than LPCA given a rank, LSVD is guaranteed
to have a lower in-sample deviance. Despite this, the simulations in Section 6.1 show that
LPCA can do just as well or better at estimating the true probabilities if m and k are chosen
properly. Further, the loadings learned in LSVD may not generalize as well as those learned
in LPCA, as the example in Section 6.2.3 exhibits.

3.4 Number of Principal Components

Selecting the appropriate dimensions for effective data representation is a common issue for
dimensionality reduction techniques. There has been relatively little discussion previously in
the literature of how to select the number of PCs in logistic PCA. Lee et al. (2010) derived a
BIC heuristic to select the degree of sparsity for sparse logistic PCA and Li and Tao (2010)
proposed a Bayesian version of exponential family PCA with a prior on the loadings that
controls the number of principal components. We propose a few methods for selection of
dimensionality in logistic PCA, motivated by the current practices in standard PCA and the
dual interpretation of squared error as the deviance for a Gaussian model.

One common approach in standard PCA is to look at the cumulative percent of the
variance explained and select the number of components such that a chosen proportion, γ, is
met or exceeded. Let Ûk be the rank k estimate of the principal component loadings. The
criteria will choose a rank k model if k is the smallest integer such that

1− ‖X− (1nµ̂
T + (X− 1nµ̂

T )ÛkÛ
T
k )‖2F/‖X− 1nµ̂

T‖2F > γ.

Similarly for logistic PCA, if D(X; Θ̂k) is the Bernoulli deviance of the rank-k principal
component loadings, Θ̂k = 1nµ̂

T +(Θ̃−1nµ̂
T )ÛkÛ

T
k , with the data X, then we could choose

the smallest integer k such that

1− D(X; Θ̂k)

D(X; 1nµ̂
T )

> γ.

This criterion has a similar interpretation as in standard PCA that at least 100γ% of the
deviance is explained by k principal component loadings. Notice that, as expected, 100% of
the deviance will be explained by d components because ÛdÛ

T
d = Id and D(X; Θ̃) = 0 by

definition.
Another approach from standard PCA is to create a scree plot of the percent of variance

explained by each component and look for an elbow in the plot. The same analogy can
be made to logistic PCA, however with a modified definition of the percent of reduction
in deviance for additional components. For logistic PCA, the principal component loadings
matrices are not necessarily nested, meaning the first k−1 columns of Ûk do not necessarily
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Figure 1: Logistic PCA projection of a two-dimensional Bernoulli distribution in the natural
parameter space (left) and in the probability space (right) with m = 5 compared to the PCA
projection

equal Ûk−1. For the reason, it would be more appropriate to define the marginal percentage
of deviance explained by the additional kth component as

D(X; Θ̂k−1)−D(X; Θ̂k)

D(X; 1nµ̂
T )

.

If d is large, these non-sequential procedures could potentially take very long. We recommend
only calculating these quantities until the cumulative percent of deviance explained is fairly
high, which may be much smaller than d in many situations.

3.5 Geometry of the Projection

The geometry of logistic principal components is illustrated with a distribution of two
Bernoulli random variables. With two dimensions (d = 2), there are only four possible
responses as indicated by the four points in the right panel of Figure 1. The areas of the
points in the figure are proportional to the probabilities that are randomly assigned to them.
The probabilities sum to one and specify the distribution, which is taken as a population
version of data.

The first step of the proposed logistic PCA is to transform the data into the natural
parameters of the saturated model, which is what is shown on the left panel of Figure
1. Here, m = 5 was used to represent the saturated model. The one-dimensional linear
projection is then performed in the natural parameter space, and is chosen to minimize the
Bernoulli deviance. In this example, we minimized the deviance by a grid search since there
is only one free parameter for the projection. The solid line in the left panel is the rank-one
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space for logit parameters, the dots on the line are the projected values, and the dashed lines
show the correspondence between the saturated model parameters and their projections.

Next, we transform this linear projection to the probability space by taking the inverse
logit of the values, which is shown as the blue line in the right panel of Figure 1. The one-
dimensional space for the probabilities induced by logistic PCA is now non-linear and the
projections are no longer orthogonal. Also shown on this plot is the one-dimensional space
(red line) from standard PCA. The projections from standard PCA are not constrained to
be between 0 and 1, as is seen for the projections of (1, 0) and (0, 1). In addition, the fitted
probabilities from logistic PCA seem to be closer to the original data values than standard
PCA for all except (0, 0), which has the smallest probability.

4 Logistic PCA for Patterned Data

The properties of standard PCA solutions are well understood algebraically. Under certain
assumptions, the solutions are explicitly known. For example, when the variables are uncor-
related, the loadings are the standard bases and the principal components are ordered from
highest variance to lowest. In contrast, not much is known about the solutions of logistic
PCA or logistic SVD. To obtain analogous results for patterned data with logistic PCA, we
derive necessary conditions for the solutions first, and find solutions that satisfy (or nearly
satisfy) these optimality conditions under different sets of assumptions on data matrices.
These results help us gain a better understanding of logistic PCA.

4.1 First-Order Optimality Conditions

To enforce orthonormality UTU = Ik, we add a constraint to the objective in (3.2) via the
method of Lagrange multipliers. The Lagrangian is

L(U,µ,Λ) = D(X; 1nµ
T + (Θ̃− 1nµ

T )UUT ) + tr
(
Λ(UTU− Ik)

)
,

where Λ is a k × k symmetric matrix of Lagrange multipliers (Wen and Yin, 2013).
Taking the gradient of the Lagrangian with respect to U, µ, and Λ and setting them

equal to 0, we obtain the first-order optimality conditions for the solution of logistic PCA:[(
X− P̂

)T (
Θ̃− 1nµ

T
)

+
(
Θ̃− 1nµ

T
)T (

X− P̂
)]

U = UΛ (4.1)(
Id −UUT

) (
X− P̂

)T
1n = 0d, and (4.2)

UTU = Ik. (4.3)

The matrix P̂ has the estimate of pij at U and µ, p̂ij = σ
(
µj + [UUT (θ̃i − µ)]j

)
, as its

ijth element, where σ(θ) = exp(θ)
1+exp(θ)

is the inverse logit (or sigmoid) function. The details of
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the calculation can be found in Appendix A.1. For the following sections, let

Cm :=

[(
X− P̂

)T (
Θ̃− 1nµ

T
)

+
(
Θ̃− 1nµ

T
)T (

X− P̂
)]

,

which is labeled to explicitly state the dependence of Θ̃ and P̂ on m.
Applying the Lagrangian method of multipliers to the standard PCA formulation (2.1)

yields
[
(X− 1nµ

T )T (X− 1nµ
T )
]
U = UΛ as part of the first-order optimality conditions,

which is very similar to the form of equation (4.1). Unlike standard PCA, (4.1) is nonlinear
in U and the solution is not known in closed form through an eigen-decomposition because
the matrix in the left hand side of (4.1) depends on U through P̂. However, we can derive
some explicit results for special cases using the optimality conditions.

4.2 Independence

There are a few natural extremes of data dependence that a given binary dataset can exhibit.
On one end of the spectrum, all of the columns can be in the span of a single vector. In
this case, all the columns are equal to each other, and the dataset can be reconstructed with
arbitrary precision with a rank-one approximation.

The opposite end of the spectrum is when the variables are independent of each other. In
standard PCA, this implies that the covariance matrix is diagonal, so the principal compo-
nent loadings are the standard basis vectors. Analogous to standard PCA results, we show
below that, if the lth column of a dataset is uncorrelated with the other d− 1 columns and
its column mean is 1

2
then the lth standard basis vector, el, satisfies the first-order optimality

conditions of logistic PCA with k = 1. If its column mean is not equal to 1
2
, el can nearly

satisfy the optimality conditions with large enough m.
Let Xj be the length n vector of the jth column of X and X̄j = 1TnXj/n be the corre-

sponding column mean.

Theorem 1. Assume that XT
l Xj/n = X̄lX̄j, for all j 6= l, i.e. the lth variable is uncorrelated

with all other variables.

(i) If X̄l = 1
2
, then u = el, the lth standard basis vector, satisfies the first-order optimality

conditions of logistic PCA, regardless of m. That is,

Cmel − λmel = 0,

for some λm.

(ii) If X̄l 6= 1
2
, then the first-order optimality conditions can be satisfied as close as desired

with u = el for m large enough. Formally, for any ε > 0, there exists m0 such that,
for all m > m0,

‖Cmel − λmel‖2 < ε,

with λm = 0.

11



The proof is given in Appendix A.2.1. If multiple columns are uncorrelated with the
remaining columns, this result easily generalizes to larger k. For example, if k columns are
uncorrelated with all other columns, then a rank k solution comprising of the the corre-
sponding k standard basis vectors can be made arbitrarily close to (or exactly if the column
means equal 1

2
) satisfying the necessary conditions (4.1)–(4.3).

This leads to a natural question: when there are multiple candidate solutions, which one
decreases the deviance the most?

Theorem 2. For logistic PCA with k = 1, the standard basis vector which decreases deviance
the most is the one corresponding to column with mean closest to 1

2
.

The proof is given in Appendix A.2.2. This result corresponds to the ordering of variables
by variance in standard PCA. The variables with means closest to 1

2
have the largest variance.

If the variables are independent, the variance explained will be largest with a standard basis
vector corresponding to the variable with largest variance. Similar to the previous theorem,
this theorem can be easily extended to k larger than 1. In this case, the loading matrix made
up of the the standard basis vectors corresponding to the k columns that are closest to 1

2
will

decrease the deviance the most out of all loading matrices that comprise of standard basis
vectors.

4.3 Compound symmetry

With independence and perfect correlation being two extremes of the structure of the data,
somewhere in the middle is compound symmetry. A covariance matrix Σ is compound sym-
metric if the diagonals are constant (Σjj = c1 for all j) and the off-diagonals are all equal to
each other (Σjk = c2 for all j 6= k). The compound symmetry of Σ implies equal correlations
among the variables. If this is the case, 1√

d
1d is an eigenvector of the covariance matrix.

We show that, under more limiting conditions, 1√
d
1d satisfies the optimality conditions for

logistic PCA when QTQ is compound symmetric.
QTQ has a natural interpretation. The diagonals always equal n and the jkth off-diagonal

is the number of records in which the jth and kth variables are the same minus the number
of records in which the jth and kth variables differ. It measures how much the jth and
kth variables agree with each other, and can range from −n (total disagreement) to n (total
agreement). QTQ is compound symmetric if all the bivariate agreements are the same.

Theorem 3. Consider logistic PCA without main effects, where µ = 0. Assume that QTQ
is compound symmetric. If β’s exist such that the following condition is satisfied,

σ

m
d

∑
l 6∈{j,k}

qil

 =
1

2
+
∑
l 6∈{j,k}

qilβjk,l, for all j 6= k, j, k = 1, · · · , d, and i = 1, · · · , n (4.4)

then u = 1√
d
1d satisfies the first-order optimality conditions for logistic PCA, as characterized

by equations (4.1)–(4.3).
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The proof is given in Appendix A.2.3. Equation (4.4) states that the fitted probabilities
can be represented as an affine function of the qijs. When there are fewer columns, the
condition is more likely to be met.

Corollary 1. If d ≤ 4 and QTQ is compound symmetric, then (4.4) is satisfied and therefore
u = 1√

d
1d satisfies the first-order optimality conditions. When d = 2, QTQ is always

compound symmetric.

Proof. For d = 4, without loss of generality, let j = 1 and k = 2.

σ
(m

4
(qi3 + qi4)

)
=


σ(m/2) if qi3 = qi4 = 1
1
2

if qi3 6= qi4

σ(−m/2) if qi3 = qi4 = −1

.

Since σ(−m/2) = 1− σ(m/2),

σ
(m

4
(qi3 + qi4)

)
=

1

2
+ qi3β12,3 + qi4β12,4

where

β12,3 = β12,4 =
σ(m/2)− 1/2

2
.

The same can be shown for d = 2 or d = 3.

5 Computation

Optimizing for the principal component loadings of logistic PCA is difficult because of the
non-convex objective function and the orthonormality constraint. We derive two algorithms
for generating solutions. The first is guaranteed to find a local solution and the second finds
a global solution to a relaxed version of logistic PCA.

5.1 Majorization-minimization (MM) algorithm

One approach to minimizing the deviance is to iteratively minimize simpler objectives.
Majorization-minimization (Hunter and Lange, 2004) seeks to solve difficult optimization
problems by majorizing the objective function with a simpler objective, and minimizing the
majorizing function. The majorization function must be equal to or greater than the original
objective for all inputs, and equal to it at the current input value.

The deviance of a single estimated natural parameter θ is quadratically approximated at
θ(t) by

−2 log p(x; θ) = −2xθ + 2 log(1 + exp(θ))

≈ −2xθ(t) + 2 log(1 + exp(θ(t))) + 2(p̂(t) − x)(θ − θ(t)) + p̂(t)(1− p̂(t))(θ − θ(t))2

≤ −2xθ(t) + 2 log(1 + exp(θ(t))) + 2(p̂(t) − x)(θ − θ(t)) +
1

4
(θ − θ(t))2,

13



where p̂(t) = σ(θ(t)). The inequality is due to the variance of a Bernoulli random variable
being bounded above by 1/4. de Leeuw (2006) showed that the deviance itself is majorized
by this same function.

Therefore, the deviance for the whole matrix is majorized by∑
i,j

{
−2xijθ

(t)
ij + 2 log(1 + exp(θ

(t)
ij )) + 2(p̂

(t)
ij − xij)(θij − θ

(t)
ij ) +

1

4
(θij − θ(t)ij )2

}
=

1

4

∑
i,j

(θij − z(t)ij )2 + C

where C is a constant that does not depend on θij and

z
(t)
ij = θ

(t)
ij + 4[xij − σ(θ

(t)
ij )] (5.1)

are the working variables in the tth iteration. Further, let Z(t) be a matrix whose ijth
element equals z

(t)
ij . The working variables have a similar form to the so-called adjusted

response used in the iteratively reweighted least squares algorithm for generalized linear
models (McCullagh and Nelder, 1989). Instead of having weights equal to the estimated
variance at the current estimates, we use the upper bound, which allows for minimization of
the majorization function.

The logistic PCA objective function can be majorized around estimates of U(t) and µ(t)

as

D(X; 1nµ
T + (Θ̃− 1nµ

T )UUT ) ≤ 1

4

∑
i,j

(
µj + [UUT (θ̃i − µ)]j − z(t)ij

)2
+ C,

and hence, the next iterates of U(t+1) and µ(t+1) can be obtained by minimizing∑
i,j

(
µj + [UUT (θ̃i − µ)]j − z(t)ij

)2
= ‖1nµT + (Θ̃− 1nµ

T )UUT − Z(t)‖2F . (5.2)

Given initial estimates for U and µ, a solution can be found by iteratively minimizing
equation (5.2), subject to orthonormality constraint UTU = Ik. With fixed µ, the minimizer
of the majorizing function can be found by expanding equation (5.2). Letting Θ̃c := Θ̃−1nµ

T

and Z
(t)
c := Z(t) − 1nµ

T , then

arg min
UTU=Ik

‖Θ̃cUUT − Z(t)
c ‖2F = arg min tr

(
UUT Θ̃

T

c Θ̃cUUT
)
− tr

(
UUT Θ̃

T

c Z(t)
c

)
− tr

(
(Z(t)

c )T Θ̃cUUT
)

= arg min tr
[
UT

(
Θ̃
T

c Θ̃c − Θ̃
T

c Z(t)
c − (Z(t)

c )T Θ̃c

)
U
]

= arg max tr
[
UT

(
Θ̃
T

c Z(t)
c + (Z(t)

c )T Θ̃c − Θ̃
T

c Θ̃c

)
U
]
.

The trace is maximized when U consists of the first k eigenvectors of the symmetric matrix

Θ̃
T

c Z
(t)
c + (Z

(t)
c )T Θ̃c − Θ̃

T

c Θ̃c (Fan, 1949).
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input : Binary data matrix (X), m, number of principal components (k),
convergence criteria (ε)

output: d× k orthonormal matrix of principal component loadings (U) and column
main effects (µ)

Set t = 0 and initialize µ(0) and U(0). We recommend setting µ
(0)
j = logitX̄j and

setting U(0) to the first k right singular vectors of Q
repeat

1. t← t+ 1

2. Set the working variables
z
(t)
ij = θij + 4[xij − σ(θij)] where θij = µ

(t−1)
j + [U(t−1)(U(t−1))T (θ̃i − µ(t−1))]j

3. µ(t) = 1
n
(Z(t) − Θ̃U(t−1)(U(t−1))T )T1n

4. Carry out the eigen decomposition of (Θ̃− 1n(µ(t))T )T (Z(t) − 1n(µ(t))T ) + (Z(t) −
1n(µ(t))T )T (Θ̃− 1n(µ(t))T )− (Θ̃− 1n(µ(t))T )T (Θ̃− 1n(µ(t))T ) = EΛET and
set U(t) to the first k eigenvectors in E

until Deviance converges ;
Algorithm 1: Majorization-minimization algorithm for logistic PCA

With fixed U, the minimization of the majorizing function with respect to µ is a least
squares problem, and the majorizing function is minimized by

µ =
1

n
(Z(t) − Θ̃UUT )T1n,

which can be interpreted as the average differences between the projection of the uncentered
saturated natural parameters and the current working variables. Algorithm 1 presents the
MM algorithm for logistic PCA.

Since the optimization problem is non-convex, finding the global minimum is difficult in
general. Due to the fact that the majorization function is above the deviance and tangent
to it at the previous iteration, minimizing the majorization function at each iteration must
either decrease the deviance or cause no change at each iteration. While the majorization-
minimization does not guarantee a global minimum generally, the quadratic majorization
function and the smooth objective does guarantee finding a local minimum (Lange, 2013,
Chapter 12).

5.2 Convex relaxation

Another approach to solving for the loadings of logistic PCA is to relax the non-convex
domain of the problem to a convex set. Instead of solving over rank-k projection matrices
UUT , we can optimize over the convex hull of rank k projection matrices, called the Fantope

15



(Dattorro, 2005), which is defined as

Fk = conv{UUT | U ∈ Rd×k, UTU = Ik} = {H | 0 � H � Id, tr(H) = k}.

With the Fantope, k no longer needs to be an integer, but can be any positive number.
The logistic PCA problem then becomes

minimize D(X; 1nµ
T + (Θ̃− 1nµ

T )H)

subject to µ ∈ Rd and H ∈ Fk.

For fixed µ, this is a convex problem in H since the objective and the constraints are both
convex. Similarly, for fixed H, this is convex in µ. Hence, the problem is bi-convex.

With fixed H, minimizing with respect to µ is similar to a GLM problem and many
strategies can be used. We choose to solve for µ first and leave it fixed while H is solved for.
With H = 0, the deviance is minimized with respect to µ when µj = logitX̄j. We do not
update µ again in our implementation, but other strategies, such as an alternating gradient
descent, could easily be implemented if desired.

Once µ is fixed, to solve the relaxed problem with respect to H, we can use the projected
gradient method (Boyd et al., 2003), which involves updating H at each iteration by

H(t+1) = ΠFk

(
H(t) − αtG(t)

)
.

G(t) is the gradient of the deviance with respect to H evaluated at H(t), αt is the step size
for the tth iteration, and ΠFk(·) is the Euclidean projection operator onto the convex set
Fk.

This method is guaranteed to produce a solution arbitrarily close to the global minimum
as the number of iterations goes to ∞ if the step size, αt, decreases in an appropriate
manner. One way to ensure convergence is to have the step sizes be square summable, but
not summable (Boyd et al., 2003), which can be achieved with αt = a0/t, for instance, where
a0 is the starting step size.

Without taking into account the symmetry of H, the gradient of the deviance with respect
to H is

∂D

∂H
= 2

(
P̂−X

)T (
Θ̃− 1nµ

T
)
, (5.3)

which is derived in a similar way to (4.1). Since H is symmetric, the gradient needs to be
symmetrized as follows (see Petersen and Pedersen (2012)):

G =

[
∂D

∂H

]
+

[
∂D

∂H

]T
− diag

[
∂D

∂H

]
. (5.4)

To update H in the negative gradient direction, the projection operator ΠFk has to be
defined explicitly. Vu et al. (2013) showed that the Euclidean projection of a positive definite
matrix M with a spectral decomposition M =

∑d
j=1 λjuju

T
j onto Fk is given by

ΠFk(M) =
d∑
j=1

λ+j (ν)uju
T
j , (5.5)
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input : Binary data matrix (X), m, rank (k), starting step size (a0)
output: d× d rank k Fantope matrix (H)

Set µj = logitX̄j, j = 1, . . . , d
Set t = 0 and initialize H(0)

repeat

1. t← t+ 1. Set αt = a0
1
t

2. Calculate the derivative, G(t−1), of the deviance at H(t−1) using
equations (5.3) and (5.4)

3. Move in the negative direction of the derivative and project onto the rank k

Fantope using equation (5.5), H(t) = ΠFk

(
H(t−1) − αtG(t−1)

)
until Deviance converges ;

Algorithm 2: Fantope algorithm for logistic PCA

where λ+j (ν) = min(max(λj − ν, 0), 1) with ν that satisfies
∑

j λ
+
j (ν) = k. A quick and easy

way to solve for ν is by bisection search, with an initial lower bound of λd−k/d and an initial
upper bound of λ1, the largest eigenvalue. Algorithm 2 presents the complete algorithm for
the Fantope solution.

Even though this algorithm is guaranteed to find a global minimum of the deviance
over the Fantope space, it is of practical interest how to translate the estimated Ĥ into an
estimated loadings matrix Û because we may be more interested in principal component
loadings and the scores they induce. For that reason, once the algorithm has converged, we
may convert the Fantope matrix Ĥ into a projection matrix by setting Û equal to the matrix
with the first k eigenvectors of Ĥ. We will discuss the impact of this conversion in Section
6.1.2.

Both the Fantope solution and the projection solution have the previously-stated ad-
vantage that applying the principal components analysis to new data only involves matrix
multiplications. There are some practical differences however. If the goal of the analysis is
to have a small number of principal components which can be interpreted or used for sub-
sequent analyses, the Fantope solution may not be preferred. Even for k = 1, it is possible
for the solution to be of full rank, no matter d. However, the Fantope algorithm is useful
if viewed as a constrained method of approximating a binary matrix, when interpretation
is not desired. This type of approximation can be useful when accurate estimates of the
fitted probabilities are required, for example, in collaborative filtering. Further, since the
problem is convex, it can also be solved more quickly and reliably than the formulation with
a projection matrix.

An R (R Core Team, 2015) implementation of both algorithms for logistic PCA can be
found at github.com/andland/logisticPCA.
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6 Numerical Examples

In this section, we demonstrate how the logistic PCA formulation works on both simulated
and real data. In particular, we numerically examine the differences between the previous
formulation and the proposed formulation, the effect of m, and the effectiveness of the
algorithms.

6.1 Simulation

For comparison of our formulation of logistic PCA (LPCA) with the previous formulation
(LSVD), we simulate binary matrices from a family of multivariate Bernoulli mixtures that
induce a low-rank structure in both the true probability matrix and the logit matrix. The
components or clusters of the Bernoulli mixtures are determined by cluster-specific proba-
bility vectors.

6.1.1 Simulation setup

Let k indicate the number of mixture components or clusters of the probability vectors for
d-variate binary random vectors making up an n × d data matrix X. For a specified n, d,
and k, let Ci be the cluster assignment for the ith observation, i = 1, . . . , n, which takes
one of k values {1, . . . , k} with equal probability. Further, we specify k true probability
vectors, pc ∈ [0, 1]d, for c = 1, . . . , k. In our simulations, the probabilities are independently
generated from a Beta(α, β) distribution and Xij given Ci = c are independently generated
from Bernoulli(pcj). For a Beta distribution, instead of the shape parameters α and β, we
vary the mean p̄ = α

α+β
and concentration parameter φ = α+β

2
, which is inversely related to

the variance of p̄(1− p̄)/(2φ+1). If we let A be an n×k indicator matrix with Aic = 1{Ci=c}
and B∗ be a d× k matrix with the cth column equal to pc, then the true probability matrix
is

P = [pij] = ABT
∗ ,

or equivalently, the logit matrix is Θ = logit P = ABT with B = logit B∗. The accuracy of
the approximation of P through logistic PCA depends on the number of principal components
considered and the value of parameter m. To reduce confusion between the true number of
clusters k and the number of principal components considered, we will adopt the notation
k̂ for the number of principal components considered. For all simulations in this section, we
set n = 100 and d = 50. For simulations with p̄ = 0.5, we did not include the main effects µ
for either LPCA or LSVD. We did this to minimize the differences in implementations and
the main effects are likely close to 0 when p̄ = 0.5.

6.1.2 Fantope versus MM

To compare the performance of the MM and Fantope algorithms, a dataset was simulated
using a two-component (k = 2) mixture of probabilities from a beta distribution with p̄ = 0.5
and φ = 3. We then estimated the logistic principal component loadings with k̂ = 2 and
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Figure 2: Average deviance by iteration number for solutions from Fantope and MM algo-
rithms with 15 different initial values on a simulated dataset

m = 4 fifteen times with both the Fantope algorithm and the MM algorithm, each with a
random initialization for U(0) or H(0) = U(0)(U(0))T . For the Fantope, the starting step size
was determined by averaging the inverse of the element-wise second derivatives evaluated
at the initial value of H(0). For each iteration, we kept track of the average deviance of the
estimates, which is defined as D(X; Θ̂)/(nd). Figure 2 displays the average deviance of a
sequence of the solutions from the algorithms, each line representing a different initialization.
We also kept track of the deviance of the projection matrix estimate from the Fantope
estimate for each iteration, which we labeled “Fantope-Proj” in the plot. For this estimate,
we use the first k̂ eigenvectors of H to estimate U.

There are several notable facts in this figure. The deviance for the Fantope solution fairly
quickly converges to the same minimum value, regardless of initialization. As expected, the
Fantope solution provides a deviance lower bound, while the deviance for the projection
matrix resulting from the Fantope solution does not necessarily decrease in the same manner.
In fact, the MM algorithm eventually finds solutions better than the “projected” Fantope
solution for every initialization. The MM algorithm is more sensitive to initialization, but
the range of the deviance values of solutions is fairly narrow in this example.

This numerical comparison suggests that when the projection matrix UUT is concerned,
the MM algorithm performs better than the Fantope algorithm followed by projection. For
this reason, we use the MM algorithm only in the subsequent analyses. However, it could
potentially be useful to run both the MM and Fantope algorithms. The Fantope solution
gives a lower bound of the deviance for the global solution with a projection matrix while the
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Figure 3: Mean squared error of probability estimates derived from logistic PCA with varying
m and logistic SVD in a simulation experiment where the rank of the true probability matrix
ranges from 2 to 10 and the extent of concentration of the true probabilities varies from low
to high

MM solution and Fantope-Proj solution provide upper bounds. The gap between the lower
and upper bounds could give some indication of our confidence in the projection solution. If
there is a small gap, we can be fairly sure that the projection solution is close to the global
minimum.

6.1.3 Estimate of true probabilities

We compare our formulation of logistic PCA (LPCA) with previous formulations (LSVD) and
study the effect of the additionalm parameter on the probability estimates. For the numerical
study, we simulated 12 binary matrices from a variety of different cluster models with p̄ = 0.5.
We varied the true number of clusters (k ∈ {2, 3, 5, 10}) and the concentration parameter
for the probabilities (φ ∈ {0.01, 1, 3}). For each of the 12 data matrices, we performed
dimensionality reduction with LSVD and LPCA. For both, we varied the estimated number
of components (k̂ ∈ {1, 3, 5, 10}) and for LPCA we also varied m from 0.5 to 5. Again, for
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LPCA, we used the MM algorithm and for LSVD we used the iterative SVD algorithm from
de Leeuw (2006).

After estimating the probability matrix as P̂, we compared it to the true probability
matrix P by taking the element-wise mean squared error ‖P̂ − P‖2F/(nd). Figure 3 shows
the results. The first thing to notice is the effect of the concentration parameter. When φ is
low (the top row of Figure 3), most of the true probabilities are close to 0 or 1 with not much
in between. In this situation, having the correct estimated dimension k̂ is crucial for both
methods and, in fact, having k̂ > k does no harm. Further, for LPCA, higher m is better
for estimating the probability matrix in this situation. Both of these results are in line with
our expectations. When the rank of the estimate is allowed to be higher, the estimates are
able to fit the data more closely in general. In doing so, the resulting estimated probabilities
will be close to 0 and 1. As stated in Section 3.3, higher values of m enable estimates that
are closer to 0 and 1 as well.

On the other hand, if the concentration is high, most of the true probabilities will be
close to p̄ = 0.5. The bottom row of Figure 3 shows the results when this is the case. The
opposite conclusions are reached from this scenario. In general, having a lower rank or a
lower m is better. This is again as expected.

When the concentration is moderate (φ = 1, the middle row of Figure 3), the true
probabilities are generated from a uniform distribution. For LPCA, having the correct
estimated dimension is important, but so is m. For each of the different true dimensions,
the lowest mean squared error is achieved when the estimated dimension matches the true
dimension. This is not true for all values of m, as when k = 10, the estimate with k̂ = 10
is poor for large m. For each of the estimated ranks, there is a local minimum of MSE for
choosing m. In contrast to the high and low concentration cases, the results for LSVD do
not mirror those of LPCA for the same k̂. Here, an estimated rank of k̂ = 3 is best for all of
the true ranks.

Finally, for any of the given dataset simulations, there is a combination of m and k̂ for
which LPCA had a mean squared error as small as or smaller than any LSVD estimate. The
challenge obviously is to find the best settings and to determine the optimal combination
data-adaptively in applications. We show that, for each k̂, using five-fold cross validation
is an effective way to choose m. To accomplish this, we randomly split the rows into five
groups. For each of the groups, we perform logistic PCA with a given m on all of the data
except the rows in that group. We then predict the natural parameters on the held-out
group of rows with the given m and the fitted orthonormal matrix using (3.4) and record the
predictive deviance. After looping through all five groups, the m with the lowest predictive
deviance is used for logistic PCA with all the rows.

The resulting mean squared errors using the data-adaptively chosen m’s are reported in
Figure 4. Using this strategy, the low-rank estimates from logistic PCA give more accurate
estimates for the high and middle concentration scenarios, while logistic SVD has more
accurate estimates for the low concentration scenario, unless k̂ ≥ k. Standard techniques,
such as those mentioned in Section 3.4, can be used to choose k for both logistic PCA and
logistic SVD.
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Figure 4: Mean squared error of probability estimates derived from logistic PCA and logistic
SVD in the simulation experiment where m in logistic PCA is chosen by cross validation

We have also run another simulation experiment for a more sparse situation with p̄ = 0.1
with all the other factors kept the same. The plot of the resulting estimated errors is in
Figure 11 in Appendix A.3.2. Since the column means are far away from 0.5, we have also
included main effects µ in the model. The results are largely the same as described in this
section. The only major difference is that estimates of a lower rank than the true rank
perform better overall, probably due to the fact that predicting all zeros gives a decent
prediction in this case.

6.2 Data Analysis

We present an application of logistic PCA to patient-diagnosis data, which are part of the
electronic health records data on 12,000 adult patients admitted to the intensive care units
at Ohio State University’s Medical Center from 2007 to 2010. Patients can be admitted
to an intensive care unit (ICU) for a wide variety of reasons, some of them frequently co-
occurring. While in the ICU, patients are diagnosed with one or more medical conditions of
over 800 disease categories from the International Classification of Diseases (ICD-9). It is
often of interest to practitioners to study the comorbidity in patients, that is, what medical
conditions patients are diagnosed with simultaneously. The latent factor view of principal
components seems to be appropriate for describing the concept of comorbidity through a
lower dimensional approximation of the disease probabilities or their transformations. Such a
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Figure 5: Cumulative and marginal percent of deviance explained by principal components
of LPCA, LSVD, and PCA for the patient-diagnosis data.

representation could reveal a common underlying structure capturing simultaneous existence
of multiple medical conditions.

We analyzed a random sample of 1,000 patients. There were 584 ICD-9 codes that had
at least one of the randomly-selected patients assigned to them. These patient-diagnosis
data were organized in a binary matrix, X, where xij is 1 if patient i has disease j and 0
otherwise. The proportions of disease occurrences ranged from 0.001 to 0.488 (the maximum
corresponding to acute respiratory failure) with a median of 0.005 and the third quartile
equals 0.017, meaning that most of the disease categories were rare. For comparison, we also
applied logistic SVD and standard PCA to the data.

6.2.1 Selecting number of principal components

As described in Section 3.4, to decide on the number of principal components to include
in the model or approximation of the data matrix, we calculated the cumulative percent
of deviance and the marginal percent of deviance explained by both LSVD and LPCA, as
well as standard PCA. Figure 5 illustrates the change in the percent of deviance explained
as the number of components increases. For logistic PCA, m was chosen by five-fold cross
validation. In order to have the same m for all k considered, we performed cross validation
with k = 15, for which m = 8 had the lowest cross validation deviance. For standard
PCA, we calculated the Bernoulli deviance using the reconstructed values as probability
estimates. Since the reconstructed entries in the matrix could be outside the range of 0 to
1, we truncated them to be within the range [10−10, 1− 10−10].
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Figure 6: Cumulative percent of deviance explained by principal components of LPCA,
LSVD, and PCA plotted against the number of free parameters for the patient-diagnosis
data.

If we were using LSVD, one reasonable choice for the number of components would be 24
because that is where the cumulative percent of deviance explained begins to level off and
the cumulative percent of deviance explained is quite high, at 90%. The marginal percent of
deviance plot suggests that the marginal contributions level off after the second component
for both LPCA and LSVD. To have a manageable number of components to analyze, we
may use two components.

6.2.2 Quality of fit

For this dataset, it is clear that LPCA fits the data significantly better than PCA, even
though they have the same number of parameters per component added. Also, LSVD has
higher percent of deviance explained than LPCA after the first few components. However,
it is not a completely fair comparison between LSVD and LPCA, because LSVD has extra
parameters in A to better fit the data. To illustrate this, we also plotted the percent
of deviance explained as a function of the number of free parameters in Figure 6. When
indexed by the number of free parameters, LPCA looks quite favorable compared to LSVD.
In fact, there isn’t a large difference between standard PCA and LSVD for smaller numbers
of parameters.

To further show the advantages of LPCA, we used the loadings learned from this data
to construct a low-rank estimate of the logit matrix using (3.4) for a different set of 1000
randomly selected patients. The percent of predictive deviance is plotted as a function of
rank in Figure 7. Also plotted on this figure is the percent of predictive deviance by standard
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Figure 7: Cumulative and marginal percent of predictive deviance by the principal compo-
nents of LPCA and PCA for the patient-diagnosis data.

PCA. We did not perform LSVD on this data since we were trying to recreate a scenario in
which one wouldn’t have the ability to solve for principal component scores on the new data.
Just as in the explained deviance, the loadings learned from LPCA are able to reconstruct
the new data much better than those learned from PCA.

6.2.3 Evidence of LSVD overfitting through principal component regression

To explore how LSVD might overfit, we created a simulation experiment using the same ICU
data. We randomly generated a d-dimensional coefficient parameter, β, from a standard
normal distribution. For each patient, we simulated a response variable, yi, from a normal
distribution with mean equal to xTi β and the variance, σ2. Three different variances were
chosen in order for the signal-to-noise (SNR) ratio, var(xTi β)/σ2, to be either 1, 5, or 10.
These represent weak, moderate, and strong signals, respectively.

For each k, we used the k principal components learned from PCA, LPCA, or LSVD as
covariates in a linear regression. On a different set of 1000 randomly selected patients, we
first derived the principal component scores using the appropriate procedure for each method
and then predicted the response for the new patients. As stated in Section 3.3, obtaining
principal component scores on new data with LSVD requires fitting a logistic regression for
each new observation, while LPCA and PCA only require matrix multiplications.

The left column in Figure 8 shows the in-sample mean squared error (MSE) and the right
column shows the out-of-sample MSE. The three rows of Figure 8 correspond to the three
signal-to-noise ratios. For reference, we have also shown the intercept only model (labeled
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Figure 8: The in-sample and out-of-sample MSE of models for principal component regression
based on the patient-diagnosis data

Null). For all three dimensionality reduction methods, the in-sample MSE decreases as the
number of components increase, as we would expect. In general, PCA and LPCA track fairly
close together. LSVD, on the other hand does markedly worse on both the training and test
data, for all three signal levels. Further, the difference between the MSE from LPCA and
LSVD is larger on the test data than on the training data. This simulation was run several
times with similar results.

The point of this simulation is to show that, even though LSVD may explain more
deviance than the other methods due to the extra parameters, that may also cause it to
learn loadings that do not generalize well to other settings. This is very important for
dimensionality reduction techniques, since they are not usually done in isolation, but rather
are part of a larger data analysis. There are no guarantees that LPCA will generalize more
effectively than LSVD in every setting, however we have shown in a controlled setting that
LSVD produced loadings that do not generalize as well.

6.2.4 Interpretation of loadings

We look at the principal component loadings of LPCA with two components, as chosen by the
scree plot, to attempt to interpret the comorbidity in patients. While there is no guarantee
that the principal components will be interpretable, insight can occasionally be gained from
the analysis. As mentioned in Section 3.4, the two components do not necessarily have an
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Figure 9: The loadings of two components from logistic PCA of the patient-diagnosis data

order as in standard PCA, since they are solved for jointly. Also, it is not guaranteed that
either of the two components analyzed here are represented in the analysis with one or three
components.

The resulting loadings are plotted in Figure 9. We have highlighted the disease categories
for the loadings with the highest absolute values. The points are also color-coded according
to the broader category that the disease belongs to, which is also related to the number
before the label.

A version of this plot was shown to subject-matter experts in the department of biomed-
ical informatics at Ohio State University and they were able to identify meaning in the
components (Hyun and Newton, 2013). The first component has high loadings for acute
kidney failure and acute respiratory failure, among others, which are common serious con-
ditions that cause a patient to be admitted into the ICU. Three of the large loadings from
the second component are diseases of the circulatory system (green): systolic heart failure,
myocardial infarction, aneurysm of coronary vessels, and hypertensive renal disease. It also
includes two endocrine, nutritional and metabolic diseases, and immunity disorders (brown).
The subject-matter experts stated that the diseases with high loadings were ones that they
have observed co-occurring relatively often. Based on these findings, it seems that the prin-
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cipal components have a meaningful interpretation related to the diseases patients have at
the ICU.

7 Discussion

Previous formulations of logistic PCA have extended the singular value decomposition to
binary data. Our formulation more consistently extends PCA to binary data by finding
projections of the natural parameters of the saturated model. Our method produces principal
components which are linear combinations of the data and can be quickly calculated on new
data. We have given two algorithms for minimizing the deviance and shown how they
perform on both simulated and real data.

Further, the formulation proposed in this paper can be extended to other members of
the exponential family. Using the appropriate deviance and natural parameters from the
saturated model, the formulation can naturally be applied to many types of data.

When d � n, standard PCA can be inconsistent and it has been shown that adding
sparsity constraints to PCA can induce consistency (Johnstone and Lu, 2009). Sparse load-
ings have the additional benefit of easier interpretation. Lee et al. (2010) extended LSVD
by adding an L1 penalty to the loadings matrix B. Our formulation can be extended in
the same way, but further research is needed to find the best way to solve for the loadings.
However, it would be straightforward to incorporate the sparsity constraint with the Fantope
solution, similar to how it was done in Vu et al. (2013) with standard PCA.
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A Appendix

A.1 Calculation of gradient for logistic PCA

The gradient of the deviance in (3.2) with respect to U can be seen from the steps below.

1

2

∂D

∂U
=− ∂

∂U
tr
(
XT
(
1nµ

T + (Θ̃− 1nµ
T )UUT

))
+

∂

∂U

∑
i,j

log
(

1 + exp(µj + [UUT (θ̃i − µ)]j)
)
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By standard matrix derivative rules (see, for example, Petersen and Pedersen (2012)),

∂

∂U
tr(XT (Θ̃− 1nµ

T )UUT ) =
(
XT (Θ̃− 1nµ

T ) + (Θ̃− 1nµ
T )TX

)
U.

To take the derivative of the second piece, letting θ̂ij = µj + [UUT (θ̃i − µ)]j, note that

∂

∂ukl

∑
i,j

log
(

1 + exp(θ̂ij)
)

=
∑
i,j

exp(θ̂ij)

1 + exp(θ̂ij)

∂θ̂ij
∂ukl

=
∑
i,j

p̂ij
∂θ̂ij
∂ukl

.

Since

∂[UUT (θ̃i − µ)]j
∂ukl

=

{
(θ̃ik − µk)ujl if k 6= j

(θ̃ik − µk)ujl + (θ̃i − µ)TUl if k = j,

that makes

∂

∂ukl

∑
i,j

log
(

1 + exp(θ̂ij)
)

=
∑
i,j

p̂ij(θ̃ik − µk)ujl +
∑
i

p̂ik(θ̃i − µ)TUl

= (Θ̃k − 1nµk)
T P̂Ul + P̂ T

k (Θ̃− 1nµ
T )Ul.

In matrix notation,

∂

∂U

∑
i,j

log
(

1 + exp(µj + [UUT (θ̃i − µ)]j)
)

=
(
P̂T (Θ̃− 1nµ

T ) + (Θ̃− 1nµ
T )T P̂

)
U,

and the result in Equation (4.1) follows.
The gradient of the deviance with respect to µ in (4.2) is derived as follows.

1

2

∂D

∂µ
=− ∂

∂µ
tr
(
XT1nµ

T
(
Id −UUT

))
+

∂

∂µ

∑
i,j

log

(
1 + exp(µj +

[
UUT (θ̃i − µ)

]
j
)

)
Using standard vector differentiation,

∂

∂µ
tr
(
XT1nµ

T
(
Id −UUT

))
= (Id −UUT )XT1n

and

∂

∂µ

∑
i,j

log

(
1 + exp(µj +

[
UUT (θ̃i − µ)

]
j
)

)
=
∑
i,j

p̂ij
(
ej − uTj·U

T
)

= (Id −UUT )P̂T1n,

where ej is a length d standard basis vector with 1 in the jth position.
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A.2 Proof of Theorems

A.2.1 Theorem 1

Proof.

(i) When u = el, the solutions for the main effects µ are known analytically. For j 6= l,
µ̂j = logitX̄j. µ̂l is undefined because µl has no effect on the deviance. We will let µ̂l =
logitX̄l for simplicity, although any constant would work. In this case, the estimated natural
parameters are

θ̂ij = µ̂j + δjl(θ̃i − µ̂)Tel =

{
µ̂j if j 6= l

θ̃il if j = l
,

where δjl is the Kronecker delta.
Since el is a standard basis vector,

[Cmel]j = cmjl ,

where
cmjl = (Xj − P̂j)T (Θ̃l − 1nµ̂l) + (Xl − P̂j)T (Θ̃j − 1nµ̂j). (A.1)

We will show that cmjl is equal to 0 when j 6= l and X̄l = 1
2
. Looking at the first part of

the summation in (A.1),

(Xj − P̂j)T (Θ̃l − 1nµ̂l) = (Xj − 1nσ(µ̂j))
T (mQl − 1nµ̂l)

= (Xj − 1nX̄j)
T (m(2Xl − 1n)− 1nµ̂l)

= m
[
2XT

j Xl − nX̄j − nX̄jµ̂l/m− 2nX̄jX̄l + nX̄j + nX̄jµ̂l/m
]

= m
[
2XT

j Xl − 2nX̄jX̄l

]
= m

[
2nX̄jX̄l − 2nX̄jX̄l

]
= 0.

The last line is due to the assumption that Xj and Xl are uncorrelated.
From the fact that (xil−σ(mqil))(mqij− µ̂j) = (mqijqil− qilµ̂j)/(1+em), the second part

of cmjl in (A.1) is

(Xl − P̂l)T (Θ̃j − 1nµ̂j) = (Xl − σ(mQl))
T (mQj − 1nµ̂j)

=
n∑
i=1

(xil − σ(mqil))(mqij − µ̂j)

=
n∑
i=1

mqijqil − qilµ̂j
1 + em

= nQ̄l
mQ̄j − µ̂j

1 + em
.

If Q̄l = 0, or equivalently X̄l = 1
2
, then this is exactly zero, for all m.
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When j = l, also using the fact that q2il = 1,

cmll = 2(Xl − P̂l)T (Θ̃l − 1nµ̂l)

= 2
n∑
i=1

mq2il − qilµ̂l
1 + em

= 2n
m− µ̂lQ̄l

1 + em
.

When X̄l = 1
2
,

Cmel = λmel,

for all m, where λm = 2nm
1+em

. With µ = µ̂ and u = el, the first-order optimality conditions
(4.1–4.3) are exactly satisfied.

(ii) When X̄l 6= 1
2
, the first part of (A.1) still equals zero, but the other part does not. The

squared norm of equation (A.1) equals

‖Cmel‖2 =

(
2n
m− µ̂lQ̄l

1 + em

)2

+
∑
j:j 6=l

(
nQ̄l

mQ̄j − µ̂j
1 + em

)2

,

which can be made as small as we desire by increasing m.

A.2.2 Theorem 2

Proof. If u = el and µ̂j = logitX̄j for j 6= l, then the deviance of the lth column does not
depend on the column mean X̄l and is given by

−2
n∑
i=1

log σ(qilθ̃il) = −2n log σ(m).

Thus, the deviance depends on the other d− 1 columns of the dataset. The deviance of the
jth column (j 6= l) is

−2n
(
X̄j log X̄j + (1− X̄j) log(1− X̄j)

)
,

which is maximized at X̄j = 1
2

and decreases as X̄j moves away from 1
2
. Therefore, choosing

l with the column mean closest to 1
2

will result in a fit with the lowest deviance.

A.2.3 Theorem 3

Proof. The first-order optimality condition for the loading vector with k = 1 and no main
effects is

Cmu = λmu,
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where

Cm := (X− P̂)T Θ̃ + Θ̃
T

(X− P̂).

We will show that, with u = 1√
d
1d and the conditions listed in the theorem, Cm is com-

pound symmetric, which in turn implies that u satisfies the first-order optimality conditions.
One useful implication of u ∝ 1d is that p̂ij = p̂ik for all i and j, k because θ̂ij =

uj(u
T θ̃i) = m

d

∑d
l=1 qil. We will therefore let p̂ be the column vector with ith element equal

to p̂ij for all j.

First, we show that cmjj = cmkk, for all j, k. cmjj = cmkk if and only if XT
j Qj − P̂ T

j Qj =

XT
k Qk − P̂ T

k Qk. This, in turn, is equivalent to

p̂T (Qj −Qk) =
1

2
1Tn (Qj −Qk).

Focusing on the left hand side,

p̂T (Qj −Qk) =
n∑
i=1

p̂i(qij − qik)

=
∑

i:qij 6=qik

p̂i(qij − qik)

The second line is due to the summation only being non-zero when qij 6= qik. When this is

true,
∑d

l=1 qil =
∑

l 6∈{j,k} qil. If qij = qik, p̂i(qij − qik) will equal 0 regardless of p̂i. Therefore,
we can state

∑
i:qij 6=qik

p̂i(qij − qik) =
n∑
i=1

σ

m
d

∑
l 6∈{j,k}

qil

 (qij − qik),

and from (4.4),

p̂T (Qj −Qk) =

1

2
1n +

∑
l 6∈{j,k}

Qlβjk,l

T

(Qj −Qk)

=
1

2
1Tn (Qj −Qk).

The last line is due to the compound symmetry of QTQ, since all the off-diagonal elements
are equal to each other. This proves that cmjj = cmkk.

We will now show that cmjk = cmlr , as long as j 6= k and l 6= r. An off-diagonal element of
Cm is

cmjk = m(Xj − p̂)TQk +m(Xk − p̂)TQj

= m

[
QT
j Qk +

1

2
1Tn (Qj +Qk)− p̂T (Qj +Qk)

]
.
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Showing cmjk = cmlr is equivalent to showing

QT
j Qk +

1

2
1Tn (Qj +Qk)− p̂T (Qj +Qk) = QT

l Qr +
1

2
1Tn (Ql +Qr)− p̂T (Ql +Qr)

1

2
1Tn (Qj +Qk)− p̂T (Qj +Qk) =

1

2
1Tn (Ql +Qr)− p̂T (Ql +Qr),

where the terms cancel because QT
j Qk = QT

l Qr. Rearranging the terms,

p̂T (Qj −Qr)−
1

2
1Tn (Qj −Qr) = p̂T (Ql −Qk)−

1

2
1Tn (Ql −Qk),

where we can see that both sides equal 0 because, as we have already proven, cmjj = cmrr and
cmll = cmkk.

Therefore, Cm is compound symmetric for all m. This implies that u = 1√
d
1d is an

eigenvector of Cm and (in conjunction with the fact that uTu = 1) u satisfies the first-order
optimality conditions (4.1, 4.3).

A.3 Further simulation results

A.3.1 Number of iterations to convergence

For the same simulation setup as in Figure 3, we kept track of the number of iterations
required until convergence for both the LSVD algorithm and the LPCA algorithm. The
initial value of U or B was the first k right singular vectors of Q for both. Each iteration for
the two algorithms is comparable in that they involve computing the working variables of
the majorization function and finding either an SVD or an eigen-decomposition. Both of the
algorithms terminate if the difference of the average deviance between successive iterations
is less than 10−5 or if the maximum number of iterations (1000) is reached.

It is apparent from Figure 10 that the number of iterations required for convergence is a
lot less for LPCA than for LSVD, in general, and in many cases LSVD reaches the maximum.
(Note that the y-axis is on the log scale.) For φ ∈ {1, 3}, the number of iterations for LSVD
increases as the number of estimated components increases. Also, as m increases, the number
of iterations for LPCA increases, in general.

We believe that LSVD requires more iterations to converge because there are more pa-
rameters for it to optimize for, so there are many little updates that can be made to the
parameters which improve the deviance enough. One explanation for why it takes LPCA
with large m longer to converge is that small changes in U can have a relatively large effect
in the estimated natural parameters with large m.

A.3.2 Simulation results for more sparse situation

Just like in Section 6.1.3, we simulated from a variety of scenarios, only this time p̄ = 0.1,
for a situation where the binary matrix consists of mostly 0’s. The estimated LSVD and
LPCA included main effects. The results in Figure 11 are mostly the same as with p̄ = 0.5
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Figure 10: Number of iterations required for convergence of the logistic PCA and logistic
SVD algorithms for a variety of scenarios

except that an estimate of the probability matrix with a rank lower than the true rank does
not degrade performance as badly.

A.3.3 Deviance comparison of LPCA and LSVD

Finally, under the same setup as before with p̄ = 0.5, Figure 12 shows the deviance of the
estimates. As expected, LSVD has lower deviance or equivalent deviance for all scenarios.
The improvement from LSVD is smallest when φ = 0.01. When the probabilities are more
concentrated, however, LSVD clearly has a lower deviance than LPCA. It also appears that
the higher the estimated rank is, the greater the decrease in the deviance is from LSVD.
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