
Generalized Principal Component Analysis:
Projection of Saturated Model Parameters

Andrew J. Landgraf, The Ohio State University

Yoonkyung Lee, The Ohio State University

Technical Report No. 892

June, 2015

Department of Statistics

The Ohio State University

1958 Neil Avenue
Columbus, OH 43210-1247



Generalized Principal Component Analysis:
Projection of Saturated Model Parameters

Andrew J. Landgraf and Yoonkyung Lee

Abstract

Principal component analysis (PCA) is very useful for a wide variety of data analysis
tasks, but its implicit connection to the Gaussian distribution can be undesirable for
discrete data such as binary and multi-category responses or counts. We generalize
PCA to handle various types of data using the generalized linear model framework.
In contrast to the existing approach of matrix factorizations for exponential family
data, our generalized PCA provides low-rank estimates of the natural parameters by
projecting the saturated model parameters. This difference in formulation leads to the
favorable properties that the number of parameters does not grow with the sample size
and simple matrix multiplication suffices for computation of the principal component
scores on new data. A practical algorithm which can incorporate missing data and
case weights is developed for finding the projection matrix.

1 Introduction

Abundance of high dimensional data in many fields makes understanding and capturing the
regular structures underlying the data crucial for subsequent modeling and prediction. Low
dimensional projections of data are often primary tools for coping with high dimensional-
ity along with other techniques for sparsity or structural simplicity. This paper concerns
an extension of standard principal component analysis (PCA), a widely used tool for low
dimensional approximation of data. The proposed extension aims to expand the scope of
PCA to various types of discrete data from binary and multi-category responses to counts.
For discrete data, the implicit connection of PCA to the Gaussian distribution may be un-
desirable.

Several approaches to dimensionality reduction for non-Gaussian data have been proposed
when all of the variables are of one particular type. For example, probabilistic PCA (Tipping
and Bishop, 1999) has been extended to binary data (Tipping, 1998) as well as data from
a multinomial distribution (Buntine, 2002), which is related to latent Dirichlet allocation
(Blei et al., 2003). Logistic PCA (Schein et al., 2003) fits a low rank estimate of the natural
parameter matrix for Bernoulli data. Correspondence analysis (Greenacre, 1984) reduces
the dimension of categorical data by finding a low rank representation of the contingency
table. Non-negative matrix factorization (Lee and Seung, 1999) finds a low rank estimate of
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the mean parameters assuming that the data come from a Poisson distribution and under
the constraints that the factors are nonnegative.

Other techniques have been developed for the dimensionality reduction of many possible
types of non-Gaussian data. Collins et al. (2001) introduced a general framework for low-rank
matrix factorizations of the natural parameters of exponential family data by maximizing
the constrained likelihood of exponential family distributions. This matrix factorization
formulation has further been generalized (Gordon, 2002; Singh and Gordon, 2008; Udell
et al., 2014), incorporating more loss functions and data types, as well as penalties on the
row and column factors. Many of the formulations above can be shown to be special cases
of these generalizations.

We propose a new formulation of generalized PCA which extends Pearson’s mean squared
error optimality motivation (Pearson, 1901) for PCA to members of the exponential fam-
ily. A special case of the proposed generalization for binary data (called logistic PCA) is
presented in Landgraf and Lee (2015). In contrast to the existing approach of matrix fac-
torizations for exponential family data, our generalized PCA provides low-rank estimates
of the natural parameters by projecting the saturated model parameters. This projection
approach primarily concerns the structure of the variables for dimensionality reduction as in
standard PCA, whereas the matrix factorization approach treats both variables and cases
interchangeably. Due to the structural difference, our generalized PCA has several advan-
tages over the matrix factorization methods. Applying principal components to new data
only requires matrix multiplication, and the number of parameters does not increase with
the number of cases. Furthermore, the principal components scores are more interpretable,
as they are a linear combination of the natural parameters from the saturated model.

We pay particular attention to dimensionality reduction of count data, either with a
Poisson or multinomial assumption. Count datasets occur in many domains of interest.
When analyzing text documents with a bag-of-words representation, the data consist of the
counts of each word in each document. In recommendation systems, counts may indicate
the number of times a user has interacted with an item. The counts could be clicks on a
website, number of times listening to a song, or number of times shopping at a merchant. For
the recommendation task of the Netflix competition, low-rank models are one of the most
successful methods used (Feuerverger et al., 2012). If the goal is to minimize the squared
error of the predicted rating, as was the case in the Netflix competition, standard PCA
makes sense. However, if the goal is to predict which movies are most likely to be watched,
other distributional assumptions may be more appropriate.

In addition, we broaden the scope of generalized PCA by allowing for observation weights,
missing data, and variable normalization. Weights can be useful for indicating certainty
about an observation. For example, if an observation is a proportion, it should get higher
weight for being associated with more trials. Missing data are common in collaborative
filtering problems, where the goal is often to fill in the missing values of a matrix as accurately
as possible using the observed values. The normalization allows variables of different types
and magnitudes to be on the same scale, similar to how PCA is applied to the correlation
matrix instead of the covariance matrix.
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For implementation, a majorization-minimization (MM) algorithm is derived to deter-
mine the principal component loadings. By using the convex hull of projection matrices, an
alternative algorithm for solutions to a convex relaxation of the original optimization prob-
lem is derived as well. Both of these algorithms work in the presence of weights and missing
data. Numerically, we examine the relative performance of the generalized PCA in matrix
completion and recommendation tasks with simulated count datasets, varying the sparsity
and the magnitude of the positive counts. Further, using a count dataset of users’ song
listening history, we show the improvement in visualizing the loadings and recommending
new songs to users with our generalization of PCA.

The rest of the paper is organized as follows. The generalized PCA formulation is intro-
duced in Section 2, along with first-order optimality conditions for solutions and extensions to
handle differential case weights, missing data, and variable normalization. Section 3 presents
the two computational algorithms for generalized PCA. The simulated and real data exam-
ples are provided in Sections 4 and 5, respectively, which show the usefulness of the proposed
formulation for visualization, recommendation, and matrix completion. Finally, Section 6
offers conclusions and future research directions.

2 Generalized PCA

2.1 Preliminaries

Generalized PCA presented in this paper is based on generalized linear models and expo-
nential family distributions. The probability density or mass function of a random variable
X with an exponential family distribution can be written as

f(x|θ, φ) = exp

(
xθ − b(θ)
a(φ)

+ c(x, φ)

)
, (2.1)

where θ is the canonical natural parameter and φ is the scale parameter, which is assumed
to be known. The mean and variance of the distribution are easily obtained from

E(X) = b′(θ) =
∂

∂θ
b(θ) and

var(X) = a(φ)b′′(θ) = a(φ)
∂2

∂θ2
b(θ).

For simplicity of exposition, we will further assume that a(φ) = 1, which is the case for the
binomial and Poisson distributions and for the Gaussian distribution with unit variance. We
will revisit the scale function a(·) when discussing normalization in Section 2.5.3.

The canonical link function g(·) is defined such that g(b′(θ)) = θ. The best possible fit to
the data is referred to as the saturated model, where the mean b′(θ̃) is set equal to the data
x, implying that the saturated model parameter θ̃ is g(x). For instance, for the Gaussian
distribution, b(θ) = θ2/2 and θ̃ = x, for Bernoulli, b(θ) = log(1 + exp(θ)) and θ̃ = logit x,
and for Poisson, b(θ) = exp(θ) and θ̃ = log x. This data-driven saturated model will play
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an important role in defining a low-rank data approximation for generalized PCA. For some
distributions and values of x, g(x) may not be finite. For example, if the distribution is
Bernoulli, g(1) =∞ and g(0) = −∞, and if the distribution is Poisson, g(0) = −∞.

Finally, the deviance for θ based on observation x is defined as

D(x; θ) = −2
(

log f(x|θ, φ)− log f(x|θ̃, φ)
)
.

Suppose that there are n observations on d variables. Then, the deviance of an n× d matrix
of natural parameters, Θ = [θij], with a data matrix of the same size, X = [xij], is given by

D(X; Θ) =
n∑
i=1

d∑
j=1

D(xij; θij).

2.2 Basic Formulation

Our formulation of generalized PCA extends an alternative characterization of PCA that
Pearson (1901) originally considered for dimensionality reduction. Pearson’s formulation
looks for the optimal projection of the original d-dimensional points xi in a k-dimensional
subspace (k < d) under squared error loss. That is, finding a center µ ∈ Rd and a rank-k
matrix U ∈ Rd×k with UTU = Ik that minimize

n∑
i=1

‖xi − µ−UUT (xi − µ)‖2.

It is shown that µ̂ = x̄ and Û with the first k eigenvectors of the sample covariance matrix
give the optimal representation, coinciding with the data projection with k principal com-
ponents. This formulation can be interpreted as a dimensionality reduction technique for
Gaussian data. If xij comes from a Gaussian distribution with known variance, the natu-
ral parameter θij is the mean, the deviance is proportional to squared error loss, and the
natural parameters from the saturated model are θ̃ij = xij. Hence, the approximation of xi
by µ + UUT (xi −µ) can be viewed equivalently as that of the saturated model parameters
θ̃i by µ + UUT (θ̃i − µ). With these characteristics in mind, we can generalize Pearson’s
formulation as a method for projecting the saturated model into a lower dimensional space,
by minimizing the deviance for natural parameters in a subspace based on the data.

Technically Pearson’s original formulation of a low rank representation of data does not
require the normality assumption. However, this dual interpretation is very conducive to
extensions of standard PCA to data from other exponential family distributions. Taking
this approach, Landgraf and Lee (2015) introduced an extension of PCA to binary data as a
low-rank projection of the logit parameters of the saturated model. In this paper, we further
generalize it to other types of data, including counts and multicategory responses. For this
generalization, we allow each variable to be from a different member of the exponential family
and specify the appropriate distribution for each variable.
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In this framework, we want to estimate the natural parameters θij for data xij in a
k-dimensional subspace such that they minimize the deviance

n∑
i=1

d∑
j=1

Dj(xij; θij) ∝
n∑
i=1

d∑
j=1

{−xijθij + bj(θij)}+ constant.

Since each variable of the dataset may come from a different distribution, the deviance and
b(·) functions have been subscripted by column. Letting θ̃ij be the natural parameter for
the saturated model of the jth variable and θ̃i be the vector for the ith case, the estimated
natural parameters in a k-dimensional subspace are defined as

θ̂ij = µj +
[
UUT (θ̃i − µ)

]
j
,

or Θ̂ = 1nµ
T + (Θ̃− 1nµ

T )UUT in matrix notation.
We wish to find µ ∈ Rd and U ∈ Rd×k, such that UTU = Ik, which minimize∑

i,j

{
−xij

(
µj +

[
UUT (θ̃i − µ)

]
j

)
+ bj

(
µj +

[
UUT (θ̃i − µ)

]
j

)}
=− 〈X,1nµT + (Θ̃− 1nµ

T )UUT 〉+
∑
i,j

bj

(
µj +

[
UUT (θ̃i − µ)

]
j

)
.

Note that for some distributions and values of xij, θ̃ij may be ∞ or −∞. For instance,
θ̃ij = −∞ for xij = 0 under the Poisson distribution. Numerically, we will approximate ∞
with a large positive constant m, treating it as a tuning parameter. It can be chosen data-
adaptively by cross-validation, as was done in Landgraf and Lee (2015) for the Bernoulli
distribution.

2.3 First-Order Optimality Conditions

To examine the relation between the optimization problems that standard PCA and the
proposed generalization involve, we derive necessary conditions for the generalized PCA
solutions. The orthonormality constraints on U naturally lead to the application of the
method of Lagrange multipliers. In order to incorporate the orthonormal constraints UTU =
Ik, we look at the Lagrangian,

L(U,µ,Λ) =
∑
i,j

Dj(xij;µj +
[
UUT (θ̃i − µ)

]
j
) + tr(Λ(UTU− Ik)),

where Λ is a k×k symmetric matrix with the Lagrange multipliers. See Wen and Yin (2013)
for more general discussions of optimization with orthogonal constraints.
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Figure 1: Projection of two-dimensional count data using standard PCA and Poisson PCA

Taking the gradient of the Lagrangian with respect to the U, µ, and Λ and setting them
equal to 0 gives the first-order optimality conditions for generalized PCA solutions:

(1)

[(
X− b′(Θ̂)

)T (
Θ̃− 1nµ

T
)

+
(
Θ̃− 1nµ

T
)T (

X− b′(Θ̂)
)]

U = UΛ (2.2)

(2)
(
Id −UUT

) (
X− b′(Θ̂)

)T
1n = 0d, and (2.3)

(3) UTU = Ik. (2.4)

b′(Θ̂) is a matrix given by taking b′(·) elementwise. Each element is the expected value of xij

at the optimal parameter θ̂ij. That is, the ijth element equals b′j

(
µj +

[
UUT (θ̃i − µ)

]
j

)
.

For the Gaussian distribution, b′(θ) = θ and Θ̃ = X, which simplify the condition (2.2) to
the eigen equation for a covariance matrix. Thus, (2.2) is analogous to the eigen equation for
standard PCA. (2.3) can be interpreted as the condition that the residuals projected onto
the null space of U sum to zero.

2.4 Geometry of the Projection

To illustrate the difference in the low-rank representation of data using standard PCA and
generalized PCA, we simulated a two-dimensional count dataset with 100 rows where the
mean matrix has a rank of one. The data are plotted in Figure 1. The area of the points is
proportional to the number of observations with that pair of counts. For example, there were
12 observations with the counts (0, 0) and most of the larger counts only had one observation.
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The one-dimensional representations for standard PCA and Poisson PCA are displayed in
the figure. The two solid lines indicate the one-dimensional mean space given by standard
PCA (red) and Poisson PCA (blue).

The most obvious difference between the representations is that the Poisson PCA repre-
sentation is non-linear. It is also constrained to be non-negative unlike the standard PCA
projections. For instance, the standard PCA projection of (0, 0) is slightly negative for the
second variable. The dashed lines in the figure show the correspondence between selected
observations and their projections onto the lower dimensional space. Standard PCA gives
projections in the count space, while Poisson PCA gives projections in the natural parame-
ter space. When transforming back to the count space, the Poisson PCA fits are no longer
projections in the Euclidean sense.

The Poisson PCA estimates seem to fit those counts close to zero more tightly than the
larger counts. This is due to the properties of the Poisson distribution, where the mean is
proportional to the variance. If (x − λ̂) is held constant, where λ̂ is the estimated mean,
the deviance monotonically decreases to zero as either λ̂ or x increases. A large difference
of the Poisson PCA fit from an observation in the count space may not correspond to a
large deviance when the estimate or observation is relatively large. This is why some of the
highlighted projections are more distant from the observation in the count space for Poisson
PCA than for standard PCA and also why the Poisson PCA fits the values close to 0 more
tightly.

2.5 Further Extensions

Generalized PCA is flexible enough to allow for a variety of extensions, incorporating data
weights, missing data and normalization of variables of different types or scales.

2.5.1 Weights

When each observation xij has a weight wij, it can easily be incorporated into the deviance
as
∑

i,j wijDj(xij; θij) analogous to the weighted least squares criterion. One example where
weights can naturally occur is when a given observation is associated with multiple replica-
tions. For example, if an observation is a proportion of “successes” in w number of Bernoulli
trials, then w is the natural weight for the observation.

2.5.2 Missing Data

In many practical applications, data may be missing and filling in the missing values is often
an important task. For example, in collaborative filtering, the goal is to use observed users’
feedback on items to estimate their unobserved or missing feedback. One of the desirable
features of dimensionality reduction techniques is the ability to not only accommodate miss-
ing data, but also fill in values that are missing. Techniques that can account for constraints
in the domain have an added advantage of only filling in feasible values.
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Let Ω ⊂ {1, . . . , n}×{1, . . . , d} be the set of indices for which xij is observed. Instead of
defining the deviance over all entries in the matrix, we could define the deviance over non-
missing elements only and solve for the parameters that minimize the weighted deviance,∑

(i,j)∈Ω

wijDj(xij; θij).

This is equivalent to setting wij = 0 for all (i, j) 6∈ Ω. However, the form of the estimated

natural parameters for (i, j) ∈ Ω, θ̂ij = µj+[UUT (θ̃i−µ)]j, requires θ̃i, the saturated model
parameters for both observed and missing data. Therefore, we must extend the definition of
saturated model parameters to account for missing data.

We may extend the definition of the natural parameters from the saturated model as

θ̃ij =

{
gj(xij) if (i, j) ∈ Ω

µj if (i, j) 6∈ Ω
.

The saturated model has the best possible fit to the data. When xij is known, the data can
be fit exactly, but when xij is unknown, our best guess for the observation is the main effect.

One consequence of this definition is that the estimated natural parameters only de-
pend on the saturated model parameters of the non-missing data. The estimated natural
parameter is

θ̂ij = µj + [UUT (θ̃i − µ)]j = µj +
∑

l:(i,l)∈Ω

[UUT ]jl(θ̃il − µl).

Further, µj being in lieu of θ̃ij does not complicate its estimation because it cancels out in
the expression of (θ̃i − µ) when xij is missing.

2.5.3 Normalization

If data are on different scales in standard PCA, it is common practice to normalize the vari-
ables by dividing them by their standard deviations first and apply PCA to the standardized
variables, which is equivalent to performing PCA on the correlation matrix. Difficulties in
normalization can occur when the variables are of different types. How do we compare a
binary variable with mean 1/4 to a count variable with mean 10 to a continuous variable
with variance 5? Standardization makes sense only for location-scale families. For example,
if we standardize a Bernoulli random variable, it is no longer Bernoulli.

We would like to derive a notion of variable normalization for generalized PCA similar
to standardization for PCA. As a result of normalizing the variables, all of the standard
basis vectors ej, j = 1, . . . , d as loadings explain the same amount of variance, which is
proportional to the reduction in Gaussian deviance with those loadings. We can extend this
criterion to generalized PCA by weighting the variables such that the reduction in deviance
(or equivalently the deviance) is the same with each of the standard basis vectors as loadings.
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Letting τj, j = 1, . . . , d, be the normalizing factors we assign to the variables, W =
[wij], and Dj(Xj,Wj; Θj) :=

∑
iwijDj(xij; θij), we want the lth “partial” deviance after

normalization

Del := min
µ

d∑
j=1

1

τj
Dj(Xj,Wj; 1nµj + [(Θ̃− 1nµ

T )ele
T
l ]j)

to be the same for all l. Note that τj can also be interpreted as an estimate for the scale
parameter function, aj(φj) in equation (2.1) up to a proportionality constant.

When U = el, the deviance is minimized with respect to the main effects µ if µ̂j = gj(X̄
w
j )

for j 6= l, where X̄w
j := XT

j Wj/(1
T
nWj) is the weighted mean of the jth variable and gj(·) is

the canonical link function for the jth variable. Therefore,

θ̂ij =

{
gj(X̄

w
j ) if j 6= l

gj(xij) if j = l
.

This implies that

Del =
∑
j 6=l

1

τj
Dj(Xj,Wj; 1ngj(X̄

w
j )) +

1

τl
Dl(Xl,Wl; gl(Xl)).

Dl(Xl,Wl; gl(Xl)) = 0 by definition because gl(Xl) gives the fit of the saturated model.
The goal is to find τj > 0, j = 1, . . . , d, such that Del is the same for all l, i.e.

De1 = De2 = · · · = Ded ,

which implies that

1

τ1

D1(X1,W1; 1ng1(X̄w
1 )) = · · · = 1

τd
Dd(Xd,Wd; 1ngd(X̄

w
d )).

These are equal if τj ∝ Dj(Xj,Wj; 1ngj(X̄
w
j )). We set

τj =
1

n
Dj(Xj,Wj; 1ngj(X̄

w
j ))

to make the normalizing factors more interpretable. As long as var(Xj) > 0, Dj(Xj,Wj; 1ngj(X̄
w
j )) >

0 and therefore τj > 0. Dj(Xj,Wj; 1ngj(X̄
w
j )) is the deviance of the null (intercept-only)

model for the jth variable and τj is the average null deviance.
The expression of the normalization factor τ is examined from some exponential family

distributions with no missing data and constant weights.
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Figure 2: Numerical estimates of the limit of the average null deviance as a function of the
mean parameter for Poisson(λ)

Gaussian Distribution For Gaussian variables, τj = var(Xj). This normalization is
very similar, but not exactly equivalent to performing PCA on the correlation matrix. Let
τ := diag(τ1, . . . , τd) be a d-dimensional diagonal matrix with the normalizing factors on the
diagonals. PCA on the correlation matrix minimizes

‖(X− 1nµ
T )τ−1/2 − (X− 1nµ

T )τ−1/2UUT‖2
F

whereas our proposed normalization minimizes

‖(X− 1nµ
T )τ−1/2 − (X− 1nµ

T )UUTτ−1/2‖2
F .

Bernoulli Distribution For Bernoulli variables, τj = −2(X̄j log(X̄j) + (1 − X̄j) log(1 −
X̄j)). This normalization factor is largest when X̄j = 1/2 and it decreases as X̄j moves away
from 1/2. This is similar to the behavior of the variance estimate of a Bernoulli variable,
X̄j(1− X̄j). Therefore, variables with means close to 0 or 1 will get more weight than those
with means close to 1/2.

Poisson Distribution For Poisson variables,

τj = −2

(
X̄j log(X̄j)−

1

n

∑
i

xij log(xij)

)
,

which is not a simple function of the mean, like for Gaussian or Bernoulli variables. To
see the relation between the normalization factor and the Poisson mean parameter, λ, we
obtained numerical estimates of the limit of the average null deviance as n goes to∞ for the
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Poisson distribution, which equals −2 [λ log(λ)− E(X log(X))]. Figure 2 shows this limit as
a function of λ. When the sample size is large, τj is expected to be smallest when λ tends
towards 0 and to flatten out when λ is greater than 1. This implies that variables with
means smaller than 1 get the most weight and that two variables with means much larger
than 1 will get approximately the same weight. In contrast to the Bernoulli distribution,
the normalization factor is not monotonically related to the variance of a Poisson variable,
which equals the mean.

2.5.4 Multi-Parameter Exponential Family Data

For discussion of generalized PCA formulation so far, we have implicitly assumed that data
are from a one-parameter exponential family distribution. To expound on multi-parameter
exponential family data, we consider categorical data. As an extension of a Bernoulli dis-
tribution, a multinomial distribution can be posited for a categorical variable with more
than two categories. Suppose that the categorical variable has d possible outcomes. This
categorical variable can be represented by d − 1 cell counts or proportion variables, where
each variable represents the count or proportion of times that category is taken.

The number of trials associated with each case may differ depending on the context.
In many scenarios, each case may involve only one trial. A scenario with multiple trials
naturally arises in modeling text data, where a case may be a document and the different
categories would be the words used in the document. Such data can be arranged into a
so-called document-term frequency matrix.

Suppose that (xi1, . . . , xid) is the ith case with xij representing the proportion of the jth
category from ni multinomial trials with cell probabilities pij. The log-likelihood based on
the ith case is given by

ni

d−1∑
j=1

(xijθij)− ni log

(
1 +

d−1∑
j=1

eθij

)
,

where θil = log(pij/pid) ∈ R and ni, the number of trials for the ith case, acts as a weight.
With the multi-parameter distribution, bj(·) is not a separate function for each of the d− 1
categories. Instead, there is one b(·) function for the whole categorical variable,

b(θi) = log

(
1 +

d−1∑
l=1

eθil

)
.

The natural parameter from the saturated model, θ̃ij, is similar to the Bernoulli case,

but now depends on both xij and xid := 1 −
∑d−1

j=1 xij. As for other distributions, we need
to approximate ∞ with a large number m, and specify

θ̃ij =


−m if xij = 0

m if xij = 1

log(xij/xid) if xij, xid ∈ (0, 1)

m+ log(xij) if xij ∈ (0, 1) and xid = 0

.

11



As m gets very large, these parameters will converge to the perfect fit:

∂b(θ)

∂θ

∣∣∣∣
θ=θ̃i

−→ xi.

3 Computation

Since orthonormal constraints are not convex (Wen and Yin, 2013), finding a global solution
for generalized PCA is infeasible in most scenarios. To deal with the difficulties imposed
by orthonormality, we use an MM algorithm. This algorithm is somewhat of an extension
to the algorithm proposed for the loadings of logistic PCA in Landgraf and Lee (2015).
However, the deviance cannot be majorized for some members of the exponential family, for
example, Poisson. To deal with this, we first approximate the deviance with a second-order
Taylor expansion and then majorize the Taylor expansion. Further, we modify the objective
by using a convex relaxation to projection matrices and propose a general algorithm for
minimizing the new objective.

3.1 MM Algorithm

With a Taylor approximation, we iteratively replace a smooth objective with a second-order
quadratic approximation. Considering a single scalar parameter θ, letQ(θ|θ(t)) be the second-
order quadratic approximation of the objective function around the most recent estimate,
θ(t). In many cases this quadratic approximation can be minimized with a closed-form
solution. For example, in the iteratively reweighted least squares algorithm for generalized
linear models (GLMs), the log-likelihood is approximated by a quadratic function, which
leads to a weighted least squares problem.

A Taylor approximation alone may still result in a difficult problem to solve for the
generalized principal component loadings. Therefore, we additionally majorize the quadratic
approximation. Much like the Taylor approximation, MM algorithms iteratively replace the
difficult objective with a simpler one.

The ijth element of the deviance, D(xij; θij), is quadratically approximated by

Q(θij|θ(t)
ij ) := D(xij; θ

(t)
ij ) + 2wij(b

′
j(θ

(t)
ij )− xij)(θij − θ(t)

ij ) + wijb
′′
j (θ

(t)
ij )(θij − θ(t)

ij )2.

From exponential family theory, b′j(θ
(t)
ij ) = E(Xij|θ(t)

ij ) and b′′j (θ
(t)
ij ) ∝ var(Xij|θ(t)

ij ).
Even though the Taylor approximation is quadratic, it can still be difficult to optimize

with orthonormal constraints because of non-constant b′′j (θ
(t)
ij ). Therefore, we majorize the

ijth element of the quadratic approximation with

M(θij|θ(t)
ij ) := D(xij; θ

(t)
ij ) + 2wij(b

′
j(θ

(t)
ij )− xij)(θij − θ(t)

ij ) + v
(t)
i (θij − θ(t)

ij )2,

where
v

(t)
i := max

j
wijb

′′
j (θ

(t)
ij ). (3.1)
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Clearly, the tangency condition is satisfied for both the quadratic approximation and the
deviance, M(θ

(t)
ij |θ

(t)
ij ) = Q(θ

(t)
ij |θ

(t)
ij ) = D(xij; θ

(t)
ij ), and the domination condition is satisfied

for the quadratic approximation, M(θ|θ(t)
ij ) ≥ Q(θ|θ(t)

ij ) for all θ.

Finding the principal component loadings using this approach requires initializing U(1)

and µ(1) and iteratively minimizing

M(Θ|Θ(t)) =
∑
i,j

M(θij|θ(t)
ij )

=
∑
i,j

v
(t)
i

[
θij −

(
θ

(t)
ij +

wij

v
(t)
i

(
xij − b′j(θ

(t)
ij )
))]2

+ constant,

with respect to µ and U.
Let

z
(t)
ij := θ

(t)
ij +

wij

v
(t)
i

(
xij − b′j(θ

(t)
ij )
)

(3.2)

be the adjusted response variables, Z(t) = [z
(t)
ij ], and V(t) be an n× n diagonal matrix with

ith diagonal equal to v
(t)
i . The majorizing function can be rewritten as

M(Θ|Θ(t)) =

∥∥∥∥(V(t)
)1/2 (

Θ̃− 1nµ
T
)

UUT −
(
V(t)

)1/2 (
Z(t) − 1nµ

T
)∥∥∥∥2

F

+ constant.

Holding U fixed, M(Θ|Θ(t)) is minimized with respect to µ when

µ(t+1) =
(
1TnV(t)1n

)−1 (
Z(t) − Θ̃U(t)(U(t))T

)T
V(t)1n.

Let Θ̃
(t)

c := Θ̃ − 1n(µ(t+1))T and Z
(t)
c := Z(t) − 1n(µ(t+1))T be the column-centered

saturated parameters and adjusted responses. Similar to the result in Landgraf and Lee
(2015) for logistic PCA, when holding µ fixed, M(Θ|Θ(t)) is minimized with respect to
orthonormal U by the first k eigenvectors of(

Θ̃
(t)

c

)T
V(t)Z(t)

c +
(
Z(t)
c

)T
V(t)Θ̃

(t)

c −
(
Θ̃

(t)

c

)T
V(t)Θ̃

(t)

c . (3.3)

Algorithm 1 summarizes the steps of the MM algorithm for finding the loadings and main
effects of generalized PCA. This algorithm is similar to iteratively reweighted least squares
for GLMs. At each iteration, an adjusted response variable z

(t)
ij is generated, which is equal

to the previous estimate plus the residual weighted by the inverse of the estimated variance.
In our algorithm, a case-wise upper bound on the estimated variance is used instead. This
makes minimization of M(Θ|Θ(t)) a weighted least squares problem, which can be solved by
an eigen-decomposition.

Other options are available for majorizing Q(θij|θ(t)
ij ). With the terminology of Lee et al.

(2010), the majorization above uses a “tight” bound. We could instead use a “uniform”

13



input : Data matrix (X), m, number of principal components (k), weight matrix
(W)

output: d× k orthonormal matrix of principal component loadings (U) and column
main effects (µ)

Set t = 1 and initialize µ(1) and U(1). We recommend setting µ(1) to the column
means of Θ̃ and U(1) to the first k right singular vectors of column-centered Θ̃
repeat

1. Set the weights and the adjusted response variables using equations
(3.1) and (3.2), where θ

(t)
ij = µ

(t)
j + [U(t)(U(t))T (θ̃i − µ(t))]j

2. µ(t+1) ←
(
1TnV(t)1n

)−1 (
Z(t) − Θ̃U(t)(U(t))T

)T
V(t)1n

3. Set U(t+1) to the first k eigenvectors of (3.3)

4. t← t+ 1

until Deviance converges ;

Algorithm 1: Majorization-minimization algorithm for generalized PCA

bound by defining v
(t)
i := maxi,j wijb

′′
j (θ

(t)
ij ), which is the same for all i. There is a trade-off

between the two bounds. It is more computationally efficient to calculate each iterate with
the uniform bound since each iteration involves an un-weighted least squares problem, but
the tight bound takes fewer iterations to converge. We use the tight bound in the data
analyses presented in this paper.

To illustrate this trade-off, we performed logistic PCA with k = 2 on the binary dataset
of disease indicators from patients admitted to the intensive care unit, which is described
in Landgraf and Lee (2015). For binary data, proper bounds of the estimated variances
depend on the fitted probabilities. We consider two settings with different ranges of fitted
probabilities. First, we used only the 318 variables that had column means closest to 0 out
of the 584 variables. For the Bernoulli distribution, b′′(θ̂ij) = p̂ij(1− p̂ij) is smallest when the
fitted probability is close to 0 or 1 and largest when the fitted probability is 0.5. If a small
fraction of fitted probabilities in the whole matrix are close to 0.5 and the rest are close to
0 or 1, the uniform majorization will be very loose compared to the tight majorization.

The left panel of Figure 3 shows the average Bernoulli deviance as a function of the
number of iterations for the two types of majorization. The tight majorization entails many
fewer iterations, and achieves a smaller deviance after only one iteration. At convergence,
around 98% of the rows had maximum fitted probabilities less than 0.05, but a few rows had
fitted probabilities close to 0.5, which causes the large discrepancy between the tight and
uniform majorizations.

Second, we included all of the 584 variables, a few of which have column means close to
0.5. This time, most of the rows had a variable with a fitted probability close to 0.5. This

14
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Figure 3: Comparison of the tight and uniform majorizations in the MM algorithm applied
to binary datasets. Most of the variables in the data used for the left panel have means close
to 0 and the full dataset used in the right panel has some variables with means close to 0.5

resulted in little difference between the tight and uniform majorizations, as can be seen in
the right panel of Figure 3. Finally, note that the MM algorithm presented in Landgraf and
Lee (2015) for logistic PCA is similar to the algorithm for generalized PCA with the uniform
bound.

3.1.1 MM Algorithm with Missing Data

So far, we have assumed that we have a complete n× d matrix for dimensionality reduction.
Elements may be missing from the dataset for a variety of reasons. Often, as in collaborative
filtering, the goal of dimensionality reduction is to fill in, or complete, the missing elements
of the matrix.

To find the loadings and main effects with missing data, we use a majorization which is
very similar to the expectation maximization (EM) algorithm (Dempster et al., 1977). With

15



missing data, a new majorization function is derived as

M(Θ|Θ(t)) =
∑

(i,j)∈Ω

M(θij|θ(t)
ij )

=
∑

(i,j)∈Ω

v
(t)
i

[
θij −

(
θ

(t)
ij +

wij

v
(t)
i

(
xij − b′j(θ

(t)
ij )
))]2

+ C

≤
∑

(i,j)∈Ω

v
(t)
i

[
θij −

(
θ

(t)
ij +

wij

v
(t)
i

(
xij − b′j(θ

(t)
ij )
))]2

+
∑

(i,j) 6∈Ω

v
(t)
i

[
θij − θ(t)

ij

]2

+ C

:= N(Θ|Θ(t)).

This is effectively the same majorization used in Algorithm 1, with wij = 0 when (i, j) 6∈ Ω.
As in many EM algorithms, this is equivalent to filling in the missing elements of the

natural parameter matrix with the latest estimated value. This strategy has been used by
others for matrix factorization in the presence of missing data (e.g. Mazumder et al., 2010;
Lee et al., 2010). Therefore, a solution to generalized PCA with missing data can be found
by iteratively minimizing

N(Θ|Θ(t)) =

∥∥∥∥(V(t)
)1/2 (

Θ̃− 1nµ
T
)

UUT −
(
V(t)

)1/2 (
Z(t) − 1nµ

T
)∥∥∥∥2

F

+ C.

where the definitions of v
(t)
i and z

(t)
ij are the same as before with augmented weights of 0 for

the missing data. The same operations as in Algorithm 1 can be used to minimize N(Θ|Θ(t)).

3.2 Convex Relaxation

The MM algorithm makes the non-convex problem tractable by reducing it to a series of
problems where the solution is known. Another strategy is to relax the problem. Instead of
projection matrices UUT , we may look for matrices in the convex hull of projection matrices,
called the Fantope (Dattorro, 2005), which is defined as

Fk = conv{UUT | U ∈ Rd×k, UTU = Ik} = {H | 0 � H � Id, tr(H) = k}.

This convex relaxation reduces the generalized dimensionality reduction task to

minimize
∑

(i,j)∈Ω

wijDj(xij;µj + [H(θ̃i − µ)]j)

subject to µ ∈ Rd and H ∈ Fk.

For fixed µ the problem is convex in H, and for fixed H the problem is convex in µ,
i.e. it is a bi-convex problem. With either µ or H fixed, there are theoretical guarantees to
finding the other parameter with minimum deviance. We propose to solve for µ first and
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keep it fixed while solving for H. With H = 0, the deviance is minimized with respect to µ
if µj = gj

(
XT
j Wj/(1

T
nWj)

)
, for j = 1, . . . , d.

To solve the relaxed problem with respect to H with fixed µ, we use the projected
gradient method (Boyd et al., 2003), which involves updating H at each iteration by

H(t+1) = ΠFk

(
H(t) − αtG(t)

)
.

G(t) is the gradient of the deviance with respect to H evaluated at H(t), αt is the step size
for the tth iteration, and ΠFk(·) is the Euclidean projection operator onto the convex set
Fk.

This method is guaranteed to produce a solution arbitrarily close to the global minimum
as the number of iterations goes to∞ as long as the step size, αt, decreases in an appropriate
manner. One way to ensure convergence is to have the step sizes be square summable, but
not summable (Boyd et al., 2003), which can be achieved with αt = a0/t, for instance, where
a0 is the starting step size.

Without taking into account the symmetry of H, the gradient of the deviance with respect
to H can be derived in a similar way to (2.2) and is given by

∂D

∂H
= 2

(
W ◦ (b′(Θ̂)−X)

)T (
Θ̃− 1nµ

T
)
, (3.4)

where ◦ is the Hadamard (entrywise) product operator. When xij is missing, wij = 0 which
causes it to have no influence on the gradients. Since H is symmetric, the gradient needs to
be symmetrized as follows (see Petersen and Pedersen (2012)):

G =

[
∂D

∂H

]
+

[
∂D

∂H

]T
− diag

[
∂D

∂H

]
. (3.5)

To update H in the negative gradient direction, the projection operator ΠFk has to be
defined explicitly. Vu et al. (2013) showed that the Euclidean projection of a positive definite
matrix A with a spectral decomposition A =

∑d
j=1 λjuju

T
j onto Fk is given by

ΠFk(A) =
d∑
j=1

λ+
j (ν)uju

T
j , (3.6)

where λ+
j (ν) = min(max(λj − ν, 0), 1) with ν that satisfies

∑
j λ

+
j (ν) = k. A quick and easy

way to find ν is bisection search, with an initial lower bound of λd−k/d and an initial upper
bound of λ1, the largest eigenvalue. Algorithm 2 presents the complete algorithm for the
Fantope solution.

Although there are guarantees for iterative solutions from the projected gradient method
to converge to the global minimum, it could potentially take many iterations. In practice,
we have found that having a good initial starting gradient descent step size, a0, can be
very important. One solution that works fairly well is to take the inverse of the second
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input : Data matrix (X), m, rank (k), weight matrix (W), starting step size (a0)
output: µ and d× d rank k Fantope matrix (H)

Set t = 0 and µj = gj
(
XT
j Wj/(1

T
nWj)

)
, j = 1, . . . , d

Set U to the first k right singular vectors of Θ̃− 1nµ
T

Initialize H(0) = UUT

repeat

1. t← t+ 1. Set αt = a0
1
t

2. Calculate the derivative, G(t−1), of the deviance at H(t−1) using
equations (3.4) and (3.5)

3. Move in the negative direction of the derivative and project onto

the rank-k Fantope using equation (3.6), H(t) = ΠFk

(
H(t−1) − αtG(t−1)

)
until Deviance converges ;

Algorithm 2: Fantope algorithm for the convex relaxation of generalized PCA

derivative with respect to each component of H, evaluated at the initial value, and average
them together, i.e.

a0 =
1

d2

∑
j,l

[
∂2D

∂H2
jl

∣∣∣∣
H

(0)
jl

]−1

=
1

d2

∑
j,l

[
2

n∑
i=1

wijb
′′
j

(
θ̂

(0)
ij

)(
θ̃il − µl

)2
]−1

.

If a0 is too big, the deviance of estimates in the first few iterations will jump around. If this
happens, scale a0 down until the deviance is consistently decreasing.

As stated in Landgraf and Lee (2015), there are practical differences to the solutions from
the original formulation and the convex relaxation. The Fantope solutions may not be low-
rank, even if k is small, and therefore are not as useful if data compression or visualization
are of interest. If the goal is approximation of the natural parameter matrix itself, the
Fantope solution may be more efficient to calculate due to convexity, and may give better
predictions. We give an example in Section 5.2 where the convex relaxation gives more
accurate predictions for a collaborative filtering problem.

An R (R Core Team, 2015) implementation of these algorithms can be found at github.
com/andland/generalizedPCA.

4 Simulation Studies

We present two data analyses of simulated count data in this section. First, we simulate
datasets with missing data and compare how well standard PCA and Poisson PCA fill in the
missing values on both training and test data. Second, we examine how the characteristics of
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the count data affect the quality of recommendations, and which distributional assumption
of generalized PCA has the most advantage in various scenarios. For both examples, we
simulate count datasets, controlling two specified characteristics: the level of sparsity – the
proportion of 0 counts – and the average of the non-zero counts.

4.1 Simulation Setup

In simulating count data, we assumed that there is a latent cluster variable Ci for each row
and that Ci ∼ Discrete Uniform(1, . . . , 5). Next we assumed that Xij|Ci = k ∼ Poisson(λjk),
where Λ = [λjk] is a d× 5 matrix of positive means. This latent structure implies that both
the mean matrix and the natural parameter (logarithm of mean) matrix, have a rank of 5.

Finally, the elements of Λ were simulated from a gamma distribution. When P (X|λ) is
the Poisson probability mass function and P (λ) is the gamma probability density function,
the marginal distribution of X is negative binomial. We chose the shape and scale parameters
of the gamma distribution in order to have counts with a specified proportion of zeroes and
mean of the non-zero counts.

If the gamma distribution has a shape parameter r and scale parameter φ = p/(1 − p),
then the negative binomial distribution has number of failures r and probability of success
p. Under these assumptions, let

γ1 := P (X = 0) = (1− p)r and

γ2 := E(X|X > 0) =
1

1− (1− p)r
pr

(1− p)
.

Using the relations, we can determine the values of probability p and shape parameter r that
match the specified level of sparsity and the expected non-zero counts. For given γ1 and γ2,
the shape parameter is the solution to

log(r)− 1

r
log(γ1)− log(γ2 − γ1γ2 + r) = 0

and p = 1− γ1/r
1 .

In our simulations, we varied γ1 = P (X = 0) from 0.25 to 0.9 and γ2 = E(X|X > 0) from
3 to 15. For each setting, we simulated a training dataset with 100 rows and 50 columns.
We also simulated a test dataset using the same Λ, but with 1000 rows. For each scenario,
we simulated ten training and test datasets and the results presented below are averaged
over the ten simulations.

When applying generalized PCA with distributions where it is necessary to provide m, we
used five-fold cross validation to select the optimal value with respect to predictive deviance.
In estimating the principal component loadings, we did not include main effects for any of
the simulations in order to mitigate any possible differences between methods due to the
inclusion of main effects.
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4.2 Matrix Completion

Low-rank models are commonly used for matrix completion problems with missing or incom-
plete data (Feuerverger et al., 2012). Using the simulated count data, we examine whether
and under what conditions it is possible to improve the estimates of missing values. To
emulate the situation with missing data, we randomly set 20% of the entries of both the
training and test matrices to be missing. We then applied both standard PCA and Poisson
PCA to the simulated data with k = 1, . . . , 10. We did not include multinomial PCA in this
matrix completion setting because filling in the missing entries would require knowing the
total number of counts for each row, which would give it an unfair advantage. Note that
typical implementations of PCA cannot estimate the loadings in the presence of missing
values, although there are some options available (e.g. Tipping and Bishop (1999)). We
used the algorithm introduced in Section 3.1.1, for both standard PCA and Poisson PCA to
handle missing data.

Filling in the missing values of the training matrix is a typical matrix completion problem.
Filling in the missing values on new test data requires additional computation with standard
matrix factorization techniques. Using the projection formulation we have developed, a fitted
value for xij that is missing is given by

x̂ij = g−1

(
µj +

[
ÛÛT (θ̃i − µ)

]
j

)
,

where θ̃ij is zero since xij is missing and µ = 0 since we did not include main effects. g−1(·)
is the identity function for standard PCA and exp(·) for Poisson PCA. For standard PCA,
we set any fitted values below zero to zero, since negative values as counts are infeasible.

We evaluated the mean squared error of the filled-in estimates compared to the actual
values held out. When there is no missing data, PCA is known to give an optimal low-rank
projection of the data with respect to mean squared error. When there is missing data, this
is not necessarily guaranteed. Poisson PCA involves the projection of a non-linear function
(logarithm) of the data, which might be advantageous in some scenarios.

Figure 4 shows the mean squared prediction error of PCA and Poisson PCA on the
test data. The results on the training data are very similar to those in the figure. Each
row represents a different degree of sparsity, ranging from 25% zeroes on the top row to 90%
zeroes on the bottom row. The columns represent the mean of the non-zero elements, ranging
from 3 to 15. Within each panel, we estimated missing counts using both standard PCA and
Poisson PCA with 1 to 10 components. Finally, the dashed horizontal lines represent the
predicted mean squared error when using the column means of the training data as estimates
for the missing values.

For either method, the minimum mean squared error occurs at around five components,
which is the true rank of the mean and natural parameter matrices. In addition, both
methods achieve mean squared errors well below the prediction error with only column
means. For the datasets with the least amount of sparsity (the top row), standard PCA fills
in the missing values more accurately. As the degree of sparsity increases, the advantage of
Poisson PCA emerges. One reason for this may be that, when the count is 0, standard PCA

20



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●
●

●

●
● ●

●
●

●
● ● ●

●

●
●

●

●

●
●

●
●

●

●

● ● ●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
● ●

P(X=0) = 0.25, E(X|X>0) = 3 P(X=0) = 0.25, E(X|X>0) = 9 P(X=0) = 0.25, E(X|X>0) = 15

P(X=0) = 0.5, E(X|X>0) = 3 P(X=0) = 0.5, E(X|X>0) = 9 P(X=0) = 0.5, E(X|X>0) = 15

P(X=0) = 0.9, E(X|X>0) = 3 P(X=0) = 0.9, E(X|X>0) = 9 P(X=0) = 0.9, E(X|X>0) = 15

4.0

4.5

5.0

5.5

40

60

80

100

100

150

200

250

300

350

3

4

5

40

50

60

70

80

150

200

250

300

1.00

1.25

1.50

16

20

24

40

50

60

70

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Number of Principal Components

M
ea

n 
S

qu
ar

ed
 E

rr
or

 o
n 

Te
st

 D
at

a
●

●

PCA

Poisson

Figure 4: Mean squared error of standard PCA and Poisson PCA on withheld simulated
count data in a matrix completion task. Each panel represents a different combination of
the proportion of zeroes and the mean of the counts greater than zero. The dashed horizontal
lines represent the mean squared errors when using column means as predictions.

penalizes fitted values below 0 as much as fitted values above 0. By contrast, for Poisson
PCA it is not possible to have negative fitted values because the projection in the log space is
properly transformed back to the feasible range for the mean parameter. Further, as outlined
in Section 2.4, the Poisson deviance gives higher weight to the errors for smaller counts than
larger counts and therefore attempts to fit small counts more tightly.

Computationally, this example first shows the capability of our MM algorithm to solve for
the loadings of generalized PCA in the presence of missing data. It also shows that matrix
completion can be done effectively on new observations. Finally, it shows that Poisson PCA
is more effective than standard PCA at filling in the missing values for highly sparse count
data, even in terms of mean squared error – the loss function PCA is optimized for.
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4.3 Recommending Items to Users

As mentioned in the introduction, low-rank models have proved effective in recommender
systems. In this context, a count matrix may represent the number of times that a user
(row) has interacted with an item (column). Oftentimes in recommendation problems, the
most important aspect of an interaction is whether a user interacted with an item, not how
many times. Based on a user’s interaction history, we would like to create a ranked list of
items that the user has not interacted with and recommend to them the highest on the list.

Since ranking depends on the fitted values only through their ordering, this recommenda-
tion task allows us to compare the analyses of counts and their binarized version. Binariza-
tion means setting all counts greater than 0 to 1, which is a common transformation when
dealing with user-item interaction data due to sparsity. From the generalized PCA toolbox,
standard, Poisson, and multinomial PCA are applicable to count data while standard and
logistic PCA are applicable to binary data. To measure the ranking consistency of various
methods with different distributional assumptions, we randomly set five positive counts from
each row in the test data to zero. Then we applied the projection matrices that were learned
from the training data to the test data and compared the rankings of the counts that were
set to zero to all the true zeros for that row. We measure the ranking accuracy using area
under the ROC curve (AUC).

Under the simulation scenarios presented before, we would like to address a few questions:

• When analyzing count data, when can we expect improvement from Poisson PCA or
multinomial PCA over standard PCA?

• When analyzing binarized data, when can we expect improvement from logistic PCA
over standard PCA?

• When is analyzing count data more preferable to analyzing binarized data?

The analysis of the recommendations for the test data using the count data is in Figure
5, organized in the same way as the mean squared error analysis. Both Poisson PCA and
multinomial PCA outperform standard PCA for most simulation scenarios. These methods
are least advantageous for the top-left panel, with the least sparsity and smallest mean.
Every simulation scenario has a maximum AUC at or near five principal components, the
true rank. For the less sparse case (top row), it is better to over-fit with too many principal
components than it is to under-fit with too few for each method. In the sparser case (bottom
row), the opposite is true for standard PCA and the difference is less dramatic with the other
two methods. In all of the scenarios, standard PCA is less effective than Poisson PCA or
multinomial PCA. This numerical comparison suggests that it is preferable to use either
Poisson PCA or multinomial PCA when analyzing count data for the purpose of ranking.

It is not surprising that Poisson PCA and multinomial PCA perform similarly. A
multinomial distribution with d categories can be derived from d independent Poisson ran-
dom variables, conditioning on the total count. Because of this, we expect the multino-
mial and Poisson formulations to perform similarly, especially when the row total counts
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Figure 5: AUC of ranking the zero counts, both true zeroes and positive counts which were
set to zero, by different variations of PCA on the simulated count data

(Ni :=
∑

j xij, i = 1, . . . , n) are nearly the same across the rows, as they are in this simula-
tion. When there is substantial difference between the row totals, more difference between
Poisson PCA and multinomial PCA will be observed. Say xij = xul = 0, but Ni � Nu. xij
and xul are treated equally by the Poisson deviance whereas the multinomial deviance gives
much higher weight to xij than xul. The example in Section 5.2 will illustrate this point.

The results of the AUC analysis with the binarized version of the data are different,
as shown in Figure 6. It shows that Logistic PCA and standard PCA on the binary data
give similar AUCs, regardless of the simulation scenario. This is somewhat unexpected
because it has been shown empirically that Collins et al. (2001)’s formulation is preferred
to SVD for some recommendation problems with binary data. For example, Johnson (2014)
showed that a weighted version of logistic SVD achieves the same ranking accuracy as a
matrix factorization with a Gaussian assumption using a much smaller rank. Our results are
possibly due to the simplicity of the simulation assumptions. For example, there is much
larger dispersion in the number of non-zeros in the rows of the actual data in Section 5.2
than in the simulated data.

Finally, comparisons of the ranking accuracy using the count or binarized data are in
Figure 7. We have only displayed Poisson and logistic PCA as they are representative of
the two types of data. As might be expected, logistic PCA performs better when there is a
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Figure 6: AUC of ranking the zero counts, both true zeroes and positive counts which were
set to zero, by logistic PCA and standard PCA on the simulated binarized data

higher degree of sparsity (bottom row). This may be because non-zero counts are rare, so
modeling the existence of a non-zero is more important than modeling the value of the count.
In contrast, when there is less sparsity, Poisson PCA can achieve a higher AUC. Finally, the
data with higher means for the non-zero counts favor logistic PCA over Poisson PCA. This
may be because predicting large counts to be non-zero is easier than predicting small counts
to be non-zero.

5 Million Song Dataset Analysis

To show the benefits of generalized PCA, we will analyze the Million Song Dataset (MSD)
(Bertin-Mahieux et al., 2011). MSD contains the listening history of 110 thousand users on
one million songs. For each user/song pair, the dataset lists the number of times that the
user has listened to the song. Since most users listen to only a small subset of the songs,
most of user/song pairs have a count of zero. These data can be organized into a sparse
“user-song frequency” matrix. Since the relationship between the songs in terms of the user’s
preference is of primary interest, the songs are taken as variables and the users are taken as
cases. Generalized PCA is performed on two small subsets of the users and songs to show
the benefits of the method for visualization and recommendation.
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Figure 7: AUC of ranking the zero counts, both true zeroes and positive counts which were
set to zero, by Poisson PCA on the count data and logistic PCA on the binarized data

5.1 Visualizing the Loadings

The first subset of the MSD that we analyzed is the listen history on the songs from the ten
most popular artists. We selected the 200 most popular songs by these artists and the 1200
most active listeners of those songs. There is quite a bit of dispersion in the count matrix
created from these users and songs. 93% of the entries in the matrix are 0, the mean of the
non-zero entries is 2.8, and the maximum count is 391.

For visualization of the songs in a low-dimensional latent space, we analyzed the count
matrix using standard PCA on the counts and Poisson PCA. Since Poisson PCA projects
the log of the counts, which are the natural parameters from the saturated model for the
Poisson distribution, we also compared Poisson PCA to standard PCA on the log of the
counts. The log of zero is undefined, so we numerically approximate it by −m with a large
positive m for both Poisson PCA and standard PCA on the log transformed data. For each
method, m was chosen by cross validation. For Poisson PCA, the optimal m was 8.0 and for
standard PCA, it was 1.2.

The loadings for the three PCAs are in Figure 8. If a user listens to one song from an
artist, it is likely that he or she will listen to other songs by the same artist. Therefore, we
expect that songs by the same artists would be close in the latent space. For standard PCA
on the count data, which is displayed on the top-left panel of Figure 8, the first component
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Figure 8: The first two principal component loadings of the million song dataset using
standard PCA on the count data, standard PCA on the log of the count data, and Poisson
PCA

is dominated by Florence + the Machine’s songs because the two largest observations in the
data were for songs by this artist. Songs by Justin Bieber dominate the second principal
component direction because two songs by the artist were among the top ten most popular
songs or variables.

In comparison to PCA on the count data, loadings from PCA on the log of the count
data are easier to interpret, as displayed on the top-right panel of Figure 8. This shows the
improvement due to the log transformation of the data. Songs by The Black Keys and Jack
Johnson are distinguished from the rest of the artists. These two artists have the most songs
in the data. However, songs by the other eight artists are clumped together.
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Figure 9: The first two principal component loadings of the million song dataset using
Poisson PCA without normalization (left plot) and with normalization (right plot). The
area of each point is proportional to the number of times the song was played

Finally, the bottom-left panel of Figure 8 has the loadings from Poisson PCA. This plot
shows the improvement from not only using the log transformation, but also optimizing the
projection with respect to Poisson deviance, which is more natural for count data than mean
squared error. Instead of only two groups of songs corresponding to artists, there are now
at least five distinguishable clusters of songs which correspond to artists. Further, for the
Black Keys, there are two clusters, one of which corresponds to songs from an album which
had just been released. Finally, we do not want to over-interpret the meaning of the loadings
due to the fact that only a small subset of users and artists were analyzed. However, it is
interesting that the songs by Justin Bieber seem to be isolated from the rest of the artists.

The loadings for Poisson PCA with normalization factors proposed in Section 2.5.3 are
displayed in Figure 9. The loadings of normalized PCA for the count or log counts are not
included because they were qualitatively very similar to the loadings from the log of the
counts. The left plot in Figure 9 shows the un-normalized Poisson PCA loadings and the
right plot shows the normalized Poisson PCA loadings. The area of each point is proportional
to the number of times the songs were played and the colors represent the same artists as in
Figure 8.

A notable difference between the sets of loadings is that songs by Florence + the Machine,
which had very high play counts, are furthest away from the origin in the un-normalized
version, but close to the origin in the normalized loadings. Also, the songs from the Black
Keys new album are more distinctly clustered in the normalized version. Finally, in the un-
normalized version, songs by artists cluster in ray shapes from the origin, while they cluster
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more tightly further away from the origin in the normalized version.
These differences can be explained by the normalization factors. The songs furthest from

the origin in the un-normalized version are the songs that were played the most times. For
the songs in this dataset, the Poisson null deviance was in general larger for songs with
higher means. Therefore, the songs with the smallest average play counts – especially those
less than 1 – were effectively given higher weights in the optimization when normalization is
added. This caused the ray shapes to turn into tighter clusters and the songs by Florence +
the Machine to have less influence.

5.2 Recommending New Songs to Users

In this second example, we started with the 500 most popular songs and then only included
the songs that were listened to by at least 20 users and the users that listened to at least 30
of the songs. This resulted in 1040 users and 281 songs.

We consider recommending users songs that they have not listened to before. To do
this, we randomly chose 80% of the users for training and 20% for testing. Similar to the
simulation in Section 4.3, for each user in the test set, we randomly set five of the positive
play counts to zero. We then applied the PC loadings and main effects learned from the
training data to the test data to get a low-dimensional representation of each user’s listens.
We used this low-dimensional representation to rank the songs with zero plays, and compared
how high the songs that were actually non-zero ranked using AUC. Finally we averaged the
AUC from each user’s prediction to get an overall AUC, which can range from 0 to 1, where
1 corresponds to perfect ranking and 0.5 corresponds to random guessing.

We have set up the experiment in a situation where typical matrix factorization methods
may be computationally costly to use. For our method, computing the low-dimensional
representation for new users only requires matrix multiplication, while it requires fitting a
generalized linear model for each user with the matrix factorization-based methods.

First, we compare standard PCA and Poisson PCA using the count data directly. We
also include multinomial PCA, where xij is the proportion of the plays of song j by the ith
user and wij is the total number of times the ith user listened to a song, for all j. For all of
the PCA methods, we vary the number of principal components from 2 to 50. For reference,
we measured the AUC of rank order of the songs using the overall popularity of each song
for every user, which ranks the songs based on the average play count of the songs. This
popularity ranking is the same as the ranking that all of PCA methods would give with zero
principal components. The results are in Figure 10.

Standard PCA with the play count data performs very poorly – even worse than the
popularity model with no personalization – regardless of the number of principal compo-
nents. Poisson PCA and multinomial PCA both do much better, peaking at around ten
principal components. In this example, multinomial PCA has consistently higher AUC than
Poisson PCA. The multinomial assumption may be more appropriate for the data because
a user has a finite amount of time to listen to songs and must pick between them. Also, as
discussed in Section 4.3, multinomial deviance implicitly gives higher weight to play counts
of 0 coming from highly active users than from the users who had low total play counts. A
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Figure 10: Comparison of different generalized PCA methods for recommending songs to
users with the play count data

●

●

●

●

●
● ●

●
●

●

●

●
●

● ●
●●

● ●

●
● ●

●
●

●
●

●

●

●

●

● ●

●

● ●
●

●
● ● ● ● ●

●
●

●

●
●

●

Popularity (no personalization)
0.750

0.775

0.800

0.825

0 10 20 30 40 50
Number of Principal Components

A
U

C

●

●

●

PCA

Logistic PCA

Convex Logistic PCA

Figure 11: Comparison of different generalized PCA methods for recommending songs to
users with the binarized play count data

similar weighting scheme explicitly used below on the binarized data is shown to improve
the recommendations.

Another popular option is to binarize the count data (Hu et al., 2008) because often the
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Figure 12: Comparison of different generalized PCA methods for recommending songs to
users with the binarized play count data with differential weights

most important information gained from the play count is whether or not the user listened
to a song, not how many times. The simulations in Section 4.3 also show that using the
binarized data is preferable when the data are very sparse, as it is here. In Figure 11, we
compare AUC using PCA on the binarized data to logistic PCA and the convex relaxation
of logistic PCA. We also have a popularity model for reference, which ranks the songs based
on the percentage of users that listened to them.

In this scenario, PCA clearly does better than the popularity model with no person-
alization. PCA on the binary data does about as well as multinomial PCA on the count
data. Further, both standard PCA and logistic PCA again peak at about ten principal
components, with logistic PCA giving a modest improvement over standard PCA.

The convex relaxation to logistic PCA has the highest overall AUC. In contrast to the
others, it peaks at k = 18. Even with k = 18, however, the rank of the optimal Fantope
matrix is 72. This highlights the difference between the convex relaxation and the original
formulation. k acts as a regularizer on the symmetric matrix H, but does not guarantee a
low-rank solution. When a low-rank solution is desired for interpretation, data compression,
or plotting, the convex relaxation may not be useful. On the other hand, the use of the
Fantope matrix may have computational and – as we see in this example – performance
advantages for prediction.

Finally, using the flexibility of generalized PCA, we incorporate data weights into PCA
with the binarized data and examine their effects on AUC. When there are many possible
songs to listen to, a user may not listen to a song either because he or she is not aware of the
song or because he or she is not interested. To deal with this, Pan et al. (2008) recommended
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weighing the observations as follows:

wij =

{
1 if xij = 1

α
∑

j xij if xij = 0
,

where α controls the weight of the zeros compared to the non-zeros.
This weighting scheme is intuitive. If two users have not listened to the same song, it

will give a higher weight to that song for the user that listened to many other songs. This is
because it is more likely that the user who has listened to many other songs will be aware of
the given song and, therefore, the zero count indicates that the user is not interested. The
user who has listened to fewer songs, however, may not be aware of the song and the zero
should be given a lower weight.

We chose α such that ∑
(i,j):xij=0

wij =
∑

(i,j):xij=1

wij,

based on the recommendation of Johnson (2014). This advice is based on the heuristic that
class balance in classification can improve performance.

The results of the weighted PCA methods are in Figure 12. The weighting scheme
improves the AUCs for all three methods, with standard PCA improving the most, even
achieving a higher AUC than weighted logistic PCA. The convex relaxation of logistic PCA
still has the highest AUC.

6 Conclusion

In this paper, we have introduced a generalization to PCA, focusing on binary and count
data, which preserves many of the desirable features of standard PCA in contrast to other
generalizations. Notably, principal component scores are a linear combination of the natural
parameters from the saturated model, which are transformations of the data, and computing
the scores or the low-rank estimate on new data does not require any extra optimization. The
formulation is further extended to include weights, missing data, and variable normalization,
which can improve the interpretability of the loadings and the quality of the recommendations
as we have shown in numerical examples.

There are many ways that the proposed formulation can be extended further. When
there are more variables than cases, regularization of the loadings may be helpful to improve
estimation of a low dimensional structure or its interpretability. Further, when there is a
response variable of interest and dimensionality reduction is considered for covariates as in
principal component regression, our formulation can be extended for supervised dimension-
ality reduction with covariates of various types.
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