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Abstract
Cross validation is widely used for selecting tuning parameters in regularization methods, but

it is computationally intensive in general. To lessen its computational burden, approximation
schemes such as generalized approximate cross validation (GACV) are often employed. However,
such approximations may not work well when non-smooth loss functions are involved. As a case in
point, approximate cross validation schemes for penalized quantile regression do not work well for
extreme quantiles. In this paper, we propose a new algorithm to compute the leave-one-out cross
validation scores exactly for quantile regression with ridge penalty through a case-weight adjusted
solution path. Resorting to the homotopy technique in optimization, we introduce a case weight for
each individual data point as a continuous embedding parameter and decrease the weight gradually
from one to zero to link the estimators based on the full data and those with a case deleted. This
allows us to design a solution path algorithm to compute all leave-one-out estimators very efficiently
from the full-data solution. We show that the case-weight adjusted solution path is piecewise linear
in the weight parameter, and using the solution path, we examine case influences comprehensively
and observe that different modes of case influences emerge, depending on the specified quantiles,
data dimensions and penalty parameter.
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1. Introduction

With the rapid growth of data dimensionality, regularization is widely used in model estima-

tion and prediction. In penalized regression methods such as LASSO and ridge regression,

the penalty parameter plays an essential role in determining the trade-off between bias and

variance of the corresponding regression estimator. Too large a penalty could lead to unde-

sirably large bias while too small a penalty would lead to instability in the estimator. The

penalty parameter can be chosen to minimize the prediction error associated with the estima-

tor. Cross validation (CV) (Stone, 1974) is the most commonly used technique for choosing

∗Department of Statistics, The Ohio State University



the penalty parameter based on data-driven estimates of the prediction error, especially

when there is not enough data available.

Typically, fold-wise CV is employed in practice. When the number of folds is the same

as the sample size, it is known as leave-one-out (LOO) CV. For small data sets, LOO CV

provides approximately unbiased estimates of the prediction error while the general k-fold

CV may produce substantial bias due to the difference in sample size for the fold-wise training

data and the original data (Kohavi, 1995). Moreover, for linear modeling procedures such

as smoothing splines, the fitted values from the full data can be explicitly related to the

predicted values for LOO CV (Craven and Wahba, 1979). Thus, the LOO CV scores are

readily available from the full data fit. The linearity of a modeling procedure that enables

exact LOO CV is strongly tied to squared error loss employed for the procedure and the

simplicity of the corresponding optimality condition for the solution.

However, loss functions for general modeling procedures may not yield such simple op-

timality conditions as squared error loss does, and result in more complex relation between

the fitted values and the observed responses. In general, the LOO predicted values may not

be related to the full data fit in closed form. Consequently, the computation needed for

LOO CV becomes generally intensive as LOO prediction has to be made for each of n cases

separately given each candidate penalty parameter.

In this paper we focus on LOO CV for penalized M-estimation with nonsmooth loss

functions, in particular, quantile regression with ridge penalty (QRRP). Quantile regression

(Koenker and Bassett, 1978) can provide a comprehensive description of the conditional dis-

tribution of the response variable given a set of covariates, and it has become an increasingly

popular tool to explore the data heterogeneity (Koenker, 2017). Extreme quantiles can also

be used for outlier detection (Chaouch and Goga, 2010). Penalized quantile regression is

specifically suited for analysis of high-dimensional heterogeneous data.

The check loss for quantile regression with a pre-specified quantile parameter τ ∈ (0, 1)
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is defined as

ρτ (r) = τr+ + (1− τ)(−r)+, where r+ = max(r, 0). (1)

Unlike squared error loss, the check loss is nondifferentiable at 0 as is shown in Figure 1.

Figure 1: The check loss for quantile regression with quantile parameter τ =
0.01, 0.25 and 0.5

To lessen the computational cost of the exact LOO CV in this setting, Nychka et al.

(1995) and Yuan (2006) proposed Approximate CV (ACV) and Generalized Approximate

CV (GACV). Using a smooth approximation of the check loss, they applied similar arguments

used in mean regression for the derivation of ordinary cross validation (OCV) (Allen, 1971)

and generalized cross validation (GCV) (Wahba et al., 1979) to quantile regression. The key

ingredients for the arguments are the leave-one-out lemma (see Section 3.2) and the first-order

Taylor expansion of the smoothed check loss. The linearization error from the first-order

Taylor expansion may not be ignorable for extreme quantiles due to the increasing skewness of

the distribution of the LOO residuals that is at odds with the increase in the slope of the check

loss with τ (see Section 4.1.1 for details). This phenomenon can be easily illustrated. Figure

2 compares the exact LOO CV and GACV scores as a function of the penalty parameter

λ for various quantiles in a simulation setting (see Section 4 for details). For instance, the
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approximate CV scores in the figure could produce penalty parameter values that are very

different from the exact LOO CV when τ = 0.01 and 0.1. The empirical studies in Li

et al. (2007) and Reiss and Huang (2012) also confirm the inaccuracy of the approximation

for extreme quantiles. This result motivates us to explore other computationally efficient

schemes for exact LOO CV.

Figure 2: Comparison of the exact LOO CV and GACV scores for penalized quantile
regression (τ = 0.01, 0.1, 0.3, and 0.5). The exact LOO CV score is defined as RCV (λ) =
1
n

∑n
i=1 ρτ

(
yi − f̂ [−i]

λ (xi)
)
, and GACV score from Li et al. (2007) is defined as GACV (λ) =

1
n−|Eλ|

∑n
i=1 ρτ (yi − f̂(xi)).

Instead of treating n LOO problems separately, we exploit the homotopy strategy to

relate them to the full-data problem. The n LOO problems can be viewed as perturbations

of the full-data problem. The key idea of homotopy is to start from a problem with known

solution and gradually adjust the problem with respect to a continuous homotopy parameter

until we reach the desired target problem and its solution. In our approach, we leverage the

full-data solution as a starting point for the LOO problems. In optimization, homotopy

techniques have been used in many algorithms including the interior point algorithm derived

from perturbed KKT conditions (Zhao et al., 2012) and parametric active set programming

(Allgower and Georg, 1993). In statistical learning community, the latter has been widely
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used in the form of path-following algorithms. For instance, Osborne (1992) and Osborne

et al. (2000) apply the homotopy technique to generate piecewise linear trajectories in quan-

tile regression and LASSO problems, respectively. Later Efron et al. (2004), Hastie et al.

(2004) and Rosset and Zhu (2007) exploit the homotopy path-following methods to gener-

ate an entire solution path for a family of regularization problems indexed by the penalty

parameter.

In this paper, we propose an exact path-following algorithm for LOO cross validation

in penalized quantile regression by introducing a case-weight ω for the held-out case as a

continuous homotopy parameter. We vary the case-weight ω from 1 to 0 to link the full-

data setting to the LOO setting. Let {(xi, yi)}ni=1 be the full data with covariates xi ∈ Rp

and response yi ∈ R. Given fixed quantile τ and penalty parameter λ, for each case i? ∈

{1, · · · , n}, consider the following case-weight adjusted quantile regression problem with

linear regression quantiles:

minimize
β0∈R,β∈Rp

∑
i 6=i?

ρτ (yi − β0 − x>i β) + ωρτ (yi? − β0 − x>i?β) +
λ

2
‖β‖22. (2)

The problem in (2) with ω = 1 involves the full data while ω = 0 leaves out the case i?.

By decreasing the case weight ω from 1 to 0, we successfully link the two separate but

intrinsically related problems. Notice that the full data solution needs to be computed only

once and can be used repeatedly as a starting point for n LOO problems. We provide an

efficient homotopy algorithm to generate the solution path indexed by ω, which results in

the LOO solution. Hence, with the LOO solutions, we can compute CV scores exactly,

circumventing the issues with approximate CV especially for extreme quantiles.

There have been many works on computation of the solution paths for penalized quantile

regression. In spirit of Hastie et al. (2004), Li and Zhu (2008) and Li et al. (2007) proposed

algorithms for solution paths in λ given quantile τ in l1-penalized quantile regression and
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kernel quantile regression, respectively. By varying quantile parameter τ , Takeuchi et al.

(2009) examined the solution path as a function of τ for fixed λ in kernel quantile regression.

Further, Rosset (2009) developed an algorithm for a generalized bi-level solution path as a

function of both λ and τ . These algorithms are driven by a set of optimality conditions that

imply piecewise linearity of the solution paths. Due to the linear structure in the additional

term with a case-weight ω in (2), it can be shown that the case-weight adjusted solution

path is also piecewise linear in ω. This piecewise linearity allows us to devise a new path-

following algorithm, which starts from the full-data solution and reaches the LOO solution

at the end. We derive the optimality conditions for the case-weight adjusted solution and

provide a formal proof that solutions from the algorithm satisfy the KKT conditions at every

ω ∈ [0, 1].

The proposed path-following algorithm with a varying case-weight ω does not only offer

the LOO solutions efficiently, but also provides case influence measures and a new way of

approximating the model degrees of freedom. We demonstrate numerically and analytically

that the computational cost of the proposed algorithm in evaluation of LOO CV scores could

be much lower than that of a simple competing method. This also allows an efficient eval-

uation of the influence of the case on the fitted model as a function of ω. Different from

case-deletion diagnostics (Cook, 1977; Belsley et al., 1980), Cook (1986) proposed analogous

case influence graphs to assess local influence of a statistical model. Using the case-weight ad-

justed solution path, we can generate case influence graphs efficiently for penalized quantile

regression and examine the influence of small perturbations of data on regression quantiles.

In contrast to mean regression, it is observed that cases with almost identical case deletion

statistics could have quite different case influence graphs in quantile regression. In addition,

we generalize the leave-one-out lemma by considering a data perturbation scheme that is

more general than case deletion and naturally associated with the case weight adjustment.

Using the generalized lemma, we propose a new approach to approximating model degrees
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of freedom based on the case-weight adjusted solutions. Numerically, we observe that data

dimension and penalty parameter value can influence the computational time of the algo-

rithm.

The paper is organized as follows. Section 2 proposes a path-following algorithm for

case-weight adjusted quantile regression with ridge penalty for cross validation. A formal

validation of the algorithm is provided on the basis of the optimality conditions. Section

3 presents another application of the case-weight adjusted solutions for measuring case in-

fluence on regression quantiles and approximating the model degrees of freedom. In Sec-

tion 4, some numerical studies are presented to illustrate the applications of the proposed

case-weight adjusted solution path algorithm and its favorable computational efficiency for

computing LOO CV scores. We conclude with some remarks in Section 5. Technical proofs

are provided in Appendix.

2. Case-weight Adjusted Solution Path in Quantile Regression with Ridge

Penalty

In this section, we present a path-following algorithm for solving the penalized quantile

regression problem in (2) with case weight ω. We illustrate in detail how to construct a

solution path from the full-data solution as the case weight decreases from 1 to 0. As

with many existing solution path algorithms, the key to our derivations is the optimality

conditions for (2). We analyze the Karush-Kuhn-Tucker (KKT) conditions for the problem

after reformulating it as a constrained optimization problem. We formally prove that the

path generated by the proposed algorithm solves the problem (2), and is piecewise linear in

ω.
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2.1 Optimality Conditions

In the path-following algorithm, we start from the full-data solution at ω = 1, and specify a

scheme to update the solution as ω decreases from 1 to 0. The updating scheme is designed

so that the path generated satisfies the KKT conditions for every ω in [0, 1]. As such, we first

derive the KKT conditions for the optimization problem (2). Toward this end, let (β0,ω, βω)

denote the solution of (2). By (1) and the fact that max(x, 0) = inft≥0,t≥x t, we introduce

auxiliary variables ξ = (ξ1, · · · , ξn) and ζ = (ζ1, · · · , ζn) with ξi ≥ max(yi−β0−x>i β, 0) and

ζi ≥ max(−(yi − β0 − x>i β), 0) for i = 1, . . . , n to reexpress the check loss as follows:

ρτ (yi − β0 − x>i β) = τ max(yi − β0 − x>i β, 0) + (1− τ) max(−(yi − β0 − x>i β), 0)

= inf
ξi,ζi≥0 and −ζi≤yi−β0−x>i β≤ξi

τξi + (1− τ)ζi .

Thus, we can rewrite the optimization problem (2) as

minimize
β0∈R,β∈Rp,ξ∈Rn,ζ∈Rn

τ
∑

i 6=i? ξi + (1− τ)
∑

i 6=i? ζi + ωτξi? + ω(1− τ)ζi? + λ
2
‖β‖22

subject to −ζi ≤ yi − β0 − x>i β ≤ ξi, and ζi, ξi ≥ 0 for i = 1, · · · , n .
(3)

Note that (3) is in the standard form of a constrained convex optimization problem:

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m ,
(4)

where f(·) and gi(·) are convex functions. It is well-known that the KKT conditions for (4)

are

∇f(x) +
∑m

i=1 λi∇gi(x) = 0 , and

λigi(x) = 0, for some real numbers λi ≥ 0, i = 1, . . . ,m .
(5)
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By letting x = (β0, β, ξ, ζ), gi(x) = −ζi, gn+i(x) = −ξi, gi+2n(x) = β0 + x>i β − yi − ζi, and

gi+3n(x) = yi − β0 − x>i β − ξi for i = 1, . . . , n, we can write, after some simplifications, the

KKT conditions for (3) as

X>θω = λβω , and θ>ω 1 = 0 (6)

θi,ω =


τ − 1 for i 6= i?

ω(τ − 1) for i = i?
if yi − β0,ω − x>i βω < 0 (7)

θi,ω ∈


[τ − 1, τ ] for i 6= i?

[ω(τ − 1), ωτ ] for i = i?
if yi − β0,ω − x>i βω = 0 (8)

θi,ω =


τ for i 6= i?

ωτ for i = i?
if yi − β0,ω − x>i βω > 0 (9)

where θω = (θ1,ω, . . . , θn,ω) ∈ Rn is the set of dual variables associated with the residual

bounds and X =


x>1
...

x>n

 is the n × p design matrix. A detailed derivation is included in

the Appendix A.1. The solution (β0,ω, βω) and θω can thus be determined by the equality

conditions in (6)–(9).

2.2 Outline of the Solution Path Algorithm

Let ri,ω = yi− β0,ω − x>i βω denote the residual for the ith case with (β0,ω, βω). According to

the sign of each residual, we can partition the n cases into three sets. Depending on which

side of 0 each residual falls on, the three sets are called the elbow set, Eω = {i : ri,ω = 0}, the

left set of the elbow, Lω = {i : ri,ω < 0} and the right set of the elbow, Rω = {i : ri,ω > 0}.

The three sets may evolve as ω decreases. We call ωm a breakpoint if the three sets change
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at ωm. The following rules specify how and when we should update the three sets at each

breakpoint:

(a) if θi,ω = τ [ω + (1− ω)I(i 6= i?)] for some i ∈ Eω, then move case i from Eω to the right

set of the elbow Rω.

(b) if θi,ω = (τ − 1)[ω + (1− ω)I(i 6= i?)] for some i ∈ Eω, then move case i from Eω to the

left set of the elbow Lω.

(c) if ri,ω = 0 for some i ∈ Lω ∪Rω, then move case i from Lω ∪Rω to the elbow set Eω.

Figure 3: Change in the three sets from (Lm−1, Em−1,Rm−1) to (Lm, Em,Rm) at ωm.

Given the three sets, we next analyze how the solution should evolve between two break-

points. Toward this end, we let {ωi, for i = 0, 1, . . . ,M | 0 ≤ ωM < · · · < ω1 < ω0 = 1}

be the set of breakpoints, and denote by Em, Lm and Rm the three sets between ωm+1 and

ωm for m = 1, . . . ,M (see Figure 3). Now, when ωm+1 < ω < ωm, the KKT conditions

determine how (β0,ω, βω) and θω should change as functions of ω and we can show that they

satisfy the following:

−
∑

i∈Em θi,ω =
∑

i/∈Em θi,ω

λβω −
∑

i∈Em θi,ωxi =
∑

i/∈Em θi,ωxi

β0,ω + x>i βω = yi for i ∈ Em

(10)

using (6) and (8), and the fact that θi,ω = {τ − I(i ∈ Lm)}{ω + (1− ω)I(i 6= i?)} for i /∈ Em

from (7) and (9).
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Next, we show that (β0,ω, βω, θω) satisfying (10) must be linear in ω. Before proceeding,

we introduce some notations. For any vector v = (v1, . . . , vn)> ∈ Rn and any index set

A = {i1, . . . , ik} ⊆ {1, 2, . . . , n}, define vA = (vi1 , . . . , vik) be a sub-vector of v. Similarly, for

any matrix M =


m>1

...

m>n

 ∈ Rn×L, let MA =


m>i1

...

m>ik

 be a submatrix of M , where m>i is the

ith row of M for i = 1, . . . , n. Let 1 be the vector of ones and 0 be the matrix of zeros of

appropriate size. Now we can rewrite (10) into a matrix form:


0 0>p −1>Em

0 λIp×p −X>Em
1Em XEm 0Em




β0,ω

βω

θEm,ω

 =


1>LmθLm + 1>RmθRm

X>LmθLm +X>RmθRm

yEm


which is a system of linear equations of dimension 1 + p + |Em|. Note that the left hand

side of the above linear equation does not depend on ω, while the right hand side is a linear

function of ω. This implies that its solution must be a linear function of ω. The following

lemma summarizes the properties of the solution path described thus far.

Lemma 1. The solution path (β0,ω, βω) satisfying the KKT conditions (6)–(9) is piecewise

linear in ω.

Using Lemma 1, we propose a solution path algorithm that updates the three sets follow-

ing the aforementioned rules at each breakpoint and linearly updates the solutions between

two consecutive breakpoints. First we provide an outline of our algorithm:

• Start with the full-data solution at ω = 1.

• While ω > 0,

(i) Decrease ω and update (β0,ω, βω) and θω until one of the inequalities in the KKT

conditions is violated.
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(ii) When the violation happens, update the three sets according to the rules (a)–(c).

Then go back to Step (i).

2.3 Determining Breakpoints

For implementation of Step (i), we need to derive a formula for the next breakpoint ωm+1

among ω ≤ ωm. From the KKT conditions (6)–(9), we can see that as ω decreases, the

conditions (7)–(9) will be violated when θi,ω = τ [ω+(1−ω)I(i 6= i?)] or (τ−1)[ω+(1−ω)I(i 6=

i?)] for some i ∈ Em, or ri,ω = 0 for some i ∈ Lm ∪ Rm. Thus, to find the next breakpoint

ωm+1, we need to derive how θEm,ω and rω = (r1,ω, . . . , rn,ω) change as functions of ω. This

is established in the following proposition, for which we need to impose an assumption that

any min(p + 2, n) points of {(x̃i, yi)}ni=1 are linearly independent, where x̃i = (1, x>i )>. We

call this condition the general position condition. A similar condition is also imposed in Li

et al. (2007).

Proposition 1. Suppose that the data points {(x̃i, yi)}ni=1 satisfy the general position condi-

tion. Then the solution path for (2) satisfies the following properties:

I. When i? ∈ Rm ∪ Lm, we have that

θEm,ω − θEm,ωm = bm(ω − ωm) , (11)

where

bm = −(X̃EmX̃
>
Em)−1

[
b0,m1Em + X̃Emx̃i?(τ − I(i? ∈ Lm))

]
(12)

with b0,m =
1− 1>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?

1>Em(X̃EmX̃
>
Em)−11Em

(τ − I(i? ∈ Lm)) , (13)

and

λ(rω − rωm) = hm(ω − ωm) , (14)
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where

hm = −b0,m1− X̃
[
X̃>Embm + {τ − I(i? ∈ Lm)}x̃i?

]
. (15)

II. Moreover, i? ∈ Em can only happen when m = 0, and if that happens, both rω and θω are

constant vectors for ω ∈ [ω1, 1], and i? will move from E0 to L1 ∪ R1 at the next breakpoint

ω1 =
θi?,ω0

τ−I(θi?,ω0<0)
, and stay in Lm ∪Rm for all m = 1, . . . ,M .

The proof of Proposition 1 is provided in the Appendix. Using Proposition 1, we can

easily determine the next breakpoint if i? ∈ Lm ∪ Rm. Specifically, the next breakpoint is

determined by the largest ω < ωm such that θi,ω = τ or τ − 1 for some i ∈ Em, or ri,ω = 0

for some i ∈ Lm ∪Rm. Hence, the next breakpoint is

ωm+1 = max(ω1,m+1, ω2,m+1) , (16)

where ω1,m+1 is the largest ω < ωm, at which θi,ω, for some i ∈ Em, hits either of the

boundaries τ or τ − 1, and ω2,m+1 is the largest ω < ωm, at which ri,ω hits 0 for some

i ∈ Lm∪Rm. Moreover, we know that θEm,ω and rω evolve as linear functions of ω according

to (11) and (14), from which we obtain the following for ω1,m+1 and ω2,m+1:

ω1,m+1 = max
θ∈{τ,τ−1}

 max
i∈Em and −ωm≤

θ−θi,ωm
bi,m

<0

θ − θi,ωm
bi,m

+ ωm

 (17a)

ω2,m+1 = max
i∈Lm∪Rm and 0<

λri,ωm
hi,m

≤ωm
− λri,ωm

hi,m
+ ωm , (17b)

where bi,m and hi,m are the ith component of slopes bm and hm defined in (12) and (15),

respectively. From these two formulas, we can see that the next breakpoint can be determined

without evaluating the solutions between two breakpoints.
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2.4 A Path-Following Algorithm

We summarize the detailed description of our proposed solution-path algorithm in Algorithm

1.

Algorithm 1: The ω Path Algorithm for Case-weight Adjusted Quantile Regression

1 Input: X ∈ Rn×p, y ∈ Rn, τ ∈ (0, 1), λ ∈ R+, i? ∈ {1, · · · , n}, β̂0,ω0 , β̂ω0

2 Set L0 = {i : yi − β̂0,ω0 − x>i β̂ω0 < 0}, E0 = {i : yi − β̂0,ω0 − x>i β̂ω0 = 0},
R0 = {i : yi − β̂0,ω0 − x>i β̂ω0 > 0}.

3 Compute θ̂ω0 by setting θ̂L0,ω0 = (τ − 1)1, θ̂R0,ω0 = τ1, and

θ̂E0,ω0 = (X̃E0X̃
>
E0)
−1[λyE0 − λβ̂0,ω01E0 − X̃E0

(
X̃>L0 θ̂L0,ω0 + X̃>R0

θ̂R0,ω0

)]
(see (33));

4 Set m = 0;
5 if i? ∈ E0 then

6 ω1 =
θ̂i?,ω0

τ−I(θ̂i?,ω0<0)
;

7 Set (β̂ω, β̂0,ω, θ̂ω) = (β̂ω0 , β̂0,ω0 , θ̂ω0) for any ω ∈ [ω1, 1];
8 if ω1 > 0 then
9 Update the three sets: (L1, E1,R1) = (L0, E0 \ {i?},R0 ∪ {i?}) if θ̂i?,ω0 > 0,

10 otherwise (L1, E1,R1) = (L0 ∪ {i?}, E0 \ {i?},R0);
11 end
12 m = m+ 1;
13 end
14 while ωm > 0 do
15 Compute the slopes (b0,m, bm, hm) according to (13), (12) and (15), respectively;
16 Compute the next breakpoint ωm+1 and its two candidates ω1,m+1 and ω2,m+1

according to (16), (17a) and (17b);
17 For each ω ∈ [max(ωm+1, 0), ωm),

set (θ̂Lm\{i?},ω, θ̂Rm\{i?},ω, θ̂i?,ω) =
(
(τ − 1)1Lm\{i?}, τ1Rm\{i?}, ω(τ − I(i? ∈ Lm))

)
,

(λβ̂0,ω, θ̂Em,ω) = (λβ̂0,ωm , θ̂Em,ωm) + (b0,m, bm)(ω − ωm) and

(λβ̂ω, λr̂ω) = (λβ̂ωm , λr̂ωm) + (X>Embm + (τ − I(i? ∈ Lm))xi? , hm)(ω − ωm);
18 Update the three sets:
19 if ωm+1 = ω1,m+1 then
20 Let i be the index that maximizes the objective function in (17a).

Set (Lm+1, Em+1,Rm+1) = (Lm, Em \ {i},Rm ∪ {i}) if θ̂i,ωm+1 = τ , Rule (a)
21 otherwise (Lm+1, Em+1,Rm+1) = (Lm ∪ {i}, Em \ {i},Rm); Rule (b)
22 else
23 Let i be the index that maximizes the objective function in (17b).

Set (Lm+1, Em+1,Rm+1) = (Lm \ {i}, Em ∪ {i},Rm) if i ∈ Lm,
24 otherwise (Lm+1, Em+1,Rm+1) = (Lm, Em ∪ {i},Rm \ {i}); Rule (c)
25 end
26 m = m+ 1;
27 end

The following theorem states that the path generated by Algorithm 1 is indeed a solution

14



path to the optimization problem (2), provided that the data points satisfy the general

position condition.

Theorem 1. Assume that the set of data points {(x̃i, yi)}ni=1 satisfies the general position

condition. The case-weight adjusted path generated by Algorithm 1 solves the optimization

problem (2) indexed by ω ∈ [0, 1].

3. Case Influence and Degrees of Freedom in Case-weight Adjusted Regression

In addition to model validation through LOO CV, the case-weight adjusted solution path

for quantile regression can be used for assessing case influences on regression quantiles. In

this section, we further explore the use of the case-weight adjusted solutions for measuring

case influence and model complexity.

3.1 The Assessment of Case Influence

In statistical modeling, assessing case influence and identifying influential cases is crucial for

model diagnostics. Assessment of case influence on a statistical model has been extensively

studied in robust statistics literature. Seminal works on case influence assessment include

Cook (1977), Cook (1979) and Cook and Weisberg (1982). As a primary example, Cook

proposed the following measure, known as Cook’s distance for case i?:

Di? =

∑n
i=1(f̂(xi)− f̂ [−i?](xi))

2

pσ̂2
,

where σ̂2 is an estimate of error variance. Cook’s distance measures an aggregated effect of

one single case on n fitted values after that case is deleted. In other words, it compares two

sets of fitted values when case i? has weight ω = 1 and ω = 0. In contrast to the standard

Cook’s distance, Cook (1986) also introduced the notion of a case-influence graph to get a

broad view of case influence as a function of case weight ω. As a general version of Di? , a
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case-weight adjusted Cook’s distance is defined as

Di?(ω) =

∑n
i=1(f̂(xi)− f̂ i

?

ω (xi))
2

pσ̂2
(18)

for each ω ∈ [0, 1], where f̂ i
?

ω is the fitted model when case i? has weight ω and the remaining

cases have weight 1. When ω = 0, f̂ ∗0 coincides with f̂ [−i?] and thus Di?(0) = Di? . With this

generalized distance, we could examine more complex modes of case influence that may not

be easily detected by Cook’s distance Di? . Figure 4 provides an example of case-influence

graphs where two cases A and B have the same Cook’s distance but obviously different

influence on the model fit depending on ω. Two cases A and B can be treated the same

if merely assessed by Di? , but since DA(ω) ≥ DB(ω) at each ω ∈ [0, 1], case A should be

treated as more influential than case B.

Figure 4: An illustrative example of case-influence graphs in least squares regression based
on Figure 1 in Cook (1986).

Case influence graphs provide comprehensive information on local influence of cases in

general, and they can be used to assess the differences in robustness of modeling procedures.

But generation of such graphs is computationally more expensive than Cook’s distance. To

circumvent the computational issue, Cook (1986) suggested to focus on the local influence
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around ω = 1 through the curvature of the graph. As evident in (18), once f̂ i
?

ω is obtained,

the generalized Cook’s distance Di?(ω) is readily available. Thus, using path-following algo-

rithms that generate case-weight adjusted solutions, we can easily construct case influence

graphs without additional computational cost.

Leveraging our solution path algorithm for quantile regression with adjusted case weight,

we specifically study the characteristics of case-influence graphs for various quantiles. In

addition, we include case influence graphs of ridge regression for comparison of mean regres-

sion and quantile regression as a robust counterpart in terms of case influences. For ridge

regression with penalty parameter λ and case weight ω for case i? ∈ {1, · · · , n}, we solve the

following problem:

minimize
β0∈R,β∈Rp

∑
i 6=i?

(yi − β0 − x>i β)2 + ω(yi? − β0 − x>i?β)2 + λ‖β‖22. (19)

With squared error loss, the case-weight adjusted fit f̂ i
?

ω can be computed in closed form

and, thus, obtaining Di?(ω) is straightforward for ridge regression. For quantile regression

with the check loss, however, f̂ i
?

ω cannot be obtained as easily, but our proposed solution

path algorithm readily offers the path for Di?(ω) as ω decreases from 1 to 0.

We present the case-weight adjusted Cook’s distance Di?(ω) for ridge regression in the

following proposition. Let H(λ) = X̃(X̃>X̃ + λĨ)−1X̃> denote the hat matrix for ridge

regression with full data, where Ĩ =

0

I

. hij(λ) denotes the ijth entry of H(λ) and

hii(λ) is the leverage of case i in ridge regression.

Proposition 2. For ridge regression with penalty parameter λ,

Di?(ω) =
r2i?
∑n

j=1 h
2
ji?(λ)

pσ̂2{1/(1− ω)− hi?i?(λ)}2
, (20)
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where ri? is the residual for case i? from the full data fit.

The proposition above shows that Di?(ω) for ridge regression is smooth and convex in ω.

The convexity comes from the fact that the second derivative of gh(ω) = {1/(1− ω)− h}−2

for a positive constant h is {2 + 4h(1−ω)}{1− h(1−ω)}−4, which is positive for ω ∈ (0, 1).

Furthermore, gh(ω) with h ∈ [0, 1] decreases monotonically in ω ∈ (0, 1) since 1/(1 − ω)

increases in ω and 1/(1−ω)−h > 0. This implies that as case weight ω decreases from 1 to

0, Di?(ω) increases monotonically since hi?i? ∈ [0, 1]. When both ω = 0 and λ = 0, Di?(ω)

reduces to standard Cook’s distance (r2i?hi?i?)/{pσ̂2(1 − hi?i?)2}, where hi?i? is the leverage

of case i? in ordinary linear regression. This can be seen from the fact that
∑n

j=1 h
2
i?j(λ) is

the i?th diagonal entry of H2(λ) and H(0) is idempotent.

For penalized quantile regression, the piecewise linear solution path that we have con-

structed suggests that the discrepancy between the full-data fit and the case-weight adjusted

fit at any ω, f̂(xi)− f̂ i
?

ω (xi), is also piecewise linear, and thus Di?(ω) is piecewise quadratic in

ω. Hence, Di?(ω) can be easily obtained by aggregating the piecewise squared difference in

the fit from 1 to ω. Equivalently, using (15), the squared difference in the residual, (ri−ri,ω)2,

can be aggregated to produce Di?(ω). An explicit expression of Di?(ω) is provided in the

proposition below.

Proposition 3. For penalized quantile regression in (2) with penalty parameter λ, if ω ∈

(ωm+1, ωm],

Di?(ω) =
1

pσ̂2

n∑
i=1

(f̂(xi)− f̂ i
?

ω (xi))
2 =

1

pσ̂2

n∑
i=1

(ri,ω − ri,ω0)
2

=
1

pσ̂2
‖rω − rωm +

m∑
k=1

(rωk − rωk−1
)‖22

=
1

pσ̂2
‖(ω − ωm)hm +

m∑
k=1

(ωk − ωk−1)hk−1‖22 , (21)

where hk is the vector of the slopes of the case-weight adjusted residuals r over (ωk+1, ωk].
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Numerical examples of case-influence graphs for ridge regression and quantile regression

are presented in Section 4.

3.2 Effective Model Degrees of Freedom

In this section, we examine another application of a case-weight adjusted solution in approx-

imating the model degrees of freedom of a general modeling procedure f̂ . Ye (1998) defined

the effective model degrees of freedom of f̂ in regression as

df(f̂) =
n∑
i=1

∂f̂(xi)

∂yi
, (22)

where the fitted model f̂ is based on data from a general regression model yi = f(xi) + εi.

The definition above indicates the overall sensitivity of the fitted values to the perturbation

of the responses as a measure of model complexity, which is generally expected to be larger

for more complex modeling procedures.

According to (22), the model degrees of freedom can be evaluated exactly only when

the fitted values are expressed analytically as a function of data. In general, ∂f̂(xi)
∂yi

needs

to be approximated. For complex modeling procedures such as regression trees, Ye (1998)

suggested to approximate the effective model degrees of freedom by repeatedly generating

perturbed data, fitting a model to the data and estimating the rate of change in the fitted

values. As an alternative, using case-weight adjusted solutions, we propose a simple scheme

for data perturbation which allows for approximation of the model degrees of freedom without

generating any new data. The idea is inspired by the leave-one-out lemma in Craven and

Wahba (1979), which describes the identity of the leave-one-out solution and the solution to

perturbed data where the response of one case is replaced with its predicted value from the

leave-one-out solution for smoothing splines. As a result, the lemma suggests the following
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approximation:

∂f̂(xi)

∂yi
≈ f̂(xi)− f̂ [−i](xi)

yi − f̂ [−i](xi)
. (23)

This approximation becomes exact, in fact, for linear modeling procedures such as ridge

regression and smoothing splines. Here we extend the leave-one-out lemma by considering

a more general data perturbation scheme that changes only a fraction of a response and

keeps the remaining fraction of it as it is. We call the extension under this fractional data

perturbation scheme the leave-part-out lemma.

To state the extended lemma that holds true for penalized M -estimators in general, let

`(·) be a general nonnegative loss function defined on the residual space to measure the

lack of model fit and J(f) be a penalty functional defined on the model space to measure

the complexity of model f . Let f̂ be the minimizer of the penalized empirical risk Q(f) =∑n
i=1 `(yi−f(xi))+λJ(f). Analogously, let f̂ iω be the minimizer of

∑
j 6=i `(yj−f(xj))+ω`(yi−

f(xi)) + λJ(f) when case i has weight ω. For the aforementioned fractional perturbation

scheme, it is natural to introduce a new response variable ỹi(ω) with case weight ω ∈ [0, 1],

which takes yi with probability ω and f̂ iω(xi) with probability 1−ω. When we perturb data

by replacing yi with ỹi(ω) and keeping the rest of responses, the penalized empirical risk

changes to

Qω(f) =
∑
j 6=i

`(yj − f(xj)) + ω`(yi − f(xi)) + (1− ω)`(f̂ iω − f(xi)) + λJ(f).

Using similar arguments as in the leave-one-out leamma, we can show that the minimizer of

Qω(f) is the case-weight adjusted solution f̂ iω.

Lemma 2. (Leave-Part-Out Lemma) For each ω ∈ [0, 1], f̂ iω minimizes

Qω(f) =
∑
j 6=i

`(yj − f(xj)) + ω`(yi − f(xi)) + (1− ω)`(f̂ iω − f(xi)) + λJ(f).
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This lemma reduces to the leave-one-out lemma in Wahba et al. (1979) when ω = 0 as

the perturbed response ỹi(ω) is f̂ [−i](xi) with probability 1 and the leave-one-out solution

f̂ [−i] minimizes Q0(f) in this case. At the other extreme when ω = 1, ỹi(ω) = yi and thus the

full data solution f̂ minimizes Q1(f). On the whole, the above lemma offers a trajectory of

the fitted value f̂ iω(xi) as the case weight ω varies with the corresponding change in response

ỹi(ω).

Using the map from ỹi(ω) to f̂ iω for ω ∈ [0, 1] that the lemma implies, we can approximate

∂f̂(xi)
∂yi

. In particular, the change in response from ỹi(ω) to ỹi(1) = yi results in the change in

the fitted value at xi from f̂ iω(xi) to f̂(xi). Given the probabilistic nature of the perturbed

response ỹi(ω), it is sensible to look at the average change in response, which is given by

yi−{ωyi + (1−ω)f̂ iω(xi)} = (1−ω)(yi− f̂ iω(xi)). This leads to the following approximation

of the rate of change depending on ω ∈ [0, 1):

∂f̂(xi)

∂yi
≈ f̂(xi)− f̂ iω(xi)

yi − {ωyi + (1− ω)f̂ iω(xi)}
=

f̂(xi)− f̂ iω(xi)

(1− ω)(yi − f̂ iω(xi))
, (24)

which sums to the approximate model degrees of freedom of f̂ :

df(f̂) =
n∑
i=1

∂f̂(xi)

∂yi
≈

n∑
i=1

f̂(xi)− f̂ iω(xi)

(1− ω)(yi − f̂ iω(xi))
=: dfω(f̂). (25)

Clearly, when ω = 0, dfω(f̂) reduces to the known approximation of model degrees of freedom

based on the leave-one-out lemma while (25) with case weight ω ∈ [0, 1) as an extension

provides much greater flexibility in approximating the sensitivity of fitted values to responses.

For those modeling procedures that have fitted values smoothly varying with responses,

dfω(f̂) with ω close to 1 (a fractional change in a case) is expected to produce more precise

approximation of the degrees of freedom than ω = 0 (case deletion). At the same time,

when the approximation based on the leave-one-out solution in (23) becomes exact as with
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linear modeling procedures, the proposed approximate model degrees of freedom dfω(f̂) using

case-weight adjusted solutions is consistent with df(f̂) for every value of ω. The following

proposition states this property for ridge regression as an example, giving additional credence

to our proposed approximate degrees of freedom dfω(f̂).

Proposition 4. For ridge regression defined in (19),

dfω(f̂) =
1

1− ω

n∑
i=1

(1− ω)hi,i(λ) = df(f̂), for every ω ∈ [0, 1). (26)

4. Numerical Studies

In this section, we present various numerical studies to illustrate the applications of our pro-

posed case-weight adjusted solution path algorithm, including LOO CV and case-influence

graphs. We also analyze the computational complexity of the proposed path-following al-

gorithm, and demonstrate its efficiency in computation of LOO CV scores numerically.

Throughout the numerical studies, the standard linear model yi = β0 + x>i β + εi was

used. We independently generated covariates {xij : i = 1, · · · , n, j = 1, · · · , p}, coeffi-

cients
(
β0, β1, · · · , βp

)
and random errors {εi : i = 1, · · · , n} from the standard normal

distribution.

4.1 Leave-One-Out CV

We first investigate the inaccuracy of GACV in approximating LOO CV scores as demon-

strated in the introduction for extreme quantiles. This necessitates exact LOO CV. Then

we numerically show that resorting to the homotopy strategy and applying our proposed ω

path algorithm to obtain all the LOO solutions directly from the full-data solution could

be more scalable and efficient than a straightforward procedure of solving n LOO problems

separately.
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4.1.1 Comparison between GACV and exact LOO CV

The exact LOO CV score in quantile regression is defined asRCV (λ) = 1
n

∑n
i=1 ρτ

(
yi − f̂ [−i]

λ (xi)
)

and GACV score from Li et al. (2007) is defined as GACV (λ) = 1
n−|Eλ|

∑n
i=1 ρτ (yi − f̂(xi)).

We set n = 50, p = 30, and Nλ = 100 to compare the exact LOO CV and GACV scores

at various quantiles, τ = 0.5, 0.3, 0.1, and 0.01. Figure 2 reveals that as the pre-specified

quantile τ gets extreme, the quality of GACV deteriorates. Similar observations have been

made in the empirical studies of Li et al. (2007) and Reiss and Huang (2012).

GACV is based on the smoothed check loss, ρτ,δ, with a small threshold δ, which is given

by ρτ,δ(r) =
(
τI(r > 0)+(1− τ)I(r < 0)

)
r2/δ. This approximate loss differs from ρτ only in

the region of (−δ, δ). In the derivation of GACV, the following first-order Taylor expansion of

the smoothed loss is used: ρτ (yi−f̂ [−i](xi))−ρτ (yi−f̂(xi)) ≈ ρ′τ,δ(yi−f̂(xi))(f̂(xi)−f̂ [−i](xi)),

which may be attributed to the issue with GACV. Letting r
[−i]
i = yi − f̂ [−i](xi), the LOO

prediction error, and ri = yi − f̂(xi), the residual from the full data fit, we define the

approximation error of GACV from the exact LOO CV as

∆approx. := ρ′τ,δ(ri)(r
[−i]
i − ri)−

[
ρτ (r

[−i]
i )− ρτ (ri)

]
. (27)

Apparently the approximation error only comes from points with different signs of r
[−i]
i and

ri. We categorize all the possible scenarios for the approximation error in Table 1 except the

case when r
[−i]
i = 0. In the case of r

[−i]
i = 0, the approximation error is negligible.

When the residual ri and the LOO residual r
[−i]
i have different signs (+, 0,−), we call the

case flipped as in scenarios (b) and (d) in Table 1. Potential issues with GACV for extreme

quantiles are summarized as follows:

(i) The cases in the elbow set have zero residuals. Thus, those cases are almost always

flipped. In fact, in our experiment, we found that all the flipped cases belong to the

elbow set. The derivative of the smoothed check loss at ri = 0 for the approximation
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Table 1: Approximation Error of ρτ (r
[−i]
i )− ρτ (ri)

Scenario True Difference Approximation Approximation Error

r
[−i]
i ri ρτ (r

[−i]
i )− ρτ (ri) ρ′τ,δ(ri)(r

[−i]
i − ri) ∆approx.

(a) (0,∞) (−∞,−δ]
(τ)r

[−i]
i − (τ − 1)ri

(τ − 1)(r
[−i]
i − ri) −|r[−i]i |

(b) (0,∞) (−δ, 0] 2(1− τ) ri
δ

(r
[−i]
i − ri) ≈ −τ |r[−i]i |

(c) (−∞, 0) [δ,∞)
(τ − 1)r

[−i]
i − (τ)ri

τ(r
[−i]
i − ri) −|r[−i]i |

(d) (−∞, 0) [0, δ) 2τ ri
δ

(r
[−i]
i − ri) ≈ −(1− τ)|r[−i]i |

is zero while the corresponding derivative for the true difference is either τ or τ − 1.

This leads to the approximation error listed in scenarios (b) and (d).

(ii) For scenarios (b) and (d), the approximation error ∆approx. depends on both τ and

r
[−i]
i . Given r

[−i]
i , extreme values of τ (e.g., τ = 0.01 in Figure 2) lead to a larger

approximation error in scenario (d), in particular. To see the effect of τ on the discrep-

ancy between the true difference and its approximation, we examine the distribution

of the LOO residuals r
[−i]
i for flipped cases. Figure 5 displays the distribution of r

[−i]
i

for flipped cases for various quantiles when log(λ) = −6 from Figure 2. As τ becomes

more extreme, the distribution tends to be more left-skewed, and scenario (d) occurs

more often than scenario (b). This results in larger discrepancy between LOO CV and

GACV for extreme quantiles as illustrated in Figure 2.

4.1.2 Computation for Exact Leave-One-Out CV

We compare two approaches to computing exact LOO CV scores over a set of Nλ prespecified

grid points for the tuning parameter λ. The first one is based on the proposed ω-path

algorithm in Algorithm 1. The other one applies the “λ-path” algorithm proposed in Li

et al. (2007) to the n LOO data sets separately. We make comparisons of the two approaches
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Figure 5: The distributions of LOO residual r
[−i]
i for flipped cases for various quantiles

(τ = 0.5, 0.3, 0.1, and 0.01).

in terms of theoretical computational complexity as well as practical runtime on simulated

data sets.

We first analyze the computational comlexity of applying the “λ-path” algorithm pro-

posed in Li et al. (2007) n times. Note that the λ-path algorithm of Li et al. (2007) generates

the solution path as λ decreases from∞ to 0. The computation of the exact LOO CV scores

involves two components: (i) applying this algorithm to each of the n LOO data sets; and

(ii) linearly interpolating the solutions between consecutive grid points. According to Li

et al. (2007), the average cost of computing one λ path is O(n2p) and the cost for the linear

interpolation is O(Nλp). Hence, the total cost of computing the exact LOO CV scores in

this case is O(np(n2 +Nλ)).

For the proposed ω-path aglorithm, it generates each LOO solution directly from the

full-data solution. The computation consists of generating n case-weight adjusted ω-paths,

whose cost depends on the number of breakpoints for case-weight parameter ω. To simplify

the analysis, we work with the average number of ω-breakpoints, denoted by Nω. Our

empirical studies show that Nω is usually small compared to problem dimension (see Table

2). In fact, for extreme values of λ, we can prove that Nω = 1. Therefore, we assume that
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Nω = O(1) in our analysis. By inspecting Algorithm 1, the average computational cost at

each ω-breakpoint is dominated by Line 15, which computes b0,m, bm, and hm—the slopes of

β0,ω, θE,ω, and rω. First, the computation of b0,m and bm in (12) and (13) involves inverting

a |Em| × |Em| matrix X̃EmX̃
>
Em , which typically costs O(|Em|3). This can be reduced further

to O(|Em|2) by employing a rank-one updating algorithm (Hager, 1989). Moreover, the cost

for computing hm in (15) is O(np). Therefore, the average cost of generating one ω-path at

a grid point for λ is O(Nω(np+ |Em|2)) = O(np), because |Em| ≤ min(n, p+ 1) according to

Lemma 3 in Appendix and the assumption that Nω = O(1). Consequently, the average cost

of computing exact LOO CV scores over Nλ grid points using the proposed ω-path algorithm

is O(Nλn
2p), which is in contrast to the cost of the λ-path algorithm, O(np(n2 +Nλ)). Note

that the savings could be large when Nλ � n, which is corroborated by an empirical runtime

comparison.

Table 2: Average number of ω-breakpoints for various data dimensions and quantiles. The
results are averaged over 20 independent simulations with Nλ = 50. The 50 grid points for
λ ∈ [0.01, 100] are equally spaced on the logarithmic scale. The values in the parentheses
are the corresponding standard errors.

τ n p Average number of ω breakpoints n p Average number of ω breakpoints

0.1
100 50 4.409 (0.556) 50 300 0.714 (0.109)
300 50 4.417 (0.768) 150 300 1.044 (0.192)

0.3
100 50 7.177 (0.686) 50 300 0.714 (0.109)
300 50 7.724 (1.074) 150 300 1.360 (0.202)

0.5
100 50 7.427 (0.695) 50 300 1.098 (0.119)
300 50 8.780 (1.119) 150 300 1.635 (0.238)

We present numerical examples comparing the actual runtime performance of the two

algorithms. Both algorithms are implemented in C++ with Armadillo package, and were

run on a MacBook Pro with Intel Core i5 2.5 GHz CPU and 8 Giga Bytes of main memory.

We varied the quantile (τ = 0.1, 0.3, 0.5), sample size (n = 50 to 300), number of covariates
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(p = 50 to 300), and number of grid points (Nλ = 20, 50). The grid points for λ were equally

spaced on the logarithmic scale over the range of λ-breakpoints for the full data fit. For each

setting, we had 20 independent replicates and the results are summarized over the replicates.

To see the complexity of ω-paths clearly, we recorded the average number of ω-breakpoints

when Nλ is 50 in Table 2.

The runtimes for computation of CV scores depend on the number of grid points and

generally a grid for the tuning parameter needs a sufficiently fine resolution to locate the

minimum CV score. Figure 6 illustrates that both Nλ = 20 and 50 are adequate for identi-

fying the optimal tuning parameter value for λ. The solid curves are the complete CV score

curves while the dots on the curves correspond to the CV scores at the grid points. The

minimizers of the CV scores over the grid points are indicated by the solid vertical lines in

the two panels, both of which are close to the dashed vertical lines which correspond to the

minimizers of the complete CV score curves.

The runtime comparisons are presented in Figure 7 for p < n settings and Figure 8 for

p > n settings. The figures are based on the numerical summaries of the results in Tables

3 and 4 in Appendix. Overall, they show that as the sample size n increases, our proposed

ω-path algorithm becomes more scalable than the competing λ-path algorithm. This is

consistent with our earlier analysis of computational complexities.

4.2 Case Influence Graphs

This section presents case influence graphs for ridge regression and `2-penalized quantile

regression with the same data. As is introduced in Section 3.1, case influence graphs show

a broad view of the influence of a case on the model as a function of case weight ω. For

simplicity, we rescale the generalized Cook’s distance Di?(ω) in (18) by replacing the factor
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Figure 6: Comparison of two levels of grid resolution in cross validation (n = 100, p =
100, τ = 0.5). The solid curve is a complete CV score curve zoomed in the basin around the
optimal λ, and the dots on the curves are CV scores at the grid points with Nλ = 20 in the
left panel and Nλ = 50 in the right panel.

1/pσ̂2 with 1/n as

D̃i?(ω) =
1

n

n∑
i=1

(f̂(xi)− f̂ i
?

ω (xi))
2. (28)

Figure 9 and Figure 10 provide case influence graphs for ridge regression and penalized

quantile regression using the same data. Here we remark some major differences in the

characteristics of the graphs. As is discussed in Section 3.1, the influence graphs for ridge

regression in Figure 9 are smooth, convex and monotonically decreasing in ω, while those for

quantile regression in Figure 10 are piecewise quadratic. Moreover, there are few crossings in

the curves for ridge regression in Figure 9, suggesting that the standardard Cook’s distance

may well be adequate for assessing case influences in ridge regression. By contrast, Figure 10

reveals that for quantile regression, the relation between the case influence graphs and case

deletion statistics is more complex and some cases in the elbow set with almost identical

standard Cook’s distance can have quite different influence on the model fit.

Additionally, the bold curves marked in Figure 9 and Figure 10 show that for ridge

regression, the cases with the most positive or negative full-data residuals have the greatest
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Figure 7: Comparison of the runtime per case (i.e. the total runtime/n) between the ω-path
and λ-path algorithms with different data dimensions, quantiles, and levels of grid resolution
(p = 50; n = 100, 200, and 300; τ = 0.1, 0.3, and 0.5; Nλ = 20 and 50).

influence on the model fit, while for quantile regression that is not the case. In fact, for

ridge regression, (20) in Proposition 2 implies strong dependence of the case influence on

the magnitude of full-data residual. Without much heterogeneity in the case leverages as

in our data setting, the cases with the most positive or negative full-data residuals would

have the greatest influence. However, for quantile regression, the form of Cook’s generalized

distance derived in (21) does not reveal any specific relation between case influence and the

magnitude of full-data residual. It is observed that the residuals for the cases with the most

positive or negative values tend not to change their signs as ω decreases from 1 to 0, and

thus those cases are unlikely to enter the elbow set. They may have little influence on the

model fit because the estimated coefficients (β̂0,ω, β̂ω) only depend on the responses in the

elbow set yEm as shown in Section 2. This is akin to the fact that sample quantiles are not

affected by extreme observations. The case influence graphs for quantile regression confirm

this expectation, providing another perspective on the robustness of quantile regression.
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Figure 8: Comparison of the runtime per case between the ω-path and λ-path algo-
rithms with different data dimensions, quantiles and levels of grid resolution (p = 300;
n = 50, 100 and 150; τ = 0.1, 0.3, and 0.5; Nλ = 20 and 50).

5. Discussion

In this article, we have proposed a novel path-following algorithm to comptute the leave-

one-out cross validation scores exactly for quantile regression with ridge penalty. Numerical

analysis has demonstrated that the proposed algorithm compares favorably to an alternative

approach in terms of computational efficiency. Theoretically, we have provided a formal proof

to establish the validity of the solution path algorithm. Moreover we have demonstrated

that our proposed method can be used to efficiently compute the case influence graph, which

provides a more comprehensive approach to assessing case influence.

We have primarily focused on `2 penalized linear quantile regression. Similar case-weight

adjusted path following algorithms can be derived for nonparametric quantile regression and

`1 penalized quantile regression. Additionally, following the ideas proposed in Rosset (2009),

it may be possible to derive a bi-level solution path for each pair of (λ, ω), or even a tri-level

path for each trio of (τ, λ, ω). Furthermore, the idea of linking the full-data solution and
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Figure 9: Case influence graphs for ridge regression (n = 50, p = 30). The influence
curves in the left and right panels correspond to cases with negative and positive full-data
residuals, respectively. The bold curves correspond to the cases with the most positive or
negative full-data residual.

the leave-one-out solution can be extended to classification settings. This will allow us to

extend the notion of case influence to classification (Koh and Liang, 2017) and to study the

stability of classifiers using case influence measures. How to efficiently assess case influence

in classification in itself is an important future direction.
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Figure 10: Case influence graphs for penalized quantile regression with various quantiles
(τ = 0.5, 0.3, and 0.1), n = 50 and p = 30. The left, middle and right panels correspond to
cases with negative, zero and positive full-data residuals. The bold curves indicate the cases
with the most positive or negative full-data residual.
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A. Appendix

A.1 Derivation of KKT conditions (6)–(9)

The Lagrangian function associated with (3) is

L(β0, β, ξ, ζ, α, γ, κ, ρ) = τ
∑
i 6=i?

ξi + (1− τ)
∑
i 6=i?

ζi + ωτξi? + ω(1− τ)ζi? +
λ

2
‖β‖22

+
n∑
i=1

αi(yi − β0 − x>i β − ξi)−
n∑
i=1

γi(yi − β0 − x>i β + ζi)−
n∑
i=1

κiξi −
n∑
i=1

ρiζi ,

where αi, γi, κi, ρi ≥ 0 are the dual variables associated with the inequality constraints, and

ξi and ζi ≥ 0 are primal variables introduced in (3). Hence, the Karush-Kuhn-Tucker (KKT)

conditions are given by

∂L

∂β
= λβ −

n∑
i=1

αixi +
n∑
i=1

γixi = 0,

∂L

∂β0
=

n∑
i=1

(αi − γi) = 0,

∂L

∂ξi
= −αi − κi + ωτ + (1− ω)τ1{i 6=i?} = 0,

∂L

∂ζi
= −γi − ρi + ω(1− τ) + (1− ω)(1− τ)1{i 6=i?} = 0,

αi(yi − β0 − x>i β − ξi) = 0, γi(yi − β0 − x>i β + ζi) = 0, κiξi = 0, ρiζi = 0,

−ζi ≤ yi − β0 − x>i β ≤ ξi, αi ≥ 0, γi ≥ 0, κi ≥ 0, ρi ≥ 0, ξi ≥ 0, ζi ≥ 0, i = 1, · · · , n.

Defining θi := αi − γi for i = 1, · · · , n, we obtain (6) from the first two equations.

Note that when yi−β0−x>i β > 0, we must have ξi ≥ yi−β0−x>i β > 0, which, together

with κiξi = 0, implies that κi = 0. Consequently, we have that αi = ωτ + (1 − ω)τI{i 6=i?}

and ξi = yi − β0 − x>i β, because αi 6= 0. Moreover, we also have that γi = 0, because

γi(yi − β0 − x>i β + ζi) = 0 and ζi ≥ 0. Hence, θi = αi − γi = ωτ + (1 − ω)τI{i 6=i?}, which
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proves (9). Similarly, when yi−β0−x>i β < 0, we have that γi = ω(1−τ)+(1−ω)(1−τ)I{i 6=i?}

and αi = 0. Hence, θi = αi − γi = −ωτ − (1− ω)τI{i 6=i?}, which proves (7).

Finally, when yi − β0 − x>i β = 0, we must have that ξi = 0, because αiξi = 0, κiξi = 0,

and αi + κi = ωτ + (1 − ω)τI{i 6=i?} > 0. Similarly, ζi = 0. Moreover, note that αi ∈

[0, ωτ + (1− ω)τI{i 6=i?}] and γi ∈ [0, ω(1− τ) + (1− ω)(1− τ)I{i 6=i?}]. Hence, θi = αi − γi ∈

[−ω(1− τ)− (1− ω)(1− τ)I{i 6=i?} , ωτ + (1− ω)τI{i 6=i?}], which proves (8).

A.2 Proof of Lemma 3

Lemma 3. Let Em be the elbow set defined in Algorithm 1. Suppose that {(x̃i, yi)}ni=1 satis-

fies the general position condition that any min(p + 2, n) points of {(x̃i, yi)}ni=1 are linearly

independent. Then we have |Em| ≤ p+ 1 and X̃EmX̃
>
Em � 0 for each m = 0, 1, . . . ,M .

Proof. We prove X̃EmX̃
>
Em � 0 by showing that (i) |Em| ≤ p+ 1 and (ii) the rows of X̃Em are

linearly independent.

(i). We prove |Em| ≤ p + 1 by contradiction. Suppose that |Em| ≥ p + 2. Then we

must have p + 2 ≤ |Em| ≤ n. Moreover, by the general position condition, we know that

any min(n, p+ 2) = p+ 2 points of {(x̃i, yi)}ni=1 are linearly independent, which implies that

rank(X̃Em , YEm) ≥ p+ 2. On the other hand, we can rewrite the KKT condition (8) as

yEm = β01Em +XEmβ = X̃Em

β0
β

 ,

which implies that rank(X̃Em , YEm) = rank(X̃Em) ≤ min(p + 1, n) ≤ p + 1. This is a

contradiction. Thus |Em| ≤ p+ 1.

(ii). Since the number of rows of X̃Em , |Em| ≤ min(p + 1, n) ≤ min(p + 2, n) by (i),

rank(X̃Em , YEm) = |Em| by the general position condition, which implies that rank(X̃Em) =

|Em|. Thus, the rows of X̃Em must be linearly independent.
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A.3 Proof of Proposition 1

Since λrω = λ(y − β0,ω1−Xβω) = λy − λβ0,ω1−XX>θω, using the fact that λβω = X>θω

from (6), we only need to derive the updating formulas for β0,ω and θEm,ω.

Let X̃ = (1, X) denote the expanded design matrix with each row x̃>i = (1, x>i ) for i =

1, · · · , n. Combining the first two equations in (10), we rewrite (10) as

λ

 0

βω

− X̃>EmθEm,ω = X̃>LmθLm,ω + X̃>RmθRm,ω,

β0,ω1Em + X̃Em

 0

βω

 = yEm .

(29)

By eliminating βω from (29), we have that

(X̃EmX̃
>
Em)θEm,ω =

[
λyEm − λβ0,ω1Em − X̃Em

(
X̃>LmθLm,ω + X̃>RmθRm,ω

)]
, (30)

and

1>EmθEm,ω = −1>LmθLm,ω − 1>RmθRm,ω. (31)

Under the general position condition, we have that

λβ0,ω =
1>Em(X̃EmX̃

>
Em)−1

(
λyEm − X̃Em(X̃>LmθLm,ω + X̃>RmθRm,ω)

)
+ 1>LmθLm,ω + 1>RmθRm,ω

1>Em(X̃EmX̃
>
Em)−11Em

(32)

and

θEm,ω = (X̃EmX̃
>
Em)−1

[
λyEm − λβ0,ω1Em − X̃Em

(
X̃>LmθLm,ω + X̃>RmθRm,ω

)]
, (33)

where the fact that X̃EmX̃
>
Em is invertible and 1>Em(X̃EmX̃

>
Em)−11Em 6= 0 are ensured by the

general position condition in view of Lemma 3.
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From (32) and (33), note that the dependence of β0,ω and θEm,ω on ω stems from θLm,ω

and θRm,ω, which may be a function of ω depending on whether the weighted case i? is in

Lm ∪ Rm or not. More specifically, from (7)–(9), if case i? ∈ Em, then β0,ω and θEm,ω are

independent of ω, because θLm,ω and θRm,ω are both independent of ω. On the other hand,

if case i? ∈ Lm ∪Rm, then β0,ω and θEm,ω are linear in ω as θi? = ω(τ − I(i? ∈ Lm)) is linear

in ω. As a result, we consider these two cases separately to determine the next breakpoint:

• Case I: i? ∈ Lm ∪Rm

• Case II: i? ∈ Em

I. For Case I, note that

θi?,ω = ω[τ − I(i? ∈ Lm)] and θi,ω = [τ − I(i ∈ Lm)] for i 6= i? and i ∈ Lm ∪Rm.

Hence, taking the difference of (32) at ω and ωm, and using the fact that only θi?,ω changes

with ω, we obtain that

λβ0,ω − λβ0,ωm = b0,m(ω − ωm) , (34)

where

b0,m =
1− 1>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?

1>Em(X̃EmX̃
>
Em)−11Em

[τ − I(i? ∈ Lm)].

Similarly, taking the difference of (33) at ω and ωm, we obtain that

θEm,ω − θEm,ωm

= −(X̃EmX̃
>
Em)−1

[
(λβ0,ω − λβ0,ωm)1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}(ω − ωm)

]
= −(X̃EmX̃

>
Em)−1

[
b0,m1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}

]
(ω − ωm)

= bm(ω − ωm) ,
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where

bm = −(X̃EmX̃
>
Em)−1

[
b0,m1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}

]
.

This proves (11) and (12). Note that (11) and (12) give how θEm,ω changes as a function of

ω. Next, we derive a similar formula for rω. To that end, multiplying both sides of the first

equation in (29) by X̃, we have that for any ω ∈ [ωm+1, ωm],

λX̃

 0

βω

− X̃X̃>EmθEm,ω = X̃X̃>LmθLm,ω + X̃X̃>RmθRm,ω.

Together with (7)–(9), this further implies that

λX̃

 0

βω − βωm

 = X̃X̃>Em(θEm,ω − θEm,ωm) + {τ − I(i? ∈ Lm)}X̃x̃i?(ω − ωm) .

Combining this with (34) and (12), we obtain the following result for residual rω:

λrω − λrωm = λ

y − X̃
β0,ω
βω


− λ

y − X̃
β0,ωm
βωm




= −λX̃

 0

βω − βωm

− (λβ0,ω − λβ0,ωm)1

= −X̃X̃>Em(θEm,ω − θEm,ωm)− {τ − I(i? ∈ Lm)}X̃x̃i?(ω − ωm)− b0,m(ω − ωm)1

= −X̃X̃>Embm(ω − ωm)− {τ − I(i? ∈ Lm)}X̃x̃i?(ω − ωm)− b0,m(ω − ωm)1

= hm(ω − ωm) ,

where

hm = −b0,m1− X̃
[
X̃>Embm + {τ − I(i? ∈ Lm)}x̃i?

]
.
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This proves (14) and (15).

II. For Case II: i? ∈ Em, we will show that i? ∈ Em can only happen when m = 0, and if

that happens, i? will move from E0 to L1 ∪R1 at the next breakpoint, and stay in Lm ∪Rm

for all m = 1, . . . ,M . We show this by considering two scenarios.

• Scenario 1: if i? ∈ L0 ∪R0, then case i? will stay in Lm ∪Rm for m = 1, . . . ,M .

• Scenario 2: if i? ∈ E0, then i? will move from E0 to L1 ∪ R1 at the next breakpoint,

and stay in Lm ∪Rm for m = 1, . . . ,M .

For Scenario 1, we show that if i? ∈ Lm∪Rm, then case i? will not move from Lm∪Rm to

Em at the next breakpoint. We prove this by showing that the slope of the residual for case

i? over (ωm+1, ωm) is negative if i? ∈ Rm; and positive if i? ∈ Lm. Suppose that i? ∈ Rm. In

view of (14) and (15), we need to show that
∂ri?,ω
∂ω

= hi?,m < 0, or equivalently,

hi?,m = −b0,m − x̃>i?
[
X̃>Embm + x̃i?τ

]
< 0 . (35)

By (12) and (13), we can show that

hi?,m = −
(
b0,m + x̃>i?

[
X̃>Embm + x̃i?τ

])
= −

(
b0,m − x̃>i?

[
X̃>Em

(
(X̃EmX̃

>
Em)−1

[
b0,m1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}

])
+ x̃i?τ

])
= −

(
b0,m − x̃>i?X̃>Em(X̃EmX̃

>
Em)−1b0,m1Em − x̃>i?X̃>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?τ + x̃>i?x̃i?τ

)
= −b0,m

(
1− x̃>i?X̃>Em(X̃EmX̃

>
Em)−11Em

)
− τ x̃>i?

(
I − X̃>Em(X̃EmX̃

>
Em)−1X̃Em

)
x̃i?

= −τ
(1− 1>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?)

2

1>Em(X̃EmX̃
>
Em)−11Em

− τ x̃>i?
(
I − X̃>Em(X̃EmX̃

>
Em)−1X̃Em

)
x̃i? < 0 ,

where the last inequality uses the fact that x̃>i?
(
I − X̃>Em(X̃EmX̃

>
Em)−1X̃Em

)
x̃i? > 0 under the

general position condition, which can be shown as follows. Note that the rows of X̃Em and x̃i

are linearly independent since |Em ∪ {i}| = |Em−1| ≤ min(n, p + 1) ≤ min(n, p + 2). Hence,
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x̃>i
(
I − X̃>Em

(
X̃EmX̃

>
Em

)−1
X̃Em

)
x̃i > 0 since X̃>Em

(
X̃EmX̃

>
Em

)−1
X̃Em is the projection matrix for

the row space of X̃Em and X̃>Em
(
X̃EmX̃

>
Em

)−1
X̃Emx̃i 6= x̃i.

Similarly we can also show that when i? ∈ Lm,

hi?,m = (1− τ)
(1− 1>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?)

2

1>Em(X̃EmX̃
>
Em)−11Em

+ (1− τ)x̃>i?
(
I − X̃>Em(X̃EmX̃

>
Em)−1X̃Em

)
x̃i?

> 0 . (36)

This finishes the proof for Scenario 1.

For Scenario 2, note that when i? ∈ E0, all the residuals and θω are constant as θω and

(β0,ω, βω) are independent of ω for ω ∈ [ω1, 1]. As a result, the next breakpoint ω1 can be

determined by setting θi?,ω0 = ωτ or ω(τ − 1), that is,

ω1 =



θi?,ω0
τ

if 0 < θi?,ω0 < τ

θi?,ω0
τ−1 if τ − 1 < θi?,ω0 < 0

0 if θi?,ω0 = 0

, or ω1 =
θi?,ω0

τ − I(θi?,ω0 < 0)
, (37)

and i? will move from E0 to L1 orR1 at ω1. After ω1, by the same argument used for Scenario

1, we can show that i? will stay in Lm ∪Rm for m = 1, . . . ,M . This proves Scenario 2.

In summary, i? ∈ Em can only happen when m = 0, and if that happens, i? will move

from E0 to L1 or R1 at the next breakpoint, and stay in Lm ∪ Rm for m = 1, . . . ,M . This

completes the proof of Proposition 1.

A.4 Proof of Theorem 1

We only need to show that the case-weight adjusted path (β̂0,ω, β̂ω, θ̂ω) generated by Algo-

rithm 1 satisfies all the KKT conditions in (6)–(9). Our plan is to show that: (i) the initial

full-data solution (β̂0,ω0 , β̂ω0) together with θ̂ω0 specified in Line 3 satisfies the KKT condi-
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tions at ω = ω0; (ii) if i? ∈ E0, then for each ω ∈ [ω1, 1], (β̂0,ω, β̂ω, θ̂ω) in Line 7 satisfies the

KKT conditions; and (iii) after Line 13 in Algorithm 1, i? /∈ Em for each m, and (β̂0,ω, β̂ω, θ̂ω)

in Line 17 satisfies the KKT conditions.

(i) Note that (β̂0,ω0 , β̂ω0) is the full-data solution. Thus, there must exist a vector θ ∈ Rn

such that (β̂0,ω0 , β̂ω0 , θ) satisfies the KKT conditions of (6)–(9). On the other hand, similar

to the derivation of (33), we can show that θ must be unique and equal to θ̂ω0 specified in

Algorithm 1 given (β̂0,ω0 , β̂ω0). Hence, (β̂0,ω0 , β̂ω0 , θ̂ω0) satisfies the KKT conditions.

(ii) If the weighted case i? ∈ E0, then for each ω ∈ [ω1, 1], (β̂0,ω, β̂ω, θ̂ω) = (β̂0,ω0 , β̂ω0 , θ̂ω0),

and thus it must also satisfy the KKT conditions (6)–(9), because the only condition in

(6)–(9) that involves ω is θi?,ω0 ∈ [ω(τ − 1), ωτ ], which remains to be true when ω ≥ ω1 =

θ̂i?,ω0
τ−I(θ̂i?,ω0<0)

.

(iii) We use induction on m to show that (β̂0,ω, β̂ω, θ̂ω) satisfies the KKT conditions for

ω ∈ [ωm+1, ωm] and i? /∈ Em, after Line 13 of Algorithm 1. First we show that i? /∈ Em after

Line 13 of Algorithm 1. Using similar arguments in Part II of the proof of Proposition 1, we

can show that if i? ∈ Lm ∪Rm, then case i? will not move from Lm ∪Rm to Em at the next

breakpoint. This can be verified using (35) and (36), both of which are still valid here since

b0,m and bm in Line 15 are computed according to (12) and (13) in Proposition 1. Hence, we

must have i? ∈ Lm ∪Rm after Line 13 of Algorithm 1.

Next, we show that (β̂0,ω, β̂ω, θ̂ω) satisfies the KKT conditions for ω ∈ [ωm+1, ωm] after

Line 13 of Algorithm 1, provided that i? /∈ Em. In other words, we show that for each

ω ∈ [ωm+1, ωm], (β̂0,ω, β̂ω, θ̂ω) generated by Algorithm 1 satisfies the KKT conditions pro-

vided that (β̂0,ωm , β̂ωm , θ̂ωm) satisfies the KKT conditions at breakpoint ωm. Note that the

KKT conditions consist of equality conditions and inequality conditions. We verify them

separately.

Equality conditions: First, we verify that the following equality conditions are satisfied
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between breakpoints ωm and ωm+1:

θ̂Lm\{i?},ω = (τ − 1)1Lm\{i?}, θ̂Rm\{i?},ω = τ1Rm\{i?}, θ̂i?,ω = ω(τ − I(i? ∈ Lm))

X̃>θ̂ω =

 0

λβ̂ω

 , X̃Em

β̂0,m
β̂m

 = yEm .
(38)

Since the above equality conditions are satisfied at ω = ωm, it is sufficient to show that for

each ω ∈ [ωm+1, ωm],



X̃>(θ̂ω − θ̂ωm) =

 0

λ(β̂ω − β̂ωm)

 (39a)

X̃Em

β̂0,ω − β̂0,ωm
β̂ω − β̂ωm

 = 0. (39b)

To prove (39a), first we see that

X̃>(θ̂ω − θ̂ωm) = X̃>Lm(θ̂Lm,ω − θ̂Lm,ωm) + X̃>Rm(θ̂Rm,ω − θ̂Rm,ωm) + X̃>Em(θ̂Em,ω − θ̂Em,ωm)

= {τ − I(i? ∈ Lm)}x̃i?(ω − ωm) + X̃>Embm(ω − ωm) by (12)

=
(
{τ − I(i? ∈ Lm)}x̃i? + X̃>Embm

)
(ω − ωm)

=

 (
{τ − I(i? ∈ Lm)}+ 1>Embm

)
(ω − ωm)(

{τ − I(i? ∈ Lm)}xi? +X>Embm
)

(ω − ωm)

 .
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Moreover, by (12) and (13), we can show that

−1>Embm = 1>Em(X̃EmX̃
>
Em)−1

[
b0,m1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}

]
= b0,m1>Em(X̃EmX̃

>
Em)−11Em + 1>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?{τ − I(i? ∈ Lm)}

=
(

1− 1>Em(X̃EmX̃
>
Em)−1X̃Emx̃i?

)
{τ − I(i? ∈ Lm)}+ 1>Em(X̃EmX̃

>
Em)−1X̃Emx̃i?){τ − I(i? ∈ Lm)}

= τ − I(i? ∈ Lm).

Combining this with Line 17 of Algorithm 1, we obtain (39a).

To prove (39b), by (39a), (34), (11), and (12), it follows that

λX̃Em

β̂0,ω − β̂0,ωm
β̂ω − β̂ωm

 = X̃Em

λ(β̂0,ω − β̂0,ωm)

0

+ X̃Em

 0

λ(β̂ω − β̂ωm)


= λ(β̂0,ω − β̂0,ωm)1Em + X̃EmX̃

>(θ̂ω − θ̂ωm)

=
(
b0,m1Em + X̃EmX̃

>
Embm + X̃Emx̃i?{τ − I(i? ∈ Lm)}

)
(ω − ωm)

=

(
b0,m1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}−

X̃EmX̃
>
Em(X̃EmX̃

>
Em)−1

[
b0,m1Em + X̃Emx̃i?{τ − I(i? ∈ Lm)}

])
(ω − ωm)

= 0.

Inequality conditions: Next we verify the inequality conditions between breakpoints

ωm and ωm+1. For this, we consider two cases: m = I(i? ∈ E0) and m ≥ I(i? ∈ E0) + 1. In

the first case, if i? /∈ E0, then m = 0, and all inequality conditions are trivially satisfied for

ω ∈ [ω1, 1]. If i? ∈ E0, then m = 1. Now for ω ∈ [ω2, ω1], we need to verify that ri?,ω > 0 if

i? ∈ R1, and ri?,ω < 0 if i? ∈ L1. In fact, by similar arguments used in the proof of Part II

of Proposition 1, it can be shown that the residual of case i? will increase if i? ∈ R1 and will

decrease if i? ∈ L1. Moreover, since i? ∈ E0, we must have ri?,ω1 = 0. Combining, we have
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that that ri?,ω > 0 if i? ∈ R1 and ri?,ω < 0 if i? ∈ L1.

In the second case of m ≥ I(i? ∈ E0) + 1, we have that i? /∈ Em and i? /∈ Em−1 since

i? /∈ Em after Line 13. In addition, as we have shown before, the sign of the residual of

case i? does not change after Line 13. Under these conditions, we next show that all the

inequality conditions are satisfied by verifying that the three rules in Algorithm 1 to update

the elbow set and non-elbow sets at each breakpoint are consistent with the signs of resulting

residuals. Specifically, we need to verify that, for rule (a), if θ̂i,ωm = τ for some i ∈ Em−1,

then ri,ω > 0 for ω ∈ (ωm+1, ωm); for rule (b), if θ̂i,ωm = τ − 1 for some i ∈ Em−1, then

ri,ω < 0 for ω ∈ (ωm+1, ωm), and for rule (c), if ri,ωm = 0 for some i ∈ Lm−1 ∪ Rm−1, then

θi,ω ∈ (τ − 1, τ) for ω ∈ (ωm+1, ωm).

For rule (a), if there exists i ∈ Em−1 such that θ̂i,ωm = τ at ωm, the rule sets Em = Em−1\{i}

and Rm = Rm−1 ∪ {i}. We need to show that ri,ω > 0 for ω ∈ (ωm+1, ωm). Since ri,ωm = 0,

we need to show that hi,m—the slope of ri,ω—is negative. In view of (15) and the fact that

Em = Em−1 \ {i}, we need to prove that

− hi,m = b0,m + x̃>i [X̃>Em−1\{i}bm + x̃i?(τ − I(i? ∈ Lm)] > 0. (40)

Since i ∈ Em−1, we have that λri,ω ≡ 0 for ω ∈ (ωm, ωm−1], which implies that its slope

hi,m−1 = 0. This, together with (15), implies that

−hi,m−1 = b0,m−1 + x̃>i [X̃>Em−1
bm−1 + x̃i?(τ − I(i? ∈ Lm−1))]

= b0,m−1 + x̃>i [X̃>EmbEm,m−1 + x̃ibi,m−1 + x̃i?(τ − I(i? ∈ Lm−1))] = 0 . (41)

Moreover, note that I(i? ∈ Lm−1) = I(i? ∈ Lm) for m ≥ 1 + I(i? ∈ E0) since i? /∈ Em and

i 6= i?. In view of (41), (40) is equivalent to

b0,m + x̃>i X̃
>
Em−1\{i}bm > b0,m−1 + x̃>i X̃

>
Em−1\{i}bEm−1\{i},m−1 + x̃>i x̃ibi,m−1 ,
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or

(b0,m − b0,m−1) + x̃>i X̃
>
Em(bm − bEm,m−1)− x̃>i x̃ibi,m−1 > 0. (42)

Next we plan to show that

(bm − bEm,m−1)− x̃>i x̃ibi,m−1

= bi,m−1

(
−
(
1Em

>(X̃EmX̃>Em)−1X̃Emx̃i − 1
)2

1Em
>(X̃EmX̃>Em)−11Em − x̃>i

(
I − X̃>Em

(
X̃EmX̃

>
Em

)−1
X̃Em

)
x̃i

)
.(43)

To that end, from the second equation in (38), we know that 1>θ̂ω = 0 for ω ∈ (ωm+1, ωm].

Hence, for any ω ∈ (ωm+1, ωm),

1>Em θ̂Em,ω + 1>Lm θ̂Lm,ω + 1>Rm θ̂Rm,ω = 0

1>Em θ̂Em,ωm + 1>Lm θ̂Lm,ωm + 1>Rm θ̂Rm,ωm = 0
. (44)

Taking difference of the above two equations and using the updating formula for θ̂Em,ω, we

obtain that

1>Embm(ω − ωm) + (τ − I(i? ∈ Lm))(ω − ωm) = 0. (45)

Dividing both sides by ω − ωm, (45) reduces to

1>Embm + (τ − I(i? ∈ Lm)) = 0.

Similarly, we also have that

1>Em−1
bm−1 + (τ − I(i? ∈ Lm−1)) = 0 .

Taking the difference and using the fact that I(i? ∈ Lm−1) = I(i? ∈ Lm) for m ≥ 1 + I(i? ∈
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E0), we obtain that

bi,m−1 = 1>Embm − 1>EmbEm,m−1 := 1>Em∆Em , (46)

where ∆Em = bm − bEm,m−1. On the other hand, for any j ∈ Em, rj,m−1 = rj,m = 0 implies

their slopes hj,m−1 = hj,m = 0. Hence, we have that hEm−1\{i},m−1 = 0 and hEm−1\{i},m = 0,

which implies that

b0,m−11Em + X̃Em [X̃>EmbEm,m−1 + bi,m−1x̃i + x̃i?(τ − I(i? ∈ Lm−1))] = 0 ,

b0,m1Em + X̃Em [X̃>Embm + x̃i?(τ − I(i? ∈ Lm))] = 0 .

Again, because of I(i? ∈ Lm−1) = I(i? ∈ Lm) for m ≥ 1 + I(i? ∈ E0), taking the difference,

we obtain that

∆01Em + X̃EmX̃
>
Em∆Em − X̃Emx̃ibi,m−1 = 0 , (47)

where ∆0 = b0,m − b0,m−1. Combining (46) and (47) and solving for ∆Em and ∆0, we obtain

that

∆Em =
(
X̃EmX̃

>
Em

)−1(
X̃Emx̃ibi,m−1 −∆01Em

)
,

∆0 =

(
1>Em

(
X̃EmX̃

>
Em

)−1

X̃Em x̃i−1
)
bi,m−1

1>Em

(
X̃EmX̃

>
Em

)−1

1Em

.

Substituting the above into the LHS of (42), we have that

LHS of (42) = (b0,m − b0,m−1) + x̃>i X̃
>
Em(bm − bEm,m−1)− x̃>i x̃ibi,m−1 = ∆0 + x̃>i X̃

>
Em∆Em − x̃>i x̃ibi,m−1

=

(
1>Em
(
X̃EmX̃

>
Em

)−1
X̃Emx̃i − 1

)
bi,m−1

1Em
>(X̃EmX̃>Em)−11Em + x̃>i X̃

>
Em

((
X̃EmX̃

>
Em

)−1
X̃Emx̃ibi,m−1 − x̃>i x̃ibi,m−1

−
(
X̃EmX̃

>
Em

)−1
1Em
(
1Em

>(X̃EmX̃>Em)−1X̃Emx̃i − 1
)
bi,m−1

1Em
>(X̃EmX̃>Em)−11Em

)
= bi,m−1

(
−
(
1Em

>(X̃EmX̃>Em)−1X̃Emx̃i − 1
)2

1Em
>(X̃EmX̃>Em)−11Em − x̃>i

(
I − X̃>Em

(
X̃EmX̃

>
Em

)−1
X̃Em

)
x̃i

)
.

This proves (43).
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Moreover, under the general position condition, we must have the rows of X̃Em and x̃i

are linearly independent since |Em ∪ {i}| = |Em−1| ≤ min(n, p + 1) ≤ min(n, p + 2). Hence,

x̃>i
(
I − X̃>Em

(
X̃EmX̃

>
Em

)−1
X̃Em

)
x̃i > 0 since X̃>Em

(
X̃EmX̃

>
Em

)−1
X̃Em is the projection matrix for

the row space of X̃Em and X̃>Em
(
X̃EmX̃

>
Em

)−1
X̃Emx̃i 6= x̃i. Thus, in order to show that the

LHS of (42) is positive, it remains to show that bi,m−1 < 0. Based on the facts that θ̂i,ω is

a linear function of ω: θ̂i,ω = θ̂i,ωm−1 + bi,m−1(ω − ωm−1) for ω ∈ [ωm, ωm−1] and θ̂i,ω = τ at

ωm, we must have its slope
∂θ̂i,ω
∂ω

< 0 for ω ∈ (ωm, ωm−1). This implies that

∂θ̂i,ω
∂ω

= bi,m−1 < 0 ,

which completes the proof for rule (a).

For rule (b), similar arguments can be applied to prove that if there exists some case

i ∈ Em−1 such that θ̂i,ωm = τ − 1 and ri,ωm = 0 at ωm, then ri,ω < 0 for any ω ∈ (ωm+1, ωm).

For rule (c), without loss of generality, we assume that ri,ωm = 0 for some case i ∈ Lm−1

and θ̂i,ωm = τ − 1 at ωm. Then the rule updates the three sets as Em = Em−1 ∪ {i} and

Lm = Lm−1 \ {i}. As ω starts to decrease from ωm, θ̂i,ω will increase from τ − 1, which

implies that its slope bi,m < 0.

In the proof of rule (a), we have shown that hi,m < 0 given bi,m−1 < 0 and hi,m−1 = 0.

Here we need to prove bi,m < 0 given hi,m−1 < 0 and hi,m = 0. Reversing the arguments

used for rule (a), we need to show that bi,m < 0 given (42). Similar to the proof of rule (a),

we can show that the LHS of (42) is

bi,m

(
−
(
1Em−1

>(X̃Em−1X̃
>
Em−1

)−1
X̃Em−1x̃i − 1

)2
1Em−1

>(X̃Em−1X̃
>
Em−1

)−1
1Em−1

−x̃>i
(
I−X̃>Em−1

(
X̃Em−1X̃

>
Em−1

)−1
X̃Em−1

)
x̃i

)
> 0,

which implies that bi,m < 0. This completes the proof.
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A.5 Proof of Lemma 2

Given case weight ω ∈ (0, 1), let ỹi(ω) be a random variable which takes yi with probability

ω and f̂ iω with probability 1 − ω. Consider perturbed data by replacing yi with ỹi(ω) and

keeping the rest of the responses.

Assume that ` is any nonnegative loss function and f̂ minimizes

∑
j 6=i

`(yj − f(xj)) + ω`(yi − f(xi)) + (1− ω)`(f̂ iω(xi)− f(xi)) + λJ(f).

For any function f , observe that the penalized empirical risk of f over the perturbed data

satisfies the following inequalities:

∑
j 6=i

`(yj − f(xj)) + ω`(yi − f(xi)) + (1− ω)`(f̂ iω(xi)− f(xi)) + λJ(f)

≥
∑
j 6=i

`(yj − f(xj)) + ω`(yi − f(xi)) + λJ(f)
(
` is nonnegative and ω ∈ [0, 1]

)
≥
∑
j 6=i

`(yj − f̂ iω(xj)) + ω`(yi − f̂ iω(xi)) + λJ(f̂ iω)
(
by the definition of f̂ iω

)
=
∑
j 6=i

`(yj − f̂ iω(xj)) + ω`(yi − f̂ iω(xi)) + (1− ω)`(f̂ iω(xi)− f̂ iω(xi)) + λJ(f̂ iω)

≥
∑
j 6=i

`(yj − f̂(xj)) + ω`(yi − f̂(xi)) + (1− ω)`(f̂ iω(xi)− f̂(xi)) + λJ(f̂). (by the definition of f̂)

Taking f = f̂ completes the proof.

A.6 Proof of Proposition 2

The normal equation for problem (19) is

−
n∑

i 6=i?
x̃i(yi − x̃>i β̃ω)− ωx̃i?(yi? − x̃>i? β̃ω) + λĨβ̃ω = 0. (48)
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When ω = ω0 = 1, in particular, the normal equation is

−
n∑

i 6=i?
x̃i(yi − x̃>i β̃ω0)− ωx̃i?(yi? − x̃>i? β̃ω0)− (1− ω)x̃i?(yi? − x̃>i? β̃ω0) + λĨβ̃ω0 = 0. (49)

Subtracting (48) from (49), we have

[ n∑
i 6=i?

x̃ix̃
>
i + ωx̃i?x̃

>
i? + λĨ

]
(β̃ω0 − β̃ω) = (1− ω)x̃i?(yi? − x̃>i? β̃ω0) = (1− ω)x̃i?ri? ,

which leads to

β̃ω0 − β̃ω =
[
X̃>X̃ + λĨ − (1− ω)x̃i?x̃

>
i?

]−1
(1− ω)x̃i?ri? .

Letting D̃λ = X̃>X̃ + λĨ, we have

β̃ω0 − β̃ω =

[
D̃−1λ +

D̃−1λ x̃i?x̃
>
i?D̃

−1
λ

1/(1− ω)− x̃>i?D̃−1λ x̃i?

]
(1− ω)x̃i?ri?

= (1− ω)D̃−1λ

[
x̃i? +

x̃i?x̃
>
i?D̃

−1
λ x̃i?

1/(1− ω)− x̃>i?D̃−1λ x̃i?

]
ri?

=
D̃−1λ x̃i?ri?

1/(1− ω)− x̃>i?D̃−1λ x̃i?
,

which implies that

f̂(xj)− f̂ i
?

ω (xj) = x̃>j (β̃ω0 − β̃ω) =

(
x̃>j D̃

−1
λ x̃i?

)
ri?

1/(1− ω)− x̃>i?D̃−1λ x̃i?
=

hji?(λ)ri?

1/(1− ω)− hi?i?(λ)
. (50)

Hence,
n∑
j=1

(
f̂(xj)− f̂ i

?

ω (xj)
)2

=
r2i?
∑n

j=1 h
2
ji?(λ)

{1/(1− ω)− hi?i?(λ)}2
,

which completes the proof.
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A.7 Proof of Proposition 4

From (50),

n∑
i=1

f̂(xi)− f̂ iω(xi)

yi − f̂ iω(xi)
=

n∑
i=1

f̂(xi)− f̂ iω(xi)(
yi − f̂(xi)

)
+
(
f̂(xi)− f̂ iω(xi)

)
=

n∑
i=1

hii(λ)ri
1/(1−ω)−hi,i(λ)

ri +
hi,i(λ)ri

1/(1−ω)−hii(λ)

=
n∑
i=1

(1− ω)hii(λ).

Thus, dfω(f) = 1
1−ω

∑n
i=1(1− ω)hii(λ) =

∑n
i=1 hii(λ) = df(f̂).
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Table 3: Runtime Per Case (n > p): the elapsed runtime per case (i.e. the total runtime/n)
measured in seconds, where the value in the parentheses is standard deviation. For the λ-
path algorithm, the first term is the runtime for generating solutions at all the breakpoints
and the second term is the runtime for performing the linear interpolation at given λ grids.

n p τ λ path (Nλ = 50) ω path (Nλ = 20) ω path (Nλ = 50)
100 50 .5 .030 (.003) + .001 (1e-4) .016 (.004) .037 (.011)
100 50 .3 .026 (.004) + .001 (7e-5) .014 (.003) .032 (.007)
100 50 .1 .018 (.002) + .001 (6e-5) .008 (.003) .020 (.007)
200 50 .5 .092 (.017) + .003 (3e-4) .016 (.003) .033 (.008)
200 50 .3 .081 (.014) + .003 (3e-4) .015 (.004) .034 (.009)
200 50 .1 .032 (.006) + .002 (2e-4) .009 (.002) .021 (.005)
300 50 .5 .243 (.050) + .006 (6e-4) .018 (.006) .042 (.016)
300 50 .3 .224 (.043) + .006 (4e-4) .014 (.005) .033 (.012)
300 50 .1 .075 (.026) + .006 (.001) .011 (.003) .026 (.006)

Table 4: Runtime Per Case (n < p).

n p τ λ path (Nλ = 50) ω path (Nλ = 20) ω path (Nλ = 50)
50 300 .5 .0097 (1e-4) + .0015 (9e-5) .0042 (7e-4) .0105 (.002)
50 300 .3 .0097 (8e-5) + .0015 (7e-5) .0041 (5e-4) .0102 (.001)
50 300 .1 .0096 (7e-5) + .0015 (1e-4) .0038 (6e-4) .0095 (.001)
100 300 .5 .0610 (.001) + .0030 (1e-4) .0155 (.003) .0363 (.005)
100 300 .3 .0610 (1e-3) + .0030 (2e-4) .0145 (2e-3) .0356 (.006)
100 300 .1 .0600 (9e-4) + .0030 (1e-4) .0146 (2e-3) .0355 (.005)
150 300 .5 .1790 (.003) + .0040 (2e-4) .0330 (.006) .0860 (.015)
150 300 .3 .1740 (.001) + .0040 (2e-4) .0310 (.005) .0790 (.011)
150 300 .1 .1720 (.001) + .0040 (2e-4) .0300 (.004) .0760 (.013)
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