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Abstract

Estimation of an unstructured covariance matrix is difficult because of the challenges posed
by parameter space dimensionality and the positive-definiteness constraint that estimates
should satisfy. We consider a general nonparametric covariance estimation framework for
longitudinal data using the Cholesky decomposition of a positive-definite matrix. The
covariance matrix of time-ordered measurements is diagonalized by a lower triangular
matrix with unconstrained entries that are statistically interpretable as parameters for a
varying coefficient autoregressive model. Using this dual interpretation of the Cholesky
decomposition and allowing for irregular sampling time points, we treat covariance
estimation as bivariate smoothing and cast it in a regularization framework for desired
forms of simplicity in covariance models. Viewing stationarity as a form of simplicity or
parsimony in covariance, we model the varying coefficient function with components
depending on time lag and its orthogonal direction separately and penalize the components
that capture the nonstationarity in the fitted function. We demonstrate construction of a
covariance estimator using the smoothing spline framework. Simulation studies establish
the advantage of our approach over alternative estimators proposed in the longitudinal
data setting. We analyze a longitudinal dataset to illustrate application of the
methodology and compare our estimates to those resulting from alternative models.

Keywords: autoregression; Cholesky decomposition; covariance function; functional
ANOVA model; stationary model
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INTRODUCTION

Estimation of a covariance matrix is fundamental to the analysis of multivariate data for

mean inference, discrimination, and dimension reduction. The two primary challenges in

fulfilling this prerequisite are due to the total number of parameters to be estimated in

relation to the data dimension, and a structural constraint for covariance. As compared to

mean estimation, the number of parameters grows quadratically in the dimension, and these

parameters must satisfy the positive-definiteness constraint. It is well known that the widely

used sample covariance matrix, though positive-definite and unbiased for the population

covariance matrix, is unstable in high dimensions (Lin, 1985; Johnstone, 2001). In the applied

literature, it is common practice to specify a parametric model for the covariance structure

by incorporating primary factors for variation in the data or those elements suggested by a

study design. These models are typically parsimonious and require modest computational

effort for estimation. However, specifying the appropriate covariance model is challenging

even for the experts, and model misspecification can lead to considerably biased estimates.

On the other hand, several regularized estimators of the sample covariance have been

proposed to balance the two extremes. There are several elementwise regularization methods

for estimating a covariance matrix; see, for example, Bickel and Levina (2008); Rothman,

Levina, and Zhu (2009); Cai, Zhang, and Zhou (2010). Methods for covariance estimation

leveraging elementwise shrinkage are attractive, in part, because they typically present very

low computational burden, but such estimators are not guaranteed to be positive-definite

with finite sample sizes. A direct local polynomial smoothing of the sample covariance matrix

proposed by Yao, Müller, and Wang (2005) does not ensure the positive-definiteness of the

estimator either.

There has been a recent shift in covariance estimation toward regression-based approaches

to eliminate the positive-definite constraint from estimation procedures altogether. Similar

to this idea is the approach of modeling various matrix decompositions directly rather than

the covariance matrix itself, including the spectral decomposition, the variance-correlation

decomposition, and the Cholesky decomposition. The Cholesky decomposition in particular

has recently received much attention because of its qualities that make it particularly at-
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tractive for its use in covariance estimation for data with naturally ordered measurements

such as time series or longitudinal data. The entries of the lower triangular matrix and

the diagonal matrix of the modified Cholesky decomposition have statistical interpretations

as autoregressive coefficients, or the generalized autoregressive parameters and prediction

variances, or innovation variances when regressing a measurement on its predecessors. The

unconstrained reparameterization and its statistical interpretability makes it easy to cast

covariance modeling into the generalized linear model framework while guaranteeing that

the resulting estimates are positive-definite. See Pourahmadi (2011) for a general overview

of modeling the Cholesky decomposition.

In this paper, we extend the regression model associated with the Cholesky decomposi-

tion of a covariance matrix to a functional varying coefficient model. Treating covariance

estimation as bivariate smoothing, our framework naturally accommodates unbalanced lon-

gitudinal data and employs regularization as in the usual function estimation setting. The

outline of the article is as follows. In the Cholesky Decomposition section, we review the role

of the modified Cholesky decomposition in the unconstrained reparameterization of a covari-

ance matrix. In the next section, we present a functional varying coefficient model for the

elements of the reparameterized covariance matrix and propose a reproducing kernel Hilbert

space framework for estimation of the varying coefficient function. We then demonstrate

estimation of the innovation variances via smoothing splines. Section Simulation Studies

presents numerical studies comparing the performance of our estimator to other covariance

estimators proposed in the literature. We apply our method to a dataset collected from a

longitudinal study of cattle weights in Data Analysis section.

THE CHOLESKY DECOMPOSITION

For a positive-definite covariance matrix Σ ∈ Rp×p for p variables, there exist a lower tri-

angular matrix T ∈ Rp×p with unit diagonal entries and a diagonal matrix D ∈ Rp×p with

positive entries such that

D = TΣT ′. (1)
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This representation (1) is commonly referred to as the modified Cholesky decomposition of

Σ.

The lower triangular entries of T are unconstrained and can be interpreted as the co-

efficients of a particular regression model for ordered variables, and the diagonal of D

can be interpreted as the prediction error variances associated with the same model. Let

Y = (y1, . . . , yp)
′ denote a mean zero random vector with positive-definite covariance matrix

Σ, and consider regressing yt on its predecessors y1, . . . , yt−1. Let ŷt be the linear least-

squares predictor of yt based on previous measurements yt−1, . . . , y1, and let Var (εt) = σ2
t

denote the variance of the corresponding prediction error, where εt = yt − ŷt. Regression

theory gives us that there exist unique scalars φtj so that

yt =

 εt, t = 1∑t−1
j=1 φtjyj + εt, t = 2, . . . , p,

(2)

and the prediction errors εt are mean zero and independently distributed. If we negate the

regression coefficients φtj and place them in the lower triangle of T so that the (t, j) entry of

T is −φtj, and let D = diag
(
σ2

1, . . . , σ
2
p

)
and ε = (ε1, . . . , εp)

′, then the sequence of regression

models in (2) can be written in matrix form as

ε = TY. (3)

Taking covariances on both sides of (3) gives the modified Cholesky decomposition (1). Thus,

modeling a covariance matrix is equivalent to fitting a sequence of p− 1 varying-coefficient

and varying-order regression models. Since the φtj are regression coefficients, these and the

log σ2
t , are unconstrained. The regression coefficients of the model in (2) and the prediction

error variances are referred to as the generalized autoregressive parameters and innovation

variances (Pourahmadi, 1999, 2000). The powerful implication of the regression framework

of decomposition (1) is the accessibility of the entire portfolio of regression methods for the

task of modeling covariance matrices. Moreover, the estimator Σ̂−1 = T̂ ′D̂−1T̂ constructed

from the unconstrained parameters, φtj and σ2
t , is guaranteed to be positive-definite.

However, it is unclear how to apply model (2) to irregular or incomplete data without

prior imputation. In most longitudinal studies, the functional trajectories of the involved

smooth random processes are not directly observable, and often, the observed data are sparse
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and irregularly spaced measurements of these trajectories. In the case that there is no fixed

number of measurements and set of associated observation times for each subject, it is un-

clear how to define the discrete lag as in the usual formulation of autoregressive models. This

makes treatment of individual subdiagonals of the Cholesky factor or the covariance matrix

itself infeasible. To handle data collected in such a manner requires methods which are

formulated in terms of continuous measurements. We address this concern by extending the

framework supported by the unconstrained parameterization in (1) to naturally accommo-

date unbalanced longitudinal data. In the following section, we present a functional varying

coefficient model for the elements of the Cholesky decomposition and propose regularization

using a reproducing kernel Hilbert space framework.

A FUNCTIONAL VARYING-COEFFICIENT MODEL FOR

THE MODIFIED CHOLESKY DECOMPOSITION

Given a sample of repeated measurements on N independent subjects, we model the observed

data collected on an individual as a realization of a continuous-time stochastic process Y (t)

at discrete “time” points. In general, t doesn’t need to be time, but for the ease of exposition,

assume that measurements are indexed by time. Let Yi = (y(ti1), . . . , y(ti,pi))
′ denote mea-

surements taken on the ith subject at observation times Ti = {ti1 < · · · < ti,pi}, i = 1, . . . , N .

We assume that measurement times are drawn from T = [0, 1] without loss of generality.

We extend the linear model corresponding to the Cholesky decomposition (2) with the

following functional varying-coefficient model:

y (tij) =
∑
k<j

φ (tij, tik) y (tik) + ε (tij) ,
i = 1, . . . , N

j = 2, . . . , pi,
(4)

where the prediction errors ε (t) follow a zero-mean Gaussian process with variance function

σ2 (t). In the setting where sampling points are subject-specific and varying in length, the

covariance function of the underlying process Y (t), Cov(Y (t), Y (s)) becomes the natural

target of interest.

As parsimonious parametric models, Pourahmadi (2000) and Pan and Mackenzie (2003)
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considered low-order polynomials of the lag between observed time points for the generalized

autoregressive coefficient function φ and polynomials of time for log innovation variances in

the analysis of longitudinal data. Further, Wu and Pourahmadi (2003) proposed local poly-

nomial smoothers to individually estimate the sub-diagonals of T for modeling φ, imposing

smoothness along the direction of lag. Short-term dependence could be another form of

parsimony for covariance models, and can be realized by truncating the varying coefficient

at certain time lag, which leads to a banded matrix (Huang, Liu, Pourahmadi, & Liu, 2006;

Levina, Rothman, & Zhu, 2008).

The time lag or the sub-diagonal direction of T plays a prominent role in those parsimo-

nious models for expressing the dependence structure. Rather than modelling the varying

coefficient function φ directly, we reparameterize it explicitly in terms of lag and its orthog-

onal direction so that the fitted function can easily be used for suggesting parsimonious or

structured models for the covariance function. Specifically, we take stationarity as a form of

parsimony in covariance models, including those models parameterizing the elements of T as

a function of the lag between observations in the literature (Pourahmadi, 1999; Pourahmadi

& Daniels, 2002; Pan & Mackenzie, 2003; Leng, Zhang, & Pan, 2010). To facilitate such

model specification, we transform inputs from a pair of time points (t, s) for t > s to the

lag, l = t − s ∈ [0, 1], and average, m = t+s
2
∈ [0, 1], in the additive direction as illustrated

in Figure 1, and model φ in terms of the new arguments l and m:

φ̃ (l,m) ≡ φ̃

(
t− s, 1

2
(t+ s)

)
= φ (t, s) . (5)

In other words, the composition of φ̃ and the coordinate transformation yields φ. For brevity

of notation, we will use φ to refer to the generalized autoregressive coefficient function taken

as a function of either (t, s) or (l,m). Its arguments, unless specified explicitly, are to be

interpreted depending on the context.
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Figure 1: Coordinate transformation of a pair of time points (t, s) for t > s in the left panel to the

lag and average in the additive direction, (l,m), in the right panel.

Model (4) corresponds to a stationary process when φ can be written as a function of lag

l only and the innovation variances are constant in time t. For simplicity in the covariance

model, we choose to regularize the autoregressive varying coefficient and the innovation

variance function so that heavy penalization to both φ and σ2 results in models which

are close to stationary covariance matrices. To estimate φ(t, s) and σ2(t), we employ the

smoothing spline framework (Wahba, 1990).

In particular, we model φ in a structured function space that allows decomposition of

φ into functional components of lag l and additive direction m, and using the components,

we specify penalties that naturally yield the aforementioned models in the literature as null

models. For such a structural representation of φ, we adopt the smoothing spline ANOVA

models in Gu (2013) taken as a functional analogue of the classical analysis of variance

(ANOVA) model. They exhibit the same interpretability as their classical counterparts,

allowing multivariate functions to be decomposed into components similar in spirit to the

main effects and interaction terms associated with the ANOVA model. This property makes

them especially useful for verifying or eliciting parametric models (Liu & Wang, 2004).
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Two-Way Functional ANOVA Models

To model the varying coefficient function φ on [0, 1]2 using the smoothing spline ANOVA

model framework, we first consider a univariate function space for lag l and additive direc-

tion m separately and take their tensor product. For example, the second-order Sobolev

space W2[0, 1] = {f : [0, 1] → R | f, f ′ absolutely continuous,
∫ 1

0
(f ′′(x))2dx < ∞} can

be taken as a model space for smooth univariate functions. When the curvature of f ,

J(f) =
∫ 1

0
(f ′′(x))2dx is used as a roughness penalty functional for estimation of an unknown

function from the space with data, the solution to the penalized least squares problem is

known as a cubic smoothing spline. The function space H := W2[0, 1] can be equipped

with inner product such that H as a Hilbert space is a direct sum of two orthogonal sub-

spaces H0 and H1, the null space H0 consists of constant or linear functions taken as null

models, and the penalty functional J(f) corresponds to the squared norm of the projection

of f onto H1 denoted by ‖P1f‖2. Further, with an appropriate averaging operator (e.g.

A(f) =
∫ 1

0
f(x)dx) and a basis k1(·) for linear functions in H0 satisfying A(k1) = 0 (e.g.

k1(x) = x− 1/2), the null space H0 can be decomposed as a direct sum of {1} and {k1(·)}.

Thus, H = {1} ⊕ {k1(·)} ⊕H1 and each function f(x) in H admits a unique representation

of c0 + c1k1(x) + f1(x) with c0, c1 ∈ R and f1 ∈ H1. This functional decomposition is akin to

the one-way ANOVA model. In the representation, c1k1(x) + f1(x) is treated as a functional

main effect of x, and c1k1(x) and f1(x) are called parametric and nonparametric main effects,

respectively.

Taking two structured function spaces for l and m, H[l] = {1} ⊕ {k1(l)} ⊕ H[l]
1 and

H[m] = {1} ⊕ {k1(m)} ⊕ H[m]
1 as building blocks, we can define the tensor product space

H[l] ⊗H[m] and use it as a model space for bivariate φ. Analogous to the two-way ANOVA

model, the subspaces of H[l]⊗H[m] define a unique decomposition of φ into the overall mean,

main effects of l and m, and interaction of l and m: φ(l,m) = µ+ φ1(l) + φ2(m) + φ12(l,m).

In addition, we can specify the null space as the subspace with desired simple models

(e.g. low-order polynomials of lag only), and use the functional norm associated with each

subspace to define a general “roughness” penalty functional J(φ) for bivariate smoothing,

which results in two-way smoothing spline ANOVA models. This penalized function esti-
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mation framework is very flexible in the choice of a null space H0 and a penalty functional

J(φ), allowing the user to adapt these choices to the context of data analysis and modeling.

Mathematically, smoothing spline ANOVA models are rooted in the theory of repro-

ducing kernel Hilbert spaces (Aronszajn, 1950; Wahba, 1990; Berlinet & Thomas-Agnan,

2011). Reproducing kernels are essential to the characterization of function spaces, their

subspaces, and related geometric notion of norms and projections. For clear exposition of

the model fitting procedure, we briefly review some basic properties of reproducing kernel

Hilbert spaces.

Reproducing Kernel Hilbert Spaces

A Hilbert space H of functions on a set X with inner product 〈·, ·〉H is defined as a complete

inner product linear space. For each x ∈ X , let [x] map f ∈ H to f (x) ∈ R, which is known

as the evaluation functional at x. A Hilbert space is called a reproducing kernel Hilbert

space (RKHS) if the evaluation functional [x] f = f (x) is continuous in H for all x ∈ X .

The Reisz Representation Theorem gives that there exists Kx ∈ H, the representer of the

evaluation functional [x] (·), such that 〈Kx, f〉H = f (x) for all f ∈ H. See Theorem 2.2 in

Gu (2013).

The symmetric, bivariate function K (x1, x2) ≡ Kx1 (x2) = 〈Kx1 , Kx2〉H is called the

reproducing kernel (RK) of H. The RK satisfies that for every x ∈ X and f ∈ H, K (x, ·) ∈

H, and f (x) = 〈f,K (x, ·)〉H. The second property is called the reproducing property of

K. Every reproducing kernel uniquely determines the RKHS, and in turn, every RKHS

has a unique reproducing kernel. See Theorem 2.3 in Gu (2013). The representer of any

bounded linear functional can be obtained from the reproducing kernel K. Further, if a

reproducing kernel Hilbert space H is a direct sum of two orthogonal subspaces H0 and

H1 with RKs K0 and K1, that is, H = H0 ⊕ H1, then the reproducing kernel for H is

K(x1, x2) = K0(x1, x2) +K1(x1, x2). See Aronszajn (1950) for other RKHS properties.
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Estimation of the Generalized Varying Coefficient Function via Bivariate

Smoothing

For estimation of the generalized coefficient function φ with data, we transform the observed

time points to lags and averages in the additive direction. Given subject i and a pair of

indices j > k, define vijk =
(
tij − tik, 1

2
(tij + tik)

)
= (lijk,mijk) ∈ V = [0, 1]2 as the tuple

corresponding to the transformed pair of jth and kth observation times on the ith subject. Let

V =
⋃
i,j,k

{vijk} ≡
{
v1, . . . ,v|V |

}
denote the set of unique within-subject pairs of observation

times when pooled across N subjects.

We let the autoregressive coefficient function φ belong to a reproducing kernel Hilbert

space H with reproducing kernel K, which is structured as a tensor sum of the null space

H0 and penalized space H1 with reproducing kernels K0 and K1, respectively. Let the

penalty functional J (φ) measuring the complexity of φ, be ‖P1φ‖2, the squared norm of the

projection of φ onto the subspace H1.

For example, consider H = H[l] ⊗ H[m], where H[l] = W2[0, 1] = H[l]
0 ⊕ H

[l]
1 with H[l]

0 =

{1} ⊕ {k1(l)} and H[m] = W2[0, 1] = H[m]
0 ⊕ H[m]

1 with H[m]
0 = {1}. This choice results in

the null space H0 comprised of linear functions of lag only and amounts to penalizing the

main effect of m, φ2(m), and interaction of l and m, φ12(l,m), altogether in addition to the

curvature of the main effect of l. It has the effect of pulling estimated φ towards smooth

functions of lag only treated as one form of parsimony in covariance modeling.

Under model (4), the negative log likelihood satisfies

− 2`
(
φ, σ2|Y1, . . . , YN

)
=

N∑
i=1

pi∑
j=1

[
log σ2(tij) +

1

σ2(tij)

(
y(tij)−

∑
k<j

φ(tij, tik)y(tik)

)2
]

(6)

up to an additive constant.

Fixing the innovation variances σ2
ij = σ2 (tij), we take the estimator of φ to be the

minimizer of the penalized negative log likelihood:

− 2`
(
φ|Y1, . . . , YN , σ

2
)

+ λJ (φ) =
N∑
i=1

pi∑
j=2

1

σ2
ij

(
y(tij)−

∑
k<j

φ (vijk) y(tik)

)2

+ λJ (φ) , (7)

where λ > 0 is a smoothing parameter, and denote it by φλ. The smoothing parameter λ

controls the tradeoff between the goodness of fit measure ` and the penalty ‖P1φ‖2.
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The following theorem establishes the form of the minimizer of the penalized negative

log likelihood (7) and that the solution belongs to a finite-dimensional subspace despite the

minimization being carried out over an infinite-dimensional space.

Theorem 1. Let {ν1, . . . , νN0} span H0 = {φ ∈ H : J (φ) = 0}, the null space of J (φ) =

‖P1φ‖2. Then the minimizer φλ of (7) is of the form

φλ (v) =

N0∑
i=1

diνi (v) +

|V |∑
j=1

cjK1 (vj,v) , (8)

where K1 (vj,v) denotes the reproducing kernel for H1 evaluated at vj, the jth element of

V , viewed as a function of v = (l,m), di ∈ R, and cj ∈ R.

This result is an example of the well-known representer theorem that holds for minimizers

of regularized empirical risk functionals in a RKHS, and obtained by the standard argu-

ment with reproducing kernel properties. The proof is left to the Appendix. Using the

representation of the minimizer, we discuss how to determine the coefficients di and cj with

data.

Model Fitting

Let Y =
(
Y (−1)

1
′
, Y (−1)

2
′
, . . . , Y (−1)

N

′
)′

denote the vector of length nY =
∑

i pi − N , con-

structed by stacking the N observed response vectors, less their first element: Y (−1)

i =

(y(ti2), . . . , y(ti,pi))
′. Define Xi to be the (pi − 1)× |V | matrix containing the covariates for

subject i necessary for regressing each measurement y(ti2), . . . , y(ti,pi) on its predecessors as

in model (4), and let X =
[
X ′1 X ′2 . . . X ′N

]′
. Define K

V
to be the |V | × |V | matrix with

(i, j) entry given by K1 (vi,vj), and let B denote the |V |×N0 matrix with (i, j) entry equal

to νj (vi).

Assuming that σ2
ij are given for now, let D denote the nY × nY diagonal matrix of

innovation variances σ2
ij, and let Ỹ = D−1/2Y , B̃ = D−1/2XB, and K̃

V
= D−1/2XK

V
.

Using the representation of φλ in (8), and defining coefficient vectors c = (c1, · · · , c|V |)′ and

d = (d1, · · · , dN0)
′, the penalized negative log likelihood in (7) is given by

− 2`
(
c, d|Ỹ , B̃, K̃

V

)
+ λJ (φλ) =

[
Ỹ − B̃d− K̃

V
c

]′[
Ỹ − B̃d− K̃

V
c

]
+ λc′KV c. (9)
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For fixed smoothing parameter, setting partial derivatives with respect to d and c equal to

zero, the solution φλ is obtained by finding c and d which satisfy: B̃′B̃ B̃′K̃
V

K̃ ′
V
B̃ K̃ ′

V
K̃

V
+ λK

V

d
c

 =

 B̃′Ỹ
K̃ ′

V
Ỹ

 . (10)

When K̃
V

is full column rank, the solution can be obtained through the Cholesky decompo-

sition of the symmetric matrix on the left side of the equality in (10). Writing B̃′B̃ B̃′K̃
V

K̃ ′
V
B̃ K̃ ′

V
K̃

V
+ λK

V

 = CC ′,

the solution is given by
[
d̂′ ĉ′

]′
= C−1(C ′)−1

[
B̃ K̃

V

]′
Ỹ . Singularity of K̃

V
demands

special computational consideration to solve (10). For detailed examination, we refer the

reader to Gu and Wahba (1991).

The appropriate choice of smoothing parameter λ is crucial for effectively recovering the

true φ. In practice, a number of data-driven methods are available for model selection such

as the Akaike or Bayesian information criterion (Eilers & Marx, 1996) or cross validation-

based procedures (Wahba, 1990; Gu & Wahba, 1991) including the leave-one-subject-out

cross validation (losoCV) criterion for repeated measures data (Xu & Huang, 2012).

ESTIMATION OF THE INNOVATION VARIANCE FUNC-

TION VIA SMOOTHING SPLINES FOR EXPONENTIAL

FAMILIES

Given an estimate of φ, we can estimate the innovation variance function σ2(t), using the

corresponding residuals as working innovation errors. If the true innovations ε(tij) were

given, then the joint likelihood in (6) would reduce to

− 2`
(
σ2|Y1, . . . , YN , φ

)
=

N∑
i=1

pi∑
j=1

(
log σ2(tij) +

ε2(tij)

σ2(tij)

)
(11)

for estimation of σ2(t). The fact that ε2(tij) is a scaled chi-square random variable and the

form of the likelihood above motivate a variance model for σ2(t) using Gamma distributions
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with the ε2(tij) serving as the response. When a Gamma distribution with shape parameter

α and scale parameter β is reparameterized with mean parameter µ = αβ in place of β, a

negative log likelihood of µ based on a single observation z from the distribution is shown

to be proportional to α

(
log µ+

z

µ

)
with α−1 treated as a fixed dispersion parameter. Rec-

ognizing the connection between the Gamma likelihood and (11), we cast estimation of the

innovation variance function in a generalized linear model framework with Gamma errors

and fixed shape parameter. Further, to remove the constraint that µ > 0, we transform µ

to η = log µ and reparameterize the Gamma likelihood as α [η + z exp(−η)].

Defining η(t) = log σ2(t) and assuming a smooth log innovation variance function, we use

the smoothing spline method for regression relating squared innovations, ε2(tij), as Gamma

responses to time points tij. Generalized smoothing spline models that relate the canonical

parameter of an exponential family to a set of covariates have been studied extensively. See

Wahba, Wang, Gu, Klein, and Klein (1995), Wang (1997), and Gu (2013).

As with the estimation of the functional varying coefficient, estimation is carried out by

minimizing the penalized negative log likelihood with the working innovation errors. Given

φ∗, an estimate of φ, define the working innovation errors, ε̂(tij) = y(tij)−
∑
k<j

φ∗ (vijk) y(tik),

and the corresponding squared innovations, zij ≡ z(tij) = ε̂2(tij). Let Zi = (z(ti1), . . . , z(ti,pi))
′

denote the vector of squared innovations for the ith observed trajectory. With Z1, . . . , ZN ,

the negative log likelihood of η(t) becomes

− 2` (η|Z1, . . . , ZN) =
N∑
i=1

pi∑
j=1

(
η(tij) + zije

−η(tij)
)
. (12)

Similar to the estimation of φ, we consider a function space H for η(t) on [0, 1] with an

orthogonal decomposition of H0 ⊕ H1 and define a roughness penalty J(η) that can be

written as the squared norm of the projection of η to H1. For instance, take H = W2[0, 1]

with J(η) =
∫ 1

0
(η′(t))2dt which corresponds to H0 = {1}. Combining the likelihood with a

penalty, we define our estimator of η(t) to be the minimizer of the penalized negative log

likelihood:

− 2` (η|Z1, . . . , ZN) + λJ (η) =
N∑
i=1

pi∑
j=1

(
η(tij) + zije

−η(tij)
)

+ λJ (η) . (13)
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The first term in (13) serves as a measure of the goodness of fit of η to the data, and

only depends on η through the evaluation of η at observed time points. Thus, the argument

justifying the form of the minimizer in (8) applies to η. Let Tobs =
⋃
i,j {tij} denote the unique

values of the observations times pooled across subjects. The minimizer of the penalized

likelihood (13) has the form

ηλ (t) =

N0∑
i=1

diνi (t) +

|Tobs|∑
j=1

cjK1 (tj, t) , (14)

where {νi} form a basis for the null space H0 and K1 (tj, t) is the reproducing kernel for H1

evalutated at tj, the jth element of Tobs, viewed as a function of t.

To jointly estimate the autoregressive coefficient function and the innovation variance

function, we adopt an iterative approach in the spirit of Pourahmadi (2000), Huang et al.

(2006), and Huang, Liu, and Liu (2007). A procedure for minimizing

−2` (φ, η|Y1, . . . , YN) + λφJφ (φ) + ληJη (η)

starts with initializing η(tij) = 0 or σ2
ij = exp(η(tij)) = 1 for i = 1, . . . , N , j = 1, . . . , pi. For

fixed η, we find φ∗ minimizing the penalized negative log likelihood

−2` (φ|Y1, . . . , YN , η) + λφJφ (φ) .

Given φ∗, we update our estimate of η by taking η∗ that minimizes the penalized negative

log likelihood with the working squared residuals

−2` (η|Z1, . . . , ZN , φ
∗) + ληJη (η) .

This process of iteratively updating φ∗ and η∗ is repeated until convergence.

SIMULATION STUDIES

In this section we compare our bivariate spline estimator to other methods of covariance

estimation through simulation studies with generative models. Our primary comparisons

are that with the polynomial estimator for φ and σ2 proposed by Pan and Mackenzie (2003).

Their approach, which is also based on the Cholesky decomposition, permits unbalanced data
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without requiring missing data imputation. However, the polynomial estimator assumes

that φ(t, s) can be parameterized as a (univariate) polynomial in l = t − s only. Thus,

discrepancies in the performance of the estimators may be indicative of situations in which

our parameterization (5) is advantageous. We also consider the performance of the oracle

estimator under each of the generating models, the sample covariance matrix and two of its

regularized variants: the tapered sample covariance matrix (Cai et al., 2010) and the soft

thresholding estimator (Rothman et al., 2009), neither of which rely on a natural ordering

among the variables.

We consider the following five covariance structures for the data generating distribution.

The covariance functions as two-dimensional surfaces corresponding to each generating model

are shown left to right in Figure 2. The first row displays the surface coinciding with the

appropriate discrete covariance matrix on a 10 × 10 grid, and the second row displays the

surfaces of the corresponding Cholesky factors (the lower triangle of −T ). The precise model

definitions are in Table 1. When Σ is not directly specified in the table, the covariance

matrices in Figure 2 are obtained by either evaluating the covariance function σ(t, s) at 10

equally spaced points, {t1, · · · , t10}, from [0, 1] or numerically constructing Σ = T−1DT ′−1

after forming T and D from the specified autoregressive coefficient and innovation variance

functions φ(t, s) and σ2(t).

Under each of the five covariance models, we generated data from a mean zero p-variate

Normal distribution with covariance matrix Σ = T−1DT ′−1 and constructed an estimate of

Σ for each combination of p = 10, 20, 30 and sample size N = 50, 100. Since construc-

tion of the sample covariance matrix S and regularized variants Sω (tapered) and Sλ (soft-

thresholded) requires an equal number of observations on each subject taken at a common

set of observation times, simulations were conducted using complete data, with observation

times t = 1, . . . , p mapped to the unit interval. The smoothing spline estimator Σ̂SS was

constructed by using a tensor product cubic smoothing spline for φ and univariate cubic

smoothing spline for σ2 (t).

Following Pan and Mackenzie (2003), the polynomial estimator Σ̂poly was obtained by

modeling the generalized autoregressive coefficients φ(tij, tik) as a degree q polynomial of

(tij − tik) and the log innovation variances log σ2(tij) as a degree d polynomial of tij. The
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Model I Model II Model III Model IV Model V

Σ

φ

Figure 2: Heatmaps of the true covariance matrices corresponding to Models I–V and φ defining the

corresponding Cholesky factor T . The smallest elements of each matrix correspond to dark green

pixels; the light pink (white) pixels correspond to the large (largest) elements of the matrix.

regression parameters were estimated via maximum likelihood, and the optimal pair of poly-

nomial orders (q, d) was selected using the Bayesian information criterion (BIC).

To assess performance of an estimator Σ̂, we consider the entropy loss

∆
(

Σ, Σ̂
)

= tr
(

Σ−1Σ̂
)
− log |Σ−1Σ̂| − p,

which can be derived from the Wishart likelihood (Anderson, 1984). Given Σ, we prefer the

estimator with the smallest risk, R
(

Σ, Σ̂
)

= EΣ

[
∆
(

Σ, Σ̂
)]

. To evaluate the risk via Monte

Carlo approximation, we generated 100 replicates of Σ̂ and calculated the corresponding

average loss.

Figure 3 provides a visual summary of the qualitative differences between the estimates

resulting from each of the six methods of estimation for the five covariance structures used

for simulation. The first row in the grid shows the surface plot of each of the true covariance

structures, and each row thereafter corresponds to the five covariance estimates for the given
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Model Σ or σ(t, s) φ(t, s) for t > s σ2(t)

I: Independence I 0 1

II: Linear Coefficient * t− 0.5 0.12

III: Banded Linear *

 t− 0.5 if t− s ≤ 0.5

0 if t− s > 0.5
0.12

IV: Rational Quadratic
(

1 + (t−s)2
2k2

)−1

* *

with k = 0.6

V: Compound Symmetry (1− ρ) I + ρJ φ(tj, tk) = ρ
1+(j−2)ρ

σ2(tj) = 1− (j−1)ρ2

1+(j−2)ρ

with ρ = 0.7 for j > k

Table 1: Covariance models for data generation. The true covariance function σ(t, s),

varying coefficient function φ(t, s), and innovation variance function σ2(t) are defined with

the domain T = [0, 1]. The asterisks indicate that the entries are determined numerically

when discretized.

estimation method.

Oracle estimators for each covariance model were constructed assuming that the structure

of the underlying generating model is known. For example, the oracle estimator of the

covariance matrix corresponding to mutual independence with constant variance is a diagonal

matrix with the diagonal elements given by σ̂2, which is an estimate of the variance based

on all of the data, {ytij}. For Model II, the oracle estimator was obtained by fitting a linear

function of t for the varying coefficient function and assuming constant innovation variance.

For compound symmetry, a random effects model with subject-specific effects that yield

the same covariance structure was considered and its variance parameters were estimated

using the restricted maximum likelihood method to produce the oracle estimator. For each

simulation setting, the risk of the oracle estimator serves as a lower bound on the risk for

the given covariance structure.

A summary of the estimated entropy risk for the covariance estimators is presented in

Table 2. Smoothing parameters for Σ̂SS were chosen using the unbiased risk estimate (Gu,

2013, Chapter 3.22) and leave-one-subject-out cross validation. Performance is similar under
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both criteria; for brevity, results under losoCV are omitted. Tuning parameter selection for

the regularized versions of the sample covariance matrix was performed using cross validation.

For detailed discussion, see Fang, Wang, and Feng (2016).

In general, our estimator outperforms the alternative estimators, particularly when the

underlying true covariance matrix does not satisfy the implicit structural assumptions moti-

vating their construction. For example, the risk for the polynomial estimator is much higher

than our estimator under Models II and III due to model misspecification; the underlying φ

is not a function of lag only. While the sample covariance matrix is an unbiased estimator

of the unstructured covariance matrix, the smoothing spline estimator is better for every

simulation model, and the difference is larger as p increases. Our estimator effectively makes

use of the functional nature of the generating covariance models and their smoothness. It

performs most poorly on Model III, where φ does not belong to the prescribed model space

for smooth functions due to its discontinuous first derivative. Overall, the results indicate

that the smoothing spline estimator achieves what it was designed to do. It provides a

more stable and accurate estimate than the sample covariance matrix, but is guaranteed

to be positive-definite unlike the soft thresholding estimator and the tapering estimator. It

achieves this stability in performance across different scenarios with added flexibility over

the polynomial estimator and exhibits better performance than the polynomial estimator

under Model IV where parametric models of lag only may be appropriate.

To see how performance of our estimator changes when data are irregularly sampled, we

carried out an additional experiment where data are subsampled from the complete trajec-

tories in the first experiment by randomly omitting each observation with fixed probability

in the range of 10 to 30%. Performance degradation of the estimator in the presence of

missing data is highly dependent on the underlying structure of the Cholesky factor. The

performance remains fairly stable across increasing proportions of missing data under Models

I and IV. See Blake (2018) for details.
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Model I Model II Model III Model IV Model V

Σ

Σ̂oracle

Σ̂SS

Σ̂poly

S

Sλ

Sω

Figure 3: Covariance Models I–V used for simulation and corresponding estimates with various

methods. True covariance structures are shown in the first row followed by their estimates from the

oracle estimator, smoothing spline ANOVA estimator, parametric polynomial estimator, the sample

covariance matrix, the tapered sample covariance matrix, and the soft thresholding estimator.
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p Σ̂oracle Σ̂SS Σ̂poly S Sω Sλ

Model I

N = 50 10 0.0135 0.0685 0.1102 1.2047 0.5369 1.1742

20 0.0229 0.0834 0.1096 4.9850 1.3957 4.7796

30 0.0196 0.1102 0.1127 12.5517 2.8019 11.3175

N = 100 10 0.0105 0.0451 0.0531 0.5685 0.2045 0.5236

20 0.0105 0.0425 0.0512 2.2831 0.5724 2.1358

30 0.0139 0.0431 0.0472 5.2770 1.2430 4.9126

Model II

N = 50 10 0.0581 0.0689 4.7673 1.2832 1.4644 1.1770

20 0.0439 0.0581 97.2334 5.1665 21.6407 39.3522

30 0.0627 0.0811 153.9665 12.3582 55.3674 133.9980

N = 100 10 0.0386 0.0457 4.7911 0.5812 0.8335 0.5628

20 0.0269 0.0416 98.1989 2.3364 10.1841 10.0864

30 0.0288 0.0367 158.2480 5.2389 33.5207 62.5030

Model III

N = 50 10 0.0619 0.3296 3.0108 1.2030 1.1460 1.1467

20 0.0695 1.1100 62.7522 4.9824 17.2244 14.9189

30 0.0576 2.3215 1091.1933 12.4792 49.9135 121.7795

N = 100 10 0.0268 0.2904 3.0383 0.5699 0.5545 0.5371

20 0.0275 1.1963 62.8960 2.2700 11.8274 9.5217

30 0.0221 2.2811 1105.0449 5.2234 29.1693 60.3529

Model IV

N = 50 10 0.0217 0.3348 0.7144 1.2218 0.7397 1.1921

20 0.0286 0.9177 1.4588 4.9091 1.9786 4.9206

30 0.0283 1.5992 2.2173 12.6114 3.7440 12.1489

N = 100 10 0.0125 0.3047 0.6958 0.5570 0.3168 0.5515

20 0.0105 0.8911 1.4813 2.2659 0.9365 2.2474

30 0.0134 1.5213 2.2228 5.2106 1.9312 5.2111

Model V

N = 50 10 0.0986 0.2769 1.2420 1.2023 18.5222 2.9824

20 0.2512 0.7514 2.8557 5.0195 34.6618 13.8690

30 0.2641 1.1776 4.5791 12.3460 46.5437 26.1364

N = 100 10 0.0520 0.2416 1.1491 0.5821 16.4081 1.7397

20 0.0827 0.7286 2.9080 2.2918 32.5295 5.4649

30 0.1799 1.1813 4.4402 5.2197 39.2914 15.4295

Table 2: Multivariate normal simulations for Models I–V. Estimated entropy risk is reported

for the oracle estimator, our smoothing spline ANOVA estimator, the parametric polynomial

estimator of Pan and MacKenzie (2003), the sample covariance matrix, the tapered sample

covariance matrix, and the soft thresholding estimator.
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DATA ANALYSIS

Kenward (1987) reported an experiment designed to investigate the impact of the control

of intestinal parasites in cattle. To compare two methods for controlling the disease, say

treatment A and treatment B, each of 60 cattle was assigned randomly to two groups, each

of size 30. Animal subjects were put out to pasture at the start of grazing season, with each

member of the groups receiving one of the two treatments. Animals were weighed 11 times

(p = 11) over a 133-day period; the first 10 measurements on each animal were made at

two-week intervals and the final measurement was made one week later. The longitudinal

dataset is balanced, as there were no missing observations for any of the experimental units.

Observed weights are shown in Figure 4.

The analysis of the same dataset provided by Zimmerman and Núñez-Antón (1997)

rejected equality of the two covariance matrices corresponding to treatment group using

the classical likelihood ratio test, making it reasonable to study each treatment group’s

covariance matrix separately. Following Pourahmadi (1999), Zhang, Leng, and Tang (2015),

and Pan and Pan (2017), we analyze the data from the cattle assigned to treatment group A

(N = 30). Given that the animals belong to the same treatment group and share a common

set of observation times, we posit common covariance matrix Σ for each subject. The left

profile plot in Figure 4 of the weights for units in treatment group A shows a clear upward

trend in weights. Variances appear to increase over time, suggesting that the covariance

structure is nonstationary.

The nonstationarity suggested in Figure 4 is also supported by the sample correlations

given in Table 3; correlations within the subdiagonals are not constant and increase over

time, a secondary indication that a stationary covariance is not appropriate for the data.

As evident in Figure 4 with a trend in the observed weight trajectories, covariance estima-

tion generally involves simultaneous modeling of mean trajectories. We model the observed

21



A B

0 50 100 0 50 100

200

250

300

350

day

w
ei

gh
t

Figure 4: Subject-specific weight curves over time for treatment groups A and B.

trajectory for the ith subject, Yi, as

Yi = f (Ti) + ε∗i , i = 1, . . . , N,

where f (Ti) = (f(ti1), · · · , f(ti,pi))
′ is a vector of evaluation of a smooth function f(t) that

is common across the subjects at observed time points. For the cattle data, Ti = {t1 =

0, t2 = 14, · · · , t11 = 133} same across the subjects. We assume that the measurement

errors, ε∗i follow N (0,Σ). The mean trajectory was estimated by the sample mean of Yi.

Akin to conditionally linear mixed models, more refined mean modeling is possible for the

data by allowing individual mean trajectories with a random intercept. For comparison with

previous analyses, however, we assume the simple model for mean trajectories and focus on

covariance modeling.

Analyzing the sample regressogram and sample innovation variogram, Pourahmadi (1999)

suggested that both sample generalized autoregressive parameters and the logarithms of the
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Day

0 14 28 42 56 70 84 98 112 126 133

0 1.00

14 0.82 1.00

28 0.76 0.91 1.00

42 0.65 0.86 0.93 1.00

56 0.63 0.83 0.89 0.93 1.00

70 0.58 0.75 0.85 0.90 0.94 1.00

84 0.51 0.64 0.75 0.80 0.85 0.92 1.00

98 0.52 0.68 0.77 0.82 0.88 0.93 0.92 1.00

112 0.51 0.61 0.71 0.74 0.81 0.89 0.92 0.96 1.00

120 0.46 0.59 0.69 0.70 0.77 0.85 0.86 0.94 0.96 1.00

133 0.46 0.56 0.67 0.67 0.74 0.81 0.84 0.91 0.95 0.98 1.00

Table 3: Cattle data: treatment group A sample correlations.

innovation variances can be characterized in terms of low degree polynomials of the lag only

and time, respectively. Pan and Pan (2017) had the same observation that the regressogram

of empirical estimates of φt,s show consistent behaviour over l = t − s for each value of t,

indicating a lack of a strong functional component of m. They used the Bayesian informa-

tion criterion (BIC) to choose the order of the polynomials for the generalized autoregressive

parameters and innovation variances. The dashed lines in Figure 5 show the estimated poly-

nomials according to the suggested model using the detrended trajectories with estimated

means; polynomials of degree five and three were selected for φt,s and log (σ2
t ), respectively.

To balance the consideration of previous analyses with the interest of entirely data-driven

model specification, we take our approach to estimation of the autoregressive coefficient

function φ using a two-way ANOVA model in a tensor product space H = H[l]⊗H[m], where

penalties for H[l] and H[m] are specified to induce cubic splines for both of the marginal

subspaces corresponding to l and m. We refine the approach with a two-way ANOVA model

by introducing rescaling parameters for the nonparametric components of φ1, φ2 and φ12

and tuning the scale of φ2 and φ12 components relative to the lag component φ1. For the

innovation variance function, we consider the same model space as the marginal function

spaces for the coefficient function. For selection of smoothing parameters, we used cross

validation: losoCV for estimation of the coefficient function and GCV for the innovation
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variance function. Figures 5 and 6 show the estimated autoregressive coefficient function

and log innovation variance function using our approach.

The solid lines in Figure 5 are the estimated main effect of lag, φ1(l), including the overall

mean µ̂ and log innovation variance function log (σ2(t)). Figure 6a shows the estimated

main effect, φ2(m), in the additive direction including µ̂. The result confirms that the m

component is negligible as in the previous analyses. Further, Figure 6b displays the estimated

two-way interaction between lag and additive direction at the sample points (l,m) defined by

the observed times. The estimated interaction captures the pattern that given the same lag,

generalized autoregressive parameters tend to be larger with large m than small m, which is

more visible in the range of small values of lag. However, the size of interaction is minuscule.

The estimated functions in Figure 6 are largely parametric resulting from rescaling of the

nonparametric components of φ2 and φ12.
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s

(a) Sample generalized autoregressive parameters

φ̂t,s

2
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4
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time

lo
g(

σ̂ t2 )

(b) Sample log innovation variances log(σ̂2
t )

Figure 5: Sample regressogram and log innovation variances for the cattle data from treatment

group A. The dashed line in (a) is the polynomial fit (degree 5) and the solid line is the estimated

main effect of l = t− s of the cubic smoothing spline fit. The dashed line superimposed over the log

innovation variances in (b) is the polynomial fit (degree 3), and the solid line is the cubic smoothing

spline fit.
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Figure 6: The estimated main effect of additive direction m = (t+ s) /2 superimposed over the sam-

ple regressogram for the cattle data from treatment group A and the estimated interaction between

lag (l) and additive direction (m) evaluated on the grid defined by the observed time points.

The estimated generalized autoregressive coefficient function was evaluated at pairs of

observation times, and the size of the functional components was measured in terms of the

squared vector norm of each component evaluated at the sample points. The squared norm

of the main effect of lag (4.826) was much larger than that of the main effect of additive

direction (0.005) or the interaction term (0.001), which is clearly indicated by Figures 5 and

6. The size of the functional components indicates a certain degree of concordance with the

models proposed by Pourahmadi (1999). This suggests that parameterizing φ as a univariate

function of lag only is a reasonable modeling choice.

CONCLUSIONS

We have proposed a general nonparametric framework for covariance estimation with longi-

tudinal data. The Cholesky decomposition supplies a reparameterization of the covariance

matrix allowing for unconstrained estimation. The elements of the reparameterization can be

interpreted as parameters for an autoregressive model. We allow for irregular, subject-specific
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time points by extending this regression model to a functional varying coefficient model. By

reframing covariance estimation as the estimation of the functional varying coefficient func-

tion and the error variance function, our approach leverages regularization techniques that

are typically reserved for function estimation. A functional ANOVA model leads to an in-

terpretable decomposition of the varying coefficient into its stationary and non-stationary

functional components. This parameterization naturally allows for shrinkage of estimated

covariances toward those corresponding to stationary models.

Coupling the form of penalty functional with desired simplicity in the dependence struc-

ture is the key to successful applications of the proposed framework for covariance estimation.

In addition to the notion of stationarity this paper has focused on, the proposed approach

can be applied to other forms of parsimony such as independence, short-term dependence,

and diminishing dependence with lags. While appropriate forms of penalty functionals for

modeling short-term dependence or diminishing dependence are not obvious, they may be

dealt with using alternative representations for the lag component of the autoregressive coef-

ficient function tailored to right-truncated functions or monotone functions. In practice, we

suggest to choose the appropriate class of null models for the varying coefficient function in

a data-driven manner following a careful examination of the observed dependence through

sample regressograms.
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APPENDIX

Proof of Theorem 1. The function space H is decomposed into H0 and H1 with the penalty

functional J(φ). H1 can be further decomposed into the finite dimensional subspace spanned

by {K1 (vj,v)}, j = 1, . . . , |V | and its orthogonal complement in H1. Considering the three

subspaces, any φ ∈ H can be written as

φ (v) =

N0∑
i=1

diνi (v) +

|V |∑
j=1

cjK1 (vj,v) + ρ (v) , (15)

where ρ ∈ H1 is perpendicular to ν1, . . . , νN0 and K1 (vj,v) for each vj ∈ V .

Using the properties of the reproducing kernel K = K0 +K1, we can show that evaluation

of any φ ∈ H at v` ∈ V does not depend on ρ:

φ (v`) = 〈φ (·) , K (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) +

|V |∑
j=1

cjK1 (vj, ·) + ρ (·) , K (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) +

|V |∑
j=1

cjK1 (vj, ·) + ρ (·) , K0 (v`, ·)〉H

+ 〈
N0∑
i=1

diνi (·) +

|V |∑
j=1

cjK1 (vj, ·) + ρ (·) , K1 (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) , K0 (v`, ·)〉H + 〈
|V |∑
j=1

cjK1 (vj, ·) , K1 (v`, ·)〉H

=

N0∑
i=1

diνi (v`) +

|V |∑
j=1

cjK1 (vj,v`) .

The last two equalities result from the orthogonality of H0, {K1 (vj,v)}, and ρ, and the

reproducing property of K. Thus, the negative log likelihood in (7) depends only on∑N0

i=1 diνi (v) +
∑|V |

j=1 cjK1 (vj,v). On the other hand, the penalty is given by

‖P1φ‖2 =

∥∥∥∥ |V |∑
j=1

cjK1 (vj, ·) + ρ (·)
∥∥∥∥2

=

∥∥∥∥ |V |∑
j=1

cjK1 (vj, ·)
∥∥∥∥2

+ ‖ρ (·) ‖2.

The penalized negative log likelihood is obviously minimized when ‖ρ‖2 = 0, or ρ (·) = 0.

This leads to the form of the minimizer for φλ as stated in Theorem 1.
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