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Overview

» Part I
Introduction to Kernel Methods for Statistical Learning and
Modeling

» Part ll:
Theory of Reproducing Kernel Hilbert Spaces Methods

» Part Il
Regularization Approach to Feature Selection



Part |: Introduction to Kernel Methods for Statistical
Learning and Modeling

» Statistical learning problems
» Methods of regularization

» Smoothing splines

» Support vector machines

» Statistical issues



Prediction of Annual Household Income
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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Figure: Boxplots of the annual household income with education,
age, gender, marital status, occupation, and householder status out
of 13 demographic attributes in the data



Cancer Diagnosis with Microarray Data

» Microarrays measure relative amount of mRNAs of (tens
of) thousands of genes.

» Golub et al.(Science, 1999): Acute leukemia data
ALL (acute lymphoblastic leukemia) with subtype B-cell
and T-cell lineage, and AML (acute myeloid leukemia)



Acute Leukemia Gene Expression Profiles

Patient | gene; gene, gene7iog class
1 X11 X1 2 X1,7129
2 X2.1 X2 2 X2 7129
20 X201 X202 X207120 || ALL — T
28 X281 X282 X28 7129 ANL
38 X381 X382 X38.7129 AN
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Figure: The heat map shows the expression levels of 40 most important genes for the training samples when

they are appropriately standardized. Each row corresponds to a sample

which is grouped into the three classes,

and the columns represent genes. The 40 genes are clustered in a way the similarity within each class and the

dissimilarity between classes are easily recognized.



Handwritten Digit Recognition
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Statistical Learning

» Multivariate function estimation
» A training data set {(x;,Vyi),i =1,...,n}

» Learn functional relationship f between x = (x1,...,Xp)
and y from the training data, which can be generalized to
novel cases.

e.g. f(x)=E(Y|X =x)
» Examples include

Regression: continuous y € R, and
Classification: categoricaly € {1,...,k}.



Goodness of a Statistical Procedure for Learning

» Accurate prediction with respect to a given loss L(y,f(x))
e.g. L(y,f(x)) = (y — f(x))? for regression

» Flexible (nonparametric) and data-adaptive

» Interpretability
e.g. subset (variable/feature) selection

» Computational ease for large p (high dimensional input)
and n (large sample)



Large Model Space

» Large number of variables for high dimensional data

» Large number of basis functions for nonparametric
modeling

» Need to deal with a large parameter (or model) space.

» Classical maximum likelihood estimation (MLE) or
empirical risk minimization (ERM) no longer works as the
solution may not be well-defined or there may be infinitely
many solutions that overfit data.

» How to explore the large model space for stable model
fitting and prediction?



Regularization

» Tikhonov reqgularization (1943):
solving ill-posed integral equation numerically

» Process of modifying ill-posed problems by introducing
additional information about the solution

» Modification of the maximum likelihood principle or
empirical risk minimization principle
(Bickel & Li 2006)

» Smoothness, sparsity, small norm, large margin, ...

» Bayesian connection



Methods of Regularization (Penalization)

Find f(x) € F minimizing

%iﬁ(%,f(xi)) + AJ(f).

=1

Empirical risk + penalty

JF. a class of candidate functions

J(f): complexity of the model f

A > 0: a regularization parameter

Without the penalty J(f), ill-posed problem

vV v . v v Vv



Examples of Regularization Methods

Ridge regression (Hoerl and Kennard 1970)

LASSO (Tibshirani 1996)

Smoothing splines (Wahba 1990)

Support vector machines (Vapnik 1998)

Regularized neural network, boosting, logistic regression,

vV v v v VY



Nonparametric Regression

y; =f(x) +¢ fori =1,...,nwhere ¢ ~ N(0, %)
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Smoothing Splines

Wahba (1990), Spline Models for Observational Data.

Find f(x) € W>[0, 1]
= {f : f,f’ absolutely continuous, and f” € L, } minimizing

1 . ! /!
DATRCES R

> J(f) = [5(f"(x))?dx = ||P1f||?: curvature of f
» A — 0: Iinterpolation
» \ — oo: linear fit

» 0 < \ < oo: plecewise cubic polynomial with two
continuous derivatives



Small \: Overfit
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Figure: A — 0: interpolation
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Large A:

Underfit
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Figure: A — oo: linear fit



Moderate )\

Figure: 0 < A < oo: piecewise cubic polynomial with two continuous
derivatives



Risk Estimate

PP 1 n 3 2
> Risk: E[1 S, (fA(xi) —f(xi)) ]
» The Mallows-type criterion:

2

U = 20— A2 + 27t [AN).

» d.f.(\y) =09.

1.5 2.0

1.0

—— Average Prediction Error
— Unbiased Risk Estimate
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Classification

» Learn arule ¢ : RP — Y from the training data
{(Xi,yi),i =1,.. .,n}.
» The 0-1 loss function:

Ly, ¢(x)) = Iy # ¢(x))



Separating Hyperplane

Figure:y = +linredandy = —1 in blue



Support Vector Machines

Boser, Guyon, & Vapnik (1992)

Vapnik (1995), The Nature of Statistical Learning Theory.
» yi € {—1,1}, class labels in binary case
» f(x) =w 'x + b (real-valued discriminant function)
» Separating hyperplane with the maximum margin:

f minimizing ||w ||
subjectto yif(xj) > 1foralli=1,...,n
» Classification rule: ¢(x) = sign(f(x))



Linear SVM In Non-Separable Case

» Relax the separability condition y;f(x;) > 1.

» Hinge loss: L(y,f(x)) = (1 —yf(x))+ where
(t)+ = max(t, 0).

» If yf(Xx) < 1, the loss is proportional to the distance of x
from the soft margin yf(x) =1

» Findf e F={f(x)=w 'x +b|w € RPand b € R}
minimizing

LS @yt () + Alw
=1

where J(f) = J(w "X +b) = ||w .



Hinge Loss

N | i)
k \ — - @,

t=yf

Figure: (1 — yf(x)). is an upper bound of the misclassification loss
function I(y # ¢(x)) = [-yf(X)]+ < (1 —yf(x)),. where [t], = I(t > 0)
and (t), = max{t,0}.



Nonlinear SVM

» Linear SVM solution:
n
f(X)=> cx{x+b
i=1

» Replace the Euclidean inner product x ' x’ with
K(x,x") = ®(x) " d(x’) for a mapping ¢ from RP to a
higher dimensional ‘feature space.

» Nonlinear kernels:

K(x,x") = (1+x"x")9, exp(—
e.g. Forp =2 and x = (X, X2),

®(x) = (1, V2x1, V2Xp, X2, X2, v/2x1X2) gives
K(x,x") = (14 x"x")2.

X —x'||?/20?), ...




Classification

y;i € {1:red, —1: blue}

x1



Classification Boundary with a Large A
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Classification Boundary with a Small A
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Test Error Rates
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Figure: Error rate over 1,000 test cases as a function of .



Statistical Issues

» Risk or generalization error estimation

» Model selection/averaging - choice of tuning parameter(s)
(CV, GCV, resampling, risk bounds, ...)

» Variable or feature selection
» Computation

» e.g. Least squares problem for Smoothing splines and
Quadratic Programming for SVM

» Need to solve a family of optimization problems indexed by
A.

» Use the characteristics of regularized solutions for efficient
algorithms.



Summary

» Many statistical learning methods can be cast in a
regularization framework.

» Examples include Smoothing Splines and Support Vector
Machines.

» Regularization entails a model selection problem.
Tuning parameters need to be chosen to optimize the
“bias-variance tradeoff.”

» More formal treatment of kernel methods will be given in
Part Il.



Part Il: Theory of Reproducing Kernel Hilbert Spaces
Methods

Regqgularization in RKHS
Reproducing kernel Hilbert spaces
Properties of kernels

Examples of RKHS methods
Representer Theorem

vV v v v VY



Regularization in RKHS

Find f = 3™ . d, ¢, + h with h € Hx minimizing

—Zﬁ(y., 1)) + Allhl[2, -

» Hy . areproducing Kernel Hilbert space of functions
defined on a domain which can be arbitrary

> J(f) = ||h|)3, : penalty
» The null space spanned by {¢,}M ,



Why consider RKHS?

» Theoretical basis for some of popular regularization
methods

» Unified framework for function estimation and modeling
various data

» Allow general domains for functions
» Permit geometric understanding

» Can do much more than estimation of function values
(e.g. integrals and derivatives)



Reproducing Kernel Hilbert Spaces

» Consider a Hilbert space ‘H of real valued functions on a
domain X.

» A Hilbert space H is a complete inner product linear space.

» For example, the domain X could be
» {1,...,k}
> [0,1]
» {A,C,G, T}
» [RP
» S: sphere.

» A reproducing kernel Hilbert space is a Hilbert space of
real valued functions, where the evaluation functional
Ly (f) = f(x) is bounded in ‘H for each x € X.



Riesz Representation Theorem

» For every bounded linear functional L in a Hilbert space H,
there exists a unique g, € ‘H such that L(f) = (g, f),
vf € H.

» g, Is called the representer of L.



Reproducing Kernel

Aronszajn (1950), Theory of Reproducing kernels.

» By the Riesz representation theorem, there exists Ky € H,
the representer of Lx(-), such that (Ky,f) = f(x), Vf € H.
» K(X,t) = K(t) is called the reproducing kernel.

» K(X,-) € H for each x
» (K(x,-),f(:)) =f(x) forall f € H

> Note that K(x, ) = Ky(t) = (Ki(-), Kx(-)) = (Kx(+), Kt(+))
(the reproducing property)



Example of RKHS

» F={f|f:{1,...,k} — R} = R* with the Euclidean inner
product (f,g) = flg = ijzl ile]

» Note that |f(j)| < ||f||. That is, the evaluation functional
Lij(f) =f(j) is bounded in F for eachj € X.

> Li(f) =1(j) = (e, f) where g is the jth column of I.
Hence K(i,j) = ¢ = I[i =j] or [K(i,])] = k.



The Mercer-Hilbert-Schmidt Theorem

> If [, [, K2(s,t)dsdt < oo for a continuous symmetric
non- negative definite K, then there exists an orthonormal

sequence of continuous eigenfunctions D, Py, ... IN Ly[X]
and eigenvalues AL > Xp > - > 0with Y270, A2 < oo with
I K( (s)ds = A ®;(t) and

— i i D; (S)CD t
=1

» The inner product in H of functions f with >, (f2/\;) < oo

<« figi
=1

where fi = [, f(t)®;(t)dt

» Feature mapping: ®(x) = (v A1P1(X), vV A2®2(X),...)



Reproducing Kernel is Non-Negative Definite

» A bivariate function K(-,-) : X x X — R is non-negative

definite if for every n, and every x4,...,Xn € X, and every
aj,...,an € R",

n
Z aiajK(xi,xj) > 0.
=1

In other words, letting a = (ay,...,an)',
al [K(xi,xj)}a > 0.

» For a reproducing kernel K,

n n
2
Z aiajK(xi,xj) = H ZaiK(xi,-)H > 0.
I=1

1,j=1



The Moore-Aronszajn Theorem

» For every RKHS H of functions on X, there corresponds a
unigue reproducing kernel (RK) K(s,t), which is n.n.d.

» Conversely, for every n.n.d. function K(s,t) on X, there
corresponds a unique RKHS H that has K (s,t) as its RK.



How to construct RKHS given an n.n.d. K(s,t)

» For each fixed x € X, define K« (-) = K(X, ).

» Taking all finite linear combinations of the form » : a;Ky, for
all choices of n, a1,...,an, and Xq, ..., Xn, Cconstruct a
linear space M.

> Define an inner product via (K, Ky, ) = K(Xi, Xj) and extend
it by linearity.

(ZaiKXi,ijKtj) — Zaibj(Kxi, Ktj) — Zaiij(xi,tj).
i j N 1]

» For any f of the form } : Ky, (Kx,f) = f(X).

» Complete M by adjoining all the limits of Cauchy
sequences of functions in M.



Sum of Reproducing Kernels

» The sum of two n.n.d. matrices is n.n.d.

» Hence, the sum of two n.n.d. functions defined on the
same domain X' is n.n.d.

> In particular, if H = H1 @ H», and K(s,t) is the RK of H;

forj =1,2, then K(s,t) = Ky(s,t) + Ky(s,t) is the RK for
the tensor sum space of H1 & Ho.



Product of Reproducing Kernels

» Suppose that Ki(X1,X2) is n.n.d. on A7 and Ky(ty,t) is
n.n.d. on A5.

» Consider the tensor product of K; and K5

K ((xl,tl), (xz,tz)) — Ky (X1, X2)Ka(ty, to)

on X = X; X Xo.
K(-,-)isn.n.d. on X.

» The tensor product of two RK’s K; and K, for H1 and H> Is
an RK for the tensor product space of H1 ® H, on X.



Constructing Kernels

» Use reproducing kernels on a univariate domain as
building blocks.

» Tensor sums and products of reproducing kernels.
» Systematic approach to estimating multivariate functions.

» Other tricks to expand and design kernels:
Haussler (1999), Convolution Kernels on Discrete
Structures.

» Learning kernels (n.n.d. matrices) from data:
Lanckriet et al. (2004), Learning the Kernel Matrix with
Semidefinite Programming, JMLR.



Cubic Smoothing Splines

Find f(x) € W>[0, 1]
= {f : f,f’ absolutely continuous, and f” € L, } minimizing

1y g
ﬁ;()ﬁ —f(Xi))2+>\/o (f"(x))?dx.

» The null space: M = 2, ¢1(X) = 1, and ¢»(X) = X.
» The penalized space: Hx = WJ[0,1] =
{f € W,[0,1] : f(0) =0, f’(0) =0} is an RKHS with
)(f,g) = [y F(x)g” (x)dx
i) (1112 =[5 (F”(x))2dx
i) K(x,x") = fol(x — U)o (X" —u).du.



SVM In General

Find f(x) = b + h(x) with h € Hx minimizing

1 n
= > (1= yif(xi))+ + Allh]3,, -
—1

» The null space: M =1 and ¢1(x) =1
» Linear SVM:
Hx = {h(x) =w "x | w € RP} with
) K(x,x’)=x"x’
i) 1%, = Ilw "x |15, = w]?
» Nonlinear SVM: K (x,x’) = (1 + x 'x")¥ (polynomial
kernel), exp(—||x — x’||?/20?) (Gaussian kernel), ...



Representer Theorem

Kimeldorf and Wahba (1971)
> The minimizer f = S"™ . d, ¢, + h with h € Hy of

_Z‘C(ylv )“‘)‘Hh”HK

has a representation of the form

M n
f(x) =) dudu(x)+ > CciK(xj,x).
r=1 =1

> HhH%K = >_ij G K(Xi, xj).



Sketch of the Proof

» Write h € Hk as

h(x) = zn:CiK(XiaX) + p(x)
-1

where p(x) is some element in Hy perpendicular to
K(xj,x)fori=1,...,n.

» Note that h(x;) = (K(Xj,),h(-))», does not depend on p
and [[h|[5, = >iL1 Do ciciK(xi, X;j) + [|pll%,

» Then, ||p||2, needs to be zero.
Pl

» Hence, the minimizer f is of the form

M n
f(x) =) dudu(x)+ > CiK(xj,x).
v=1 =1



Remarks on the Representer Theorem

» It holds for an arbitrary loss function L.

» Minimizer of RKHS method resides in a finite dimensional
space.

» So the solution is computable even if the RKHS had infinite
dimension.

> The resulting optimization problems with the
representation f depend on £ and the penalty J(f).



Loss Function and its Risk Minimizer f

L(y,f(x)) argmin E[L(Y,f(X))|X = X]
Regression

(y —f(x))? E(Y|X =x)

ly — f(x) median(Y |[X = x)

Classification withy = +1
SVM: (1 — yf(x))+
Logistic regression:

log{1 + exp(—yf(x))}
Boosting: exp(—yf(x))

sign{p(x) — 1/2;

logp(x)/(1 - p(x))
(1/2)logp(x)/(1 — p(x))
where p(x) = P(Y = 1|X =x)




Hinge vs -log likelihood

1.5

_1 _______ ~ } - truth
- logistic regression
— - SVM
-1.5 '
-2 -1 0 1 2

Figure: Solid: 2p(x) — 1, dotted: 2p,(x) — 1 and dashed: fsyw (X)



Smoothing Splines for Modeling Non-Gaussian
Response

» Generalized linear models for the data with y from
exponential families can be extended nonparametrically.

» The main idea of the extension of smoothing splines to
non-Gaussian case is to replace the squared error loss by
the negative log likelihood function associated with y.

» Thus, the penalized least squares method becomes the
method of penalized negative log likelihood.

» Non-Gaussian data can be treated in the framework of
RKHS method in a unified way, yet they require some
computational modification.



Logistic Regression

» Suppose that we have independent data points of (X;, Y;),
I =1,...,n,and Yj|x; ~ Bernoulli(p(xj)), where
p(x) = P(Y = 1|X = x). Note thaty; € {0,1}.

» The likelihood of the data conditional on x Is

n

]I pCxi)Yi (1 —p(xi)) .

=1

» Model the logit function of p(x), log{p(x)/(1 — p(x))} by
f eH.

» In terms of the logit f(x), the likelihood is given by

ﬁ exp(yif (x;)—log(1+e'*))) = eXP(En: yif (x)—log(1+e' ).
1=1 i=1



Formulation of Penalized Logistic Regression

» Use the negative log likelihood as a loss function.
» Find f\, € H = Ho & Hy minimizing

= Z{ yif (%) +log(1 + e )} + APy f 2.

» By the representer theorem,

M n
B =D dugu(X) + > cK(xi,X).
v=1 =1

» The optimization problem of finding d = (d4,...,dy)' and
c = (Cq1,...,Cn)! entails iterations.

» The solution can be approximated by iteratively reweighted
least squares.



Machine Learning View on Kernels

> K(x,x'") = &(x) " d(x’) through feature mapping ¢ from RP
to a feature space.

» Kernel trick:
Kernelize, that is, replace the Euclidean inner product x ' x’
in your linear method with K (x, x’)!

» This idea goes beyond supervised learning problems.

» nonlinear dimension reduction and data visualization:
kernel PCA

» clustering: kernel k-means algorithm
> ...



Summary

» RKHS methods provide a unified framework for statistical
model building.

» Kernels are now used as a versatile tool for flexible
modeling and learning in various contexts.

» Feature selection for kernel methods will be discussed in
Part Il based on the idea of kernel construction by sums
and products.



Part Ill: Regularization Approach to Feature Selection

» Feature selection procedures

» LASSO, modeling with |; constraint

» Generalization of LASSO for kernel methods
» Application for finding biomarkers



Motivation for Feature Selection

» Key questions in many scientific investigations.

» Achieve parsimony (Occam’s razor)
“Entities should not be multiplied beyond necessity.”

» Enhance interpretation.
» Often reduce variance, hence improve prediction accuracy.



Feature Selection Procedures

» Combinatorial approach:
Best subset selection, Forward selection, Backward
elimination, Stepwise regression
e.g. Guyon et al. (2002), Recursive feature selection

» |1 penalty for simultaneous fitting and selection:
e.g. Bradley and Mangasarian (1998),
Linear SVM with |; penalty
Tibshirani (1996), LASSO
(Least Absolute Shrinkage and Selection Operator)
Chen and Donoho (1994), Basis Pursuit

» Other variants for groupings of variables, model hierarchy,
adaptiveness, and efficiency.



LASSO
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Ridge Regression
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LASSO Coefficient Paths
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Median Regression with I; Penalty for Income Data

p
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I

-4
I

0 10 20 30 40 50 60

S

Flgure: The coefficient paths of the main effects model. Positive: home ownership (in dark blue relative to
renting), education (in brown), dual income due to marriage (in purple relative to ‘not married’), age (in skyblue), and
male (in light green). Negative: single or divorced (in red relative to ‘married’) and student, clerical worker, retired or
unemployed (in green relative to professionals/managers)



Median Regression with I; Penalty for Income Data

I I I I I I I
0 20 40 60 80 100 120

S

Figure: The coefficient paths of a partial two-way interaction model.
Positive: ‘dual income x home ownership’, ‘home ownership x
education’, and ‘married but no dual income *x education’. Negative:
‘single x education’ and ‘home ownership x age’



Risk Path

Estimated Risk
74 76 78 80 82 84

Figure: The risks of the two-way fitted models are estimated by using
a test data set with 4,876 observations.



Generalization of LASSO

» Kernel methods may be difficult to interpret when the
embedding into feature space is implicit.

» Regression:
Lin and Zhang (2003), COmponent Selection and
Smoothing Operator
Gunn and Kandola (2002), Structural modelling with
sparse kernel

» Classification:
Zhang (2006) for the binary SVM
Lee et al. (2006) for the multiclass SVM



Strategy for Feature Selection

» Structured representation of f using functional ANOVA
decomposition

» A sparse solution approach with |; penalty

» A unified treatment for regression and classification
(both linear and nonlinear cases)

» |nexpensive additional computation
» Systematic elaboration of f with features



Functional ANOVA Decomposition

» For f defined on a product domain X = H}C’Zl X

f = H[A-+(I—A-)]f
- HAf+Z(HA)(I—A)f
]
+Z [T A =AY = A+
<] r#i,]

» Functional “overall mean” + “main effects” + “two-way
Interactions” + - - -

> Define A; appropriately so that the decomposition of A; and
| — A; corresponds to {1} & H;.



ANOVA Spaces and Kernels

Wahba (1990), smoothing spline ANOVA models

> Function: f(x) =b+ 3", fo(Xa) + X acpfas(Xa Xg) + -

» Functional space: f ceH=g"_,({1} @Ha)
H={1} &30 Ha® Y oep(Ho® Ha) @

» Reproducing kernel (r.k.):
KX, x") =141 Ka(X,X") + > 45 Kap(X, X") + -



Two-way ANOVA Decomposition of
f e Wz[o, 1] X Wz[O, 1]

» Two-way ANOVA decomposition of f
f(Xx1,X2) = fo + fo(X1) + fa(X2) + f12(X1, X2)

with the side conditions that [ f;(x;)dx; = 0 and
fo f12(X1,X2)dx; = 0 forj =1, 2.
» The corresponding functional components

{1} {Ki(x2)} H3
{1} mean p-main effect (xo) n-main effect (x»)
{ki(x1)} | p-main effect (x;)  pxp-interaction P x n-interaction
H n-main effect (x;)  nxp-interaction nx n-interaction

where “p” and “n” mean parametric and nonparametric,
respectively.
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I, Penalty on 6

» Modification of r.k. by rescaling parameters 6 > 0
KQ(X 9 X/) — 1+22:1 eaKa(X 3 X/)‘|‘Za<5 HaﬁKaﬁ(X : X/)—I—- .

» Truncating H to F = {1} @9_, F,, find f(x) € F minimizing
= znjﬁ()" F(xi)) + 2> 6, [PF|?
N — I | - v )

Thenf(x)=b+ 3", & [zgzl eyK,,(xi,x)} .

» For sparsity, minimize

1 n d d
_ f . -1 Pl/f 2 )
ni;c(y., (XJ)“VZ_IHV IPf| HH;H

subjectto 6, > 0, V.



Related to Kernel Learning

» Micchelli and Pontil (2005), Learning the kernel function
via regularization
» K ={K,,v € N'}: a compact and convex set of kernels

» A variational problem for optimal kernel configuration

min ( min 1 zn:c(yi,f(xi)) + )\J(f)>
=1

Kel \feHk n .



One-Step Update for Structured Regression

» Given b and {C; }, recalibrate 6 to minimize

LS (yi—b- iey[iéjmxj,xi)])z
2 2

=1

+ )\ZH z:ccJ (Xi, Xj)

v 1,j=1
subject to 6, > 0, Vv, and Z@V <s



Nonnegative Garrote

Breiman, L. (1995),
Better Subset Regression Using the Nonnegative Garrote

» Stepwise variable selection can be unstable with respect to
small perturbations in the data.

» Starting with the full LSE, it both shrinks and zeroes
coefficients.

» Given (S, take (c1,...,cp) to minimize

n P

DOy — > GBEx)
=1

=1

subjectto¢; >0and >-° ;¢ <s.
» Generally lower prediction error than best subset selection



Structured SVM with ANOVA decomposition

» The binary case (Zhang, 2006):
Find f(x) = b + h(x) minimizing

1 n d B d
=S @y 0)) s A ORI+ 0D 0,
I_l vr=1 r=1

subject to 6, > 0, V.

» The multiclass case (Lee et al., 2006)
Find f = (f1,...,f%) = (b + hi(x),...,bX + hX(x)) with
the sum-to-zero constraint minimizing

‘sz’(x ) =¥+ + 5 Y(VSV 1P”hjz>

= 117534

+ o Z 9, subject to 6, > 0, Vv,
v=1

where (y!,...,y¥)isaclass code withy! =1and
—1/(k — 1) elsewhere, ify = |, and ¢(x )= arg max; [f!(x J.



Updating Algorithm

Letting C = (b, {¢;}) and denoting the objective function by
d(0,C),

» Initialize 6(¥) = (1,...,1)t and C\? = argmin (6, C).
» At the m-th iteration(m=1,2,...)

(6-step) find 8™ minimizing ®(6, C™~1) with C fixed.
(c-step) find C™ minimizing ®(6(™), C) with 6 fixed.

» One-step update can be used in practice.



Two-Way Regularization

» c-step solutions range from the simplest model (or majority
rule) to the complete overfit to the data as )\ decreases.
(Standard regularization procedure)

» (-step solutions range from the constant model to the full
model with all the variables as )\y decreases.
(Functional component pursuit)



Breast Cancer Data

» Sharma et al. (2005), Early detection of breast cancer
based on gene-expression patterns in peripheral blood
cells, Breast Cancer Research.

» Develop accurate and convenient methods for detection of
breast cancer using blood samples.

» 60 unique blood samples from 24 women with breast
cancer and 32 women with no signs of the disease

» Mean normalized and cube-root transformed expression
levels of 1,368 cDNAs

» The nearest shrunken centroid method (Tibshirani et al.
2002) was used in the original paper.



Searching for Gene Signatures

» The Nearest Shrunken Centroid method

» The ¢,-norm SVM with

» 1,368 linear terms
» 1,368 linear and quadratic terms

» The structured kernel SVM with 1,368 nonparametric main
effects terms

» ‘External’ 6-fold cross-validation
(Ambroise and McLachlan, PNAS 2002)

» Split 60 samples into a training set of 50 and a test set of
10.

» Internal 5-fold CV for selection of an optimal tuning
parameter (a threshold for NSC, and penalty parameters for
SVM).



Computation

» Both /;-norm SVM and the 60-step of the structured kernel
SVM require parametric linear programming.

» Solutions are piecewise constant in the tuning parameter
(A or \p).

» Simplex algorithm can be used to generate the entire
regularized solution path (Yao and Lee, 2007).



Coefficients
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Figure: Recalibration parameter path for structured SVM.
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Figure: Error rate path for the 6-step of structured SVM.



Error Rates

» External 6-fold CV
» Comparison

Method | NSC L.SVM LQ.SVM StructSVM

Mean | 0.186 0.197 0.279 0.170
SE 0.050 0.051 0.058 0.048




Summary

» Integrate feature selection with kernel methods using |;
type penalty.

» Enhance interpretation without compromising prediction
accuracy.

» General approach for structured and sparse representation
with kernels.

» RKHS methods can solve a wide range of statistical
learning problems in a principled way.



Software

» Smoothing spline ANOVA models:
ssanova for Gaussian response and gssanova for
non-Gaussian response in gss R library

» Support vector machines:
ker nl ab for SVM, spectral clustering and kernel PCA
http://ww. ker nel - nachi nes. or g for other
Implementations in Matlab and Fortran
svnpat h for binary SVM solution path
nsvnpat h for multicategory SVM solution path (in
progress)

» Other path-finding algorithms:
| ar s for LASSO, LAR, stagewise fitting
gl npat h for |; regularized generalized linear models
| pRegPat h for parametric linear programming with linear
loss and |; penalty (in progress)
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